
Decision Procedures
for Concurrent Skiplists

Alejandro Sánchez1 César Sánchez1,2

1The IMDEA Software Institute, Spain

2Spanish Council for Scientific Research (CSIC), Spain

EPFL, Lausanne, 16 September 2010



Why do we want a decision procedure

I Imperative programs

P



Why do we want a decision procedure

I Imperative programs

I Concurrent data-structures

P1||P2|| · · · ||Pn



Why do we want a decision procedure

I Imperative programs

I Concurrent data-structures

P1||P2|| · · · ||Pn

data structures
(heap)



Why do we want a decision procedure

I Imperative programs

I Concurrent data-structures

P1||P2|| · · · ||Pn

data structures
(heap)

I Temporal properties (safety, liveness)

� ϕ



Why do we want a decision procedure

I Imperative programs

I Concurrent data-structures

P1||P2|| · · · ||Pn

data structures
(heap)

I Temporal properties (safety, liveness)

I Formal verification

LTL (,,U ,. . . )Regional
Logic

� ϕ



Why do we want a decision procedure

I Imperative programs

I Concurrent data-structures

P1||P2|| · · · ||Pn

data structures
(heap)

I Temporal properties (safety, liveness)

I Formal verification

LTL (,,U ,. . . )Regional
Logic

Verification
Diagrams

� ϕ



Verification of Concurrent Data-structures

Concurrent DataStructure

Main Idea



Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

Main Idea



Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N ] : P (1)|| · · · ||P (N)

Main Idea



Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N ] : P (1)|| · · · ||P (N)
+

ghost variables

Main Idea



Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N ] : P (1)|| · · · ||P (N)
+

ghost variables

ϕ(k)

Property

Main Idea



Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N ] : P (1)|| · · · ||P (N)
+

ghost variables

ϕ(k)D

PropertyDiagram

Main Idea



Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N ] : P (1)|| · · · ||P (N)
+

ghost variables

ϕ(k)D

PropertyDiagram

� �

Verification Conditions:
I Initiation
I Consecution
I Acceptance
I Fairness

Satisfaction
(Model Checking)

Main Idea



Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N ] : P (1)|| · · · ||P (N)
+

ghost variables

ϕ(k)D

PropertyDiagram

� �

Verification Conditions:
I Initiation
I Consecution
I Acceptance
I Fairness

Satisfaction
(Model Checking)

Main Idea

Decision Procedures



Verification Conditions



Verification Conditions
I Initiation

Θ→ µ(N0)



Verification Conditions
I Initiation

Θ→ µ(N0)

I Consecution: for all n and τ :

µ(n)(s) ∧ ρτ (s, s′)→ µ(next(n))(s′)



Verification Conditions
I Initiation

Θ→ µ(N0)

I Consecution: for all n and τ :

µ(n)(s) ∧ ρτ (s, s′)→ µ(next(n))(s′)

I Acceptance: if (n1, n2) ∈ P \R then

µ(n1)(s) ∧ µ(n2)(s′) ∧ ρτ (s, s′)→ δn1(s) ≥ δn2(s′)

and if (n1, n2) /∈ P ∪R:

µ(n1)(s) ∧ µ(n2)(s′) ∧ ρτ (s, s′)→ δn1(s) > δn2(s′)



Verification Conditions
I Initiation

Θ→ µ(N0)

I Consecution: for all n and τ :

µ(n)(s) ∧ ρτ (s, s′)→ µ(next(n))(s′)

I Acceptance: if (n1, n2) ∈ P \R then

µ(n1)(s) ∧ µ(n2)(s′) ∧ ρτ (s, s′)→ δn1(s) ≥ δn2(s′)

and if (n1, n2) /∈ P ∪R:

µ(n1)(s) ∧ µ(n2)(s′) ∧ ρτ (s, s′)→ δn1(s) > δn2(s′)

I Fairness: for all n and τ ∈ η(n, n′):

µ(n)(s) ∧ ρτ (s, s′)→ µ(τ(n))(s′)

µ(n)(s)→ Enτ (s)
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Verification Conditions Examples

I Preservation of skiplistness shape

SkipList3(sl : SkipList) =̂
OList0(h, sl.head , sl.r0) ∧
OList1(h, sl.head , sl.r1) ∧
OList2(h, sl.head , sl.r2) ∧
π1(sl.r3) ⊆ π1(sl.r2) ⊆ π1(sl.r1) ∧
sl.last .next0 = null ∧ sl.last .next1 = null ∧
sl.last .next2 = null ∧
SubPath(getp1(h, sl.head , sl.last), getp0(h, sl.head , sl.last)) ∧
SubPath(getp2(h, sl.head , sl.last), getp1(h, sl.head , sl.last))
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Verification Conditions Examples

I Preservation of skiplistness shape

I Program transitions

SkipList3(sl) ∧ at insert31 ∧ 0 ≤ i ≤ 2 ∧
x.val = v ∧ update[i].val < v ∧
update[i].next [i].val > v ∧ x.next [i] = update[i].next [i] ∧
mr = {(update[i], i), (x.next [i], i)} ∪mi+1..2 ∧ update[i].locks[i] = t ∧
update[i].next [i].locks[i] = t ∧ (j < i→ (x, i) ∈ sl.rj) ∧
update ′[i].next [i] := x ∧ sl′.ri := sl.ri ∪ {(x, i)} →

SkipList3(sl′) ∧ at ′ insert32 ∧ update ′[i].key < k ∧
update ′[i].next [i].next [i]key > k ∧
x′.next [i] = update ′[i].next [i].next [i] ∧
update ′[i].next [i] = x′ ∧
m′
r = {(update ′[i], i), (x′.next [i], i)} ∪m′

i+1..2 ∧
update ′[i].locks[i] = t ∧ update ′[i].next [i].next [i].locks[i] = t
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Theory of Concurrent Skiplists of Height K (TSLK)

I Based on TLL

I Extend all possible reasoning up to K levels

I Add the possibility of working with masked regions

I Description of order in lists and sub-paths
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Σsetth =

{thid, setth}8<:
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I Union of theories

TSLK = Taddr ⊕ Telem ⊕ Tcell ⊕ Tmem ⊕ TReachability ⊕
Tset ⊕ Tsetth ⊕ Tthid ⊕ Tmrgn⊕Tord ⊕ TlevelK

Σmrgn =

{mrgn, addr, levelK}8<:
empmr : mrgn
〈 , 〉mr : addr × levelK → mrgn
∪mr,∩mr,−mr : mrgn×mrgn→ mrgn

9=;8<:
∈mr : addr × levelK ×mrgn
⊆mr : mrgn×mrgn
#mr : mrgn×mrgn

9=;
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ΣlevelK =

{levelK}8><>:
η1 : level
...
ηK : level

9>=>;
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9>>=>>;˘
ordList : mem× path

¯



Theory of Concurrent Skiplists of Height K (TSLK)

I Union of theories

TSLK = Taddr ⊕ Telem ⊕ Tcell ⊕ Tmem ⊕ TReachability ⊕
Tset ⊕ Tsetth ⊕ Tthid ⊕ Tmrgn ⊕ Tord ⊕ TlevelK



Theory of Concurrent Skiplists of Height K (TSLK)

I Union of theories

TSLK = Taddr ⊕ Telem ⊕ Tcell ⊕ Tmem ⊕ TReachability ⊕
Tset ⊕ Tsetth ⊕ Tthid ⊕ Tmrgn ⊕ Tord ⊕ TlevelK

I We want to use Nelson-Oppen



Theory of Concurrent Skiplists of Height K (TSLK)

I Union of theories

TSLK = Taddr ⊕ Telem ⊕ Tcell ⊕ Tmem ⊕ TReachability ⊕
Tset ⊕ Tsetth ⊕ Tthid ⊕ Tmrgn ⊕ Tord ⊕ TlevelK

I We want to use Nelson-Oppen

I Stable infinite



Theory of Concurrent Skiplists of Height K (TSLK)

I Union of theories

TSLK = Taddr ⊕ Telem ⊕ Tcell ⊕ Tmem ⊕ TReachability ⊕
Tset ⊕ Tsetth ⊕ Tthid ⊕ Tmrgn ⊕ Tord ⊕ TlevelK

I We want to use Nelson-Oppen

I Stable infinite
I Disjoint signature (except by sort)



Theory of Concurrent Skiplists of Height K (TSLK)

I Union of theories

TSLK = Taddr ⊕ Telem ⊕ Tcell ⊕ Tmem ⊕ TReachability ⊕
Tset ⊕ Tsetth ⊕ Tthid ⊕ Tmrgn ⊕ Tord ⊕ TlevelK

I We want to use Nelson-Oppen

I Stable infinite
I Disjoint signature (except by sort)
I Decision procedure



Theory of Concurrent Skiplists of Height K (TSLK)

I Union of theories

TSLK = Taddr ⊕ Telem ⊕ Tcell ⊕ Tmem ⊕ TReachability ⊕
Tset ⊕ Tsetth ⊕ Tthid ⊕ Tmrgn ⊕ Tord ⊕ TlevelK

I We want to use Nelson-Oppen

I Stable infinite
I Disjoint signature (except by sort)
I Decision procedure

I Problem



Theory of Concurrent Skiplists of Height K (TSLK)

I Union of theories

TSLK = Taddr ⊕ Telem ⊕ Tcell ⊕ Tmem ⊕ TReachability ⊕
Tset ⊕ Tsetth ⊕ Tthid ⊕ Tmrgn ⊕ Tord ⊕ TlevelK

I We want to use Nelson-Oppen

I Stable infinite
I Disjoint signature (except by sort)
I Decision procedure

I Problem

I No decision procedure for reachability



Theory of Concurrent Skiplists of Height K (TSLK)

I Union of theories

TSLK = Taddr ⊕ Telem ⊕ Tcell ⊕ Tmem ⊕ TReachability ⊕
Tset ⊕ Tsetth ⊕ Tthid ⊕ Tmrgn ⊕ Tord ⊕ TlevelK

I We want to use Nelson-Oppen

I Stable infinite
I Disjoint signature (except by sort)
I Decision procedure

I Problem

I No decision procedure for reachability

I Eliminate bridge functions and predicates, preserving
satisfiability
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Small Model Property

Given a theory T with Σ = (S, F, P ) and S0 ⊆ S

T has SMP with respect to S0, if for every T -satisfiable QF Σ-formula ϕ
exists T -interpretation A satisfying ϕ s.t. Aσ is finite, for every σ ∈ S0

Γ a conjunction of TSLK-literals

a conjunction of normalized TSLK-literals

I Proof that exists a TSLK-interpretation A
Bounded on K and Γ.
With finite number of elements in addr, elem, thid, ord and
levelK.

Γ is also T -satisfiable in A

I TSLK enjoys the small model property
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Conclusions

I A method to verify Concurrent Datastructures

I Thanks to Decision Procedures, automatic verification for
Concurrent Single Linked Lists
Concurrent Skiplists

I Many possible collaborations:
Decision procedures as combinations
Use of STM

I Future work
Other concurrent datastructures (trees, graphs...)
Implementation



Small Model Property

Let Γ be a conjunction of normalized TSLK-literals. Let ē = |Velem (Γ)|,
ā = |Vaddr (Γ)|, m̄ = |Vmem (Γ)|, p̄ = |Vpath (Γ)|, t̄ = |Vthid (Γ)| and
ō = |Vord (Γ)|. Then the following are equivalent:

I Γ is TSLK-satisfiable;

I Γ is true in a TSLK interpretation A such that

|Aaddr| ≤ ā+ 1 + m̄ ā+ p̄2 + p̄3 + (K + 2)m̄p̄
|Aelem| ≤ ē+ m̄ |Aaddr|
|Athid| ≤ k̄ + Km̄ |Aaddr|+ 1
|AlevelK | ≤ K
|Aord| ≤ ō+ m̄ |Aaddr|



Small Model Property

L =
˘
ηi | 1 ≤ i ≤ K

¯
O = VB

ord ∪
˘

mB(v).keyB | m ∈ Vmem and v ∈ X
¯

X = VB
addr ∪

˘
nullB

¯
∪˘

mB(vB).nextB | m ∈ Vmem and v ∈ Vaddr

¯
∪˘

v ∈ δ(pB, qB) | the literal p 6= q is in Γ
¯
∪˘

v ∈ σ(p1
B, p2

B) | the literal ¬append(p1, p2, p3) is in Γ and

path2setB(p1
B) ∩ path2setB(p2

B) 6= ∅
¯
∪˘

v ∈ σ(p1
B ◦ p2

B, p3
B) | the literal ¬append(p1, p2, p3) is in Γ and

path2setB(p1
B) ∩ path2setB(p2

B) = ∅
¯
∪˘

v ∈ κ(m, p, l) | firstlocked(m, p, l) is in Γ
¯˘

v ∈ ξ(m, p) | ¬ordList(m, p) is in Γ
¯

Y = VB
thid ∪

˘
�

¯
∪

˘
mB(v).lockidB | m ∈ Vmem and v ∈ X

¯
Z = VB

elem ∪
˘

mB(v).dataB | m ∈ Vmem and v ∈ X
¯



PATH definitions
app : fseq× fseq→ fseq

app(nil, l) = l
app(cons(a, l), l′) = cons(a, app(l, l′))

fseq2set : fseq→ set
fseq2set(nil) = ∅

fseq2set(cons(a, l)) = {a} ∪ fseq2set(l)

ispath : fseq
ispath(nil)

ispath(cons(a,nil))
{a} * fseq2set(l) ∧ ispath(l)→ ispath(cons(a, l))

last : fseq→ addr
last(cons(a,nil)) = a

l 6= nil → last(cons(a, l)) = last(l)

isreachable : mem× addr × addr
isreachable(m, a, a)

m[a].next = a′ ∧ isreachable(m, a′, b)→ isreachable(m, a, b)

isreachablep : mem× addr × addr × fseq
isreachablep(m, a, a,nil)

m[a].next = a′ ∧ isreachablep(m, a′, b, p)→ isreachablep(m, a, b, cons(a, p))

firstmarked : mem× fseq× addr
firstmarked(m,nil,null)

p 6= nil ∧ p = cons(j, q) ∧m[j].lockid 6= � → firstmarked(m, p, j)
p 6= nil ∧ p = cons(j, q) ∧m[j].lockid = � ∧ firstmarked(m, q, i)→ firstmarked(m, p, i)



GAP definitions

nil = ε
cons(a,nil) = [a]8>>>>>>:

ispath(p1) ∧ ispath(p2) ∧
fseq2set(p1) ∩ fseq2set(p2) = ∅ ∧

app(p1, p2) = p3

9>>>>>>; ↔ append(p1, p2, p3)

ispath (p)→ isreachableK (m,a, b, l, p) = reachK (m,a, b, l, p)
ispath (p)→ fseq2set(p) = path2set(p)

isreachableK (m,a, b, l, p) → getpK (m,a, b, l) = p
¬isreachableK (m,a, b, l, p) → getpK (m,a, b, l) = nil

ispath (p) ∧ firstmarked (m, p, l, i) ↔ firstlocked (m, p, l) = i
ispath (p) ∧ ordPath (m, p) ↔ ordList (m, p)


