Deductive Temporal Verification of Parametrized Concurrent Systems

Alejandro Sánchez¹

César Sánchez^{1,2}

¹IMDEA Software Institute, Spain ²Spanish Council for Scientific Research (CSIC), Spain

SVARM'11, Saarbrücken, 2 April 2011

Main Idea

Main Idea

Concurrent DataStructure

Main Idea

Concurrent DataStructure

Concurrent DataStructure

Concurrent DataStructure

Concurrent DataStructure

Main Idea

Concurrent DataStructure

Main Idea

Concurrent DataStructure

Main Idea

Concurrent DataStructure

Most General Client

 $P[N]: P(1)||\cdots||P(N)$

Main Idea

Concurrent DataStructure

Most General Client

 $P[N]: P(1)||\cdots||P(N)$

Property

 $arphi^{(k)}$

Main Idea

Concurrent DataStructure

Most General Client

 $P[N]: P(1)||\cdots||P(N)$

Property

Main Idea

Main Idea

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

procedure MUTEXC

Int ticket

begin

- 1: **loop**
- 2: nondet 3: $\left\langle \begin{array}{c} ticket := tick + + \\ announced.add(ticket) \end{array} \right\rangle$ 4: await (announced.min == ticket) 5: critical
- 6: *announced.remove(ticket)*
- 7: end loop

end procedure

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

procedure MUTExc

Int ticket

begin

- 1: **loop**
- 2: **nondet** 3: $\left\langle \begin{array}{c} \text{ticket} := \text{tick} + + \\ \text{announced.add(ticket)} \end{array} \right\rangle$
- 4: **await** (announced.min == ticket)
- 5: critical
- 6: *announced.remove(ticket)*
- 7: end loop end procedure

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

procedure $\operatorname{Mut}Exc$

Int ticket

begin

- 1: **loop**
- 2: **nondet** 3: $\left\langle \begin{array}{c} \text{ticket} := \text{tick} + + \\ \text{announced.add(ticket)} \end{array} \right\rangle$
- 4: **await** (announced.min == ticket)
- 5: critical
- 6: *announced.remove(ticket)*
- 7: end loop end procedure

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

procedure $\operatorname{Mut}Exc$

Int ticket

begin

1: **loop**

- 5: critical
- 6: *announced.remove(ticket)*
- 7: end loop end procedure

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

procedure $\operatorname{Mut}Exc$

Int ticket

begin

- 1: **loop**
- 2: **nondet** 3: $\left\langle \begin{array}{c} \text{incket} := \text{tick} + + \\ \text{announced.add(ticket)} \end{array} \right\rangle$
- 4: **await** (announced.min == ticket)
- 5: critical
- 6: *announced.remove(ticket)*
- 7: end loop end procedure

global

Int tick := 0 $Set\langle Int \rangle$ announced $:= \emptyset$

procedure MUTEXC

Int ticket

begin

- 1: **loop**
- 2: nondet $\left\langle \begin{array}{c} ticket := tick + + \\ announced.add(ticket) \end{array} \right\rangle$ 3:
- await (announced.min == ticket)4:
- critical 5:
- announced.remove(ticket) 6:

 $\begin{array}{c} 2\\ \ldots\\ 2\end{array}$

7: end loop end procedure

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

procedure $\operatorname{Mut}Exc$

Int ticket

begin

1: **loop**

- 4: **await** (announced.min == ticket)
- 5: critical
- 6: *announced.remove(ticket)*
- 7: end loop end procedure

Announced Set

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

procedure $\operatorname{Mut}Exc$

Int ticket

begin

- 1: **loop**
- 2: **nondet** 3: $\left\langle \begin{array}{c} \text{icket} := \text{tick} + + \\ \text{announced.add(ticket)} \end{array} \right\rangle$
- 4: **await** (announced.min == ticket)
- 5: critical
- 6: *announced.remove(ticket)*
- 7: end loop end procedure

Announced Set

2/11

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

procedure MUTExc

Int ticket

begin

1: **loop**

- 4: **await** (announced.min == ticket)
- 5: critical
- 6: *announced.remove(ticket)*

tick

3

7: end loop end procedure

Announced Set

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

procedure $\operatorname{Mut}Exc$

Int ticket

begin

1: **loop**

- 4: **await** (announced.min == ticket)
- 5: critical
- 6: *announced.remove(ticket)*

tick

3

7: end loop end procedure

Announced Set

2/11

▶ For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- \blacktriangleright Let's assume a system with 2 threads: T_1 and T_2

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$

 T_1 not interested

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$

- ▶ For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$

- ▶ For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- \blacktriangleright Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$

Some verification conditions

$$n \wedge \tau[1] \rightarrow succ(n)$$

 $n \wedge \tau[2] \rightarrow succ(n)$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$
- \blacktriangleright Imagine now a system with 3 threads: T_1 , T_2 and T_3

 $n \wedge \tau[1] \rightarrow succ(n)$

 $n \wedge \tau[2] \rightarrow succ(n)$

3/11

Some verification conditions

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- \blacktriangleright Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$
- \blacktriangleright Imagine now a system with 3 threads: T_1 , T_2 and T_3

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- \blacktriangleright Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$
- \blacktriangleright Imagine now a system with 3 threads: T_1 , T_2 and T_3

Some verification conditions

 $n \wedge \tau[\mathbf{1}] \rightarrow succ(n)$ $n \wedge \tau[\mathbf{2}] \rightarrow succ(n)$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- \blacktriangleright Let's assume a system with 2 threads: T_1 and T_2
- Let's verify $\varphi(T_1)$
- \blacktriangleright Imagine now a system with 3 threads: T_1 , T_2 and T_3

Motivation for Parametrized Verification Diagrams

Problem

- ► Not a single diagram for arbitrary number of threads
- Unbounded number of verification conditions

Motivation for Parametrized Verification Diagrams

Problem

- Not a single diagram for arbitrary number of threads
- Unbounded number of verification conditions

Our solution

- Unique diagram for arbitrary number of threads
- Finite and bounded number of verification conditions

Parametrized Verification Diagrams exploits the similarities within **symetric systems**

• Let P be a program consisting of L lines of code

- Let P be a program consisting of L lines of code
- Assuming M threads running program P

- Let P be a program consisting of L lines of code
- Assuming M threads running program P

$$\mathcal{S}^{[M]} = \langle V, \Theta, \mathcal{T}, \mathcal{J} \rangle$$

- Let P be a program consisting of L lines of code
- Assuming M threads running program P
- Let V_{global} be the set of **global variables** of program P

$$\mathcal{S}^{[M]} = \langle V, \Theta, \mathcal{T}, \mathcal{J} \rangle$$

$$V = V_{global}$$

- Let P be a program consisting of L lines of code
- Assuming M threads running program P
- Let V_{global} be the set of **global variables** of program P
- Let V_{local} be the set of local variables of program P

$$\mathcal{S}^{[M]} = \langle V, \Theta, \mathcal{T}, \mathcal{J} \rangle$$

$$V = V_{global} \cup (V_{local} \times [M])$$

- Let P be a program consisting of L lines of code
- Assuming M threads running program P
- Let V_{global} be the set of global variables of program P
- Let V_{local} be the set of **local variables** of program P

$$\mathcal{S}^{[M]} = \langle V, \Theta, \mathcal{T}, \mathcal{J}
angle$$

$$V = V_{\textit{global}} \cup (V_{\textit{local}} \times [M]) \cup pc[M]$$

- Let P be a program consisting of L lines of code
- Assuming M threads running program P
- Let V_{global} be the set of global variables of program P
- Let V_{local} be the set of **local variables** of program P

$$\mathcal{S}^{[M]} = \langle V, \Theta, \mathcal{T}, \mathcal{J} \rangle$$

$$V = V_{global} \cup (V_{local} \times [M]) \cup pc[M]$$
$$\mathcal{T} = \bigcup_{l \in 1..L} \bigcup_{i \in [M]} \tau_l[i]$$

- Let P be a program consisting of L lines of code
- Assuming M threads running program P
- Let V_{global} be the set of **global variables** of program P
- Let V_{local} be the set of local variables of program P

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

For $\mathcal{S}^{[2]}$

procedure MUTExc

Int ticket

begin

1: **loop**

2: nondet

- 3: $\left\langle \begin{array}{c} ticket := tick + + \\ announced.add(ticket) \end{array} \right\rangle$
- 4: **await** (announced.min == ticket)
- 5: critical
- 6: *announced.remove(ticket)*
- 7: end loop

end procedure

- Let P be a program consisting of L lines of code
- Assuming M threads running program P
- Let V_{global} be the set of **global variables** of program P
- Let V_{local} be the set of local variables of program P

global

 $\begin{array}{l} Int \ tick := 0\\ Set \langle Int \rangle \ announced := \emptyset \end{array}$

procedure MUTExc

Int ticket

begin

1: **loop**

2: nondet

- 3: $\left\langle \begin{array}{c} ticket := tick + + \\ announced.add(ticket) \end{array} \right\rangle$
- 4: **await** (announced.min == ticket)
- 5: critical
- 6: *announced.remove(ticket)*
- 7: end loop

end procedure

$$V = \{tick, announced\}$$

For $\mathcal{S}^{[2]}$

- Let P be a program consisting of L lines of code
- Assuming M threads running program P
- Let V_{global} be the set of **global variables** of program P
- Let V_{local} be the set of local variables of program P

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

procedure MUTEXC

Int ticket

begin

1: **loop**

2: nondet

- 3: $\left\langle \begin{array}{c} ticket := tick + + \\ announced.add(ticket) \end{array} \right\rangle$
- 4: **await** (announced.min == ticket)
- 5: critical
- 6: *announced.remove(ticket)*
- 7: end loop

end procedure

 $V = \{tick, announced\} \cup \{ticket[1], ticket[2]\}$

For $\mathcal{S}^{[2]}$

- Let P be a program consisting of L lines of code
- Assuming M threads running program P
- Let V_{global} be the set of **global variables** of program P
- Let V_{local} be the set of local variables of program P

global

 $\begin{array}{l} \textit{Int tick} := 0 \\ \textit{Set} \langle \textit{Int} \rangle \textit{ announced} := \emptyset \end{array}$

procedure MUTExc

Int ticket

begin

- 1: **loop**
- 2: nondet
- 3: $\left\langle \begin{array}{c} ticket := tick + + \\ announced.add(ticket) \end{array} \right\rangle$
- 4: **await** (announced.min == ticket)
- 5: critical
- 6: *announced.remove(ticket)*
- 7: end loop

end procedure

 $\begin{array}{lll} V &=& \{tick, announced\} & \cup \\ & \{ticket[1], ticket[2]\} & \cup \\ & \{pc[1], pc[2]\} \end{array}$

For $\mathcal{S}^{[2]}$

- Let P be a program consisting of L lines of code
- Assuming M threads running program P
- Let V_{global} be the set of global variables of program P
- Let V_{local} be the set of local variables of program P

```
global
      Int tick := 0
                                                                                        For \mathcal{S}^{[2]}
      Set\langle Int \rangle announced := \emptyset
    procedure MUTEXC
                                                                         V = \{tick, announced\}
                                                                                                                   U
      Int ticket
                                                                                     \{ticket[1], ticket[2]\} \cup
    begin
                                                                                          \{pc[1], pc[2]\}
1: loop
        nondet
2:
                                                                        \mathcal{T} = \bigcup_{l \in [1, 7]} \{ \tau_l[1], \tau_l[2] \}
          \left< \begin{array}{c} ticket := tick + + \\ announced.add(ticket) \end{array} \right>
3:
        await (announced.min == ticket)
4:
        critical
5:
        announced.remove(ticket)
6:
   end loop
    end procedure
```

- Let P be a program consisting of L lines of code
- Assuming M threads running program P
- Let V_{global} be the set of global variables of program P
- Let V_{local} be the set of local variables of program P

6/11

- Assume a parametrized transition system $\mathcal{S}^{[M]}$
- All threads execute the same program
- Only equality and inequality between thread identifiers

- Assume a parametrized transition system $\mathcal{S}^{[M]}$
- All threads execute the same program
- Only equality and inequality between thread identifiers

$$\sigma \quad = \quad s_0 \qquad \qquad s_1 \qquad \qquad s_2$$

. . .

- Assume a parametrized transition system $S^{[M]}$
- All threads execute the same program
- Only equality and inequality between thread identifiers

$$\sigma \qquad = \quad s_0 \xrightarrow{\tau_0} s_1 \xrightarrow{\tau_1} s_2 \xrightarrow{\tau_2} \cdots$$

- Assume a parametrized transition system $S^{[M]}$
- All threads execute the same program
- Only equality and inequality between thread identifiers

- Assume a parametrized transition system $\mathcal{S}^{[M]}$
- All threads execute the same program
- Only equality and inequality between thread identifiers

- Assume a parametrized transition system $S^{[M]}$
- All threads execute the same program
- Only equality and inequality between thread identifiers

- Assume a parametrized transition system $\mathcal{S}^{[M]}$
- All threads execute the same program
- Only equality and inequality between thread identifiers

Prove that all instances of S^[M] satisfy a temporal specification with a unique diagram

- Prove that all instances of S^[M] satisfy a temporal specification with a unique diagram
- ▶ We add $\Sigma_{tid} = ({tid}, \emptyset, \emptyset)$ and T_{param} of uninterpreted functions

- Prove that all instances of S^[M] satisfy a temporal specification with a unique diagram
- ▶ We add $\Sigma_{tid} = ({tid}, \emptyset, \emptyset)$ and T_{param} of uninterpreted functions
- \blacktriangleright For each $\,v:\alpha$, we add $\,f_v:\operatorname{tid}\to\alpha\,$

 $f_{pc}: \mathsf{tid} \to Loc$

T_{param} is:
 stable infinite
 polite

- Prove that all instances of S^[M] satisfy a temporal specification with a unique diagram
- ▶ We add $\Sigma_{tid} = ({tid}, \emptyset, \emptyset)$ and T_{param} of uninterpreted functions

For each $v: \alpha$, we add $f_v: \mathsf{tid} \to \alpha$

 $f_{pc}: \mathsf{tid} \to Loc$

 T_{param} is:
 stable infinite
 polite
 combinable with stable infinite theories
 non stable infinite theories

$$T = T_{prog} + T_{param}$$

Soundness of Parametrized Verification Diagrams

Theorem:

Let $S^{[M]}$ be a symmetric parametrized FTS and $\varphi(k)$ a temporal formula.

If there exists a (M, k)-valid PVD $\mathcal{D}^{[M]}$, then:

$$\mathcal{S}^{[M]} \models \varphi(k)$$

Soundness of Parametrized Verification Diagrams

Theorem:

Let $S^{[M]}$ be a symmetric parametrized FTS and $\varphi(k)$ a temporal formula.

If there exists a (M, k)-valid PVD $\mathcal{D}^{[M]}$, then:

$$\mathcal{S}^{[M]} \models \mathcal{D}^{[\mathcal{M}]} \models \varphi(k)$$

for all M

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

$$\mathcal{D}^{[\mathcal{M}]}: \langle \mathbf{N}, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

► PVDs are an extension of GVD

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, \mathbf{N_0}, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

b

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, \boldsymbol{E}, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, \mathbf{f} \rangle$$

- PVDs are an extension of GVD
- We add the notion of **boxes**

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, \boldsymbol{B}, \boldsymbol{E}, \boldsymbol{\mu}, \mathcal{F}, \boldsymbol{\eta}, \boldsymbol{\Delta}, \boldsymbol{f} \rangle$$

- PVDs are an extension of GVD
- We add the notion of **boxes**

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

- PVDs are an extension of GVD
- We add the notion of **boxes**

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

- PVDs are an extension of GVD
- We add the notion of **boxes**

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

- PVDs are an extension of GVD
- We add the notion of **boxes**

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

- PVDs are an extension of GVD
- We add the notion of **boxes**

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

- PVDs are an extension of GVD
- We add the notion of **boxes**

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

- PVDs are an extension of GVD
- We add the notion of **boxes**

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

- PVDs are an extension of GVD
- We add the notion of **boxes**

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

- PVDs are an extension of GVD
- We add the notion of **boxes**

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

- PVDs are an extension of GVD
- We add the notion of boxes
- ► A PVD abstracts all instantiations of a parametric system

$$\mathcal{D}^{[\mathcal{M}]}: \langle N, N_0, B, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$$

• Initialization: $\Theta \rightarrow \mu(N_0)$

- ▶ Initialization: $\Theta \rightarrow \mu(N_0)$
- Consecution: For every $n \in N$ and $\tau \in \mathcal{T}$,

$$n \wedge \tau \rightarrow succ(n)$$

- ▶ Initialization: $\Theta \rightarrow \mu(N_0)$
- Consecution: For every $n \in N$ and $\tau \in \mathcal{T}$,

$$n \wedge \tau \rightarrow succ(n)$$

$$\bigwedge_l \bigwedge_i n \wedge \tau_l[i] \rightarrow succ(n)$$

- ▶ Initialization: $\Theta \rightarrow \mu(N_0)$
- Consecution: For every $n \in N$ and $\tau \in \mathcal{T}$,

$$n \wedge \tau \rightarrow succ(n)$$

- ▶ Initialization: $\Theta \rightarrow \mu(N_0)$
- Consecution: For every $n \in N$ and $\tau \in \mathcal{T}$,

$$n \wedge \tau \rightarrow succ(n)$$

$$\bigwedge_{l} \bigwedge_{i} n \wedge \tau_{l}[i] \rightarrow succ(n)$$

$$\longrightarrow Voc(n, succ(n)) = \{i_{1}, \dots, i_{q}\} = I$$

tid appearing on n and succ(n)

- ▶ Initialization: $\Theta \rightarrow \mu(N_0)$
- Consecution: For every $n \in N$ and $\tau \in \mathcal{T}$,

$$n \wedge \tau \rightarrow succ(n)$$

$$\bigwedge_l \bigwedge_i n \wedge \tau_l[i] \rightarrow succ(n)$$

$$Voc(n, succ(n)) = \{i_1, \ldots, i_q\} = I$$

$$\begin{array}{ccc} \bigwedge_{l} & n \wedge \tau_{l}[i_{1}] & \longrightarrow succ(n) \\ & \vdots & & \vdots \\ \bigwedge_{l} & n \wedge \tau_{l}[i_{q}] & \longrightarrow succ(n) \end{array}$$

- ▶ Initialization: $\Theta \rightarrow \mu(N_0)$
- Consecution: For every $n \in N$ and $\tau \in \mathcal{T}$,

$$n \wedge \tau \rightarrow succ(n)$$

$$\begin{split} & \bigwedge_{l} \bigwedge_{i} n \wedge \tau_{l}[i] \rightarrow succ(n) \\ & Voc(n, succ(n)) = \{i_{1}, \dots, i_{q}\} = I \\ & \bigwedge_{l} n \wedge \tau_{l}[i_{1}] \qquad \rightarrow succ(n) \\ & \vdots \\ & \bigwedge_{l} n \wedge \tau_{l}[i_{q}] \qquad \rightarrow succ(n) \\ & \Rightarrow succ(n) \end{split}$$

- ▶ Initialization: $\Theta \rightarrow \mu(N_0)$
- Consecution: For every $n \in N$ and $\tau \in \mathcal{T}$,

$$n \wedge \tau \rightarrow succ(n)$$

abstracts all other cases thanks to symmetry

- ▶ Initialization: $\Theta \rightarrow \mu(N_0)$
- Consecution: For every $n \in N$ and $\tau \in \mathcal{T}$,

$$n \wedge \tau \rightarrow succ(n)$$

$$\bigwedge_l \bigwedge_i n \wedge \tau_l[i] \rightarrow succ(n)$$

$$Voc(n, succ(n)) = \{i_1, \ldots, i_q\} = I$$

$$\begin{array}{ccc} \bigwedge_{l} & n \wedge \tau_{l}[i_{1}] & \longrightarrow succ(n) \\ \vdots & & \vdots \\ \bigwedge_{l} & n \wedge \tau_{l}[i_{q}] & \longrightarrow succ(n) \\ \bigwedge_{l} & n \wedge \tau_{l}[i] & \wedge & \bigwedge_{j \in I} i \neq j \rightarrow succ(n) \end{array}$$

unbounded

bounded

 $\mathbf{L} \times (\mathbf{q} + \mathbf{1}) \leftarrow$

Now

 $\mathbf{L} imes \mathbf{M}$

verification conditions

• Initialization:
$$\Theta \rightarrow \mu(N_0)$$

▶ Consecution: For every $n \in N$, let I = Voc(n, next(n)),

 $\begin{array}{lll} (\mathsf{C1}) & \mu(n)(s) & \wedge \rho_{\tau[i]}(s,s') & \rightarrow \mu(next(n))(s') & \text{, for each } i \in I \\ (\mathsf{C2}) & \mu(n)(s) & \wedge \rho_{\tau[i]}(s,s') & \wedge & \bigwedge_{j \in I} i \neq j & \rightarrow \mu(next(n))(s') \end{array}$

• Acceptance: If $(n_1, n_2) \in P \setminus R$, let $I = Voc(n_1, n_2)$,

(a)
$$\begin{bmatrix} \rho_{\tau[i]}(s,s') \land & \\ \mu(n_1)(s) \land \mu(n_2)(s') & \end{bmatrix} \rightarrow \delta_{j,n_1}(s) \succeq \delta_{j,n_2}(s') \quad \text{, for each } i \in I$$

(b)
$$\begin{bmatrix} \rho_{\tau[i]}(s,s') \land \bigwedge_{j \in I} i \neq j \land \\ \mu(n_1)(s) \land \mu(n_2)(s') \end{bmatrix} \rightarrow \delta_{j,n_1}(s) \succeq \delta_{j,n_2}(s')$$

and if $(n_1, n_2) \notin P \cup R$,

(a)
$$\begin{bmatrix} \rho_{\tau[i]}(s,s') \land \\ \mu(n_1)(s) \land \mu(n_2)(s') \end{bmatrix} \rightarrow \delta_{j,n_1}(s) \succ \delta_{j,n_2}(s') \quad \text{, for each } i \in I$$

(b)
$$\begin{bmatrix} \rho_{\tau[i]}(s,s') \land \bigwedge_{j \in I} i \neq j \land \\ \mu(n_1)(s) \land \mu(n_2)(s') \end{bmatrix} \rightarrow \delta_{j,n_1}(s) \succ \delta_{j,n_2}(s')$$

► Fairness: For each $e = (n_1, n_2) \in E$ and $i \in \beta_v(n_1)$: (F1) $\mu(n_1)(s) \wedge \tau[i] \in \eta(e) \rightarrow En(\tau[i])$ (F2) $\mu(n_1)(s) \wedge \tau[i] \in \eta(e) \wedge \rho_{\tau[i]}(s, s') \rightarrow \mu(\tau[i](n_1))(s')$

- ▶ Initialization: $\Theta \to \mu(N_0)$
- Consecution: For every $n \in N$, let I = Voc(n, next(n)),
 - $\begin{array}{lll} (\mathsf{C1}) & \mu(n)(s) & \wedge \rho_{\tau[i]}(s,s') & \rightarrow \mu(next(n))(s') \\ (\mathsf{C2}) & \mu(n)(s) & \wedge \rho_{\tau[i]}(s,s') & \wedge & \bigwedge_{j\in I} i \neq j & \rightarrow \mu(next(n))(s') \end{array} , \text{ for each } i \in I \\ \end{array}$
- Acceptance: If $(n_1, n_2) \in P \setminus R$, let $I = Voc(n_1, n_2)$,
 - (a) $\begin{bmatrix} \rho_{\tau[i]}(s,s') \land \\ \mu(n_1)(s) \land \mu(n_2)(s') \end{bmatrix} \rightarrow \delta_{j,n_1}(s) \succeq \delta_{j,n_2}(s') \quad \text{, for each } i \in I$

(b)
$$\begin{bmatrix} \rho_{\tau[i]}(s,s') \land \bigwedge_{j \in I} i \neq j \land \\ \mu(n_1)(s) \land \mu(n_2)(s') \end{bmatrix} \rightarrow \delta_{j,n_1}(s) \succeq \delta_{j,n_2}(s')$$

and if $(n_1, n_2) \notin P \cup R$,

(a) $\begin{bmatrix} \rho_{\tau[i]}(s,s') \land \\ \mu(n_1)(s) \land \mu(n_2)(s') \end{bmatrix} \rightarrow \delta_{j,n_1}(s) \succ \delta_{j,n_2}(s') \quad \text{, for each } i \in I$

(b)
$$\begin{bmatrix} \rho_{\tau[i]}(s,s') \land \bigwedge_{j \in I} i \neq j \land \\ \mu(n_1)(s) \land \mu(n_2)(s') \end{bmatrix} \rightarrow \delta_{j,n_1}(s) \succ \delta_{j,n_2}(s')$$

► Fairness: For each $e = (n_1, n_2) \in E$ and $i \in \beta_v(n_1)$: (F1) $\mu(n_1)(s) \wedge \tau[i] \in \eta(e) \longrightarrow En(\tau[i])$ (F2) $\mu(n_1)(s) \wedge \tau[i] \in \eta(e) \wedge \rho_{\tau[i]}(s, s') \rightarrow \mu(\tau[i](n_1))(s')$

 $\blacktriangleright \text{ For all } k, \ \varphi(k) \ = \ \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$

- For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- ▶ By symmetry: $\varphi(c)$ for arbitrary $c \in [M]$, implies $\varphi(k)$, $\forall k \in [M]$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- ▶ By symmetry: $\varphi(c)$ for arbitrary $c \in [M]$, implies $\varphi(k)$, $\forall k \in [M]$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- ▶ By symmetry: $\varphi(c)$ for arbitrary $c \in [M]$, implies $\varphi(k)$, $\forall k \in [M]$

- ▶ For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- ▶ By symmetry: $\varphi(c)$ for arbitrary $c \in [M]$, implies $\varphi(k)$, $\forall k \in [M]$

- ► For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- ▶ By symmetry: $\varphi(c)$ for arbitrary $c \in [M]$, implies $\varphi(k)$, $\forall k \in [M]$

11/11

- ▶ For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- ▶ By symmetry: $\varphi(c)$ for arbitrary $c \in [M]$, implies $\varphi(k)$, $\forall k \in [M]$

- For all k, $\varphi(k) = \Box(announced(k) \rightarrow \diamondsuit access_critical(k))$
- ▶ By symmetry: $\varphi(c)$ for arbitrary $c \in [M]$, implies $\varphi(k)$, $\forall k \in [M]$

Conclusions

- Sound deductive method for concurrent parametric systems
- By now, works over symmetric systems
- A unique diagram for any arbitrary number of threads
- Proofs based on a finite number of verification conditions
- Posiblility of combination with decision procedures
- Current and future work:
 - Use of parametrized diagrams for the verification of concurrent list, skiplists, hashmaps...
 - Nested parametrized verification diagrams
 - Extension for non symmetric systems