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Abstract—Many security protocols rely on the assumptions
on the physical properties in which its protocol sessions will be
carried out. For instance, Distance Bounding Protocols take into
account the round trip time of messages and the transmission
velocity to infer an upper bound of the distance between two
agents. We classify such security protocols as cyber-physical.
The key elements of such protocols are the use of cryptographic
keys, nonces and time. This paper investigates timed models
for the verification of such protocols. Firstly, we introduce a
multiset rewriting framework with continuous time and fresh
values. We demonstrate that in this framework one can specify
distance bounding protocols and intruder models for cyber-
physical security protocols that take into account the physical
properties of the environment. We then investigate how the
models with continuous time relate to models with discrete time in
protocol verification and show that there is a difference between
these models in exposing security flaws. This is done by proposing
a protocol and demonstrating that there is no attack to this
protocol when using the model with discrete time, but there is
an attack when using the model with continuous time. For the
important class of Bounded Memory Cyber-Physical Security
Protocols with a Memory Bounded Intruder the reachability
problem is PSPACE-complete if the size of terms is bounded.

I. INTRODUCTION

With the development of pervasive cyber-physical systems
and consequent security issues, it is often necessary to specify
protocols that not only make use of cryptographic keys and
nonces, but also take into account the physical properties of
the environment where its protocol sessions are carried out.
We call such protocols cyber-physical security protocols. For
instance, Distance Bounding Protocols [5] is a class of cyber-
physical security protocols which infers an upper bound on
the distance between two agents from the round trip time of
messages. In Alice (A) and Bob (B) notation, a session of a
Distance Bounding Protocol exchanges two messages:

A −→ B : NA, A
B −→ A : {NA, B}KA

where NA is a nonce and {NA, B}KA
is the message obtained

by encrypting NA and B with the key KA shared between
Alice and Bob. In order to infer the distance to Bob, Alice
remembers the time, t0, when the message NA, A was sent,

and the time, t1, when the message {NA, B}KA
returns. From

the difference t1− t0 and the assumptions on the speed of the
transmission medium, v, Alice can compute an upper bound
on the distance to Bob, namely (t1 − t0)× v.

This is just one example of cyber-physical security pro-
tocols. Other examples include Secure Neighbor Discovery,
Secure Localization Protocols [6], [27], [29], and Secure Time
Synchronization Protocols [15], [28]. The common feature in
most cyber-physical security protocols is that they mention
cryptographic keys, nonces and time. (For more examples, see
[3], [24] and references therein.)

A major problem of the above description of the distance
bounding protocol is that many assumptions about time, such
as the time requirements for the fulfillment of a protocol
session, are not formally specified. For instance, the text
describes only informally that Alice remembers the time t0 and
t1 and which exact moments these correspond to. Moreover,
from the above description, it is not clear which assumptions
about the network are used. For example, are the participants
using some particular medium, e.g., ultrasound or radio waves,
or are different messages transmitted using different mediums
with different transmission velocities? Furthermore, it is not
formally specified which properties does the above protocol
ensure and in which conditions and against which intruders.

It is easy to check that the above protocol is not safe
against the standard Dolev-Yao intruder [12] which acts as
the network capable of intercepting and sending messages
anywhere at anytime. In particular, the Dolev-Yao intruder
can easily convince A that B is closer than he actually is. The
intruder first intercepts the message NA, A and instantaneously
sends it to B. Then he intercepts the message {NA, B}KA

and instantaneously sends it to A. As the round-trip time
will correspond to the time that B constructs the message
{NA, B}KA

, A will believe that B is much closer than he
actually is. Such an attack does not occur in practice as
messages take time to travel from one point to a different
point. Indeed, the standard Dolev-Yao intruder model is not a
suitable model for the verification of cyber-physical protocols.
Since he is able to intercept and send messages anywhere at
anytime, he is faster than the speed of light.



This paper contains some first steps towards building gen-
eral timed models for cyber-physical security protocols veri-
fication. In particular, the contributions of this paper are: (1)
We propose a framework where one can specify cyber-physical
security protocols and demonstrate its usefulness by specifying
Distance Bounding Protocols; (2) We propose an intruder
model for cyber-physical protocols; (3) We address the non-
trivial relation between models with discrete time and models
with continuous time and show that in protocol verification
they behave differently. (4) We obtain the PSPACE-complete
complexity result for the reachability problem for Bounded
Memory Cyber-Physical Security Protocols in presence of a
Memory Bounded Intruder.

For our first, second and fourth contributions, we propose
a language based on multiset rewriting (MSR) for the spec-
ification of cyber-physical security protocols which extends
the framework developed for security protocols [8], [13]
with continuous time. We demonstrate how one can specify
Distance Bounding Protocols in this language. We propose a
novel intruder model based on the Dolev-Yao which takes into
account the physical properties of the environment he is in.
We show that such an intruder can be naturally specified in
our MSR language with real time.

For our third contribution, we show that there are protocols
for which no attack can be found when using a model with
discrete time, but there is an attack when using a model with
continuous time (or even dense times). This means that, in
general, models with discrete time are not as suitable for
protocol verification. In particular, for any way we attempt to
discretize verification using seconds, miliseconds, etc, there
is in principle a way for an attacker to carry out an attack
when using the model with continuous time. This novel result
illustrates the challenges of verifying timed models for cyber-
physical security protocol verification.

Although discrete time might be suitable for some applica-
tions such as [25], it is just an abstraction of physical time.
In other instances, such as cyber-physical security protocols,
normal physical reality plays an essential role. In our formal
models we can treat dense time as well as continuous time.
Since dense time is rather unnatural, we consider models with
continuous time.

This paper is organized as follows: In Section II, we
introduce the MSR framework with real time and fresh values
and we state our main complexity result. In Section III we
explore the powers of discrete and continuous time models
in protocol verification. In Section IV we use our model to
specify Distance Bounding Protocols and the novel intruder
model(s). In Sections V and VI we discuss related and future
work. The Appendix contains in detail the execution of a
protocol session and of an attack described in [3], as well
as a discussion on lower bounds on processing and traversal
times.

II. A MULTISET REWRITING FRAMEWORK WITH
CONTINUOUS TIME AND FRESH VALUES

This section introduces a multiset rewriting (MSR) frame-
work with continuous time and fresh values. Our language is
similar to the usual languages used in the MSR literature, see
for example [8], [13], [21]. However, for the decidability of
the reachability problem dealt in this paper, we will impose
some known restrictions [20] on the types of actions (also
called rewrite rules, or simply rules) of our system.

A. Facts, Timestamped Facts, and Configurations

We assume a finite first-order typed alphabet, Σ, with
variables, constants, function and predicate symbols. Terms
and facts are constructed as usual (see [14]) by applying
symbols with correct type (or sort). For instance, if P is a
predicate of type τ1×τ2×· · ·×τn → o, where o is the type for
propositions, and u1, . . . , un are terms with types τ1, . . . , τn,
respectively, then P (u1, . . . , un) is a fact. A fact is grounded
if it does not contain any variables.

In order to specify systems that mention time, we use
timestamped facts of the form F@T , where F is a fact and T
is its timestamp. In our previous work [21], timestamps were
only allowed to be natural numbers. Here, on the other hand,
timestamps are allowed to be non-negative real numbers. We
assume that there is a special predicate symbol Time with
arity zero, which will be used to represent the global time.
A configuration is a multiset of ground timestamped facts,
{Time@t, F1@t1, . . . , Fn@tn}, with a single occurrence of a
Time fact.

Configurations are to be interpreted as states of the system.
For example, the following configuration
{Time@7.5, Deadline@10.3, Task(1, done)@5.3, Task(2, pending)@2.13}
specifies that the current global time is 7.5, the Task 1 was
performed at time 5.3, Task 2 is still pending and issued at
time 2.13, and the deadline to perform all tasks is 10.3. For
simplicity we may sometimes denote the timestamp of a fact
F in a given configuration as TF .

B. Actions and Constraints

Actions are multiset rewrite rules and are either the Time
Advancement Action or Instantaneous Actions. The action
representing the advancement of time, called Tick Action, is
the following:

Time@T −→ Time@(T + ε) (1)

Here ε can be instantiated by any positive real number
specifying that the global time of a configuration can advance
by any positive number. For example, if we apply this action
with ε = 0.6 to the configuration shown above we obtain the
following configuration:
{Time@8.1, Deadline@10.3, Task(1, done)@5.3, Task(2, pending)@2.13}
where the global time advanced from 7.5 to 8.1.

Clearly such an action is a source of unboundedness as time
can always advance by any positive real number. In particular
we will need to deal with issues such as Zeno Paradoxes when
considering how time should advance.
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The remaining actions are the Instantaneous Actions, which
do not affect the global time, thus instantaneous, but may
rewrite the remaining facts. They have the following shape:
Time@T,W1@T1, . . . ,Wk@Tk, F1@T ′1, . . . , Fn@T ′n | C −→
∃ ~X.[Time@T,W1@T1, . . . ,Wk@Tk, Q1@(T +D1), . . . , Qm@(T +Dm)]

where D1, . . . , Dm are natural numbers and C is the guard of
the action which is a set of constraints involving the time
variables appearing in the pre-condition, i.e., the variables
T, T1, . . . , Tk, T

′
1, . . . , T

′
n.

Constraints are of the form:1

T > T ′ ±D and T = T ′ ±D (2)
where T and T ′ are time variables, and D is a natural
number. An instantaneous action can only be applied if all
the constraints in its guard are satisfied.

Notice that the global time does not change when applying
an instantaneous action. Moreover, the timestamps of the facts
that are created or whose timestamp is updated by the action,
namely the facts Q1, . . . , Qm, are of the form T +Di, where
Di is a natural number and T is the global time. That is, their
timestamps are in the present or the future.

For example, the following is an instantaneous action
Time@T, Task(1, done)@T1, Deadline@T2, Task(2, pending)@T3 | {T2 ≥ T + 2}
−→ Time@T, Task(1, done)@T1, Deadline@T2, Task(2, done)@(T + 1)

which specifies that one should complete Task 2, if Task 1 is
completed, and moreover, if the Deadline is at least 2 units
ahead of the current time. If these conditions are satisfied,
then the Task 2 will be completed in one time unit. It is easy
to check that this action can be applied to the configuration
above, resulting in the following configuration:

{Time@8.1, Deadline@10.3, Task(1, done)@5.3, Task(2, done)@9.1}
where Task 2 will be completed by the time 9.1.

Finally, the variables ~x that are existentially quantified in
the above action are to be replaced by fresh values, also called
nonces in protocol security literature [8], [13]. For example,
the following action specifies the creation of a new task with a
fresh identifier id, which should be completed by time T +D:
Time@T −→ ∃Id.[Time@T, Task(Id, pending)@(T +D)]
Whenever this action is applied to a configuration, the variable
Id is instantiated by a fresh value. In this way we are able to
specify that the identifier assigned to the new task is different
to the identifiers of all other existing tasks. In the same
way it is possible to specify the use of nonces in Protocol
Security [8], [13], as we do in Section IV.

Notice that by the nature of multiset rewriting there are
various aspects of non-determinism in the model. For example,
different actions and or even different instantiations of the
same rule may be applicable to the same configuration S,
which may lead to different resulting configurations S ′.
Motivation for the use Natural Numbers Di in Constraints
and Actions As the specification of cyber-physical security
protocols does not explicitly mention real numbers, such as
the number π, but at most rational numbers, we can model

1We use T ′ ≥ T ′ ± D to denote the disjunction of T > T ′ ± D and
T ′ = T ′ ±D

these systems by using the Natural Numbers Di in actions and
constraints by normalizing the rational numbers mentioned in
the system to obtain natural numbers.

Motivation for Instantaneous Actions Intuitively, the condi-
tions on Instantaneous Actions, namely the constraints format
and the restriction on the timestamps of the facts created by an
action, specify systems that are not affected by time shifts [21].
That is, if we shift the timestamps of all facts in the configura-
tion by the same value, the same actions still apply. For a more
technical reason, these conditions are also necessary conditions
for the decidability of the reachability problem already for
systems with discrete-time. In particular, it is possible to show
that if we allow actions with more relaxed constraints and/or
actions that assign more complicated timestamps to created
facts, then the reachability problem is undecidable [21].

C. Initial, Goal Configurations and The Reachability Problem

We write S −→r S1 for the one-step relation where the
configuration S is rewritten to S1 using an instance of action
r. For a set of actionsR, we define S −→∗R S1 as the transitive
reflexive closure of the one-step relation on all actions in R.
We elide the subscript R, when it is clear from the context.

A goal SG is a pair of a multiset of facts and a set of
constraints:

{F1@T1, . . . , Fn@Tn} | C
where T1, . . . , Tn are time variables, F1, . . . , Fn are ground
facts and C is a set of constraints involving only T1, . . . , Tn.
We call a configuration S1 a goal configuration if there is
a substitution σ replacing T1, . . . , Tn by real numbers such
that SGσ ⊆ S1 and all comparisons in Cσ are satisfied. The
reachability problem, T , is then defined for a given initial
configuration SI , a goal SG and a set of actions R as follows:

Reachability Problem: Is there a goal configuration S1,
such that SI −→∗R S1?

Such a sequence of actions is called a plan. We assume
that goals are invariant to nonce renaming, that is, a goal SG
is equivalent to the goal S ′G if they only differ on the nonce
names (see [16] for more discussion on this).

D. Dealing with Continuous Time

In our technical report [17], we investigate the complexity of
the reachability problem described above. The main challenge
there is to deal with continuous time, e.g., handle Zeno
paradoxes. We introduced a novel machinery, called circle-
configurations, to symbolically represent configurations and
plans that explicitly mention real time. This abstraction is
shown to be sound and complete. Therefore, we can search
for solutions of the reachability problems symbolically, that
is, within a finite space of circle-configurations. We no longer
need to manipulate the infinite space of real numbers, i.e., the
concrete values of the timestamps in a plan. It also allows us
to use/adapt existing machinery involving Multiset Rewriting,
e.g., [8], [13], [16], [21], to infer complexity results.

The details on this solution and the proofs of these claims
can be found in [17]. Here we only state the main complexity
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result. It mentions the condition that actions should be bal-
anced, that is, all actions have the same number of facts in its
pre and post-conditions (see [16] for more details).

Theorem 2.1: Let T be a reachability problem with bal-
anced actions. Then T is in PSPACE with respect to m, k,
and Dmax, where m is the number of facts in the initial
configuration, k is an upper bound on the size of facts, and
Dmax is an upper bound on the numbers appearing in T .

For the result above, we assumed that the time values,
namely the Ds in the rewrite rules and constraints, are given by
the reachability problem. However, another problem that we
are considering is the following: Is there a way of instantiating
the Ds, that allow us to reach a goal configuration from a given
initial configuration?

For some applications, such as for determining whether a
distance bounding protocol has an attack, one can constraint
the values of D: They do not have to be much greater than
the time that a message takes to travel the distance bound
specified by the protocol (twice this value is enough), which
means that we can infer Dmax from the protocol specification.
Therefore, if our rewrite rules are balanced and assuming
the upper bounds stated in the theorem above, then we can
enumerate all the possible values of the Ds and check for
each instance whether a goal configuration is reachable from
a given initial configuration. This means that this problem is
decidable when such constraints on the Ds are available. We
leave for future work the task of finding other conditions for
decidability and their lower bounds.

III. CONTINUOUS VERSUS DISCRETE TIME

This section investigates the motivation and the need of
using continuous time models in protocol verification instead
of the more simple discrete time models. We show that there is
indeed a difference between these models. Namely, the model
with discrete time is strictly less expressive than the model
with continuous time in the sense that it is not able to expose
as many protocol security flaws.

We address the basic issues as they arise in the formalization
of protocols with explicit time:
• The time-sensitive features such as the network delays and

participants’ processing time are taken into account.
• Protocol execution depends on the round trip time of

messages by means of measuring the response time. In
particular, a participant has an opportunity to authenticate
another one with the help of the corresponding time re-
sponse.2

We illustrate the main subtleties by adding the time di-
mension to the original Needham-Schroeder protocol. The
intriguing result is that this protocol is secure in the model with
discrete time, but it is insecure in the model with continuous
time already with respect to an adversary which is able to
intercept and send messages, as well as encrypt and decrypt
messages providing he has the corresponding keys. Such an
adversary does not need to manipulate various submessages

2This is at the basis of distance-bounding protocols, see Section I.

or even create fresh values. Here, as all the participants in
the protocol execution, the adversary is subject to non-zero
network delays and non-zero processing time. Although one
could consider a more simple example, with instantaneous
processing times, we opted for this quite realistic one. In the
next section we propose a slightly different intruder model and
discuss possible extensions and alternative models.

• Passing messages takes non-zero time.
Agents communicate by sending and receiving messages m

through the network N . Even in protocol formalizations with
no explicit time, there is a certain causality relation, namely
the receiving event is caused by the corresponding sending
event. In addition, here we have to deal with a possible time
delay between these events.

We formalize sending a message m on the network N as
NS(m), and receiving m from N as NR(m). Accordingly,
NS(m)@t0 stands for: “m is sent on N at moment t0,”
and NR(m)@t1 stands for: “m is consumed from N at
moment t1”.

m

?
N

6

Alice Bob
t0 t1

The fact that such a communication act, i.e. message delivery,
is not instantaneous can be axiomatized by a multiset rewriting
rule of the form:

Time@t1, NS(m)@t0 | { t1 > t0 } −→
Time@t1, NR(m)@t1

(3)

where the attached time constraint t1>t0 formalizes the
network delay.

Notice that in the case of discrete time, t1 ≥ t0+1.

• Processing requests takes non-zero time.
When an agent X receives a message m′ at some mo-

ment t1, he first stores m′, and then starts to process m′ to
produce the output m′′. For instance, he sends m′′ on the
network at the later moment t2>t1, Here t2 − t1 represents
X’s processing time. We simulate these events with the
following two rules:

Time@t1, NR(m′)@t1 −→ Time@t1, X(m′)@t1,

T ime@t2, X(m′)@t1 | {t2 > t1} −→
Time@t2, X(m′′)@t2, NS(m′′)@t2.

(4)

where for a participant X , the fact X(z)@t denotes that z is
stored in X’s memory at moment t, and this information is
included in X’s private knowledge base.

• “Continuous time” versus “Discrete time”.
A global continuous measurable quantity time is assumed

in which events occur in irreversible succession.
For the continuous time, we formalize the time advance

with the following multiset rewriting rule:

Time@t −→ Time@(t+ε) (5)
where ε is an arbitrary non-negative real number.
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Discrete time views events as occurring at time moments
which are multiplies of a fixed ‘time unit’, so that time can
be conceived of as be assigned only integer values. For the
discrete time, the time advance is given by the rule

Time@t −→ Time@(t+1) (6)

That is, time advances by one per tick.

We illustrate the main subtleties of time-sensitive security
protocols and their formalization by proposing the following
version of the time-bounding Needham-Schroeder protocol:

m1

?

m0 m2N
?? 66

Alice Bob
6

Bob Alice
t0 t5t1 t4t2 t3

(a) At some moment t0, Alice creates her nonce NA, stores
NA in her memory, and sends to Bob (in fact, on the
network N ) the message m0 = {NA, A}Kpub

B
, encrypted

with Bob’s public key Kpub
B .

We formalize this action with the multiset rewriting rule:

Time@t0 −→
∃NA

(
Time@t0, A(NA)@t0, NS(m0)@t0

) (7)

The postcondition of the rule reads that, in addition to
sending the message m0 on N , Alice keeps, in her private
knowledge base, the fact A(NA)@t0, which denotes that
NA is stored in her memory at moment t0.

(b) When Bob receives such a message m0, at some moment t1,
he first memorizes m0, which is formalized as:

Time@t1, NR(m0)@t1 −→ Time@t1, B(m0)@t1. (8)

Having received the above message from Alice, Bob de-
crypts it, creates his nonce NB , stores NA and NB in his
memory, and at some later moment t2 sends to Alice the
message m1 = {NA, NB}Kpub

A
encrypted with Alice’s

public key Kpub
A . Formally,

Time@t2, B(m0)@t1 | {t2 > t1} −→
∃NB

(
Time@t2, B(〈NA, NB〉)@t2, NS(m1)@t2

) (9)

Here t2−t1 represents Bob’s processing time.
(c) When Alice receives message m1 at some moment t3, she

first stores m1, which is formalized as:

Time@t3, NR(m1)@t3 −→ Time@t3, A(m1)@t3 (10)

Then, in order to authenticate Bob and confirm Bob’s
request, she checks the response time: t3−t0. If t3−t0 ≤3,
and if nonces match, she sends to Bob the ‘confirmation
message’ m2 = {NB}Kpub

B
at the later moment t4, where

t4−t3 is Alice’s processing time. Formally:

Time@t4, A(NA)@t0, A({NA, NB}Kpub
A

)@t3

| {t3−t0 ≤3, t4>t3} −→
Time@t4, A({NA, NB}Kpub

A
)@t3, NS(m2)@t4

(11)

Otherwise, Alice sends the message {N0}Kpub
B

with a
‘garbage nonce’ N0 to signal that NA and NB should not
be accepted this time.

The protocol is declared secure if the ‘accepted’ NA and NB

may never be revealed to somebody else except Alice and Bob.

There is a clear correspondence between protocol sessions
and sequences of rewriting rules applied. E.g., let a session be
the following:

(a) At some moment t0, let Alice initiate a session with Bob by
sending the message m0 = {NA, A}Kpub

B
on the network.

(b) At moment t1 = t0 + 1, the message m0 arrives to Bob;
(c) Bob stores Alice’s nonce, creates his nonce and responds at

time t2 = t0 + 2 with the message m1 = {NA, NB}Kpub
A

(d) At moment t3 = t0 + 3, the message m1 arrives
to Alice. Since t3−t0 ≤ 3, Alice responds to Bob with
m2 = {NB}Kpub

B
.

Then the above session can be simulated with the sequence
of our rewriting rules:

(a) First, we apply the rule (7) with sending m0 on the N :

Time@t0 −→ Time@t0, A(NA)@t0, NS

(
m0

)
@t0

(b) Time is ticking with (6):

Time@t0 −→ Time@t1

Then m0 arrives to Bob by means of (3):

Time@t1, NS

(
m0

)
@t0 −→ Time@t1, NR

(
m0

)
@t1

(c) Bob stores m0 in accordance with (8):

Time@t1, NR(m0)@t1 −→ Time@t1, B(m0)@t1.

While Bob works on his reply, time ticks again

Time@t1 −→ Time@t2

At moment t2 Bob responds with m1 as per (9).
(d) Time is ticking with (6):

Time@t2 −→ Time@t3

Message m1 arrives to Alice by means of (3):

Time@t3, NS

(
m1

)
@t2 −→ Time@t3, NR

(
m1

)
@t3

Alice stores m1 as per (10):

Time@t3, NR(m1)@t3 −→ Time@t3, A(m1)@t3

Time is ticking with (6):

Time@t3 −→ Time@t4

Then, since t3 − t0 ≤ 3, Alice responds with m2 in
accordance with (11).

The Dolev-Yao intruder here is a participant with the
standard Dolev-Yao capabilities who, in addition, can choose
the moment to send his messages on the network.

Theorem 3.1: In the case of discrete time with the time
advancement rule: Time@t→ Time@(t+1), there is no
Dolev-Yao attack on the timed Needham-Schroeder protocol.
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Proof Sketch. Let t0 be a moment when Alice sends a message
of the form {NA, A}Kpub

M
.

Alice can receive a message of the form {NA, N
′′}Kpub

A
at

some moment t3 such that necessarily t3 ≥ t0+3.
Alice reveals a questionable message of the form {N ′′}Kpub

M

only if t3−t0 ≤ 3, which implies t3 ≤ t0+3.
Hence, t3 = t0+3.
Therefore, M has no time to initiate any activity with Bob

rather than to respond to Alice with {NA, N
′′}Kpub

A
, where

N ′′ is M ’s own nonce, not Bob’s.
Theorem 3.2: In contrast, in the case of continuous time

with the time advancement rule: Time@t→ Time@(t+ε),
there is a timed version of Lowe attack on the timed Needham-
Schroeder protocol.
Proof. A possible attack scenario is as depicted in Figure 1:
• At some moment t0, let Alice initiate a session with

Mallory by sending the message z0 = {NA, A}Kpub
M

on
the network.

• At some moment, say t1 = t0+0.1, the message z0 arrives
to Mallory, and, at the moment t2 = t1+0.1, he sends to
Bob the re-encrypted message z1 = {NA, A}Kpub

B
.

• At some moment, say t3 = t2+0.1, the message z1 arrives
to Bob, and at the moment t4 = t3+0.1, Bob responds with
the message z2 = {NA, NB}Kpub

A

• Having received the message z2 at some moment,
say t5 = t4 + 0.1, Mallory resends this message to Alice
at a later moment, say t6 = t5 + 0.1

• At some moment, say t7 = t6 + 0.1 , message z2 arrives
to Alice.
Since t7−t0 ≤ 3, Alice responds to Mallory with
z3 = {NB}Kpub

M
.

• Having received the message z3, Mallory sends to Bob the
‘confirmation’ z4 = {NB}Kpub

B
, to force Bob to believe that

he communicated with Alice, and nobody else learned NB .
Remark 3.3: Here, the actual difference between discrete

time and continuous time is that, between the moments t0 and
t0+3, only three acts could have happened within discrete
time, whereas an unbounded number of timed events are
possible within continuous time.

Remark 3.4: No rescaling of discrete time units removes
this issue. Namely, for any discretization of time, such as days,
seconds or any other infinitesimal time unit, there is a protocol
similar to the one given above, where there is an attack with
continuous time and no attack is possible in the discrete case.

Remark 3.5: Notice that discrete time models implicitly
impose lower bounds on transmission and processing time, see
Remark 3.3. This is not the case in models with continuous
time. Indeed, continuous time (or even dense time) allows
us to not have such bounds. Nevertheless, lower bounds for
delays for both processing time and for traversal time can
be introduced in continuous time models (see Appendix C).
However, one should question what such a bound would
represent when considering e.g. various network distances,
available and future technologies effecting both processing
and traversal times. That is why in the above foundational

Alice Mallory

t0

Mallory Bob

t1

t2

{NA, A}kM

t3
{NA, A}kB

t4t5
{NA, NB}kA

t6t7
{NA, NB}kA

t8 t9
{NB}kM

t10 t11
{NB}kB

Fig. 1: Lowe style timed attack on the timed Needham-
Schroeder protocol.

comparison between discrete and continuous time models we
intentionally did not impose lower bounds. Our specification
is not driven by implementation.

IV. SPECIFYING CYBER-PHYSICAL SECURITY PROTOCOLS

This section shows how one can specify cyber-physical
security protocols. As an example we use the simple Distance
Bounding Protocol described in the Introduction. Firstly we
detail in Section IV-A the specification of Protocol Theories
following the notation in [8], [13], [16]. Then in Section IV-B
we describe an intruder model similar to the Dolev-Yao
model that takes into account the physical properties of the
environment.

In the following, assume that there are n agents. These
agents are either honest participants, intruders, or verifiers. A
verifier V is an agent that possesses a resource, such as access
to a building, which may be granted to some other agent.
For communication, agents may use different transmission
mediums with possibly different transmission velocities, such
as radio-frequency or ultrasound.

The verifier only grants its resource if following his chal-
lenge (message NA, A in the Introduction) he receives a reply
(message {NA, B}KA

in the Introduction) from the requesting
agent before some reference period of time has elapsed, called
distance bounding time. The distance bounding time is given
by the specification of the protocol and it specifies the upper
bound on the distance at which the requesting agent should
be positioned to have access to the verifier’s resource.

The verification problem is to check whether an agent
that does not comply with the distance bounding requirement
cannot have access to a verifier’s resource.
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Rol Gen: Time@T, V er(A)@T1, Ag(B)@T2, P@T3, P@T4 −→
Time@T, V er(A)@T1, Ag(B)@T2, A0(A,B, cS , cR)@T,B0(A,B, cS , cR)@T

Challenge: Time@T,A0(A,B,CS , CR)@T1, P@T2 −→ ∃NA.[Time@T,A1(A,B,CR, NA)@T, SA,CS
(〈NA, A〉)@T ]

Response: Time@T,Key(A,KA)@T1, B0(A,B,CS , CR)@T2, SA,CS
(〈NA, A〉)@T3 | T ≥ T3 +D(A,B,CS) −→

Time@T,Key(A,KA)@T1, B1(A,B,NA)@T, SB,CR
({〈NA, B〉}KA

)@T

Accept: Time@T,A1(A,B,CR, NA)@T1, SB,CR
({〈NA, B〉}KA

)@T2 | T1 +DA
b ≥ T ≥ T2 +D(B,A,CR) −→

Time@T,A2(A,B, yes)@T, P@T

Reject: Time@T,A1(A,B,CR, NA)@T1, SB,CR
({〈NA, B〉}KA

)@T2 | T > T1 +DA
b , T ≥ T2 +D(B,A,CR) −→

Time@T,A2(A,B, no)@T, P@T

Del A2: Time@T,A2(A,B,X)@T1 −→ Time@T, P@T

Del B1: Time@T,B1(A,B,M)@T1 −→ Time@T, P@T

Del Si,c: Time@T, Si,c(M)@T1 −→ Time@T, P@T

Fig. 2: Bounded Memory Protocol Rules. Here cS and cR are constants specifying the transmission mediums used, respectively,
to send the challenge and receive it.

I/O Rules:

REC: Time@T, Int(I)@T1, Cap(I, C)@T2, SA,C(X)@T3 | T ≥ T3 +D(A, I, C) −→
Time@T, Int(I)@T1, Cap(I, C)@T2,MI(X)@T

SND: Time@T, Int(I)@T1, Cap(I, C)@T2,MI(X)@T3 | T ≥ T3 −→
Time@T, Int(I)@T1, Cap(I, C)@T2, SI,C(X)@T

Decomposition and Composition Rules:

DCMP: Time@T,MI(〈X,Y 〉)@T1, P@T2 −→ Time@T,MI(X)@T,MI(Y )@T

DEC: Time@T,MI(K)@T1,MI({X}K)@T2, P@T3 −→ Time@T,MI(K)@T1,MI({X}K)@T2,MI(X)@T

COMP: Time@T,MI(X)@T1,MI(Y )@T2 → Time@T,MI(〈X,Y 〉)@T, P@T

USE: Time@T,MI(X)@T1, P@T2 → Time@T,MI(X)@T1,MI(X)@T

ENC: Time@T,MI(K)@T1,MI(X)@T2, P@T3 → Time@T,MI(K)@T1,MI(X)@T2,MI({X}K)@T

GEN: Time@T, P@T1 → ∃N.T ime@T,MI(N)@T

Memory Maintenance Rule:

DELM: Time@T,MI(X)@T1 → Time@T, P@T

Fig. 3: Bounded Memory Dolev-Yao Adversary Theory.

There are, in fact, two properties that need to be checked:
the authentication property, i.e., checking whether the intruder
cannot convince the verifier that he is an honest participant,
and the distance bounding requirement, described above. As
the first problem does not involve the physical properties of
the system, standard techniques [8], [13], [16] which can
be modeled by instantaneous actions, can be used to check
this property, so we only show how to specify the distance
bounding requirement.

To formalize the distance bounding property we assume
given the following values:
• D(i, j, c) denotes the time it takes for a message to travel

from agent i to agent j using the transmission medium c.
For simplicity, we assume that D(i, j, c) = D(j, i, c).

• DA
b is the distance bounding time for the verifier A.

A. Protocol Theories

We use the following predicates in our specifications:
• Si,c(m) denotes that the message m was sent by agent i

using transmission medium c;
• A0(A,B, cS , cR), A1(A,B, cR, NA), B0(A,B, cS , cR),
B1(A,B,NA) and A2(A,B, yes/no) are role state
predicates used in a protocol session between agents A
and B using the transmission channels cS and cR to,
respectively, send the challenge nonce NA and receive
the response. We assume that cS and cR are given
by the protocol specification. Moreover the predicate
A2(A,B, yes) (resp. A2(A,B, no)) denotes that the
protocol succeeded (resp. failed) and that A did (resp. did
not) grant access to the resource it owns to B;

• Ag(B) specifies that B is an honest participant, V er(A)
that A is a Verifier, and Int(I) that I is an intruder;
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• Key(A,K) specifies that K is the public key of agent A;
• Cap(I, C) specifies that the intruder I is capable of using

the transmission medium C;
• MI(N) specifies that the intruder I knows N ;
• P is a zero arity predicate representing an empty fact. It

is a place holder in the configuration used to limit the
number of concurrent protocol sessions and to specify
the Bounded Memory Protocols and Bounded Memory
Intruders (see [19]). In order to obtain specifications that
are not Memory Bounded, one simply needs to delete all
occurrences of P facts.

The initial configuration is composed of a fact Ag(B) for
each honest participant B, a fact V er(V ) for each verifier V ,
Int(I) for each intruder I , a fact Key(A,K) for each key K
belonging to an agent A, Cap(I, C) for each transmission
medium C that the intruder I is capable of using and a
number of empty facts P . For example, the following initial
configuration specifies a setting with two honest participants,
h1 and h2, one verifier v with key kv and one intruder i which
is capable of using RF and ultrasound, denoted by r and s:{

Time,Ag(h1), Ag(h2), V er(v),Key(v, kv),
Int(i), Cap(i, r), Cap(i, s)

}
∪ P

where P = {P, . . . , P} is a multiset of P facts and we elide
their timestamps which are all 0.

The protocol theory is composed by the actions shown in
Figure 2. In fact, the actions in Figure 2 are schema rules that
should be instantiated by all possible values of Dj

b , D(i, j, c),
for agents i and j and transmission medium c.

The action Rol Gen generates a new protocol session
involving the verifier A and the honest participant B using
the transmission medium cS and cR, which are given by the
protocol specification. The actions Challenge and Response
correspond to the protocol steps. The Challenge action creates
a nonce NA and sends it to the Network using the transmission
medium CS . The Response action specifies that B can only
respond once the time, D(A,B,CS), for the message to travel
to him using the medium CS has elapsed. This is specified by
the constraint T ≥ T3 + D(A,B,CS). Thus, the message
sent by A is not immediately available to B as expected when
taking into account the physical properties of the system. Sim-
ilarly, the action Accept specifies the case when B succeeded
the Distance Bounding Challenge and is granted access to the
resource, specified by the fact A2(A,B, yes), while the action
Reject specifies the case when B did not succeed the Distance
Bounding Challenge and the protocol is terminated without
granting B access to the resource. Finally, the remaining Del
actions are used to delete protocol roles (see discussion in
[19]). One is also allowed to garbage-collect messages sent
(using DEL Si,c).

B. An Intruder Model

In symbolic protocol verification one normally assumes a
powerful intruder, called Dolev-Yao intruder [12], which acts
as the network. Since such an intruder can intercept and send a
message anywhere in the network at anytime, he results faster

than the speed of light. Thus using the traditional Dolev-Yao
intruder makes the physical properties of the system irrelevant.

This paper proposes an intruder that behaves similarly to the
Dolev-Yao intruder, but that has to obey the physical properties
of the system. The Bounded Memory version of this intruder
is specified in Figure 3. For the Unbounded Memory Version,
one simply needs to erase all occurrences of P facts and delete
the Memory Maintenance Rule (see [16] for the differences
between these intruder models). While the Composition and
Decomposition actions are similar to the Dolev-Yao intruder,
the I/O actions are the interesting ones as they impose the
physical properties of the system. In particular, action Rec
specifies that to learn the contents of a message sent by agent
A, the intruder has to wait the time, D(A, I, C), for this
message to reach him. This means that he is not faster than
the speed of light. The Snd action specifies that the intruder
can only send a message in a medium in which he has the
capability to do so.

Notice that all the facts created by above intruder rules have
the timestamp equal to the current time. Therefore we do not
need to use additional time constraints in the rules, such as
e.g. T1 ≤ T , T2 ≤ T , T3 ≤ T in DEC rule.

In Section III we presented a protocol anomaly w.r.t an
intruder which is subject both to network delays and process-
ing time. However, for simplicity of the presentation, in the
intruder model given in Figure 3 we disregard processing time.
This could also be viewed as a characteristic of a very powerful
intruder which is equipped with some supreme technology.
On the other hand, we demonstrate how to represent network
delays more precisely, specifying concrete traversal times.

Also notice that we are able to formalize both symmetric
and asymmetric encryption. In the intruder model given in Fig-
ure 3 we represent symmetric encryption, while in Section III
we show how to model public key encryption.
Alternative and/or Extended Intruder Models We can imagine
alternative intruder models. For example, besides using both
types of encryption, a more powerful intruder should be able
to use any medium, that is, may use all transmission mediums
available. Such an intruder, however, would still be subject to
the timing constraints of the transmission mediums to receive
and send messages.

Another possible intruder model is the intruder that is able
to read messages without intercepting them. This would be
specified by a rule of the following shape:

Time@T, SA,C(X)@T1, P@T2 | T ≥ T1 +D(A, I, C) −→
Time@T, SA,C(X)@T1,MI(X)@T

where the fact SA,C(X)@T1 is not consumed by the rule , i.e.
it appears both in the pre-condition and in the post-condition of
the rule. It would therefore still be possible for the agent C to
receive the original message X as well. This would correspond
to using different communication technologies, such as radio
transmission and ultrasound, while the intruder model shown
in Figure 3 represents for example communication through a
physical unreliable network or using radio frequency directed
antennas.
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Similarly, we could adapt the protocol specification to model
simple reading of messages where the same message could be
received by another agent including the intruder at some other
time. This type of changes in both intruder model and protocol
specification could affect the nature of possible anomalies in
such scenarios.

Moreover, we have not specified a communication topology
in our model. This is implicit by the D(a, b, c) facts, specifying
the time that a message needs to transit from agent a to agent b
using the transmission medium c. However, more information
can be inserted into the model, such as the routes used for
transmission. This information should have important impact
on the types of attacks that are possible.

Finally, the agents are assumed to be static. That is, during
the execution of the protocol they are not allowed to move,
i.e., the values for D(a, b, c) are always the same. Depending
on the medium, e.g., slower mediums, it might be the case
that the intruder can exploit the fact that a protocol session
runs in a slower medium and have time to carry out attacks
when he is able to move.

V. RELATED WORK

Others have also investigated the formalization of timed
models and some have used these models for the verification
of cyber-physical security protocols. We review this literature.

Meadows et al. [24] and Pavlovic and Meadows in [26]
propose and use a logic called Protocol Derivation Logic
(PDL) to formalize and prove the safety of a number of cyber-
physical protocols. In particular, they specify the assumptions
and protocol executions in the form of axioms, specifying the
allowed order of events that can happen, and show that safety
properties are implied by the axiomatization used. They do
not formalize an intruder model. Another difference from our
work is that their PDL specification is not an executable spec-
ification, while our specification can be in principle directly
used in computational tools such as Maude [9]. Finally, they
do not investigate the complexity of verifying protocols nor
investigate the expressiveness of formalizations using discrete
and continuous time.

Another approach similar to [24] in the sense that it uses
a theorem proving approach is given by Schaller et al. [3].
They formalize an intruder model that is similar to ours
in Isabelle, and also formalize some cyber-physical security
protocols. They then prove the correctness of these protocols
under some specific conditions and also identify attacks when
some conditions are not satisfied. Their work is a source of
inspiration for our intruder model specified in Section IV, but
there are some differences. As they are using a theorem prover
to verify such protocols, they did not investigate executable
models for the intruder model. Also they did not investigate
the complexity of protocol verification nor the expressiveness
differences of using different models. We believe that there
can be much synergy between our approaches. For example,
while our model seems suitable for model-checking using for
instance Maude [9], we believe that our model can be also
used in theorem provers to prove more general results such as

those in [3], e.g., safety results for an unbounded number of
protocol sessions.

The Timed Automata [2] community has also proposed
models for cyber-physical protocol verification. For example,
Corin et al. [10] formalize protocols and the standard Dolev-
Yao intruder as timed automata and demonstrate that these
can be used for verification. They are able to formalize the
generation of nonces by using timed automata, but they need
to assume that there is a bound on the number of nonces.
This means that they assume a bound on the total number
of protocol sessions. Our model based on rewrite theory, on
the other hand, allows for an unbounded number of nonces,
even in the case of balanced theories [16]. Also they do not
investigate the complexity of the verification problems nor the
expressiveness difference between models with discrete and
continuous time.

Another approach for specifying and verifying protocols
using Timed Automata was given by Lanotte et al. [22]. They
do not specify cyber-physical protocols, but protocols where
messages can be re-transmitted or alternatively a protocol
session can be terminated, i.e., timeouts, in case a long
time time elapses. They formalize the standard Dolev-Yao
intruder. Finally, they also obtain a decidability result for their
formalism and an lower bound of EXPSPACE-hard for the
reachability problem. It seems possible to specify features
like timeouts and message re-transmission, in our rewriting
formalism. Moreover, we obtain a better complexity (PSPACE-
completeness) result proved in our technical report [17] for
a realistic fragment of cyber-physical protocols, namely of
Bounded Memory Protocols [18], [19].

Recently [4] proposed a discrete time model for formalizing
distance-bounding protocols and their security requirements.
Their approach is probabilistic and the adversary model is
a probabilistic Turing machine, which does not directly cor-
respond to our intruder model with Dolev-Yao style rules.
In their model computation time is not taken into account.
Furthermore, they model only one transmission speed, there-
fore anomalies that arise from different transmission velocities
are not considered. We on the other hand do specify various
transmissions through capabilities of using specific mediums
and the corresponding traversal times. We leave the deeper
comparison of our models for some future work.

Petri nets (PN) have been used both for security protocol
specification and analysis [11] as well as for the formalization
of real-time systems [1]. Our reachability problem is related
to the reachability and coverability problems for Petri nets
and our model has clear similarities to Timed-Arc Petri Nets
(TAPN) [7], e.g., connections between token age and times-
tamps of facts as well as between time intervals labeling the
arcs in TAPNs and our time constraints. Despite similarities,
it does not seem possible to provide direct, faithful reductions
between our model and PNs. Moreover, we are not aware of
any work on PN that includes both real-time and fresh values.

Finally, Malladi et al. [23] formalize distance bounding
protocols in strand spaces. They then construct an automated
tool for protocol verification using a constraint solver. They
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do not investigate the complexity of their verification nor the
expressiveness of their model. We believe, however, that the
idea of using constraint solver, or alternatively SMT solvers,
is an interesting direction for implementing tools for cyber-
physical protocol verification, in particular, for reducing search
space. In fact, we are currently investigating how to use SMT
solvers together with Maude to do so.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a timed model for cyber-physical
security protocols. We showed that a model with discrete time
is strictly less powerful than a model with continuous time in
the sense that there are protocols for which there is no attack in
the former model but there is an attack in the latter model. We
then proposed an intruder model which respects the physical
properties of his environment and showed that our formalism
can capture known attacks.

There is a number of directions which we are currently
working on. Firstly, we are investigating the power of our
intruder model, that is, how much damage can he do and under
which conditions. We are also investigating alternative intruder
models such as those described at the end of Section IV
and their properties and differences. We are also investigating
clever ways to implement tools for verifying cyber-physical
protocols based on our intruder model. We are currently
investigating the use of SMT solvers together with Maude.

One assumption in our model is that all agents share a
global clock. Although this assumption is reasonable for some
applications, such as for the distance bounding protocols, it is
not the case for others such as in Network Time Protocols.
We are investigating suitable models with local clocks, that
is, models where each agent has its own clock, as well as the
corresponding properties, such as complexity results.
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APPENDIX

A. Protocol Theories: A protocol session

We show in detail a normal execution of a protocol session
of the Distance Bounding Protocol described in Section IV.
Assume that there is only one verifier v and one honest
participant h and no intruder. Let the distance bounding time
for v be Dv

b = 6 time units. Moreover, let D(v, h, cS) = 1 and
D(h, v, cR) = 4, i.e., the transmission velocity of the medium
cS is four times higher than the velocity of cR. The upper
bound Dmax = 7 and the initial configuration is:

I0 = {Time@0, Ag(h)@0, V er(v)@0,Key(v, kv)@0} ∪ P
where P is a multiset of P facts. We assume that there are
enough P facts, namely at least 4 P facts in P .

We can apply the action Rol Gen, which rewrites I to the
following configuration:

I1 =

{
T ime@0, Ag(h)@0, V er(v)@0,Key(v, kv)@0,

A0(v, h, cS , cR)@0, B0(v, h, cS , cR)@0

}
∪ P1

where P1 is P \ {P@0, P@0}.
At this point we can apply the action Challenge which re-

writes I1 to:

I2 =

 T ime@0, Ag(h)@0, V er(v)@0,Key(v, kv)@0,
A1(v, h, cS , cR)@0, B0(v, h, cS , cR)@0,

Sv,cS (〈nv, v〉)@0

 ∪ P2

where P2 is P1 \ {P@0}. Until now, time has not played any
important role as the guard of the applied actions were empty.
However, for the message Sv,cS (〈nv, v〉)@0 to be received by
the participant h, one needs time to elapse D(v, h, cS) = 1
time units. Say that Time elapses by 1.15, i.e., we instantiate
ε by 1.15 in the Tick action obtaining the configuration:

I3 =

 T ime@1.15, Ag(h)@0, V er(v)@0,Key(v, kv)@0,
A1(v, h, cS , cR)@0, B0(v, h, cS , cR)@0,

Sv,cS (〈nv, v〉)@0

∪P2

Now the action Response can be applied as the constraint
T ≥ T3 + D(v, h, cS) is satisfied, namely 1.15 ≥ 0 + 1. We
obtain the following configuration

I4 =

 T ime@1.15, Ag(h)@0, V er(v)@0,Key(v, kv)@0,
A1(v, h, cS , cR)@0, Sv,cS (〈nv, v〉)@0,

B1(v, h, nv)@1.15, Sh,cR(〈nv, h〉kv )@1.15

∪P3

where P3 = P2 \ {P@0}.
Again, we cannot apply the Accept nor Reject actions as

the time for the message Sh,cR(〈nv, h〉kv ) to reach v has not
elapsed. We thus apply the Tick rule once again, say with
ε = 4.45, obtaining the configuration:

I5 =

 T ime@5.6, Ag(h)@0, V er(v)@0,Key(v, kv)@0,
A1(v, h, cS , cR)@0, Sv,cS (〈nv, v〉)@0,

B1(v, h, nv)@1.15, Sh,cR(〈nv, h〉kv )@1.15

∪P3

Since the guard of the action Accept, T1 + Dv
b ≥ T ≥

T2 +D(h, v, cR), is satisfied, namely 0 + 6 ≥ 5.6 ≥ 1.15 + 4,
the protocol is completed by granting h access to v’s resource
as specified by the following configuration:

I6 =

 T ime@5.6, Ag(h)@0, V er(v)@0,Key(v, kv)@0,
B1(v, h, nv)@1.15, A2(v, h, yes)@5.6,

Sv,cS (〈nv, v〉)@0,

∪P4

where P4 = P3 ∪ {P@5.6}.

B. An attack

We detail how the attack described in [3] can be captured
in our framework. The attack is illustrated by the following
diagram:

v

i1

h

i2

Here v is a verifier, h is a honest participant and i1, i2
are intruders. The idea is that i1 and i2 are colluding to
convince v that h is closer than he actually is. This is done by
using a much faster communication channel (depicted by the
dashed line). It is used to forward the reply message from h
intercepted by i2 using the faster path h− i2 − i1 − v instead
of directly using the slower path h− v.

As in the previous example, let Dv
b = 6 time units, but,

let D(v, h, cS) = 1 and D(h, v, cR) = 10, i.e., cR be
ten times slower than cS . Notice that with these values h
would not succeed the Distance Bounding Requirement, as
1+10 > 6. Moreover, let D(h, i2, cR) = 1 = D(i2, i1, cI) and
D(i1, v, cR) = 2, that is, i2 is closer to h and the transmission
channel cI is much faster than cR.

The initial configuration is:

A0 =

 T ime@0, Ag(h)@0, V er(v)@0, Int(i1)@0,
Int(i2)@0,Key(v, kv)@0, Cap(i1, cR)@0,

Cap(i1, cI)@0, Cap(i2, cR)@0, Cap(i2, cI)@0

 ∪ P

where P is a multiset of P facts. It specifies the two intruders
which are capable of using the transmission mediums cR and
cI . (They do not need to use the transmission medium cS for
this attack.)

As before, the protocol starts by first generating the role
predicates using the action Rol Gen. We obtain the configu-
ration:

A1 =


T ime@0, Ag(h)@0, V er(v)@0, Int(i1)@0,
Int(i2)@0,Key(v, kv)@0, Cap(i1, cR)@0,

Cap(i1, cI)@0, Cap(i2, cR)@0, Cap(i2, cI)@0
A0(v, h, cS , cR)@0, B0(v, h, cS , cR)@0

 ∪ P1

where P1 is P \ {P@0, P@0}.
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Say that time advances by 2.37 and this is when the verifier
sends the challenge, i.e., we have a sequence of actions Tick
and Challenge obtaining the following configuration:

A2 =


T ime@2.37, Ag(h)@0, V er(v)@0, Int(i1)@0,
Int(i2)@0,Key(v, kv)@0, Cap(i1, cR)@0,

Cap(i1, cI)@0, Cap(i2, cR)@0, Cap(i2, cI)@0,
B0(v, h, cS , cR)@0, A1(v, h, cS , cR)@2.37,

Sv,cS (〈nv, v〉)@2.37

 ∪ P2

where P2 is P1 \ {P@0}.
Now, we need to wait for time to elapse so that the message

sent by the verifier reaches h, i.e., that more than 1 time
unit elapses. Say it elapses 1.55 and this is when h responds.
That is we have a sequence of the Tick and Response actions
obtaining the following configuration:

A3 =


T ime@3.92, Ag(h)@0, V er(v)@0, Int(i1)@0,
Int(i2)@0,Key(v, kv)@0, Cap(i1, cR)@0,

Cap(i1, cI)@0, Cap(i2, cR)@0, Cap(i2, cI)@0,
A1(v, h, cS , cR)@2.37, Sv,cS (〈nv, v〉)@2.37
B1(v, h, nv)@3.92, Sh,cR(〈nv, h〉kv )@3.92

 ∪ P3

where P3 is P2 \ {P@0}.
The message sent by h is then intercepted by the intruder i2.

However, differently from the Dolev-Yao intruder, which could
do this immediately, i2 has to wait for this message to reach
him, i.e., wait for the time to elapse at least D(h, i2, cR). Say
that it elapses 1.18, and that intruder i2 intercepts this message
using REC action. We obtain the following configuration,
where i2 learns 〈nv, h〉kv :

A4 =


T ime@4.1, Ag(h)@0, V er(v)@0, Int(i1)@0,
Int(i2)@0,Key(v, kv)@0, Cap(i1, cR)@0,

Cap(i1, cI)@0, Cap(i2, cR)@0, Cap(i2, cI)@0,
A1(v, h, cS , cR)@2.37, Sv,cS (〈nv, v〉)@2.37
B1(v, h, nv)@3.92,Mi2(〈nv, h〉kv )@4.1

 ∪ P3

Intruder i2 immediately sends this learned message to i1
using the transmission channel cI . That is, we apply the action
SND obtaining the following configuration:

A5 =


T ime@4.1, Ag(h)@0, V er(v)@0, Int(i1)@0,
Int(i2)@0,Key(v, kv)@0, Cap(i1, cR)@0,

Cap(i1, cI)@0, Cap(i2, cR)@0, Cap(i2, cI)@0,
A1(v, h, cS , cR)@2.37, Sv,cS (〈nv, v〉)@2.37
B1(v, h, nv)@3.92, Si2,cI (〈nv, h〉kv )@4.1

 ∪ P3

Intruder i1 has to wait for this message to reach him, i.e.,
wait time elapse D(i2, i1, cI) = 1. Say that time elapses 1.2,
when the intruder i1 receives the message sent by i2. That is,
we apply the Tick action and then REC action, obtaining the
following configuration:

A6 =


T ime@5.3, Ag(h)@0, V er(v)@0, Int(i1)@0,
Int(i2)@0,Key(v, kv)@0, Cap(i1, cR)@0,

Cap(i1, cI)@0, Cap(i2, cR)@0, Cap(i2, cI)@0,
A1(v, h, cS , cR)@2.37, Sv,cS (〈nv, v〉)@2.37
B1(v, h, nv)@3.92,Mi1(〈nv, h〉kv )@5.3

 ∪ P3

Similarly as before, the intruder i1 immediately sends the
learned message but using the transmission channel cR as ex-
pected by the protocol. We obtain the following configuration:

A7 =


T ime@5.3, Ag(h)@0, V er(v)@0, Int(i1)@0,
Int(i2)@0,Key(v, kv)@0, Cap(i1, cR)@0,

Cap(i1, cI)@0, Cap(i2, cR)@0, Cap(i2, cI)@0,
A1(v, h, cS , cR)@2.37, Sv,cS (〈nv, v〉)@2.37
B1(v, h, nv)@3.92, Si1,cR(〈nv, h〉kv )@5.3

 ∪ P3

This message should take at least D(i1, v, cR) = 2 time
units to reach the verifier. Say that time elapses 2.3, obtaining
the following configuration:

A8 =


T ime@7.6, Ag(h)@0, V er(v)@0, Int(i1)@0,
Int(i2)@0,Key(v, kv)@0, Cap(i1, cR)@0,

Cap(i1, cI)@0, Cap(i2, cR)@0, Cap(i2, cI)@0,
A1(v, h, cS , cR)@2.37, Sv,cS (〈nv, v〉)@2.37
B1(v, h, nv)@3.92, Si1,cR(〈nv, h〉kv )@5.3

 ∪ P3

At this point the guard of the action Accept, T1 + Dv
b ≥

T ≥ T2+D(h, v, cR), is satisfied as 2.37+6 ≥ 7.6 ≥ 5.3+2,
thus, the verifier grants h access to its resource, specified by
the following configuration which is the results of applying
the Accept action:

A9 =


T ime@7.6, Ag(h)@0, V er(v)@0, Int(i1)@0,
Int(i2)@0,Key(v, kv)@0, Cap(i1, cR)@0,

Cap(i1, cI)@0, Cap(i2, cR)@0, Cap(i2, cI)@0,
A2(v, h, yes)@7.6, Sv,cS (〈nv, v〉)@2.37

B1(v, h, nv)@3.92, Si1,cR(〈nv, h〉kv )@5.3

 ∪ P4

P4 = P3 ∪ {P@7.6}. That is verifier v granted access to
h although from the specification of the protocol h does
not comply with the Distance Bounding Requirement. It is
therefore an attack.

C. Time-bounding Needham-Schroeder Protocols: Attacks in
Discrete Time versus Attacks in Continuous Time

Consider given a distance bounding protocol with the dis-
tance bounding time R, denoting the treshold for the response
time. Here R is a positive integer.

Let non-negative integers a and b be strict lower bounds for
passing messages and processing requests, that is the network
delay is greater than a, and the internal processing time is
greater than b.

The case a = 0, b = 0 considered in Section III repre-
sents the general knowledge that the passing messages and
processing requests each takes a non-zero amount of time.
The fact that here we do not invoke any explicit lower bounds
provides the stability of our analysis for the current protocols
with respect to the improvements in the machine and web
technologies in the future.

In particular, in the case of continuous time, whatever
positive threshold R we take, there is a Dolev-Yao attack on
the protocol as stated in the next theorem.
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Theorem C.1: For the case where a = 0, b = 0,
• For discrete time, there is no Dolev-Yao attack on the time-

bounding Needham-Schroeder protocol with the distance
bounding time R:

R ≤ 6

• For continuous time, whatever positive distance bounding
time R we take, there is a Dolev-Yao attack on the protocol.

However, in the case where either of the strict lower bounds
for passing messages and processing requests is positive, the
protocol may remain secure even within continuous time.
Security of the protocol in the continuous time model depends
on the realtion between the non-negative integers a and b
representing lower bounds, and the positive integer R denoting
the treshhold, as stated in the following theorem.

Theorem C.2: For the case where a ≥ 1, or b ≥ 1,
• For discrete time, there is no Dolev-Yao attack on the

time-bounding Needham-Schroeder protocol with distance
bounding time R:

R ≤ 4a+ 3b+ 6

• For continuous time, there is no Dolev-Yao attack on
the time-bounding Needham-Schroeder protocol with the
distance bounding time R:

R < 4a+ 3b

Rewrite rules with lower bounds

Non-zero lower bounds for passing messages and processing
requests are formalized in our multiset rewriting model as fol-
lows. We slightly modify rules (3) and (4) given in Section III.
In particular, we include lower bounds a and b in the time
constraints of the corresponding rules.

The following action formalizes non-zero traversal time
with a lower bound a:

Time@t1, NS(m)@t0 | { t1 > t0 + a } −→
Time@t1, NR(m)@t1

(12)

while this pair of actions represents non-zero processing time
with a lower bound b:

Time@t1, NR(m′)@t1 −→ Time@t1, X(m′)@t1,

T ime@t2, X(m′)@t1 | {t2 > t1 + b} −→
Time@t2, X(m′′)@t2, NS(m′′)@t2.

(13)

The rules specifying concrete protocol theories would need
to be adjusted analogously, such as the rules (9), (11) of the
protocol given in Section III.
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