
Deductive Temporal Verification of
Parametrized Concurrent Systems

1IMDEA Software Institute, Spain

2Spanish Council for Scientific Research (CSIC), Spain

SVARM’11, Saarbrücken, 2 April 2011

Alejandro Sánchez1 César Sánchez1,2

Verification of Concurrent Data-structures

Main Idea

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Main Idea

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

Main Idea

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

Main Idea

insert()

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

Main Idea

search()

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

Main Idea

remove()

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

Main Idea

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

Main Idea

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Main Idea

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

ϕ(k)

Property

Main Idea

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

ϕ(k)

Property

Main Idea

LTL (,,U ,. . .)

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

ϕ(k)

PropertyDiagram

Main Idea

LTL (,,U ,. . .)

D

1/11

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

ϕ(k)

PropertyDiagram

� �

Verification Conditions:
I Initiation
I Consecution
I Acceptance
I Fairness

Satisfaction
(Model Checking)

Main Idea

D

1/11

Motivating Example: Mutual Exclusion Algorithm

2/11

Motivating Example: Mutual Exclusion Algorithm

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

2/11

Motivating Example: Mutual Exclusion Algorithm

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

Critical Section 2/11

Motivating Example: Mutual Exclusion Algorithm

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

Critical Section

0

0

tick

Announced Set 2/11

Motivating Example: Mutual Exclusion Algorithm

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

Critical Section

0

0

tick

Announced Set 2/11

Motivating Example: Mutual Exclusion Algorithm

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

Critical Section

tick

Announced Set

1

1
0

0

2/11

Motivating Example: Mutual Exclusion Algorithm

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

Critical Section

tick

Announced Set

2

2
0

0

1

1

2/11

Motivating Example: Mutual Exclusion Algorithm

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

Critical Section

tick

Announced Set

3

3
0

0

1

1

2

2

2/11

Motivating Example: Mutual Exclusion Algorithm

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

Critical Section

tick

Announced Set

3

3
0

0

1

1

2

2

2/11

Motivating Example: Mutual Exclusion Algorithm

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

Critical Section

tick

Announced Set

3

3 0

1

1

2

2

2/11

Motivating Example: Mutual Exclusion Algorithm

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

Critical Section

tick

Announced Set

3

3

1

1

2

2

2/11

Verification Diagram for Mutual Exclusion Algorithm

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket T2 has min ticket

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T2 has min ticket

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

n ∧ τ [1] → succ(n)

n ∧ τ [2] → succ(n)Some verification conditions

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

I Imagine now a system with 3 threads: T1, T2 and T3

n ∧ τ [1] → succ(n)

n ∧ τ [2] → succ(n)Some verification conditions

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

T3 has min ticket

T3 enters
critical section

T3 leaves
critical section

I Imagine now a system with 3 threads: T1, T2 and T3

n ∧ τ [1] → succ(n)

n ∧ τ [2] → succ(n)Some verification conditions

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

T3 has min ticket

T3 enters
critical section

T3 leaves
critical section

I Imagine now a system with 3 threads: T1, T2 and T3

n ∧ τ [1] → succ(n)

n ∧ τ [2] → succ(n)Some verification conditions

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Verification Diagram for Mutual Exclusion Algorithm

I Let’s assume a system with 2 threads: T1 and T2
I Let’s verify ϕ(T1)

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

T3 has min ticket

T3 enters
critical section

T3 leaves
critical section

I Imagine now a system with 3 threads: T1, T2 and T3

n ∧ τ [1] → succ(n)

n ∧ τ [2] → succ(n)

n ∧ τ [3] → succ(n)

Some verification conditions

I For all k, ϕ(k) = (announced(k)→access critical(k))

3/11

Motivation for Parametrized Verification Diagrams

Problem

I Not a single diagram for arbitrary number of threads

I Unbounded number of verification conditions

4/11

Motivation for Parametrized Verification Diagrams

Parametrized Verification Diagrams exploits the
similarities within symetric systems

Our solution

Problem

I Not a single diagram for arbitrary number of threads

I Unbounded number of verification conditions

I Unique diagram for arbitrary number of threads

I Finite and bounded number of verification conditions

4/11

Parametrized Fair Transition Systems

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

I Assuming M threads running program P

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

S [M] = 〈V ,Θ, T ,J 〉

I Assuming M threads running program P

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

S [M] = 〈V ,Θ, T ,J 〉

I Let Vglobal be the set of global variables of program P

I Assuming M threads running program P

V = Vglobal

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

S [M] = 〈V ,Θ, T ,J 〉

I Let Vglobal be the set of global variables of program P

I Let Vlocal be the set of local variables of program P

I Assuming M threads running program P

V = Vglobal ∪ (Vlocal × [M])

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

S [M] = 〈V ,Θ, T ,J 〉

I Let Vglobal be the set of global variables of program P

I Let Vlocal be the set of local variables of program P

I Assuming M threads running program P

V = Vglobal ∪ (Vlocal × [M]) ∪ pc[M]

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

S [M] = 〈V ,Θ, T ,J 〉

I Let Vglobal be the set of global variables of program P

I Let Vlocal be the set of local variables of program P

I Assuming M threads running program P

V = Vglobal ∪ (Vlocal × [M]) ∪ pc[M]

T =
⋃

l∈1..L

⋃
i∈[M] τl[i]

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

I Let Vglobal be the set of global variables of program P

I Let Vlocal be the set of local variables of program P

I Assuming M threads running program P

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

For S [2]

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

I Let Vglobal be the set of global variables of program P

I Let Vlocal be the set of local variables of program P

I Assuming M threads running program P

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

For S [2]

V = {tick , announced}

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

I Let Vglobal be the set of global variables of program P

I Let Vlocal be the set of local variables of program P

I Assuming M threads running program P

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

For S [2]

V = {tick , announced} ∪
{ticket [1], ticket [2]}

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

I Let Vglobal be the set of global variables of program P

I Let Vlocal be the set of local variables of program P

I Assuming M threads running program P

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

For S [2]

V = {tick , announced} ∪
{ticket [1], ticket [2]} ∪
{pc[1], pc[2]}

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

I Let Vglobal be the set of global variables of program P

I Let Vlocal be the set of local variables of program P

I Assuming M threads running program P

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

For S [2]

V = {tick , announced} ∪
{ticket [1], ticket [2]} ∪
{pc[1], pc[2]}

T =
⋃
l∈1..7 {τl[1], τl[2]}

5/11

Parametrized Fair Transition Systems

I Let P be a program consisting of L lines of code

I Let Vglobal be the set of global variables of program P

I Let Vlocal be the set of local variables of program P

I Assuming M threads running program P

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉
4: await (announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

For S [2]

V = {tick , announced} ∪
{ticket [1], ticket [2]} ∪
{pc[1], pc[2]}

T =
⋃
l∈1..7 {τl[1], τl[2]}

V = {tick , announced} ∪
{ticket [1], ticket [2]} ∪
{pc[1], pc[2]}

T =
⋃
l∈1..7 {τl[1], τl[2]}

J = T

5/11

Symmetric Systems

6/11

Symmetric Systems

I All threads execute the same program

I Only equality and inequality between thread identifiers

I Assume a parametrized transition system S [M]

6/11

Symmetric Systems

I All threads execute the same program

I Only equality and inequality between thread identifiers

I Assume a parametrized transition system S [M]

σ = s0 s1 s2 . . .

6/11

Symmetric Systems

I All threads execute the same program

I Only equality and inequality between thread identifiers

I Assume a parametrized transition system S [M]

σ = s0 s1 s2 . . .
τ0 τ1 τ2

6/11

Symmetric Systems

I All threads execute the same program

I Only equality and inequality between thread identifiers

I Assume a parametrized transition system S [M]

i, j ∈ [M]

σ = s0 s1 s2 . . .
τ0 τ1 τ2

6/11

Symmetric Systems

I All threads execute the same program

I Only equality and inequality between thread identifiers

I Assume a parametrized transition system S [M]

i, j ∈ [M]
switch v[i] with v[j]

τ0 τ1 τ2σ = s0 s1 s2 . . .

si↔j
0 si↔j

1 si↔j
2 . . .

6/11

Symmetric Systems

I All threads execute the same program

I Only equality and inequality between thread identifiers

I Assume a parametrized transition system S [M]

i, j ∈ [M]
switch v[i] with v[j]

switch τ [i] with τ [j]

τ0 τ1 τ2σ = s0 s1 s2 . . .

si↔j
0 si↔j

1 si↔j
2 . . .

τ i↔j
0 τ i↔j

1 τ i↔j
2

6/11

Symmetric Systems

I All threads execute the same program

I Only equality and inequality between thread identifiers

I Assume a parametrized transition system S [M]

i, j ∈ [M]
switch v[i] with v[j]

switch τ [i] with τ [j]

τ0 τ1 τ2σ = s0 s1 s2 . . .

si↔j
0 si↔j

1 si↔j
2 . . .

τ i↔j
0 τ i↔j

1 τ i↔j
2σi↔j =

6/11

Parametrized Verification Diagrams

I Prove that all instances of S [M] satisfy a temporal specification

with a unique diagram

7/11

Parametrized Verification Diagrams

I Prove that all instances of S [M] satisfy a temporal specification

I We add Σtid = ({tid}, ∅, ∅) and Tparam of uninterpreted functions

with a unique diagram

7/11

Parametrized Verification Diagrams

I Prove that all instances of S [M] satisfy a temporal specification

I We add Σtid = ({tid}, ∅, ∅) and Tparam of uninterpreted functions

I Tparam is:
stable infinite
polite

with a unique diagram

I For each v : α , we add fv : tid→ α

fpc : tid→ Loc

7/11

Parametrized Verification Diagrams

I Prove that all instances of S [M] satisfy a temporal specification

I We add Σtid = ({tid}, ∅, ∅) and Tparam of uninterpreted functions

T = Tprog + Tparam

I Tparam is:
stable infinite
polite

stable infinite theories
non stable infinite theories

combinable with

with a unique diagram

I For each v : α , we add fv : tid→ α

fpc : tid→ Loc

7/11

Soundness of Parametrized Verification Diagrams

Let S [M] be a symmetric parametrized fts
and ϕ(k) a temporal formula.

If there exists a (M,k)-valid pvd D[M], then:

S [M] ϕ(k)�

Theorem:

8/11

Soundness of Parametrized Verification Diagrams

Let S [M] be a symmetric parametrized fts
and ϕ(k) a temporal formula.

If there exists a (M,k)-valid pvd D[M], then:

S [M] ϕ(k)

Theorem:

� D[M] �

for all M

8/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

N

9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

N0

9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

E

9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

µ

9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

η

9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

F ∆ f

9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

I We add the notion of boxes

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉B

a

b

i

9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

I We add the notion of boxes

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

i

aM

bM

a1

b1

· · ·
represents

For M threads

· · ·
9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

I We add the notion of boxes

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

i

τ1[i]

aM

bM

a1

b1

· · ·
represents

For M threads

· · ·
9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

I We add the notion of boxes

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

i

τ1[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·
represents

For M threads

· · ·
9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

I We add the notion of boxes

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

c

i

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·
represents

For M threads

· · ·
9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

I We add the notion of boxes

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

c

i

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

τ2[1] τ2[M]

represents

For M threads

· · ·
9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

I We add the notion of boxes

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

c

i

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

τ2[1] τ2[M]

represents

For M threads

· · ·
9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

I We add the notion of boxes

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

c

i

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

τ2[1] τ2[M]

represents

For M threads

· · ·
9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

I We add the notion of boxes

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

c

d
i j

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

τ2[1] τ2[M]

represents

For M threads

· · ·
9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

I We add the notion of boxes

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

c

d
i j

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

dMd1 · · ·

τ2[1] τ2[M]

represents

For M threads

· · ·
9/11

Parametrized Verification Diagrams

I pvds are an extension of gvd

I We add the notion of boxes

D[M] : 〈N,N0, B,E, µ,F , η,∆, f〉

a

b

c

d
i j

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

dMd1 · · ·

τ2[1] τ2[M]

represents

I A pvd abstracts all instantiations of a parametric system

For M threads

· · ·
9/11

Verification Conditions for Parametrized Diagrams

10/11

Verification Conditions for Parametrized Diagrams

I Initialization: Θ→ µ(N0)

10/11

Verification Conditions for Parametrized Diagrams

I Initialization: Θ→ µ(N0)

I Consecution: For every n ∈ N and τ ∈ T ,

n ∧ τ → succ(n)

10/11

Verification Conditions for Parametrized Diagrams

I Initialization: Θ→ µ(N0)

I Consecution: For every n ∈ N and τ ∈ T ,

n ∧ τ → succ(n)

∧
l

∧
i n ∧ τl[i] → succ(n)

10/11

Verification Conditions for Parametrized Diagrams

I Initialization: Θ→ µ(N0)

I Consecution: For every n ∈ N and τ ∈ T ,

n ∧ τ → succ(n)

∧
l

∧
i n ∧ τl[i] → succ(n)

only tid appearing in n and succ(n) are relevant

10/11

Verification Conditions for Parametrized Diagrams

I Initialization: Θ→ µ(N0)

I Consecution: For every n ∈ N and τ ∈ T ,

n ∧ τ → succ(n)

∧
l

∧
i n ∧ τl[i] → succ(n)

Voc
(
n, succ(n)

)
= {i1, . . . , iq} = I

tid appearing on n and succ(n)

10/11

Verification Conditions for Parametrized Diagrams

I Initialization: Θ→ µ(N0)

I Consecution: For every n ∈ N and τ ∈ T ,

n ∧ τ → succ(n)

∧
l

∧
i n ∧ τl[i] → succ(n)

Voc
(
n, succ(n)

)
= {i1, . . . , iq} = I

∧
l n ∧ τl[i1] → succ(n)∧
l n ∧ τl[iq] → succ(n)∧
l n ∧ τl[i] ∧

∧
j∈I i 6= j → succ(n)

...
...

10/11

Verification Conditions for Parametrized Diagrams

I Initialization: Θ→ µ(N0)

I Consecution: For every n ∈ N and τ ∈ T ,

n ∧ τ → succ(n)

∧
l

∧
i n ∧ τl[i] → succ(n)

Voc
(
n, succ(n)

)
= {i1, . . . , iq} = I

∧
l n ∧ τl[i1] → succ(n)∧
l n ∧ τl[iq] → succ(n)∧
l n ∧ τl[i] ∧

∧
j∈I i 6= j → succ(n)

...
...

10/11

Verification Conditions for Parametrized Diagrams

I Initialization: Θ→ µ(N0)

I Consecution: For every n ∈ N and τ ∈ T ,

n ∧ τ → succ(n)

∧
l

∧
i n ∧ τl[i] → succ(n)

Voc
(
n, succ(n)

)
= {i1, . . . , iq} = I

abstracts all other cases thanks to symmetry

∧
l n ∧ τl[i1] → succ(n)∧
l n ∧ τl[iq] → succ(n)∧
l n ∧ τl[i] ∧

∧
j∈I i 6= j → succ(n)

...
...

10/11

Verification Conditions for Parametrized Diagrams

I Initialization: Θ→ µ(N0)

I Consecution: For every n ∈ N and τ ∈ T ,

n ∧ τ → succ(n)

∧
l

∧
i n ∧ τl[i] → succ(n)

Voc
(
n, succ(n)

)
= {i1, . . . , iq} = I

L× (q + 1)

verification conditions

Before

L×M
Now

∧
l n ∧ τl[i1] → succ(n)∧
l n ∧ τl[iq] → succ(n)∧
l n ∧ τl[i] ∧

∧
j∈I i 6= j → succ(n)

...
...

unbounded bounded

10/11

Verification Conditions for Parametrized Diagrams

I Initialization: Θ→ µ(N0)

(C1) µ(n)(s) ∧ ρτ [i](s, s′) → µ(next(n))(s′) , for each i ∈ I
(C2) µ(n)(s) ∧ ρτ [i](s, s′) ∧

∧
j∈I i 6= j → µ(next(n))(s′)

I Acceptance: If (n1, n2) ∈ P \R, let I = Voc(n1, n2),

(a)

[
ρτ [i](s, s

′) ∧
µ (n1) (s) ∧ µ (n2) (s

′)

]
→ δj,n1 (s) � δj,n2 (s

′) , for each i ∈ I

(b)

[
ρτ [i](s, s

′) ∧
∧
j∈I i 6= j ∧

µ (n1) (s) ∧ µ (n2) (s
′)

]
→ δj,n1 (s) � δj,n2 (s

′)

and if (n1, n2) /∈ P ∪R,

(a)

[
ρτ [i](s, s

′) ∧
µ (n1) (s) ∧ µ (n2) (s

′)

]
→ δj,n1 (s) � δj,n2 (s

′) , for each i ∈ I

(b)

[
ρτ [i](s, s

′) ∧
∧
j∈I i 6= j ∧

µ (n1) (s) ∧ µ (n2) (s
′)

]
→ δj,n1 (s) � δj,n2 (s

′)

I Fairness: For each e = (n1, n2) ∈ E and i ∈ βv(n1):

I Consecution: For every n ∈ N , let I = Voc(n,next(n)),

(F1) µ(n1)(s) ∧ τ [i] ∈ η(e) → En(τ [i])
(F2) µ(n1)(s) ∧ τ [i] ∈ η(e) ∧ ρτ [i](s, s′)→ µ(τ [i](n1))(s

′)
10/11

Verification Conditions for Parametrized Diagrams

I Initialization: Θ→ µ(N0)

I Consecution: For every n ∈ N , let I = Voc(n,next(n)),
(C1) µ(n)(s) ∧ ρτ [i](s, s′) → µ(next(n))(s′) , for each i ∈ I
(C2) µ(n)(s) ∧ ρτ [i](s, s′) ∧

∧
j∈I i 6= j → µ(next(n))(s′)

I Acceptance: If (n1, n2) ∈ P \R, let I = Voc(n1, n2),

(a)

[
ρτ [i](s, s

′) ∧
µ (n1) (s) ∧ µ (n2) (s

′)

]
→ δj,n1 (s) � δj,n2 (s

′) , for each i ∈ I

(b)

[
ρτ [i](s, s

′) ∧
∧
j∈I i 6= j ∧

µ (n1) (s) ∧ µ (n2) (s
′)

]
→ δj,n1 (s) � δj,n2 (s

′)

and if (n1, n2) /∈ P ∪R,

(a)

[
ρτ [i](s, s

′) ∧
µ (n1) (s) ∧ µ (n2) (s

′)

]
→ δj,n1 (s) � δj,n2 (s

′) , for each i ∈ I

(b)

[
ρτ [i](s, s

′) ∧
∧
j∈I i 6= j ∧

µ (n1) (s) ∧ µ (n2) (s
′)

]
→ δj,n1 (s) � δj,n2 (s

′)

I Fairness: For each e = (n1, n2) ∈ E and i ∈ βv(n1):
(F1) µ(n1)(s) ∧ τ [i] ∈ η(e) → En(τ [i])
(F2) µ(n1)(s) ∧ τ [i] ∈ η(e) ∧ ρτ [i](s, s′)→ µ(τ [i](n1))(s

′)
10/11

Mutual Exclusion Algorithm (revisited)

I For all k, ϕ(k) = (announced(k)→access critical(k))

11/11

Mutual Exclusion Algorithm (revisited)

I For all k, ϕ(k) = (announced(k)→access critical(k))

I By symmetry: ϕ(c) for arbitrary c ∈ [M], implies ϕ(k), ∀k ∈ [M]

11/11

Mutual Exclusion Algorithm (revisited)

not interested

interested

has min ticket

enters
critical section

leaves
critical section

has min ticket

enters
critical section

leaves
critical section

I For all k, ϕ(k) = (announced(k)→access critical(k))

T1

T1

T1

T1

T1

T2

T2

T2

I By symmetry: ϕ(c) for arbitrary c ∈ [M], implies ϕ(k), ∀k ∈ [M]

11/11

Mutual Exclusion Algorithm (revisited)

not interested

interested

has min ticket

enters
critical section

leaves
critical section

has min ticket

enters
critical section

leaves
critical section

I For all k, ϕ(k) = (announced(k)→access critical(k))

T2

T2

T2

c

c

c

c

c

I By symmetry: ϕ(c) for arbitrary c ∈ [M], implies ϕ(k), ∀k ∈ [M]

11/11

Mutual Exclusion Algorithm (revisited)

not interested

interested

has min ticket

enters
critical section

leaves
critical section

has min ticket

enters
critical section

leaves
critical section

I For all k, ϕ(k) = (announced(k)→access critical(k))

t

c

c

c

c

c

t

t

t

I By symmetry: ϕ(c) for arbitrary c ∈ [M], implies ϕ(k), ∀k ∈ [M]

11/11

Mutual Exclusion Algorithm (revisited)

not interested

interested

has min ticket

enters
critical section

leaves
critical section

has min ticket

enters
critical section

leaves
critical section

I For all k, ϕ(k) = (announced(k)→access critical(k))

t
isMin(t) ∧ t 6= c ∧

interested(c)

c

c

c

c

c

t

t

t

I By symmetry: ϕ(c) for arbitrary c ∈ [M], implies ϕ(k), ∀k ∈ [M]

11/11

Mutual Exclusion Algorithm (revisited)

not interested

interested

has min ticket

enters
critical section

leaves
critical section

has min ticket

enters
critical section

leaves
critical section

I For all k, ϕ(k) = (announced(k)→access critical(k))

t
isMin(t) ∧ t 6= c ∧

interested(c)
isMin(t) ∧ t = c

c

c

c

c

c

t

t

t

I By symmetry: ϕ(c) for arbitrary c ∈ [M], implies ϕ(k), ∀k ∈ [M]

11/11

Mutual Exclusion Algorithm (revisited)

I For all k, ϕ(k) = (announced(k)→access critical(k))

t
isMin(t) ∧ t 6= c ∧

interested(c)
isMin(t) ∧ t = c

I By symmetry: ϕ(c) for arbitrary c ∈ [M], implies ϕ(k), ∀k ∈ [M]

fpc(c) = 1, 2, 7

fpc(c) = 3

fpc(c) = 4

fpc(c) = 5

fpc(c) = 6

fpc(t) = 4

fpc(t) = 5

fpc(t) = 6

τ4[k]

τ5[k]

τ4[t]

τ5[t]

τ6[t]

τ6[t]

11/11

Conclusions

I Sound deductive method for concurrent parametric systems

I By now, works over symmetric systems

I Proofs based on a finite number of verification conditions

I Posiblility of combination with decision procedures

I Current and future work:
Use of parametrized diagrams for the verification of
concurrent list, skiplists, hashmaps...
Nested parametrized verification diagrams
Extension for non symmetric systems

I A unique diagram for any arbitrary number of threads

