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Motivation for Parametrized Verification Diagrams

Parametrized Verification Diagrams exploits the
similarities within symetric systems

Our solution

Problem

I Not a single diagram for arbitrary number of threads

I Unbounded number of verification conditions

I Unique diagram for arbitrary number of threads
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(C1) µ(n)(s) ∧ ρτ [i](s, s′) → µ(next(n))(s′) , for each i ∈ I
(C2) µ(n)(s) ∧ ρτ [i](s, s′) ∧

∧
j∈I i 6= j → µ(next(n))(s′)

I Acceptance: If (n1, n2) ∈ P \R, let I = Voc(n1, n2),

(a)

[
ρτ [i](s, s

′) ∧
µ (n1) (s) ∧ µ (n2) (s

′)

]
→ δj,n1 (s) � δj,n2 (s

′) , for each i ∈ I

(b)

[
ρτ [i](s, s

′) ∧
∧
j∈I i 6= j ∧

µ (n1) (s) ∧ µ (n2) (s
′)

]
→ δj,n1 (s) � δj,n2 (s

′)

and if (n1, n2) /∈ P ∪R,
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I Consecution: For every n ∈ N , let I = Voc(n,next(n)),

(F1) µ(n1)(s) ∧ τ [i] ∈ η(e) → En(τ [i])
(F2) µ(n1)(s) ∧ τ [i] ∈ η(e) ∧ ρτ [i](s, s′)→ µ(τ [i](n1))(s

′)
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Conclusions

I Sound deductive method for concurrent parametric systems

I By now, works over symmetric systems

I Proofs based on a finite number of verification conditions

I Posiblility of combination with decision procedures

I Current and future work:
Use of parametrized diagrams for the verification of
concurrent list, skiplists, hashmaps...
Nested parametrized verification diagrams
Extension for non symmetric systems

I A unique diagram for any arbitrary number of threads


