Deductive Temporal Verification of
Parametrized Concurrent Systems

Alejandro Sanchez! César Sanchezl:2

1IMDEA Software Institute, Spain
Spanish Council for Scientific Research (CSIC), Spain

SVARM'11, Saarbriicken, 2 April 2011

Verification of Concurrent Data-structures
Main ldea

1/11

Verification of Concurrent Data-structures
Main ldea

Concurrent DataStructure

:

1/11

Verification of Concurrent Data-structures

Main ldea

{

Most General Client

Concurrent DataStructure

:

1/11

Verification of Concurrent Data-structures

Main ldea

{

Concurrent DataStructure

insert()

Most General Client

\
4

:

1/11

Verification of Concurrent Data-structures

Main ldea

{

Concurrent DataStructure

search ()

Most General Client

AN
4

:

1/11

Verification of Concurrent Data-structures
Main ldea

Concurrent DataStructure

@ remowve () , §

Most General Client

1/11

Verification of Concurrent Data-structures

Main ldea

{

Most General Client

Concurrent DataStructure

:

1/11

Verification of Concurrent Data-structures

Main ldea

Most General Client

Concurrent DataStructure

{

!

:

1/11

Verification of Concurrent Data-structures
Main ldea

Concurrent DataStructure

:

Most General Client

PIN]: P(L)][---[|P(N)

1/11

Verification of Concurrent Data-structures
Main ldea

Concurrent DataStructure

:

Most General Client Property

6 - [% e

PIN]: P(L)][---[|P(N)

1/11

Verification of Concurrent Data-structures
Main ldea

Concurrent DataStructure

:

Most General Client Property

qP Lmj (k)
P[N]: P(D]]---[[P(N) /J

LTL (O, U,)

1/11

Verification of Concurrent Data-structures
Main ldea

Concurrent DataStructure

Most General Client

{

!

PN

. P(1)[] - || P(N)

:

Diagram

D

Property

o)

p—

LTL (O, U,)

1/11

Verification of Concurrent Data-structures
Main ldea

Most General Client

Concurrent DataStructure

{

!

PN

. P(1)[] - || P(N)

:

Diagram

D

Verification Conditions:
» Initiation

» Consecution

» Acceptance

» Fairness

Property

o)

Satisfaction
(Model Checking)

1/11

Motivating Example: Mutual Exclusion Algorithm

2/11

Motivating Example: Mutual Exclusion Algorithm

oo R

global
Int tick :==0
Set(Int) announced := ()

procedure MUTEXC

Int ticket
begin
. loop
nondet
ticket := tick 4+ +

< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)

end loop

end procedure

2/11

Motivating Example: Mutual Exclusion Algorithm

oo R

global
Int tick :==0
Set(Int) announced := ()

procedure MUTEXC

Int ticket
begin
. loop
nondet
ticket := tick 4+ +

< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)

end loop

end procedure

Critical Section

2/11

Motivating Example: Mutual Exclusion Algorithm

oo R

P, ¢

global
Int tick :==0
Set(Int) announced := ()

procedure MUTEXC
Int ticket
begin

. loop

nondet
ticket := tick 4+ +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure

tick -

{

_

)

Announced Set

Critical Section

2/11

Motivating Example: Mutual Exclusion Algorithm

oo R

global
Int tick :==0
Set(Int) announced := ()

procedure MUTEXC
Int ticket
begin

. loop

nondet
ticket := tick 4+ +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure

tick -

ﬁ

_

)

Announced Set

Critical Section

2/11

Motivating Example: Mutual Exclusion Algorithm

oo R

global
Int tick :==0
Set(Int) announced := ()

procedure MUTEXC
Int ticket
begin

. loop

nondet
ticket := tick 4+ +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure

tick -

1

_

)

Announced Set

Critical Section

2/11

Motivating Example: Mutual Exclusion Algorithm

oo R

global
Int tick :==0
Set(Int) announced := ()

procedure MUTEXC
Int ticket
begin

. loop

nondet
ticket := tick 4+ +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure

tick -

2

_

(1]

)

Announced Set

Critical Section

2/11

Motivating Example: Mutual Exclusion Algorithm

oo R

global
Int tick :==0
Set(Int) announced := ()

procedure MUTEXC
Int ticket
begin

. loop

nondet
ticket := tick 4+ +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure

Announced Set

Critical Section

2/11

Motivating Example: Mutual Exclusion Algorithm

oo R

global
Int tick :==0
Set(Int) announced := ()

procedure MUTEXC
Int ticket
begin

. loop

nondet
ticket := tick 4+ +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure

Announced Set

Critical Section

2/11

Motivating Example: Mutual Exclusion Algorithm

oo R

global
Int tick :==0
Set(Int) announced := ()

procedure MUTEXC
Int ticket
begin

. loop

nondet
ticket := tick 4+ +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure

Announced Set

Critical Section

2/11

Motivating Example: Mutual Exclusion Algorithm

oo R

global
Int tick :==0
Set(Int) announced := ()

procedure MUTEXC
Int ticket
begin

. loop

nondet
ticket := tick 4+ +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure

: (2]

(1]

_

)

Announced Set

Critical Section

2/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)

[Tl not interestedj

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)

EI& notinterested]

[T interested Aj

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)

:Tl not interestedj
S
| T interested |
I |
jl has min tickeﬂ LTQ has min tickeﬂ

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)

:Tl not interestedj

1}
T interested j 1

) I
jl has min ticke‘g LTQ has min tickeﬂ

—

I enters
| critical section

_J

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)

:Tl not interestedj

1}
T interested j 1

) I
jl has min ticke‘g LTQ has min tickeﬂ

—

I enters
| critical section

i}

17 leaves
critical section

_ _J

_J

-\

3/11

Verification Diagram for Mutual Exclusion Algorithm

For all k, (k) = O(announced(k) — > access_critical (k))
| et’s assume a system with 2 threads: 77 and 15

_et's verify ¢(T1)

\ 4

v

v

:Tl not interested})

1}
T interested j 1

) T
jl has min ticke‘g LTQ has min tickeﬂ

—

I enters
| critical section

i}

17 leaves
critical section

_ _J

_J

-\

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, p(k) = O(announced(k) — < access_critical(k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)
:Tl not interested})
S
| 17 interested |
— l
|71 has min ticket | 7> has min ticket
T} enters) ([, enters
| critical section | | critical section |
)
T} leaves)
| critical section |
_ B

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, p(k) = O(announced(k) — < access_critical(k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)
:Tl not interested})
S —
| 17 interested |
I |
|71 has min ticket | 7> has min ticket
T} enters) ([, enters
| critical section | | critical section |
) - r)
T leaves 'I5 leaves
| critical section | | critical section |
_ B

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)

:Tl not interested})
)
| 17 interested j
I |
|71 has min tickeﬂ%j | 7> has min ticket
T} enters) ([, enters
| critical section | | critical section |
))
T} leaves | [15 leaves
| critical section | | critical section |

3/11

Verification Diagram for Mutual Exclusion Algorithm

vyy

For all k, (k) = O(announced(k) — > access_critical (k))
| et’s assume a system with 2 threads: 77 and 15

_et's verify ¢(T1)

:Tl not interested})
)
| 17 interested j
I |
|71 has min tickeﬂ%j | 7> has min ticket
T} enters) ([, enters
| critical section | | critical section |
))
T} leaves | [15 leaves
| critical section | | critical section |
_ B

n AT[l] — succ(n)

Some verification conditions nAT[2] — succ(n)

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)
» Imagine now a system with 3 threads: 17, 15 and 13
:Tl not interested})
S A
| 17 interested |
B— |-
|71 has min tickeﬂ%j | 7> has min ticket
T} enters) [I, enters
| critical section | | critical section |
v i}
T} leaves | [I5 leaves
| critical section | | critical section |

n AT[l] — succ(n)
Some verification conditions nAT[2] — succ(n)

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)
» Imagine now a system with 3 threads: 17, 15 and 13
:Tl not interestedj()
S
Jj | 17 interested |
ﬁ I |-
|73 has min ticket | rHLTl has min tickeﬂ%j | 7> has min ticket
[15 enters] [T enters] [I, enters
| critical section | | critical section | | critical section |
i) R r v i}
[15 leaves T} leaves | [I5 leaves
| critical section | | critical section | | critical section |
_ B

n AT[l] — succ(n)
Some verification conditions nAT[2] — succ(n)

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)
» Imagine now a system with 3 threads: 17, 15 and 13
:Tl not interestedj()
S A
\[| 17 interested |
j I |
ﬁLTg has min ticket | rHLTl has min tickeﬂ%j | 7> has min tickeﬂ*j
i)
[I3 enters [[} enters) [I enters]
| critical section | | critical section | | critical section |
i) R r v i}
I3 leaves T} leaves | [I5 leaves
| critical section |) | critical section | i | critical section |
- : | _J
(- : _J
- B

n AT[l] — succ(n)
Some verification conditions nAT[2] — succ(n)

3/11

Verification Diagram for Mutual Exclusion Algorithm

> For all k, o(k) = O(announced(k) — access_critical (k))
» Let's assume a system with 2 threads: 17 and 15
> Let's verify p(T7)
» Imagine now a system with 3 threads: 17, 15 and 13
:Tl not interestedj(7
S A
\[| 17 interested |
j I |
ﬁLTg has min ticket | rHLTl has min tickeﬂ%j | 7> has min tickeﬂ*j
i)
[I5 enters [T enters] [I, enters
| critical section | | critical section | | critical section |
i) v i}
[I3 leaves T} leaves | [I5 leaves
| critical section | | critical section | i | critical section |
- |)
. _J
- B
n AT[l] — succ(n)
Some verification conditions nAT[2] — succ(n)
nAT[3] — succ(n)

Motivation for Parametrized Verification Diagrams

Problem

» Not a single diagram for arbitrary number of threads
» Unbounded number of verification conditions

4/11

Motivation for Parametrized Verification Diagrams

Problem

» Not a single diagram for arbitrary number of threads
» Unbounded number of verification conditions

Our solution

» Unique diagram for arbitrary number of threads

» Finite and bounded number of verification conditions

Parametrized Verification Diagrams exploits the
similarities within symetric systems

4/11

Parametrized Fair Transition Systems

5/11

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code

5/11

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code
» Assuming M threads running program P

5/11

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code
» Assuming M threads running program P

st] _ <v,@,’r,j>J

5/11

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code
» Assuming M threads running program P
> Let Vgiopas be the set of global variables of program P

st] _ <v,@,’r,j>J

V' = Vigiobal

5/11

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code
» Assuming M threads running program P
> Let Vgiopas be the set of global variables of program P

» Let Vj,ca be the set of local variables of program P

st] _ <v,@,’r,j>J

V = Vgloba/ U (‘/loca/ X [M])

5/11

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code
» Assuming M threads running program P
> Let Vgiopas be the set of global variables of program P

» Let Vj,ca be the set of local variables of program P

st] _ <v,@,fr,j>J

V = Vgloba/ U (‘/loca/ X [M]) U pC[M]

5/11

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code
» Assuming M threads running program P
> Let Vgiopas be the set of global variables of program P

» Let Vj,ca be the set of local variables of program P

st] _ <v,@,fr,j>J

V = Vgloba/ U (‘/loca/ X [M]) U pC[M]

T = Ulel..L Uie[M] 71(]

5/11

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code

» Assuming M threads running program P

> Let Vgiopas be the set of global variables of program P
» Let Vj,ca be the set of local variables of program P

global
Int tick == 0 9]
Set{Int) announced := () For S

procedure MUTEXC
Int ticket
begin
loop
nondet
ticket := tick + +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure 5/11

Noaogs W NMHE

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code
» Assuming M threads running program P
> Let Vgiopas be the set of global variables of program P

» Let Vj,ca be the set of local variables of program P

global
Int tick == 0 9]
Set{Int) announced = () For S

procedure MUTEXC
Int ticket
begin
loop
nondet
ticket := tick + +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure 5/11

V= {tick, announced}

Noaogs W NMHE

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code

» Assuming M threads running program P

> Let Vgiopas be the set of global variables of program P

» Let Vj,ca be the set of local variables of program P

Noaogs W NMHE

global
Int tick :=0
Set{Int) announced := ()

procedure MUTEXC
LInt ticketj
begin
loop
nondet
ticket := tick + +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure

For S!2|

v

{tick, announced }
{ticket[1], ticket[2]}

U

5/11

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code

» Assuming M threads running program P

> Let Vgiopas be the set of global variables of program P

» Let Vj,ca be the set of local variables of program P

Noaogs W NMHE

global
Int tick :=0
Set{Int) announced := ()

procedure MUTEXC
Int ticket
begin
loop
nondet
ticket := tick + +
< announced.add(ticket) >
await (announced.min == ticket)
critical
announced.remove(ticket)
end loop
end procedure

For S!2|

v

{tick, announced} U
{ticket|1], ticket[2]} U
{pe(l], pe[2]}

5/11

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code
» Assuming M threads running program P
> Let Vgiopas be the set of global variables of program P

» Let Vj,ca be the set of local variables of program P

global
Int tick := 0
Set{Int) announced := () For 8[2]
procedyre Murkxc V= {tick, announced} U
ot frchel {ticket[1], ticket[2]} U
A {pe[1], pe[2]}
1:| loop
. Z”‘t?f,:et =tk) T = Ues (0l nl2)
' announced.add(ticket)
4: await (announced.min == ticket)
5: critical
6: announced.remove(ticket)
LY_:J end loop

end procedure 5/11

Parametrized Fair Transition Systems

» Let P be a program consisting of L lines of code
» Assuming M threads running program P
> Let Vgiopas be the set of global variables of program P

» Let Vj,ca be the set of local variables of program P

global
Int tick := 0
Set{Int) announced := () For 8[2]
procedyre Murkxc V. = {tick, announced} U
ot frchel {ticket[1], ticket[2]} U
A {pc[1], pe[2]}
1:| loop
. Z”‘t?f,:et =tk) T = Urs (nlt]mf2)
' announced.add(ticket)
4: await (announced.min == ticket) — T
5: critical
6: announced.remove(ticket)
LY_:J end loop

end procedure 5/11

Symmetric Systems

6/11

Symmetric Systems

» Assume a parametrized transition system SM]
» All threads execute the same program

» Only equality and inequality between thread identifiers

6/11

Symmetric Systems

» Assume a parametrized transition system SM]

» All threads execute the same program

» Only equality and inequality between thread identifiers

6/11

Symmetric Systems

» Assume a parametrized transition system SM]

» All threads execute the same program

» Only equality and inequality between thread identifiers

6/11

Symmetric Systems

» Assume a parametrized transition system SM]

» All threads execute the same program

» Only equality and inequality between thread identifiers

i,j € [M]

6/11

Symmetric Systems

» Assume a parametrized transition system SM]

» All threads execute the same program

» Only equality and inequality between thread identifiers

T0 T1 D)
g = 50 > S1 > S9 >
14> 14> 14>
S0 S1 So

i e] switch v[i] with v[j]

6/11

Symmetric Systems

» Assume a parametrized transition system SM]

» All threads execute the same program

» Only equality and inequality between thread identifiers

70 1 T2
g = 50 > S1 > S9 >
v =7 Y R]
i<+5 Tpo i3 11 i3 To
SO > S]_ > 82 >

. switch vli] with v|j]
i,j € [M] switch 7[¢] with 7[j]

6/11

Symmetric Systems

» Assume a parametrized transition system SM]

» All threads execute the same program

» Only equality and inequality between thread identifiers

70 1 T2
g = 50 > S1 > S9 >
l Yoo =] v =] Y]
isi . aej To | irj T2
O — SO > S]_ > 82 >

. switch vli] with v|j]
i,j € [M] switch 7[¢] with 7[j]

6/11

Parametrized Verification Diagrams

» Prove that all instances of SIM! satisfy a temporal specification
with a unique diagram

7/11

Parametrized Verification Diagrams

[M]

» Prove that all instances of S\"*! satisfy a temporal specification

with a unique diagram

> We add Yyq = ({tid}, 0, 0) and Tparam of uninterpreted functions

7/11

Parametrized Verification Diagrams

» Prove that all instances of SIM! satisfy a temporal specification
with a unique diagram

> We add Yyq = ({tid}, 0, 0) and Tparam of uninterpreted functions

» Foreach v:a,weadd f,:tid— «
Jpe : tid = Loc

> Tparam IS:
» stable infinite
» polite

7/11

Parametrized Verification Diagrams

» Prove that all instances of SIM! satisfy a temporal specification
with a unique diagram

> We add Yyq = ({tid}, 0, 0) and Tparam of uninterpreted functions

» Foreach v:a,weadd f,:tid— «
Jpe : tid = Loc

> IS: . .
Loaram 1 . .. combinable with o .
» stable infinite > stable infinite theories
» polite > non stable infinite theories

I = Tprog =+ Tparam

7/11

Soundness of Parametrized Verification Diagrams

Theorem:

Let SIM] be a symmetric parametrized FTS
and (k) a temporal formula.

If there exists a (M, k)-valid PvD D! then:

SM = o(k)

8/11

Soundness of Parametrized Verification Diagrams

Theorem:

Let SIM] be a symmetric parametrized FTS
and (k) a temporal formula.

If there exists a (M, k)-valid PvD D! then:

SMl = DMl (k)

for all M

8/11

Parametrized Verification Diagrams

» PVDs are an extension of GvD

D[M] . <N7N07B7E7:M7F7777A7f>

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GvD

D[M] . <N7NOaBaE7:u7F7777A7f>

® ©®

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GvD

D[M] . <N,N0,B,E,/L,F,77,A,f>

© ®

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GvD

D[M] . <N7NOaBaE7:u7F7777A7f>

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GvD

D[M] . <N’NO,B,E,,LL,JT",77,A,f>

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GvD

D[M] . <N,NO,B,E,/L,F,77,A,f>

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GvD

D[M] . <N,NQ,B,E,/L,F,77,A,]C>

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

D[M] . <N’NO,B,E,/L,JT",77,A,]C>

r
(@)
O

-

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

D[M] . <N,NOprE7,u7-F7777A7f>

For M threads

represents

@ * +(a)
-

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

D[M] . <N,NOprE7,u7-F7777A7f>

For M threads

) represents

@)
71 [1]

)

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

D[M] . <N,NOprE7,u7-F7777A7f>

For M threads

) represents

(@ ()

T1 [Z]

@ 71[1]

@

Tl[M]

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

D[M] . <N,NOprE7,u7-F7777A7f>

For M threads

©

T2 [’L]

7 w represents

«(a o)

T1 [Z]

@ 1]
(o)

Tl[M]

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

D[M] . <N,NOprE7,u7-F7777A7f>

For M threads

©

T2 [’L]

7 w represents

> e
O(G, @ T2[1] To[M] @

T1 [Z]

@] @ 1 [M]
(1) D

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

D[M] . <N,NOprE7,u7-F7777A7f>

For M threads

represents

Z | > e
OC&) @ To[l] T [M] @

L@ i [1] @ 71 [M]
(o) (o)

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

D[M] . <N,NOprE7,u7-F7777A7f>

For M threads

represents

RONE©
7’2[1] TQ[M]

7'1[1] @ Tl[M]

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

D[M] . <N,NOprE7,u7-F7777A7f>

For M threads

\ represents
@ 7’2[1] TQ[M] @

7'1[1] @ Tl[M]

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

D[M] . <N,NOprE7,u7-F7777A7f>

For M threads

\ G represents

9/11

Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

» A pvD abstracts all instantiations of a parametric system
D[M] : <N7NﬂaBaE7N7F7naA7f>

For M threads

\ G represents

9/11

Verification Conditions for Parametrized Diagrams

10/11

Verification Conditions for Parametrized Diagrams

> Initialization: © — u(Ny)

10/11

Verification Conditions for Parametrized Diagrams

> Initialization: © — u(Ny)
» Consecution: Foreveryn € N and 7€ T,

L nAT — succ(n) J

10/11

Verification Conditions for Parametrized Diagrams

> Initialization: © — u(Ny)
» Consecution: Foreveryn € N and 7€ T,

L nAT — succ(n) J

A, N\, n ATili] = succ(n)

10/11

Verification Conditions for Parametrized Diagrams

> Initialization: © — u(Ny)
» Consecution: Foreveryn € N and 7€ T,

L nAT — succ(n) J

A, /\i\n/\n[i] — succ(n)

_/

only tid appearing in n and succ(n) are relevant

10/11

Verification Conditions for Parametrized Diagrams

> Initialization: © — u(Ny)
» Consecution: Foreveryn € N and 7€ T,

L nAT — succ(n) J

A, N\, n ATili] = succ(n)

(_> Voc(n, suce(n)) = {i1,...,iq} = I

tid appearing on n and succ(n)

10/11

Verification Conditions for Parametrized Diagrams

> Initialization: © — u(Ny)
» Consecution: Foreveryn € N and 7€ T,

L nAT — succ(n) J

A, N\, n ATili] = succ(n)

Voc(n, suce(n)) = {i1,..., iq} =

A, n ATl [91] > suc.c(n)

A, n A T1lig] > suc:c(n)

10/11

Verification Conditions for Parametrized Diagrams

> Initialization: © — u(Ny)
» Consecution: Foreveryn € N and 7€ T,

L nAT — succ(n) J

A, N\, n ATili] = succ(n)

Voc(n, succ(n)) :[{il iq}}: I

[A\ n/_\n[z’l] > suc.c(n)]
A, n A T1lig] > suc:c(n)

10/11

Verification Conditions for Parametrized Diagrams

> Initialization: © — u(Ny)
» Consecution: Foreveryn € N and 7€ T,

L nAT — succ(n) J

A, N\, n ATili] = succ(n)

Voc(n, suce(n)) = {i1,...,iq} = I

A, n ATl [91] > suc.c(n)

A, n A 7lig] — suc:c(n)

K\—)L A, nA Tl A /\jefi#j—>3ucc(n) j

abstracts all other cases thanks to symmetry

10/11

Verification Conditions for Parametrized Diagrams

> Initialization: © — u(Ny)
» Consecution: Foreveryn € N and 7€ T,

L nAT — succ(n) J

A, N\, n ATili] = succ(n)

Voc(n, suce(n)) = {i1,...,iq} = I

f N AT — succ(n) R
A, n /\ T1liq] > suc:c(n)
N nA Tl AN Njepi# g — suce(n)
unbounded — bounded
\/ LxM Lx(q+1) ~_/
Before Now

verification conditions 10/11

Verification Conditions for Parametrized Diagrams

> Initialization: © — u(Ny)

» Consecution: For every n € N, let I = Voc(n, next(n)),

(C1) wun)(s) A pr(s,s’) — u(next(n))(s’) ,foreachiel
(C2) w(n)(s) Aprals,s’) AN Njgri#J — pnet(n))(s)

> Acceptance: If (n1,n9) € P \ R, let I = Voc(ny,ns),

(a) 'OTE](S)(ZI))/\M(M)(2 — 0jng (8) = 0jn, (s) , foreachie [
) | P NN T] b (92 B ()
and if (n1,n92) ¢ PUR,
(a) Z([q]% (3 (SS)) 2 () (6) 3 8iny (8) = Osmy (s') , foreach i€ I
pT[i](87 S/) A /\je[? 7é A _ s _ s’
(b) L (nl) (S) A L (n2) (S/) | — 53,711 () ~ 5]7712 ()

» Fairness: For each e = (ny1,n9) € E and i € B,(nq):
(F1) u(ni)(s) ATli] € n(e) — En(rli])
(F2) p(ni)(s) A7) € nle) A prg (s, s') = p(rli](n1))(s") 10/11

Verification Conditions for Parametrized Diagrams
» Initialization: © — 1 (N)

» Consecution: For every n € N, let I = Voc(n, next(n))

(C1) wu(n)(s) A pra(s,s) — u(next(n))(s") , foreachiel
(C2) w(n)(s) Apra(s;s’) AN Njerit#7 — plnext(n))(s’)
> Acceptance: If (ny,n9) € P\ R, let I = Voc(ny,ns),
(a) Z& (1"; (‘i)) 2 2 () (&) 3 8iny (8) = Oy (s') , foreachic I
) | s et E T] s (92 G ()
and if (n1,n2) ¢ PUR,
(a) ’;([71&(3 (SSI)) 2 4 () () 3 8imy (8) = Oy (s') , foreach i€ I

» Fairness: For each ¢ = (n1,n9) € E and i € B,(nq):
(F1) p(ni)(s) ATli] € nle) — En(7i])
(F2) p(na)(s) A7li] € nle) A prpg (s, s') = p(r[i](n1))(s") 10/11

Mutual Exclusion Algorithm (revisited)

> For all k, o(k) = O(announced(k) — access_critical (k))

11/11

Mutual Exclusion Algorithm (revisited)

> For all k, o(k) = O(announced(k) — access_critical (k))
> By symmetry: (c) for arbitrary ¢ € [M], implies p(k), Vk € [M]

11/11

Mutual Exclusion Algorithm (revisited)

> Forall k, p(k) =

(announced (k) — < access_critical (k))

> By symmetry: (c) for arbitrary ¢ € [M], implies p(k), Vk € [M]

LTl not interestedj(

|

[Ty interestedj

@H has min tickeﬂ(
T, enters
critical section

T leaves
critical section

) GFQ has min tickeﬂ

T, enters
critical section

]

T5 leaves
| critical section

]

~

11/11

Mutual Exclusion Algorithm (revisited)

> Forall k, p(k) =

(announced (k) — < access_critical (k))

> By symmetry: (c) for arbitrary ¢ € [M], implies p(k), Vk € [M]

L ¢ not interestedj(

|

[¢ interested j

Cc has min tickeﬂ(
c enters
critical section

¢ leaves
critical section

) GFQ has min tickeﬂ

T, enters
critical section

]

T5 leaves
| critical section

]

~

11/11

Mutual Exclusion Algorithm (revisited)

> Forall k, p(k) =

(announced (k) — < access_critical (k))

> By symmetry: (c) for arbitrary ¢ € [M], implies p(k), Vk € [M]

L ¢ not interestedj(

|

[¢ interested j

Cc has min tickeﬂ(
c enters
critical section

¢ leaves
critical section

) Ct has min tickeﬂ

t enters
critical section

t leaves
| critical section |

~

11/11

Mutual Exclusion Algorithm (revisited)

> Forall k, p(k) =

(announced (k) — < access_critical (k))

> By symmetry: (c) for arbitrary ¢ € [M], implies p(k), Vk € [M]

L ¢ not interestedj(

|

[¢ interested j

isMin(t) At #£ ¢ A
interested(c)

Cc has min tickeﬂ(
c enters
critical section

¢ leaves
critical section

) Ct has min tickeﬂ

t enters
critical section

t leaves
| critical section |

~

11/11

Mutual Exclusion Algorithm (revisited)

> For all k, o(k) = O(announced(k) — access_critical (k))
> By symmetry: (c) for arbitrary ¢ € [M], implies p(k), Vk € [M]

L ¢ not interestedj()
[C interestedj ™)
t . .
isMin(t) At = ¢ isMin(t) At # ¢ A
interested(c)
Cc has min tickeﬂ(") Ct has min tickeﬂ
c enters t enters
critical section critical section
| .c Ieaves. | (| _t Ieaves_ -%j)
critical section | critical section |

— — 11/11

Mutual Exclusion Algorithm (revisited)

> For all k, o(k) = O(announced(k) — access_critical (k))

> By symmetry: (c) for arbitrary ¢ € [M], implies p(k), Vk € [M]

[fre(c)=1,2,7 K

|

[fpc(c) =3 j

isMin(t) Nt = c

([Jel0=4 ¥
s [k]l

el =5 |

T5 [k]l

R

interested

(c)
J
]

isMin(t) At # ¢ A

6|t

)

11/11

Conclusions

» Sound deductive method for concurrent parametric systems
» By now, works over symmetric systems
» A unique diagram for any arbitrary number of threads

» Proofs based on a finite number of verification conditions

» Posiblility of combination with decision procedures

» Current and future work:
» Use of parametrized diagrams for the verification of
concurrent list, skiplists, hashmaps...
» Nested parametrized verification diagrams
» Extension for non symmetric systems

