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Problem
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» Unbounded number of verification conditions

Our solution

» Unique diagram for arbitrary number of threads

» Finite and bounded number of verification conditions

Parametrized Verification Diagrams exploits the
similarities within symetric systems
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Parametrized Verification Diagrams

» PVDs are an extension of GVD
» \We add the notion of boxes

» A pvD abstracts all instantiations of a parametric system
D[M] : <N7NﬂaBaE7N7F7naA7f>

For M threads

\ G represents
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Conclusions

» Sound deductive method for concurrent parametric systems
» By now, works over symmetric systems
» A unique diagram for any arbitrary number of threads

» Proofs based on a finite number of verification conditions

» Posiblility of combination with decision procedures

» Current and future work:
» Use of parametrized diagrams for the verification of
concurrent list, skiplists, hashmaps...
» Nested parametrized verification diagrams
» Extension for non symmetric systems



