
LJGS: Gradual Security Types
for Object-Oriented Languages

Luminous Fennell
University of Freiburg, Germany

Email: fennell@informatik.uni-freiburg.de

Peter Thiemann
University of Freiburg, Germany

Email: thiemann@informatik.uni-freiburg.de

Abstract—LJGS is a lightweight Java core calculus with a
gradual security type system. The calculus guarantees secure
information flow for sequential, class-based, object-oriented pro-
gramming with mutable objects and virtual method calls. An
LJGS program is composed of fragments that are either checked
statically against a security type system or that are checked
dynamically by enforcing the no-sensitive-upgrade policy (NSU).
Statically checked fragments have no run-time penalty whereas
dynamically checked fragments rely on run-time security labels.
The programmer marks the boundaries between static and
dynamic checking with casts so that it is always clear whether a
program fragment requires run-time checks. LJGS also provides
a special branching statement to inspect the run-time label of
a dynamic value, which makes its value available for static
reasoning.

LJGS requires security annotations on fields and methods. A
field annotation either specifies a fixed static security level or it
prescribes dynamic checking. A method annotation specifies a
constrained polymorphic security signature. The types of local
variables in method bodies are analyzed flow-sensitively and
require no annotation.

We prove type soundness and non-interference for LJGS.

Keywords—gradual typing, security typing, Java, dynamic en-
forcement

I. INTRODUCTION

Information-flow control (IFC) is a corner stone of language-
based security. A typical IFC policy rules out the flow of
information from classified sources to public sinks. The
technical property aimed for is noninterference: any change
in a classified source does not influence the public sinks.
Noninterference comes in different flavors depending on the
observational capabilities of an attacker (e.g., termination
sensitive or not, batch or interactive).

There are also different kinds of IFC. A static system
performs a static analysis, for instance using a security type
system, and guarantees noninterference for analyzed programs.
A dynamic system attaches run-time security labels to values,
propagates them, and checks them at appropriate points during
program execution. Dynamic systems can be more flexible,
but they may have limitations in handling implicit flows, they
impose a run-time overhead for manipulating the security labels,
and they usually abort a program run on detecting a policy
breach. Hybrid systems improve on both, in particular in their
handling of implicit flows.

We propose a particular type-based amalgamation of static
and dynamic IFC typing for Java, which is inspired by work

on gradual typing [19], [11]. Gradual typing per se enables the
composition of programs from typed and untyped fragments
using suitable type casts at the interfaces. Gradual typing
guarantees full compliance with the type system in the typed
fragments, whereas untyped fragments may raise run-time type
errors. Gradual security typing transposes this idea and its
properties to an information flow setting.

We propose Lightweight Java with Gradual Security (LJGS)
as a core calculus to substantiate our ideas. LJGS is a subset
of sequential Java without exceptions and reflection inspired by
Lightweight Java (LJ) [21]. Our specification is type-based in
two respects: first, it takes the form of a type system; second,
it assumes that the underlying program is well-typed according
to some standard type system. Thus, LJGS is independent of
specific Java typing features, in particular, it is compatible with
generics. The LJGS types in this paper would translate to type
annotations in a Java program.

Following Denning [7], LJGS specifies permissible infor-
mation flows using a lattice (Sec,v) of security levels ranged
over by A. For each field of a class, the programmer must
specify a fixed security level or mark the field as dynamically
checked. For each method, the programmer must supply a
constrained polymorphic security method type signature (see
examples in Section II). The signature relates the security types
of the arguments, the result, and the effect on global variables
with each other and with fixed levels that arise from field
accesses. The security type of a local variable need not be
declared; moreover, it can change during the method (it is flow
sensitive).

Each value with a dynamic security type, in a dynamic
field or in a temporarily dynamic local variable, carries a run-
time security label that overapproximates its true security level.
Updates to dynamic fields are checked using the no-sensitive-
upgrade (NSU) policy [3], [27]; other sound dynamic upgrade
policies can be used as well.

Technical results: Besides proving type preservation and
progress (up to breaches of the security policy in dynamic
updates), our key result is noninterference. To state this result
precisely, we need to introduce our attacker model. An attacker
has access to the public part of the heap, may construct the
public arguments of any LJGS method, run it, and inspect the
public part of the result and the heap afterwards. If the method
diverges or aborts, the attacker receives no information. There
is no way to obtain intermediate results. LJGS guarantees
that such an attacker cannot learn information about non-
public arguments or heap bindings. This guarantee corresponds

1 i n t max(i n t x, i n t y)
2 where { @x ≤ @return, @y ≤ @return } {
3 i f (x ≤ y) {x = y;}
4 re turn x;
5 }

6 c l a s s Log { String buffer[LOW]; ... }
7 i n t maxWithMessage(Log log, i n t x, i n t y)
8 where { @x ≤ @return
9 , @y ≤ @return

10 , @log ≤ LOW
11 } and { LOW } {
12 i f (x ≤ y) { x = y; }
13 log.buffer = "max was called";
14 re turn x;
15 }

16 c l a s s SecLog ex tends Log { String highBuf[HIGH]; }
17 i n t maxWithMessageDyn(SecLog log, i n t x, i n t y)
18 where { ? ≤ @x
19 , ? ≤ @y
20 , ? ≤ @return
21 , log ≤ LOW }
22 and { ? } {
23 i f (x ≤ y) {
24 x = y;
25 i f l a b e l (x v LOW; x_low) {
26 (? V LOW) {
27 log.buffer = x_low + "is smaller";
28 }
29 }
30 (? V HIGH) {
31 log.highBuf = ((HIGH W ?) x) + "is smaller";
32 }
33 }
34 re turn x;
35 }

Fig. 1. Examples of method definitions and signatures

to batch termination insensitive non-interference (BTINI), as
defined by Askarov et al [2].

II. A TASTE OF LJGS

This section demonstrates the salient features of LJGS using
illustrative code fragments in Figure 1. For these examples, we
assume that the security lattice has two points, LOW and HIGH,
where HIGH 6v LOW.

The two methods on the left illustrate how to specify
information flow policies in LJGS via security signatures. The
method max carries a polymorphic security signature in a
where clause. It indicates that information may flow from the
parameters x and y to the method’s result by asserting that their
security types are lower bounds for the type of the return value.
In this signature, security types are purely symbolic: we write
@x for the security type of the argument passed as parameter
x and @return for the security type of the return value.
As the symbolic types are not bounded by concrete security
levels, max may be called in any context with arguments that
satisfy the constraints. It may also be called with two dynamic
arguments.

Method maxWithMessage comes with a signature that
declares a global side effect to a LOW field in the and part of
the where clause. The method performs the same computation
as max. Additionally, it writes a message into the field buffer
of a Log object. The definition of class Log declares that the
field buffer has security level LOW. Consequently, calling
maxWithMessage is only secure in contexts where the
program counter level is LOW.1 The type system of LJGS
enforces this restriction by checking the declared global effect
{LOW} against the program counter type at the call site.
Additionally, the signature enforces that the log parameter
is a low-security reference by upper-bounding it with LOW.
Thus, LOW is an example of a fixed, static security type.
The parameters x and y remain polymorphic, as they do not
influence the execution of the global side effect.

While the effect of maxWithMessage is checked stat-
ically, the method maxWithMessageDyn illustrates the
distinguishing feature of LJGS: the integration of dynamic

1As usual, we refer to the confidentiality of information that the execution
of a context depends on as the program counter level.

and static enforcement of security policies. The idea of
maxWithMessageDyn is to always write to a secret log,
embodied by the field highBuf of security level HIGH
in class SecLog, and to write to a public, low-security
log, whenever that is possible. Such a combination, where
publicly visible effects depend on the security level of an input,
requires checking of security labels at run time. For example,
in maxWithMessage either x or y could be confidential,
resulting in a high-security program-counter type in the
branches of the conditional if (x ≤y) { ... }. Thus, a
security type checker would have to reject the low-security up-
date in code like if (x ≤y) { log.buffer = ... }.
Using gradual security enforcement, maxWithMessageDyn
is able to write to low-security fields when called with
low-security arguments and restrict output to high-security
fields otherwise. To accommodate this feat, the signature of
maxWithMessageDyn declares that parameters and result as
well as the global effect are of dynamic type (?). LJGS maintains
run-time security labels for dynamically typed arguments and
program counters and employs an non-sensitive upgrade (NSU)
policy [3] to ensure secure information flow.

As dynamic arguments carry a run-time security label, we
can compare the labels of x and y against the security level
LOW in the iflabel statement in line 25. Only if x has a
low security level, line 27 writes to the statically typed field
log.buffer. The variable x_low, declared in the condition
of the iflabel statement, is an unlabeled copy of x with type
LOW, matching the type of log.buffer. The interaction of
(labeled) dynamic entities and (unlabeled) static entities is
mediated by casts. The context cast (?V LOW) { s } (line
26) checks at run time that the current program counter label is
LOW and raises a security violation exception, otherwise.2 This
cast may fail if the program counter at the call site is already
HIGH. Similarly, the (safe) assignment to log.highBuf is
guarded by a context-cast to HIGH. To store the value of x
into the field highBuf of type HIGH (line 31), the value cast
(HIGH W?) x checks that the label of x is convertible to
HIGH. Both casts do not fail if HIGH is the greatest element
of the lattice.

Figure 2 shows how dynamic and polymorphic methods can
be called. Using value casts, lines 37 and 38 create dynamic

2In a cast, the V symbol always specifies the direction of the conversion.

2

36 SecLog log = new SecLog();
37 i n t x = (? W HIGH) secret;
38 i n t y = (? W LOW) 42;
39 i n t r;
40
41 r = t h i s.maxWithMessage(log, secret, 42);
42 r = t h i s.maxWithMessage(log, x, y);
43
44 // type error: mix of static and dynamic arguments
45 // r = this.maxWithMessage(log, secret, y);
46
47 (LOW V ?) {
48 r = t h i s.maxWithMessageDyn(log, x, y);
49 }
50 // type error: dynamic arguments required
51 // r = this.maxWithMessageDyn(log, secret, 42);

Fig. 2. Calling dynamic and polymorphic methods

TABLE I. SUMMARY OF THE BEHAVIOR OF MAXWITHMESSAGEDYN .

label of pc label of x effect
LOW HIGH update highBuffer
HIGH HIGH update highBuffer
LOW LOW update buffer, highBuffer
HIGH LOW error: illegal context cast from HIGH to LOW.

versions of the high-security value stored in variable secret
and a low-security constant 42, storing them in x and y,
respectively. The source type of casts, here HIGH and LOW,
respectively, indicates what run-time label to attach to the cast
value. The polymorphic method maxWithMessage accepts
arguments that are either all static or all dynamic (line 42 and
41). The results have a static type HIGH and dynamic type
?, respectively. Both calls will write to the low security field
log.buffer and thus require a program counter of type LOW.
Calling maxWithMessage with mixed static and dynamic
arguments (line 45) fails with a type error; the result type
depends on both inputs but at type-checking time as well as at
run time the type of one of the inputs is unknown.

Calling maxWithMessageDyn with x and y in line
48 yields a dynamic result, as indicated by its signature.
Furthermore, the call should happen in a dynamic context
which is created with the context cast (LOW V?). However,
calling maxWithMessageDyn with the original static values
would fail with a type error as the arguments do not carry
run-time security labels. Table I illustrates the method’s effects
when called with different dynamic labels for program counter
and argument x. The first entry corresponds to the call in
line 48 of Figure 2: the program counter (pc) is labelled LOW
and the argument x is labelled HIGH. Nothing is written to
buffer to avoid leaking the secret contained in x. A call
with high-security pc and high-security argument has the same
behavior. Calling the method with low-security pc and x safely
writes to buffer, as intended. The last configuration calls the
method with a high-security pc but a low-security argument. As
the iflabel statement in maxWithMessageDyn only tests
the label of x and not that of the program counter, the context
cast in line 26 fails.3

The method calls and type errors of Figure 2 illustrate a
strict separation of dynamic and static types. This principle
allows for simple reasoning about the overhead of dynamic

3It is possible to add another branching statement to test for the label of a
dynamic program counter. For simplicity, we omit it from the main discussion
and present this extension in Appendix A.

security checks. The fully static method call in line 41, for
example, requires no dynamic checks. Even the calls to
maxWithMessageDyn need not check updates to the fields
of the statically typed object log. However, until now we
have ignored the security type of the method call receiver,
this . In object-oriented languages, virtual method calls in
general create implicit flows from the method call receiver
into the program counter and the return value of the called
method. Always treating method call receivers as either static
or dynamic is not satisfactory: if this has a static type,
the call in line 42 is problematic as it yields a dynamic
result. If this has dynamic type, then the static side effect
of maxWithMessage interferes with a dynamic program
counter. For these situations, LJGS supports a dedicated public
type • that can act polymorphically as a low-security static
type or the dynamic type. The run-time system ignores the
security levels of values with public type. By assigning this
the type •, the method calls in Figure 2 type-check as intended.
Thus, to be well-typed, the code in Figure 2 needs to placed
in a method with a corresponding constraint for this :

void main() where { t h i s ≤ •} and {LOW} {
// ... <code of Figure 2>

}

The public type is intended for objects of classes like Main,
whose prevalent purpose is not to store information but to
provide methods. Usually, such objects are used rather as a
context than as data. For simplicity, LJGS does not support
creating objects of public type directly. Instead, variables of
public type are introduced by casting low-security values. For
example, assuming the methods defined in Figure 1 and main
are part of the class Main, the following code correctly calls
method main on a public object:

Main m = new Main[LOW]();
Main m_public = (• W LOW) m;
m_public.main();

It creates a Main instance of type LOW and applies a cast to •.4
Casts from LOW to • never fail, if LOW is the bottom element of
the security lattice. An implementation could provide syntactic
sugar for such public initializations.

III. SYNTAX OF LJGS PROGRAMS

The syntax of LJGS is inspired by Lightweight Java [21]:
it supports imperative programming, structured control flow,
inheritance, and (virtual) methods. LJGS extends Lightweight
Java with annotations for security types and casts.

To better focus on the security aspects and to avoid
notational clutter, we only write the annotations relevant for
security typing, but we omit the Java types and signatures for
fields, local variables, and methods.5 Nevertheless, we assume
that all programs are well-typed Java programs where types,
signatures, and declarations of local variables are erased.

An LJGS program (see Figure 3) consists of a set of class
definitions, cld , which in turn consist of field declarations,

4In constructor expressions, the security level of a new static instance is
specified in square brackets after the class name.

5In an implementation, we would have to write the Java types and signatures
in addition to the security annotations.

3

prog ::= cld1 .. cldn
cld ::= classC extends cl{F1[a1] ..Fn [an]md1 ..mdm}
cl ::= C | Object
a, pc ::= • | A | ?
md ::= M (var1, .. , varn) whereSig and E{s return y}
x ::= var | this
e ::= x | x .F | N | N?[A] | x + y | (a W a ′)x
s ::= var = e | x .F = y | var = x .M (y1, .. , yn) | s; s

| var = newC [A](x1, .. , xn)
| var = new?C [A](x1, .. , xn)
| if (x == y){s}{s} | while (x == y){s}
| iflabel (x v A; var){s}{s} | (a V a){s}
| (a V a){s}

Fig. 3. Syntax of LJGS

Fi [ai], and method declarations, mdi . Classes form a hierarchy
with Object at its root. All method and field names are unique.

A field declaration relates a field name with a security type
a . A security type is either the public type •, a static security
level A or the dynamic type ?. Security types are ranged over by
a when referring to variable and field types and by pc (program
counter) when referring to the current execution context.

A method definition declares the method name, M , a list
of parameters, a security type signature Sig , an effect E , a
statement s that serves as method body, and a single local
variable y for the return value. Method signatures are discussed
in detail in Section IV. Further local variables are implicitly
defined by their first assignment.

A variable x is either user-defined, var , or references the
receiver of the method call, this. An expression e can be a
variable access, x , field access x .F , a static or dynamic integer
constant, N , or N?[A], integer addition, x + y , or a value
cast. A dynamic constant, N?[A], carries an explicit security
level that is used for run-time security enforcement. A cast
expression (a W a ′)x converts the value stored in variable x
from source type a ′ to destination type a .

The first variant of a statement is a local update, var = e ,
that assigns the value of an expression e to a variable. A field
update x .F = y writes the value of y to field F of the object
referenced by x . A method call var = x .M (y1, .. , yn) stores
the result of calling method M with arguments y1, . . . , yn in
variable var . Like the introduction of constants, construction
of objects comes in two flavors, var = newC [A](x1, .. , xn)
and var = new?C [A](x1, .. , xn), which respectively create a
static or dynamic reference of security level A to a new object.
Both construct an object of class C with fields initialized to
the arguments x1, . . . , xn . The if and while statements express
structured control flow, as usual. The statement iflabel (x v
A; var){s1}{s2} is a special conditional that branches on the
dynamic security label of a value; execution continues with s1

if x ’s security level is less than or equal to A and it continues
with s2, otherwise. The variable var declared in the condition
has the static type A and holds the same value as x when s1

is executed. Finally, the context cast statement (pc V pc′){s}
embeds a computation with inner program counter type pc′

into a context with outer program counter type pc.

sig. constraints sc ::= sl ≤ sl | sl ∼ sl | sl →? sl
sig. level sl ::= a | @x | @ return

Fig. 4. Components of method signatures

IV. SECURITY CONSTRAINTS AND TYPING RULES

In LJGS, a programmer specifies information-flow proper-
ties by providing suitable method signatures. As illustrated in
Section II, a signature relates parameters, return values, and
side-effects of methods with security types. The type system
ensures that the signature specifications are adequate and that
operations depending on statically typed parameters and fields
have no security leaks. Its design also ensures that the security
levels of statically typed values need not be tracked at run time.

Security types form a lower semi-lattice induced by the
following ordering:

Definition 1 (Partial order on security types).

• ≤ a

A v A′

A ≤ A′ ? ≤ ?

By embedding the lattice of security levels into security
types, LJGS supports the usual notion of security subtyping:
values with a low security level are implicitly promoted to a
higher one and contexts with a low-security program counter
type admit computations that perform side effects on a higher
security level. To ensure a clean boundary between static and
dynamic code, implicit conversion between static types and the
dynamic type is not allowed. However, the public security type
• may act polymorphically as the dynamic type and the static
type at the bottom of the security lattice (⊥).

A. Method Signatures

A method signature Sig is a set of signature constraints
sc, defined in Figure 4. A single constraint relates its two
signature types, sl1 and sl2, either by subsumption, sl1 ≤ sl2, by
compatibility, sl1 ∼ sl2, or by dynamic implication sl1 →? sl2.
Signature types sl are literal security types a , or symbols for
a method’s formal parameters @x (including the self-reference
@this), or its return value, @ return.

The constraint sl1 ≤ sl2 (“sl2 subsumes sl1”) specifies that
sl1 and sl2 should be ordered according to Definition 1. For
example, the constraint HIGH ≤ @ return requires the return
value of a method to be a statically known security level that is
at least HIGH. The constraint sl1 ∼ sl2 (“sl1 is compatible with
sl2”) specifies there should be some relation between sl1 ∼ sl2.
For example, if sl1 is dynamic then sl2 should be dynamic or
public. If both components are static, they need not be further
related. Finally, the constraint sl1 →? sl2 specifies that if sl1
is dynamic then sl2 should be dynamic or public. If sl1 is not
dynamic, then no restrictions are imposed on sl2.

A method signature represents the information flow de-
pendencies between parameters and return values: flows into
the return value are represented by lower bounds on the
return symbol, whereas flow restrictions on the arguments
are represented by upper bounds on parameter symbols.

4

typing constraints c ::= sec ≤ sec | sec ∼ sec
| sec →? sec

components sec ::= a | tvar
type variables tvar ::= x | return | α

pc type γ ::= α | •

Fig. 5. Typing constraints

The effect annotation E on method definitions is a set
of security types. If a security type is listed in E , then the
method may perform a side effect that leaks information into
a (globally) accessible field of that type.

Compatibility and dynamic implication constraints rarely
appear in signatures. As an example for the need of compat-
ibility, consider a method, const42, that contains the same
statements as max, but subsequently overwrites the result with
a constant.

i n t const42(i n t x, i n t y)
where { LOW ≤ @return , @x ∼ @y } {
i f (x ≤ y) {x = y;}
x = 42;
re turn x;

}

If const42 is called with a dynamic first argument, the second
argument needs to be dynamic or public to enable the run-time
system to track implicit flows arising from the conditional.
The signature expresses this requirement with the compatibility
constraint x ∼ y .

The following method, returnY, illustrates the need for
dynamic implication constraints.

1 i n t returnY(bool h, i n t x, i n t y)
2 where {@h ≤ ? , @y ≤ @return, h→? x } {
3 i f (h) {
4 x = 5;
5 }
6 x = y;
7 re turn x;
8 }

If the boolean h is dynamic the update in line 4 requires
an NSU check which compares the security label of the old
value of x with that of h. This check is only possible when
x also carries a dynamic label and thus the signature contains
a dynamic compatibility constraint between h and x. As x
is overwritten again in line 6 there are no further constraints
involving x.

B. Typing Constraints and Constraint Interpretation

LJGS’ typing rules, explained in detail in Section IV-C,
generate sets of typing constraints, C, and effects, E , to represent
the information flows in a method’s body. Figure 5 defines
the structure of typing constraints. Like signature constraints,
typing constraints relate their components, sec, by subsumption,
by compatibility, or by dynamic implication. Components are
either security types or type variables. Type variables are
parameters, x , the return variable, return, and anonymous
type variables. In the typing rules, anonymous type variables

represent the security types of local variables. We let α, β
range over anonymous type variables. We write α† to denote a
fresh anonymous type variable. Program counter types γ are
either the public program counter type •, or an anonymous
type variable. Program counter types may also serve as the
left-hand side component of a constraint.

A signature instantiation, Sig [sl1 7→ tvar1, .. , sln 7→
tvarn], interprets method signatures as typing constraints by
replacing parameter symbols and return symbols with type
variables. We write constraints (Sig) for the signature instan-
tiation that maps all parameter symbols in Sig to corresponding
parameter type variables and the return symbol to return.

We now formally define the interpretation of a constraint
set.6 In the following, let C range over sets of typing constraints.

Definition 2 (Assignment, solution, solvability). An assignment
is a total function from type variables to security levels. An
assignment θ is extended to a total function from components
to security levels, θ∗, by mapping security levels to themselves:

θ∗(sec) =

{
a if sec = a

θ(tvar) if sec = tvar

A particular assignment θ is a solution for a constraint set
C, written θ |= C, iff (i) for all constraints sec1 ≤ sec2 ∈ C, it
holds that θ∗(sec1) ≤ θ∗(sec2), (ii) for all constraints sec1 ∼
sec2, it holds that either θ∗(sec1) ≤ θ∗(sec2) or θ∗(sec2) ≤
θ∗(sec1), and (ii) for all constraints sec1 →? sec2, it holds
that if θ∗(sec1) = ? then θ∗(sec2) ∈ {?, •}. In particular,
constraints of the form • ≤ sec impose no restrictions on
solutions and compatibility constraints containing a static and
a dynamic component (e.g., ? ∼ LOW) are never solvable.

Type checking of LJGS programs requires that the method
signatures and effects subsume the typing constraints and
effects generated for the corresponding method bodies. For
signatures and typing constraints, subsumption amounts to
checking entailment of constraints modulo anonymous type
variables.

Definition 3 (Subsumption of signatures and typing constraints).
Let C1, C2 be two constraint sets. C1 subsumes C2, written
C2 <: C1, if for each solution θ |= C1 there exists an assignment
θ′ such that (i) θ′ |= C2, (ii) θ′(x) = θ(x) for all parameters
x , and (iii) θ′(return) = θ(return).

Let furthermore Sig1, Sig2 be two signatures. Sig1 sub-
sumes Sig2, written Sig2 <: Sig1, if constraints (Sig2) <:
constraints (Sig1).

For example, the signature {HIGH ≤ @ return} which
can be instantiated to {HIGH ≤ return} subsumes the (more
permissive) constraints {LOW ≤ @ return} and {LOW ≤
α, α ≤ return,HIGH ≤ β}.

For effects, subsumption amounts to checking subsumption
contravariantly on the contained security types.

Definition 4 (Subsumption of effects). Let E1, E2 be two effects.
E1 subsumes E2, written E2 <: E1, if for all a ∈ E2 there exists
a ′ ∈ E1 such that a ′ ≤ a .

6Method signatures are interpreted by first instantiating them to typing
constraints and then interpreting the result.

5

Γ, α ` e : C
RT-CONST-STATIC

Γ, α ` N : {⊥ ∼ α}

RT-CONST-DYN

Γ, α ` N?[A] : {? ∼ α}

RT-MOVE

Γ, α ` x : {Γ(x) ≤ α}

RT-GETFIELD

Γ, α ` x .F : {Γ(x) ≤ α, fsec (F) ≤ α}

RT-PLUS

Γ, α ` x + y : {Γ(x) ≤ α,Γ(y) ≤ α}

RT-CAST
a . a ′

Γ, α ` (a ′ W a)x : {Γ(x) ≤ a, a ′ ≤ α}

Fig. 6. Expression typing

a . a ′

? . a a . ? • . A ⊥ . •

Fig. 7. Castability

For example, the effect {low, ?} subsumes {high, ?} and
{low, high, ?}. In contrast E = {low} does not subsume
{high, ?} as there is no type in E that is subsumed by ?.

C. Statement and Method Typing

The typing judgment for statements approximates the
information flow in statements by generating constraints on
type variables that represent the types of local variables or of
the program counter. The statement typing judgment has the
form γ ` s : Γ1 ⇒ Γ2, C, E . It generates typing constraints C
and effects E . Statements are typed in a context with program
counter type γ. Γ1 and Γ2 are typing environments. A statement
is well-typed if it is possible to derive a typing for it that
generates solvable typing constraints. The generated effect E
has no impact on constraint solvability but is required to check
a method’s body against its signature (cf. Section IV-C2 below).
The typing environments Γ1 and Γ2 are finite maps from local
variables to type variables and thus allow to interpret the typing
constraints with respect to local variables. Together with C, the
initial environment Γ1 describes the typing constraints for local
variables before s is executed, whereas the final environment
Γ2 describes local variable types after executing s .

1) Typing for Statements and Expressions: The typing
judgment for expressions Γ, α ` e : C determines constraints C
for the expression’s result. The type environment Γ provides the
type variables for the variables occuring in e and the anonymous
type variable α represents the type of the expression’s result.
We require that α 6∈ ran(Γ). Figure 6 shows the rules for
expression typing. Rules RT-CONST-STATIC and RT-CONST-
DYN impose static and dynamic compatibility for static and

γ ` s : Γ1 ⇒ Γ2, C, E
ST-LOCAL

Γ, α† ` e : C Γ2 = Γ1[var 7→ α†]

γ ` var = e : Γ1 ⇒ Γ2, C ∪ {γ ≤ α†, γ →? Γ1(var)}, ∅

ST-PUTFIELD
C = {Γ(x) ≤ fsec (F),Γ(y) ≤ fsec (F), γ ≤ fsec (F)}

γ ` x .F = y : Γ⇒ Γ, C, {fsec (F)}

ST-NEW
a1 .. an = fieldsecs (C)

C = {Γ1(x1) ≤ a1, .. ,Γ1(xn) ≤ an ,A ≤ α†}
C′ = C ∪ {γ ≤ α†, γ →? Γ1(var)} Γ2 = Γ1[var 7→ α†]

γ ` var = newC [A](x1, .. , xn) : Γ1 ⇒ Γ2, C′, {A}

ST-NEW-DYN
a1 .. an = fieldsecs (C)

C = {Γ1(x1) ≤ a1, .. ,Γ1(xn) ≤ an}
C′ = {? ∼ α†, γ ≤ α†, γ →? Γ1(var)}

Γ2 = Γ1[var 7→ α†]

γ ` var = new?C [A](x1, .. , xn) : Γ1 ⇒ Γ2, C′, {?}

Fig. 8. Statement typing: updates

dynamic constants, respectively. For variable access, rule RT-
MOVE requires that the result type subsumes the type of the
accessed local variable. Rule RT-GETFIELD requires that the
result type subsumes the types of the accessed variable and
field, where fsec (F) returns the declared type of field F .
Rule RT-PLUS requires the result type to subsume the operand
types. Rule RT-CAST requires that the result type subsumes the
destination type of the cast and that the source type subsumes
that of the accessed variable. Additionally the source type
needs to be castable into the destination type, written a . a ′.
Castability rules out certain casts that are either unnecessary
in the presence of security subtyping or are guaranteed to fail:
Casts from A to A′ are subtyping conversions when A v A′

and impossible when A 6v A′. Casts from A to • are also
impossible when A 6= ⊥. Figure 7 gives the corresponding
rules for castability.

Figures 8 and 9 define the statement typing rules. The rule
for local assignment, ST-LOCAL, implements flow sensitivity
by typing the expression with a fresh variable α† to obtain
constraints C. The final environment associates the destination
variable var with α†. Implicit flows are considered by requiring
α† to subsume the program counter type. Adding a dynamic
implication constraint between the program counter type and
the old type variable of var ensures that NSU checks can be
performed for dynamic program counters. Local updates are
not visible outside of the method and thus generate no effects.

Rules ST-PUTFIELD types write operations to a field F . It
requires that F ’s type subsumes the type of the source variable,
the type of the accessed object reference x , as well as the
type of the program counter. The statement’s effect is also
F ’s type. As no local variables are modified, initial and final
environments are identical.

Rule ST-NEW types static allocation of objects. It requires

6

γ ` s : Γ1 ⇒ Γ2, C, E
ST-CALL

Sig = signature (M) E = effects (M)
var1, .. , varn = params (M) C′ = Sig [@this 7→ Γ1(x),@var1 7→ Γ1(x1), .. ,@varn 7→ Γ1(xn),@ return 7→ α†]

C = C′ ∪ {Γ1(x) ≤ α†, γ ≤ α†, γ →? Γ1(var)} ∪ ⊔γE Γ2 = Γ1[var 7→ α†]

γ ` var = x .M (x1, .. , xn) : Γ1 ⇒ Γ2, C, E

ST-SEQ

γ ` s1 : Γ1 ⇒ Γ2, C1, E1 γ ` s2 : Γ2 ⇒ Γ3, C2, E2
γ ` s1; s2 : Γ1 ⇒ Γ3, C1 ∪ C2, E1 ∪ E2

ST-IF

β† ` s1 : Γ1 ⇒ Γ′2, C1, E1 β† ` s2 : Γ1 ⇒ Γ′′2 , C2, E2
C′ = {γ ≤ β†,Γ1(x) ≤ β†,Γ1(y) ≤ β†}

Γ2, C′′ = Γ′2 t Γ′′2 C = C1 ∪ C2 ∪ C′ ∪ C′′

γ ` if (x == y){s1}{s2} : Γ1 ⇒ Γ2, C, E1 ∪ E2

ST-WHILE

β† ` s : Γ1 ⇒ Γ2, C′, E Γ3, C′′ = Γ1 t Γ2

C = {γ ≤ β†,Γ1(x) ≤ β†,Γ1(y) ≤ β†} ∪ C′

γ ` while (x == y){s} : Γ1 ⇒ Γ2, C, E

ST-IFLABEL

Γ′1 = Γ1[var 7→ α†]
β† ` s1 : Γ′1 ⇒ Γ′2, C1, E1 β† ` s2 : Γ1 ⇒ Γ′′2 , C2, E2

a ∈ {A, ?} C′ = {γ ≤ β†, a ≤ β†,Γ1(x) ≤ ?,A ≤ α†}
Γ2, C′′ = Γ′2 t Γ′′2 C = C1 ∪ C2 ∪ C′ ∪ C′′

γ ` iflabel (x v A; var){s1}{s2} : Γ1 ⇒ Γ2, C, E1 ∪ E2

ST-CXCAST

β† ` s : Γ1 ⇒ Γ2, C′, E
C = {pc ≤ β†, γ ≤ pc′} ∪ C′ pc′ . pc

γ ` (pc′ V pc){s} : Γ1 ⇒ Γ2, C, {pc′}

Fig. 9. Statement typing: branching, method calls and context casts

that the types declared for the fields of class C admit the argu-
ments given to the constructor. The operation fieldsecs (C)
looks up the declared field types. The result type is static and
has to subsume the security level A mentioned in the constructor.
The global effect is also {A}. Otherwise, the final environment
and constraints are extended similarly as in rule ST-MOVE. Rule
RT-NEW-DYN, for dynamic allocations, is analogous except that
the result type and effect have to be dynamic.

Rule ST-CALL in Figure 9 covers method calls. It extracts
the formal parameters, the signature, and the effect of the
callee M with the operations params (M), signature (M),
and effects (M). It instantiates the signature with the type
variables corresponding to the arguments of the call. The return
symbol is mapped to a fresh anonymous variable α†. As in
ST-PUTFIELD, the result type needs to subsume the program
counter type and the type of the receiver object reference.
Additionally, the program counter type needs to admit the
effect E of the callee: Any security type in E should subsume
the program counter type. The operation ⊔γE generates the
corresponding constraints:

⊔γE := {γ ≤ a | a ∈ E}
The global effect is just E . The final environment is updated
with the result, as in ST-MOVE.

The remaining rules in Figure 9 are the inductive cases
of statement typing. Rule ST-SEQ requires typings for the
sequenced statements s1 and s2 under the same security context
and combines the generated constraints and effects. The rule
for conditionals, ST-IF, types the branches s1 and s2 under
a fresh program counter variable β†. Types assigned to β†

need to subsume the old program counter type γ and the types
of the condition variables x and y (C′). The effects of the
conditional is the union of the effects of both branches. The
final environment is a join of the final environments of s1 and
s2. The join operation Γ′2 t Γ′′2 generates additional constraints
to be included in the final constraints C.

Definition 5 (Join of typing environments). An environment
Γ together with a constraint set C form the join of two
environments Γ1 and Γ2, written Γ, C = Γ1 t Γ2, iff

C = {Γ1(x) ≤ αx | x ∈ dom(Γ1)}
∪{Γ2(x) ≤ αx | x ∈ dom(Γ2)}

Γ = {x 7→ αx | x ∈ dom(Γ1) ∪ dom(Γ2)}
where {αx | x ∈ dom(Γ1) ∪ dom(Γ2)} is a set of fresh type
variables, one for each variable in the domain of Γ1 and Γ2.

Rule ST-WHILE works similarly to rule ST-IF but joins the
initial environment with the final environment of its body. Rule
ST-IFLABEL requires that the tested variable x is public or
dynamic and that the program counter type of the branches is
either dynamic or a static type that subsumes A. The semantics
of iflabel copy x to the variable var when x is less confidential
than A. Otherwise var remains undefined. It is thus safe to
give var the static type A by mapping it to the type variable α†
and adding the constraint A ≤ α†. Otherwise rule ST-IFLABEL
imposes similar restrictions to rule ST-IF. Rule ST-CXCAST
deals with the cast between security contexts: The program
counter type of the cast context needs to subsume the outer
type pc′ given in the cast. The outer type also defines the global
effect of the statement. The body of the cast is typed under

7

ς, `, g ::= S | D(A) | •
s ::= . . . | done
E ::= 〈〉 | E ; s | cx [`]{E}

| cx [pc/`/g V pc′/`/g′]{E}
| call [M , var , x, y1, .. , yn ,L]{E}

rs ::= E (s)
v ::= rv [ς]
rv ::= oref | N
oref ::= (op,PC)
L ::= ∅ | L⊕ x 7→ v | L⊕ x 7→ null

Fig. 10. Dynamic domains and run-time statements

a fresh program counter type β†. The constraints require that
β† subsumes the inner type pc. Together with the typing rules
ST-PUTFIELD and ST-CALL, this restriction guarantees that the
global effect E of the body does not exceed {pc}. Also, pc′
has to be castable to pc.

2) Method Typing: The method typing judgment ` md
asserts the adequacy of method signatures.

Γ1 = [var1 7→ var1, .. , varn 7→ varn , this 7→ this]
• ` s : Γ1 ⇒ Γ2, C, E ′ α = Γ2(y)

C ∪ {α ≤ return} <: constraints (Sig) E ′ <: E
` M (var1, .. , varn) whereSig and E{s return y}

The rule requires a typing of the method’s body s . The program
counter type is public to allow unconditional code in the method
body to perform arbitrary local side effects. The initial typing
environment maps the method’s parameters to the corresponding
parameter components. The typing of s yields constraints C
and effect E . The effect E should be subsumed by the declared
effect E ′ while the generated constraints C should be subsumed
by the method’s signature.

As LJGS supports class-based subtyping, a method’s
signature has comply with the security policy of the method
that it overrides. The following definition captures compliance.

Definition 6. The signature Sig and effects E of a method M
complies to the class hierarchy,

1) if it does not override any other method, or
2) it overrides method M ′ with signature Sig ′ and effects

E ′ and it holds that Sig <: Sig ′ and E <: E ′.

V. DYNAMICS

To enforce non-interference in dynamically checked code,
LJGS’ dynamics propagate and check run-time security labels.
Before explaining the full operational semantics, we discuss
the interpretation of security labels and their operations.

A. Security Labels

Security labels (see Figure 10) are the mirror image of
security types: a security label is either the static label, S, a
dynamic label, D(A), carrying a security level or the public
label, •. The level of a static label is absent at run time because
it has been checked by the type system already. The dynamic
subset of security labels form a lattice based on the attached

security levels. The entire set of labels forms a lower semi-
lattice with • as bottom element, analogously to the semi-lattice
of security types.

During the execution of an LJGS program, every value
carries a value label ς . To check implicit flows, the semantics
maintains two labels for each execution context, a local program
counter label, `, and a global program counter label, g. For
value labels, this security level indicates the current run-time
confidentiality of a labeled value. For program counter labels, it
approximates the confidentiality of information that implicitly
flows into the current context. Effectively, the dynamic label
on a program counter gives a lower bound on the side effects.

When information flows into a value or context from
multiple sources, the dynamic semantics employs a partial join
operation on the labels involved. The judgment ς := ς1 t ς2
determines the label ς that joins ς1 and ς2.

S := S t S D(A1 tA2) := D(A1) tD(A2)

ς := • t ς ς := ς t •

Joining static labels is trivial. Dynamic labels are joined by
joining the security levels they contain. The public label is
a neutral element for the join operation. Joining static and
dynamic labels is undefined, as the security level of a static
labeled entity cannot be recovered at run-time. A well typed
LJGS program only performs well-defined joins.

B. Configurations and Reduction rules

The execution of a method manipulates configurations
rs/L/µ of run-time statements rs , stack frames L, and heaps
µ. Run-time statements, defined in Figure 10, consist of
execution contexts E applied to source statements s . For
technical reasons, the statements previously defined in Section
III need to be extended with the marker statement done. An
execution context is a hole 〈〉, a sequence of an execution
context and a source statement, a run-time security context
cx [`]{E}, a cast context cx [pc/`/g V pc′/`′/g′]{E}, or a
calling context call [M , var , x, x1, .. , xn ,L]{E}. The run-time
statement 〈done〉 signals that execution of the current context
is complete. A sequence context focuses the first component of
a statement sequence. A run-time security context remembers
a previous program counter label, for example during the
execution of a conditional branch. A cast context stores the old
and new program counter types and labels during the execution
of a block subject to a context cast. A calling context stores
the method name and stack frame of the callee and the return
variable of the caller during a method call. Technicalities in
the correctness proofs require that it also stores the method
call receiver x and the call arguments y1, . . . , yn .

A stack frame is a finite map from local variables to values.
Stack frames have a fixed size and bind exactly the local
variables that occur in the body of their method. Uninitialized
variables are bound to null.

A value consists of a raw value rv and value label ς . A raw
value is either a number N ∈ N or an object reference, oref ,
which is composed of a pointer op and a security region label
PC that identifies the security context of an object’s allocation.

8

`; g ` rs/L/µ −→ rs ′/L′/µ′

ESTEP-LOCAL
` ` e/L/µ ⇓ v/µ′

` ` var/L ⇓ ok L′ = L[var 7→ v]

`; g ` 〈var = e〉/L/µ −→ 〈done〉/L′/µ′

ESTEP-NEW
v1 = L[x1] .. vn = L[xn]

oref ′ = fresh(A, µ)
v ′ = oref ′[S] µ′ = µ⊕ oref ′ 7→ {C , v1 .. vn}

` ` var/L ⇓ ok L′ = L[var 7→ v ′]

`; g ` 〈var = newC [A](x1, .. , xn)〉/L/µ −→ 〈done〉/L′/µ′

` ` e/L/µ ⇓ v/µ′

STEP-UPD-PLUS
N [ς1] = L[x]

N ′[ς2] = L[y] ς ′ := ς1 t ς2 ς := ς ′ t `
` ` x + y/L/µ ⇓ N + N ′[ς]/µ

STEP-UPD-CAST
rv [ς] = L[x] a ′ V a ` ς V ς ′ ς ′′ := ς ′ t `

` ` (a W a ′)x/L/µ ⇓ rv [ς ′′]/µ

Fig. 11. Dynamics: local updates (excerpt)

A heap is a finite map from references to objects. An object
consists of its run-time class C and the values of its fields.

The judgment `; g ` rs/L/µ −→ rs ′/L′/µ′ defines the
small step reduction of a configuration under the local program
counter label ` and global program counter label g. Figures
11, 12, 13, and 14 show the most interesting reduction rules.
Appendix B contains the full definition of the semantics.

Figure 11 shows the rules for local updates and static
allocations. Local updates are factored in two stages: first
the judgment ` ` e/L/µ ⇓ v/µ′ evaluates expression e to a
result and an updated heap. Rule STEP-UPD-PLUS illustrates
evaluation. It reads the operands from the stack frame L, and
returns a raw value, here N +N ′, that has an updated security
label attached. The updated label is the join of the operands’
labels and the program counter label. Then, the judgment
` ` var/L ⇓ ok performs an NSU check for an update of
variable var in stack frame L under local program counter
label `. Other expressions work similarly. A static allocation
additionally extends the heap with a fresh reference. It sets the
allocation level of the fresh reference to the security level A
mentioned in the constructor. In well-typed programs, A always
subsumes the program counter type of the context. Allocation of
dynamic objects (not shown) works similarly. A cast expression
converts the value label of its subject according to the label
conversion judgment a V a ′ ` ς V ς ′, defined in Figure 13.
Label conversion changes a label ς that corresponds to a cast’s
source type a to a label ς ′ corresponding to the destination
type a ′. A trivial cast results in a trivial label conversion. The
conversion from a static type to the dynamic type creates a
dynamic label that contains the source type as security level. A
static-to-dynamic conversion always succeeds in a well-typed
LJGS program. A conversion from dynamic to a static type A′

returns the static label, if the dynamic source label contains a
security level subsumed by A. Otherwise, the static-to-dynamic
conversion fails. The public type may be converted to a dynamic
type and a low-security label or any static type. Converting to
the public type requires either a static source type of bottom
or a dynamic bottom label.

Figure 12 defines the NSU check for local variables that
rule ESTEP-LOCAL requires. Under static or polymorphic local

` ` var/L ⇓ ok

` ∈ {•,S}
` ` var/L ⇓ ok

L[var] = null

D(PC) ` var/L ⇓ ok

L[var] = rv ′[D(A)] PC v A

D(PC) ` var/L ⇓ ok

Fig. 12. Dynamics: run-time checks

a ′ V a ` ς ′ V ς

a V a ` ς V ς A V ? ` ς V D(A)

A v A′

?V A′ ` D(A) V S •V A ` ς V S

•V ? ` ς V D(⊥) ⊥V • ` S V •

?V • ` D(⊥) V •

Fig. 13. Label conversion

program counter labels, or when var is uninitialized, the check
always succeeds. Otherwise the previous value stored in var
has to carry a dynamic label that is at least as secure as the
program counter label. The rule for global updates (not shown)
works similarly to rule ESTEP-LOCAL. It employs an NSU
check for the heap that uses the global program counter label
instead of the local one.

Figure 14 shows illustrative cases of reductions that create
modified contexts. Rule ESTEP-IF-TRUE covers if-statements
where the branch condition is satisfied. Selecting a branch
potentially creates an implicit flow from the condition to the
execution context of the branch. Thus, the reduction results in
a run-time security context that stores a program counter label

9

`; g ` rs/L/µ −→ rs ′/L′/µ′

ESTEP-IF-TRUE
rv [ς1] = L[x] rv [ς2] = L[y] ς ′ := ς1 t ς2 `′′ := ` t ς ′

`; g ` 〈if (x == y){s1}{s2}〉/L/µ −→ cx[`′′]{〈s1〉}/L/µ

ESTEP-IFLABEL-DYN-TRUE
rv [D(A′)] = L[x] A′ v A L[var] = null L′ = L[var 7→ rv [S]]

D(A′′); g ` 〈iflabel (x v A; var){s1}{s2}〉/L/µ −→ cx[D(A′′ tA)]{〈s1〉}/L/µ

ESTEP-CXCAST
pc V pc′ ` `V `′ pc V pc′ ` g V g′

`; g ` 〈(pc V pc′){s}〉/L/µ −→ cx[pc/`/g V pc′/`′/g′]{〈s〉}/L/µ

ESTEP-CX-STEP
g′ := g t `′ `′; g′ ` E (s)/L/µ −→ E ′(s ′)/L′/µ′

`; g ` cx [`′]{E (s)}/L/µ −→ cx [`′]{E ′(s ′)}/L′/µ′

ESTEP-CALL
v1 = L[x1] .. vn = L[xn] oref [ς] = L[x]

`′ := ` t ς {C , v1 .. vn} = µ[oref] M ′(var1, .. , varm) whereSig and E{s return y} = dispatch (C ,M)
L′ = initframe (M , this 7→ v , var1 7→ v ′1, .. , varm 7→ v ′m)

`; g ` 〈var = x .M (x1, .. , xn)〉/L/µ −→ cx [`′]{ call [M ′, var , x, x1, .., xn ,L
′]{〈s〉}}/L/µ

ESTEP-CALLING-STEP
•; g ` E (s)/L′/µ −→ E ′(s ′)/L′′/µ′

`; g ` call [M ′, var , x , x1, .. , xn ,L
′]{E (s)}/L/µ −→ call [M ′, var , x , x1, .. , xn ,L

′′]{E ′(s ′)}/L/µ′

ESTEP-CALLING-DONE
M ′(var1, .. , varm) whereSig and E{s return y} = definition (M)

rv [ς] = L′[y] ς ′ := ς t ` L′ = L[var 7→ rv [ς ′]] ` ` var/L ⇓ ok

`; g ` call [M , var , x , var ′1, .. , var
′
n ,L

′′]{〈done〉}/L/µ −→ 〈done〉/L′/µ

Fig. 14. Dynamics: entering modified contexts (excerpt)

`′′ which includes the value labels of the operands and the
label of the outer context. The rules for failing conditions and
while loops (not shown) are similar. The iflabel statement
checks the dynamic label of its operand value and copies that
value to an uninitialized, static variable that may be used in
the “true” branch of the statement. Rule ESTEP-IFLABEL-DYN-
TRUE covers the case where the label satisfies the condition
in dynamic contexts. The resulting run-time security context
is joined with the security level mentioned in the condition.
The reductions for iflabel statements for failing conditions
and in static contexts (not shown) are similar. Context casts,
covered by rule ESTEP-CXCAST, determine the local and global
program counter labels for executing their body with the
same label conversion judgment used for value casts. A cast
execution context stores the converted and original types and
labels. Reduction under a run-time security context, covered
by rule ESTEP-CX-STEP, uses the stored, modified program
counter label. The global program counter label is joined
with the stored label such that global effects also respect
the augmented context. When a run-time security context is
completely executed, it is discarded (not shown). Cast contexts
(not shown) work similarly, but use the stored converted labels
to reduce their bodies. Sequence execution contexts, also not
shown, completely execute the first context before focusing the
second, as expected.

Rule ESTEP-CALL, the reduction rule for method calls, sets
up the context to evaluate the body of callee M . It retrieves
the method arguments from the stack frame and determines

the run-time class C from the callee’s object. As M is
potentially overloaded, it looks up the concrete implementation
method M ′ via the operation dispatch (C ,M). The operation
initframe(M , . . .) initializes the stack frame for M by
mapping the parameter variables of M to the argument values
of the method call and this to the callee’s object. The reduction
results in a calling context wrapped in a security context. The
security context captures the implicit flow from the object
to the program counter of the called method. The calling
context stores the new stackframe and contains the method body
in its hole. Reduction steps under calling contexts, covered
by rule ESTEP-CALLING-STEP, take place under the global
program counter label of the caller and under a polymorphic
local program counter label. The public label corresponds to
the public program counter type in the method typing rule
described in Section IV-C. It permits to call method with only
local implicit flows, as method max of Figure 1, to pass the
NSU check on updates regardless of the global program counter
label. When the method call is completed, rule ESTEP-CALLING-
DONE copies the result value from the callee’s frame to the
caller’s return variable. As the return variable is updated, the
rule also performs an NSU check.

VI. CORRECTNESS

To guarantee that the statics and dynamics presented
in the previous sections enforce security according to our
attacker model, we need to prove termination insensitive non-
interference. As the dynamics only check the security labels of

10

dynamically typed values, non-interference also relies on the
soundness of the type system, which guarantees that statically
typed data is not responsible for program crashes caused
by security violations. We always implicitly assume that an
LJGS program is well-formed according to the standard typing
principles of Java. In particular we rely on the fact that no
variables or object fields are accessed uninitialized. Also, we
implicitly assume that all method signatures comply to the
class hierarchy in an LJGS program, according to Definition 6.
Proof sketches of the theorems stated in this section can be
found in Appendix C.

A. Soundness of the type system

Simple typing judgments for values and annotations connect
static and dynamic domains.

Definition 7 (Typing of Dynamic Domains). A security label
ς has type a , written ` ς : a , if either (i) ς = •, (ii) ς = D(A)
and a = ?, or (iii) ς = S and a = A.

A heap µ is well-typed, written ` µ, if for all field values
it contains, the value label has the type of the corresponding
field declaration.

A stack frame L is well-typed under constraints C and
environment Γ, written Γ, C ` L if for all bindings x 7→ rv [ς]
in L there exists an a such that SAT(C ∪ {Γ(x) ≤ a}) and
` ς : a . This judgment essentially checks that dynamically
typed variables have either dynamic or public labels.

Security constraints C type the program counter label ` with
a program counter type γ, written C ` γ : `, if either (i) SAT(C),
` = •, and γ = •, (ii) ` = D(PC) and SAT(C ∪ {γ ≤ ?}), or
(iii) ` = S and SAT(C ∪ {γ ≤ A}).

The type soundness and non-interference lemmas require
a typing judgment for execution contexts, γ, `, g ` E : Γ1 ⇒
Γ2, C, E|`′, g′. The judgment describes the typing environment
of the execution context, and, given its program counter labels
`, g, it defines the program counter labels `′, g′ that are active at
its hole. The constraints, effect and environments that make up
a context typing are the same as for statement typing. Figure 15
shows the context typing rules for holes, security contexts, and
contexts casts. The other rules can be found in Appendix B. The
rule for holes, ET-HOLE, is trivial. Rule ET-CX ensures that the
body of a security evaluation context does not lower the program
counter security level by generating a corresponding constraint
for program counter types and by checking subsumption of
dynamic program counter labels. The rule also ensures that
the global program counter label always subsumes the local
one. Rule ET-CXCAST captures the relation between program
counter labels, program counter types, and effects of the body
and context after a valid context cast. They correspond exactly
to the requirements of typing rule ST-CXT-CAST and reduction
rule ESTEP-CXCAST.

The typing of configurations relies on the typing of
execution contexts:

γ, `, g ` E (s)/L/µ : Γ1 ⇒ Γ2, C, E|`′, g′

Γ1, C ` L ` µ γ, `, g ` E : Γ1 ⇒ Γ2, C, E|`′, g′
γ ` s : Γ1 ⇒ Γ2, C, E C ` γ : ` C ` γ : g ` ≤ g

γ, `, g ` E (s)/L/µ : Γ1 ⇒ Γ2, C, E|`′, g′

It combines the requirements for well typed stack-frames, heaps,
execution contexts, and statements with the constraint that the
global program counter label needs to subsume the local one.
The satisfiability of the generated constraints is implied by
well-typed stack frames.

As usual for a gradually typed system, a well typed LJGS
program guarantees a refined progress property. While (security
related) run-time errors in statically typed code are ruled out, a
program may run into a dynamically stuck configuration where
dynamically typed code goes wrong.

Definition 8 (Dynamically stuck). A well-typed configuration
γ, `, g ` E (s)/L/µ : Γ1 ⇒ Γ2, C, E|`′, g′ is dynamically stuck
iff it attempts either:

1) a local sensitive upgrade, that is s = (var = e),
`′ = D(PC), L[var] = rv [ς], ς ∈ {•,D(A′)} and
D(PC) 6≤ ς ,

2) a global sensitive upgrade, that is s = (x .F = y),
g′ = D(PC), L[x] = oref [ς], ς ∈ {•,D(A′′)},
getfield (F , µ[oref]) = rv [ς ′],ς ′ ∈ {•,D(A′)} and
D(PC) 6≤ ς ′ or ς 6≤ ς ′

3) an insecure value cast from dynamic to static, s =
(var = (a W ?)x), a ∈ {•,A}, L[x] = rv [D(A′)],
and a 6≤ A, or

4) an insecure context cast from dynamic to static s =
((?V a){s ′}), `′ = D(PC), a ∈ {•,PC}and PC 6v
A

The progress result for LJGS states that well typed programs
that are not able to make a reduction step are either done, or
dynamically stuck.

Theorem 1 (Progress). For any well typed configuration
γ, `, g ` E (s)/L/µ : Γ1 ⇒ Γ2, C, E|`′, g′ one of the following
three cases holds: (i)E (s) = 〈done〉, (ii) the configuration is
dynamically stuck, or (iii) there exists E ′(s ′),L′, µ′ such that
`; g ` E (s)/L/µ −→ E ′(s ′)/L′/µ′

Configuration typing allows us to state and prove a straight-
forward preservation theorem:

Theorem 2 (Preservation). Given a well typed configuration
γ, `, g ` E (s)/L/µ : Γ1 ⇒ Γ2, C, E|`′, g′ and a reduction
step `; g ` E (s)/L/µ −→ E ′(s ′)/L′/µ′ then there exists Γ′1,
C′, `′′, g′′, and E ′ such that γ, `, g ` E ′(s ′)/L′/µ′ : Γ′1 ⇒
Γ2, C′, E ′|`′′, g′′, C′ ⊆ C, and E ′ ⊆ E .

B. Non-Interference

The non-interference theorem for LJGS states that methods
run under low-equivalent environments, that is, environments
that an attacker cannot distinguish, produce low-equivalent
results. First we precisely define the notion of low-equivalence.
In the following, we assume that low is the upper bound of
security levels that an attacker can observe. We refer to a
security level A as high if A 6v low.

Definition 9 (Low-equivalent objects, heaps and stack-frames).
Two objects Obj1,Obj2 are low-equivalent if they only differ
in the values stored in high-security fields.

Two heaps µ1, µ2 are low-equivalent if (i) their domains
agree on the references (op,PC) with allocation level PC v

11

ET-HOLE

γ, `, g ` 〈〉 : Γ1 ⇒ Γ2, C, E|`, g

ET-CX
` ≤ `′

g ≤ g′ `′ ≤ g′ β†, `′, g′ ` E : Γ1 ⇒ Γ2, C′, E|`′′, g′′ C = C′ ∪ {γ ≤ β†}
γ, `, g ` cx [`′]{E} : Γ1 ⇒ Γ2, C, E|`′′, g′′

ET-CXCAST
pc . pc′

pc V pc′ ` `V `′ pc V pc′ ` g V g′ β†, `′, g′ ` E : Γ1 ⇒ Γ2, C′, E ′|`′′, g′′ C′′ = {γ ≤ pc, pc′ ≤ β†}
γ, `, g ` cx [pc/`/g V pc′/`′/g′]{E} : Γ1 ⇒ Γ2, C′ ∪ C′′, {pc}|`′′, g′′

Fig. 15. Context typing rules (excerpt)

low, and (ii) the objects stored at those references are low-
equivalent.

Two environments L1,L2 are low-equivalent with respect
to environment Γ, and solution θ, written L1 ≡Γ,θ,low L2 if
(i) dom (L1) = dom (L2), (ii) L1[this] = L2[this], and (iii)
for all var ∈ dom(L1) either

1) L1[var] = L2[var],
2) θ(Γ(var)) = A, and A 6v low
3) θ(Γ(var)) = ? and L1[var] = rv [D(A1)], L2[var] =

rv [D(A2)], and A1 6v low and A2 6v low

With these definitions, the non-interference theorem for
LJGS is as follows:

Theorem 3 (Non-interference). Let E (s)/L1/µ1, E (s)/L2/µ2

be two configurations with typings γ, `, g ` E (s)/Li/µi :
Γ1 ⇒ Γ2, C, E|`′, g′, (i ∈ {1, 2}) and solution θ |= C where
L1 ≡Γ1,θ,low L2 and µ1 ≡low µ2. Given two executions `; g `
E (s)/Li/µi −→∗ 〈done〉/L′i/µ′i then L′1 ≡Γ2,θ,low L′2 and
µ′1 ≡low µ

′
2.

VII. RELATED WORK

There is a large body of prior work on security type
systems that ultimately goes back to Denning and Denning’s
classic paper on information flow security [8]. We focus
on discussing works on security type systems and dynamic
security enforcement designed for “main-stream” programming
languages and defer the reader to the overview articles of
Sabelfeld and Myers [17] and Hedin and Sabelfeld [13] for
other aspects of language based security.

FlowCaML [15] is an ML dialect supporting static polymor-
phic security types with security constraints similar to those
of LJGS. FlowCaML additionally supports higher-order types
and complete type inference. Sun, Banerjee and Naumann
describe a modular polymorphic type system for a Java-
like, object oriented language [22]. The polymorphic method
signatures are comparable to the static fragment of LJGS. Their
system additionally supports class definitions with security type
parameters and full type inference. Both approaches seems
compatible with LJGS and we plan to investigate how they
could be adapted for gradual security typing in future work.
Barthe et al describe an information flow type system for
Java Bytecode and a corresponding develop a corresponding
certified type checker [6]. Their system supports Objects, virtual,
monomorphic methods, exceptions and arrays. JIF [14] is an
extension to Java with static security types and first-class

dynamic security-labels. In JIF, security types may depend
on dynamic labels and the interaction of labels and types is
verified statically during type checking. In contrast, LJGS does
not restrict dynamically labeled values statically but enforces
non-interference at run-time. Another language that support
statically checked, first-class security labels in the style of JIF
is Grabowski and Beringer’s DSD [12].

LJGS’ run-time security enforcement for values with dy-
namic labels is an adaption of Austin and Flanagan’s technique
for purely dynamic information flow control technique with
no-sensitive-upgrade policy [3]. Extensions of this approach,
like permissive upgrade or faceted execution [4], [5], as well
as approaches for hybrid information flow control based on
dynamic labels [16] are compatible with LJGS.

The original work on gradual typing [25], [20] focuses
on simple types with extensions like refinement predicates,
polymorphism [1], and union types [24]. More recently,
researchers started to gradualize type systems that check
properties unrelated to the structure of values, like type
annotations [11], ownership [18], typestate [26], and session
types [23]. Gradual security type systems also fall into this
category. Disney and Flanagan study gradual security types
for a pure lambda calculus [9] and Fennell and Thiemann
describe a system for a calculus with ML style references [10].
Compared with our treatment of object fields, Fennell and
Thiemann’s calculus treats mutable references in a more liberal
way because it admits casts between reference types with static
and dynamic content. However, this liberality comes at the cost
of requiring pervasive run-time labelling even for static values
and it blurs the separation of static and dynamic code, which
runs contrary the execution model and design goal of LJGS.

VIII. CONCLUSION AND FUTURE WORK

LJGS is a sequential Java core calculus with gradual security
typing and branching on dynamic labels. The calculus strictly
separates statically verified and dynamically checked code
which enables running statically checked code without run-time
security labels. Methods have polymorphic security signatures
and can accept static or dynamic arguments in a suitable
execution context.

There are several avenues for future work. We plan
to implement type checking and run-time enforcement for
(sequential) Java based on the principles of LJGS. With this
implementation we want to investigate the practicality of the
type system for realistic applications and to evaluate different
compilation- and execution strategies for dynamic code. We

12

also want to extend the system with security type parameters
for classes and methods, type inference, and hybrid monitoring
of dynamically typed code.

REFERENCES

[1] A. Ahmed, R. B. Findler, J. Matthews, and P. Wadler. Blame for all. In
Proceedings of the 1st Workshop on Script to Program Evolution, pages
1–13, Genova, Italy, 2009. ACM.

[2] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive
noninterference leaks more than just a bit. In Proceedings of the 13th
European Symposium on Research in Computer Security: Computer
Security, ESORICS ’08, pages 333–348, Berlin, Heidelberg, 2008.
Springer-Verlag.

[3] T. H. Austin and C. Flanagan. Efficient purely-dynamic information
flow analysis. In S. Chong and D. A. Naumann, editors, PLAS, pages
113–124, Dublin, Ireland, June 2009. ACM.

[4] T. H. Austin and C. Flanagan. Permissive dynamic information flow
analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security, PLAS ’10, pages
3:1–3:12, New York, NY, USA, 2010. ACM.

[5] T. H. Austin and C. Flanagan. Multiple facets for dynamic information
flow. In J. Field and M. Hicks, editors, Proc. 39th ACM Symp. POPL,
pages 165–178, Philadelphia, USA, Jan. 2012. ACM Press.

[6] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-
interference java bytecode verifier. Mathematical Structures in Computer
Science, 23(5):1032–1081, 2013.

[7] D. Denning. A lattice model of secure information flow. Comm. ACM,
19(5):236–242, 1976.

[8] D. Denning and P. Denning. Certification of programs for secure
information flow. Comm. ACM, 20(7):504–513, 1977.

[9] T. Disney and C. Flanagan. Gradual information flow typing. In STOP,
2011.

[10] L. Fennell and P. Thiemann. Gradual security typing with references.
In V. Cortier and A. Datta, editors, CSF, pages 224–239, New Orleans,
LA, USA, 2013. IEEE.

[11] L. Fennell and P. Thiemann. Gradual typing for annotated type systems.
In Z. Shao, editor, ESOP’14, Lecture Notes in Computer Science,
Grenoble, France, Apr. 2014. Springer.

[12] R. Grabowski and L. Beringer. Noninterference with dynamic security
domains and policies. In A. Datta, editor, Advances in Computer Science
- ASIAN 2009. Information Security and Privacy, 13th Asian Computing
Science Conference, Seoul, Korea, December 14-16, 2009. Proceedings,
volume 5913 of Lecture Notes in Computer Science, pages 54–68.
Springer, 2009.

[13] D. Hedin and A. Sabelfeld. A perspective on information-flow control.
In 2011 Marktoberdorf Summer School. IOS Press, 2011.

[14] A. C. Myers. JFlow: Practical mostly-static information flow control. In
A. Aiken, editor, Proc. 26th ACM Symp. POPL, pages 228–241, San
Antonio, Texas, USA, Jan. 1999. ACM Press.

[15] F. Pottier and V. Simonet. Information flow inference for ML. ACM
TOPLAS, 25(1):117–158, Jan. 2003.

[16] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security
analysis. In CSF, pages 186–199. IEEE Computer Society, 2010.

[17] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE J. Selected Areas in Communications, 21(1):5–19, Jan. 2003.

[18] I. Sergey and D. Clarke. Gradual ownership types. In 21th European
Symposium on Programming (ESOP 2012), Tallinn, Estonia, Apr. 2012.
Springer.

[19] J. Siek and W. Taha. Gradual typing for objects. In E. Ernst, editor,
21st ECOOP, volume 4609 of LNCS, pages 2–27, Berlin, Germany, July
2007. Springer.

[20] J. G. Siek and W. Taha. Gradual typing for functional languages. In
Scheme and Functional Programming Workshop, Sept. 2006.

[21] R. Strnisa and M. J. Parkinson. Lightweight java. Archive of Formal
Proofs, 2011, 2011.

[22] Q. Sun, A. Banerjee, and D. A. Naumann. Modular and constraint-
based information flow inference for an object-oriented language. In
R. Giacobazzi, editor, Static Analysis, 11th International Symposium,
SAS 2004, Verona, Italy, August 26-28, 2004, Proceedings, volume 3148
of Lecture Notes in Computer Science, pages 84–99. Springer, 2004.

[23] P. Thiemann. Gradual typing for session types. In E. Tuosto and
M. Maffeis, editors, TGC, volume ? of LNCS, Rome, Italy, 2014. Springer.
to appear.

[24] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of typed scheme. In P. Wadler, editor, Proc. 35th ACM Symp. POPL,
pages 395–406, San Francisco, CA, USA, Jan. 2008. ACM Press.

[25] P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In
Proc. 18th ESOP, volume 5502 of LNCS, pages 1–16, York, UK, Mar.
2009. Springer.

[26] R. Wolff, R. Garcia, É. Tanter, and J. Aldrich. Gradual typestate. In
ECOOP, volume 6813 of LNCS, pages 459–483, Lancaster, UK, 2011.
Springer.

[27] S. A. Zdancewic. Programming Languages for Information Security.
PhD thesis, Cornell, Ithaca, NY, USA, 2002.

13

APPENDIX A
BRANCHING ON PROGRAM COUNTER LABELS

The ifpc statement allows branching on program counter
labels.

s ::= . . . | ifpc (A){s1}{s2}

If the current dynamic program counter label is less confidential
than A, then s1 is executed under a static program counter type
A. Otherwise s2 is executed under a dynamic program counter
type. Adding this branching statement allows to rewrite method
maxWithMessageDyn of Figure 1 such that it never fails
with a security exception:

1 i n t maxWithMessageDyn(SecLog log, i n t x, i n t y)
2 where { ? ≤ @x
3 , ? ≤ @y
4 , ? ≤ @return
5 , log ≤ LOW }
6 and { ? } {
7 i f (x ≤ y) {
8 x = y;
9 i f p c(LOW) {

10 i f l a b e l (x v LOW; x_low) {
11 log.buffer = x_low + "is smaller";
12 }
13 (? V HIGH) {
14 log.highBuf = ((HIGH W ?) x) + "is smaller";
15 }
16 }
17 re turn x;
18 }

The update to buffer in line 11 is now only executed if the
local and global program counter labels are (smaller than) LOW.
Thus, in calls described by the last line of Table I, instead of
an error, no write to buffer would occur. Also, no context
cast is required for the update to buffer.

The typing rule for ifpc is as follows:
ST-IFPC

β† ` s1 : Γ1 ⇒ Γ′2, C1, E1
γ ` s2 : Γ1 ⇒ Γ′′2 , C2, E2 C′ = {γ ≤ ?,A ≤ β†}

Γ2, C′′ = Γ′2 t Γ′′2 C = C1 ∪ C2 ∪ C′ ∪ C′′

γ ` ifpc (A){s1}{s2} : Γ1 ⇒ Γ2, C, E1 ∪ E2
It requires a program counter type of dynamic or static and
types the “true” branch under a static program counter of level
A.

Figure 16 gives the reduction rules for ifpc . In case the
context label is smaller than A the statement reduced to a
suitable cast context that contains s1. Otherwise it is simply
reduced to s2.

APPENDIX B
COMPLETE STATIC AND DYNAMIC SEMANTICS

Figures 17, 18, 19, 20, and 21 give the complete dynamic
semantics of LJGS. Figures 22, 23, 24, and 25 give the complete
typing rules of LJGS.

APPENDIX C
CORRECTNESS

A. Progress

The proof is by induction on the typings of execution context
E . The interesting causes for a configuration to be stuck are

1) an undefined join operation on labels, and
2) a failing NSU check
3) a failing cast conversion

In all cases the constraints generated by well-typed configu-
ration ensure that all join operations required by the semantics
are defined. This fact is essentially captured by the following
lemma:

Lemma 1. If ` ς : θ(α), ` ς ′ : θ(α′), θ |= C and {α ≤
β, α′ ≤ β} ⊆ C then there exists ς ′′ such that ς ′′ := ς t ς ′. If
` ς : θ(α), ` ` : θ(γ) , θ |= C and {γ ≤ α} ⊆ C then there
exists ς ′′ such that ς ′ := ς t `.

The lemma is easily verified by checking the definition of
solvability.

By checking the definitions it is evident that the NSU
check only fails for dynamic updates that are covered by
dynamically stuck. Inspecting the definitions of castability and
label conversion, it is clear that all failing well-typed casts fall
under dynamically stuck.

B. Preservation

The proof is by induction on the reduction step. Most cases
are straightforward. In cases that reduce to security contexts,
like ESTEP-IF-TRUE, a weakening lemma is required, if the
statement that is embedded in the context (the “true-branch”
in case ESTE-IF-TRUE) has a high-security program counter
type. The lemma asserts contravariant subtyping for program
counter types.

Lemma 2 (Context weakening). If β† ` s : Γ1 ⇒ Γ2, C, E
then γ ` s : Γ1 ⇒ Γ2, C ∪ {γ ≤ β†}, E .

C. Non interference

The proof is by induction on execution context. Most induc-
tive cases are straightforward using the induction assumption
and the type preservation result.

The interesting base-cases are those for branching state-
ments and method calls. They require two confinement lemmas
to show secure execution for the body of the context. Confine-
ment states that the low-security parts of a configuration do
not change when executing code with high-security global or
local contexts.

Definition 10 (High security global context). Given a well-
typed configuration γ, `, g ` E (s)/L/µ : Γ1 ⇒ Γ2, C, E|`′, g′,
g and E form a high-security global context if either (i) g = S
and for all PC ∈ E it holds that PC 6v low or (ii) g = D(PC)
and PC 6v low.

Lemma 3 (Global confinement). Given a well-typed configura-
tion γ, `, g ` E (s)/L/µ : Γ1 ⇒ Γ2, C, E|`′, g′ and a reduction
step `; g ` E (s)/L/µ −→ E ′(s ′)/L′/µ′ then µ ≡low µ′ if g
and E form a high-security global context.

Definition 11 (High security local context). Given a well-typed
configuration β, `, g ` E (s)/L/µ : Γ1 ⇒ Γ2, C, E|`′, g′ with
solution θ |= C ∪ ⊔βE , `, and θ form a high-security local
context if either (i) ` = S, PC = θ(β) and PC 6v low or (ii)
` = D(PC) and PC 6v low.

14

ESTEP-IFPC-TRUE
` ≤ D(A)

`; g ` 〈ifpc (A){s1}{s2}〉/L/µ −→ cx[?/`/g V A/S/S]{〈s1〉}/L/µ

ESTEP-IFPC-FALSE
` 6≤ D(A)

`; g ` 〈ifpc (A){s1}{s2}〉/L/µ −→ 〈s2〉/L/µ

Fig. 16. Dynamics for ifpc

Lemma 4 (Confinement). Given a well-typed configuration
γ, `, g ` E (s)/L/µ : Γ1 ⇒ Γ2, C, E|`′, g′ with solution θ |=
C ∪ ⊔γE where ` and θ for a high-security local context
and a reduction step `; g ` E (s)/L/µ −→ E ′(s ′)/L′/µ′ then
L ≡Γ2,θ,low L′ and µ ≡low µ

′

The confinement lemmas are proven by induction on the
reduction. Most cases are straightforward, given the definition
for solvability of constraints. Also, as confinement is a
generalization of global confinement, lemma 4 relies on lemma
3.

Proving non-interference for cases of branching statements
like 〈if (x == y){s1}{s2}〉 requires to distinguish whether
execution enter a high-security context or not, that is whether
the conditions depends on high-security values or not. In case
it does not, the low-equivalence assumption for stack frames
guarantees that executions chooses the same branch for both
configurations. The result then follows from the induction
assumption. In case the condition depends on high-security
values, the executions may choose different branches. We
can still follow that 〈if (x == y){s1}{s2}〉/Li/µi reduces
to cx[`i]{〈sj 〉}/Li/µi , where j ∈ {1, 2} and 〈sj 〉/Li/µi is in
a local (and global) high-security context. As the semantics
is deterministic, we can follow that 〈sj 〉/Li/µi reduces to
〈done〉/L′i/µ′i . The result then essentially follows from lemma
4.

For the case of method calls, 〈var =
x .M (x1, .. , xn)〉/Li/µi , we need to distinguish whether
L1[x] = L2[x]. If so, the configurations reduce to
cx [`]{ call [M , var , x, x1, .., xn ,L

′
i]{〈s〉}}/Li/µi . As the

semantics is deterministic we know that there is an execution
from 〈s〉/L′i/µi to 〈done〉/L′′i /µ′i . By induction assumption,
L′′1 and L′′2 , as well as µ′1 and µ′2 are low-equivalent, from
which we can follow the result. If L1[x] 6= L2[x], then we can
follow from the low-equivalence assumption that x contains
high-security information. Thus the configurations reduce
to cx [`]{ call [M , var , x, x1, .., xn ,L

′
i]{〈si〉}}/Li/µi where

〈si〉/L′i/µi is in a high-security local and global context.
Again we have that 〈si〉/L′i/µi reduces to 〈done〉/L′′i /µ′i .
By lemma 3, µ′1 and µ′2 are low-equivalent. When the
method returns with ESTEP-CALLING-DONE, we have
L′′i = Li [var 7→ vi]. As the method call executes in a locally
high context, the update of return variable var does not impede
low-equivalence, and thus L′′1 and L′′2 are low-equivalent.

15

`; g ` rs/L/µ −→ rs ′/L′/µ′

ESTEP-LOCAL
` ` e/L/µ ⇓ v/µ′ ` ` var/L ⇓ ok L′ = L[var 7→ v]

`; g ` 〈var = e〉/L/µ −→ 〈done〉/L′/µ′

ESTEP-NEW
v1 = L[x1] .. vn = L[xn]

oref ′ = fresh(A, µ) v ′ = oref ′[S] µ′ = µ⊕ oref ′ 7→ {C , v1 .. vn} ` ` var/L ⇓ ok L′ = L[var 7→ v ′]

`; g ` 〈var = newC [A](x1, .. , xn)〉/L/µ −→ 〈done〉/L′/µ′

ESTEP-NEW-DYN
v1 = L[x1] .. vn = L[xn] D(A′) := D(A) t `

oref ′ = fresh(A′, µ) v ′ = oref ′[D(A′)] µ′ = µ⊕ oref ′ 7→ {C , v1 .. vn} ` ` var/L ⇓ ok L′ = L[var 7→ v ′]

`; g ` 〈var = new?C [A](x1, .. , xn)〉/L/µ −→ 〈done〉/L′/µ′

ESTEP-PUTFIELD
rv ′[ς1] = L[x] oref ′[ς2] = L[y]

Obj = µ[oref ′] ς ′ := ς1 t ς2 ς := ς ′ t ` µ′ = µ[oref ′ 7→ Obj [F 7→ rv ′[ς]]] g ` oref [ς]/F/µ ⇓ ok

`; g ` 〈x .F = y〉/L/µ −→ 〈done〉/L/µ′

ESTEP-SEQ

`; g ` 〈s1; s2〉/L/µ −→ 〈s1〉; s2/L/µ

ESTEP-CALL
v1 = L[x1] .. vn = L[xn] oref [ς] = L[x]

`′ := ` t ς {C , v1 .. vn} = µ[oref] M ′(var1, .. , varm) whereSig and E{s return y} = dispatch (C ,M)
L′ = initframe (M , this 7→ v , var1 7→ v ′1, .. , varm 7→ v ′m)

`; g ` 〈var = x .M (x1, .. , xn)〉/L/µ −→ cx [`′]{ call [M ′, var , x, x1, .., xn ,L
′]{〈s〉}}/L/µ

ESTEP-CXCAST
pc V pc′ ` `V `′ pc V pc′ ` g V g′

`; g ` 〈(pc V pc′){s}〉/L/µ −→ cx[pc/`/g V pc′/`′/g′]{〈s〉}/L/µ
ESTEP-SEQ-DONE

`; g ` 〈done〉; s/L/µ −→ 〈s〉/L/µ

ESTEP-CASTCX-DONE

`; g ` cx[pc/`/g V pc′/`′/g′]{〈done〉}/L/µ −→ 〈done〉/L/µ

ESTEP-CALLING-DONE
M ′(var1, .. , varm) whereSig and E{s return y} = definition (M)

rv [ς] = L′[y] ς ′ := ς t ` L′ = L[var 7→ rv [ς ′]] ` ` var/L ⇓ ok

`; g ` call [M , var , x , var ′1, .. , var
′
n ,L

′′]{〈done〉}/L/µ −→ 〈done〉/L′/µ

ESTEP-SEQ-STEP

`; g ` E (s)/L/µ −→ E ′(s ′1)/L′/µ′

`; g ` E (s); s2/L/µ −→ E ′(s ′1); s2/L
′/µ′

ESTEP-CX-STEP
g′ := g t `′ `′; g′ ` E (s)/L/µ −→ E ′(s ′)/L′/µ′

`; g ` cx [`′]{E (s)}/L/µ −→ cx [`′]{E ′(s ′)}/L′/µ′

ESTEP-CALLING-STEP
•; g ` E (s)/L′/µ −→ E ′(s ′)/L′′/µ′

`; g ` call [M ′, var , x , x1, .. , xn ,L
′]{E (s)}/L/µ −→ call [M ′, var , x , x1, .. , xn ,L

′′]{E ′(s ′)}/L/µ′

ESTEP-CASTINGCX-STEP
`′; g′ ` E (s)/L/µ −→ E ′(s ′)/L′/µ′

`; g ` cx [pc/`/g V pc′/`′/g′]{E (s)}/L/µ −→ cx [pc/`/g V pc′/`′/g′]{E ′(s ′)}/L′/µ′

Fig. 17. Dynamics: complete rules, part 1

16

`; g ` rs/L/µ −→ rs ′/L′/µ′

ESTEP-WHILE-TRUE
rv [ς1] = L[x] rv [ς2] = L[y] `′′ := ` t ς1 t ς2

`; g ` 〈while (x == y){s}〉/L/µ −→ cx[`′′]{〈s〉}; while (x == y){s}/L′/µ′

ESTEP-WHILE-FALSE
rv [ς1] = L[x] rv ′[ς2] = L[y] rv 6= rv ′

`; g ` 〈while (x == y){s}〉/L/µ −→ 〈done〉/L/µ

ESTEP-IF-TRUE
rv [ς1] = L[x] rv [ς2] = L[y] ς ′ := ς1 t ς2 `′′ := ` t ς ′

`; g ` 〈if (x == y){s1}{s2}〉/L/µ −→ cx[`′′]{〈s1〉}/L/µ

ESTEP-IF-FALSE
rv [ς1] = L[x] rv ′[ς2] = L[y] rv 6= rv ′ `′′ := ` t ς1 t ς2

`; g ` 〈if (x == y){s1}{s2}〉/L/µ −→ cx[`′′]{〈s2〉}/L/µ

ESTEP-IFLABEL-TRUE
rv [D(A′)] = L[x] A′ v A L[var] = null L′ = L[var 7→ rv [S]]

S; g ` 〈iflabel (x v A; var){s1}{s2}〉/L/µ −→ cx[S]{〈s1〉}/L/µ

ESTEP-IFLABEL-FALSE
rv [D(A′)] = L[x] A′ 6v A

S; g ` 〈iflabel (x v A; var){s1}{s2}〉/L/µ −→ cx[S]{〈s2〉}/L/µ

ESTEP-IFLABEL-DYN-TRUE
rv [D(A′)] = L[x] A′ v A L[var] = null L′ = L[var 7→ rv [S]]

D(A′′); g ` 〈iflabel (x v A; var){s1}{s2}〉/L/µ −→ cx[D(A′′ tA)]{〈s1〉}/L/µ

ESTEP-IFLABEL-DYN-FALSE
rv [D(A′)] = L[x] A′ 6v A

D(A′′); g ` 〈iflabel (x v A; var){s1}{s2}〉/L/µ −→ cx[D(A′′ tA)]{〈s2〉}/L/µ

Fig. 18. Dynamics: complete rules, part 2

` ` e/L/µ ⇓ v/µ′

STEP-UPD-CONST-STATIC
` ∈ {•,S} v ′ = N [S]

` ` N /L/µ ⇓ v ′/µ

STEP-UPD-CONST-DYNAMIC
` 6∈ {•,S} v ′ = N [D(PC)]

D(PC) ` N /L/µ ⇓ v ′/µ

STEP-UPD-MOVE
rv [ς] = L[x] ς ′ := ς t `
` ` x/L/µ ⇓ rv [ς ′]/µ

STEP-UPD-PLUS
N [ς1] = L[x] N ′[ς2] = L[y] ς ′ := ς1 t ς2 ς := ς ′ t `

` ` x + y/L/µ ⇓ N + N ′[ς]/µ

STEP-UPD-GETFIELD
oref [ς1] = L[x] Obj = µ[oref] rv [ς2] = getfield (F ,Obj) ς := ς1 t ς2 t `

` ` x .F/L/µ ⇓ rv [ς]/µ

STEP-UPD-CAST
rv [ς] = L[x] a ′ V a ` ς V ς ′ ς ′′ := ς ′ t `

` ` (a W a ′)x/L/µ ⇓ rv [ς ′′]/µ

Fig. 19. Dynamics: evaluation of expressions

17

a V a ′ ` ς V ς ′

CASTCONV-TRIVIAL

a V a ` ς V ς

CASTCONV-STATIC-TO-DYN

A V ? ` ς V D(A)

CASTCONV-DYN-TO-STATIC
A v A′

?V A′ ` D(A) V S

CASTCONV-PUBLIC-TO-STATIC

•V A ` ς V S

CASTCONV-PUBLIC-TO-DYN

•V ? ` ς V D(⊥)

CASTCONV-STATIC-TO-PUBLIC

⊥V • ` S V •

CASTCONV-DYN-TO-PUBLIC

?V • ` D(⊥) V •

Fig. 20. Label conversion

` ` var/L ⇓ ok

STEPCHECK-LOCAL-STATIC
` ∈ {•,S}

` ` var/L ⇓ ok

STEPCHECK-LOCAL-NULL
L[var] = null

D(PC) ` var/L ⇓ ok

STEPCHECK-LOCAL-DYN-OK
L[var] = rv ′[D(A)] PC v A

D(PC) ` var/L ⇓ ok

g ` oref [ς]/F/µ ⇓ ok

STEPCHECK-GLOBAL-STATIC

S ` oref [ς]/F/µ ⇓ ok

STEPCHECK-GLOBAL-DYN-OK
µ[oref] = Obj

rv ′[D(A)] = getfield (F ,Obj)
PC tA′ v A

D(PC) ` oref [D(A′′)]/F/µ ⇓ ok

Fig. 21. Dynamics: run-time checks

Γ, α ` e : C
RT-MOVE

Γ, α ` x : {Γ(x) ≤ α}

RT-PLUS

Γ, α ` x + y : {Γ(x) ≤ α,Γ(y) ≤ α}

RT-GETFIELD

Γ, α ` x .F : {Γ(x) ≤ α, fsec (F) ≤ α}

RT-CONST-STATIC

Γ, α ` N : {⊥ ∼ α}

RT-CONST-DYN

Γ, α ` N?[A] : {? ∼ α}

RT-CAST
a . a ′

Γ, α ` (a ′ W a)x : {Γ(x) ≤ a, a ′ ≤ α}

Fig. 22. Statics: expression typing

18

γ ` s : Γ1 ⇒ Γ2, C, E

ST-LOCAL

Γ, α† ` e : C
Γ2 = Γ1[var 7→ α†]

γ ` var = e : Γ1 ⇒ Γ2, C ∪ {γ ≤ α†, γ →? Γ1(var)}, ∅

ST-NEW
a1 .. an = fieldsecs (C)

C = {Γ1(x1) ≤ a1, .. ,Γ1(xn) ≤ an ,A ≤ α†}
C′ = C ∪ {γ ≤ α†, γ →? Γ1(var)}

Γ2 = Γ1[var 7→ α†]

γ ` var = newC [A](x1, .. , xn) : Γ1 ⇒ Γ2, C′, {A}

ST-NEW-DYN
a1 .. an = fieldsecs (C)

C = {Γ1(x1) ≤ a1, .. ,Γ1(xn) ≤ an}
C′ = {? ∼ α†, γ ≤ α†, γ →? Γ1(var)}

Γ2 = Γ1[var 7→ α†]

γ ` var = new?C [A](x1, .. , xn) : Γ1 ⇒ Γ2, C′, {?}

ST-DONE

γ ` done : Γ⇒ Γ, ∅, ∅

ST-PUTFIELD
C = {Γ(x) ≤ fsec (F),Γ(y) ≤ fsec (F), γ ≤ fsec (F)}

γ ` x .F = y : Γ⇒ Γ, C, {fsec (F)}

ST-CALL
Sig = signature (M)
E = effects (M)

var1, .. , varn = params (M)
C′ = Sig [@this 7→ Γ1(x),@var1 7→ Γ1(x1), .. ,@varn 7→ Γ1(xn),@ return 7→ α†]

C = C′ ∪ {Γ1(x) ≤ α†, γ ≤ α†, γ →? Γ1(var)} ∪ ⊔γE
Γ2 = Γ1[var 7→ α†]

γ ` var = x .M (x1, .. , xn) : Γ1 ⇒ Γ2, C, E

ST-WHILE

β† ` s : Γ1 ⇒ Γ2, C′, E
Γ3, C′′ = Γ1 t Γ2

C = {γ ≤ β†,Γ1(x) ≤ β†,Γ1(y) ≤ β†} ∪ C′

γ ` while (x == y){s} : Γ1 ⇒ Γ2, C, E

ST-IF

β† ` s1 : Γ1 ⇒ Γ′2, C1, E1
β† ` s2 : Γ1 ⇒ Γ′′2 , C2, E2

C′ = {γ ≤ β†,Γ1(x) ≤ β†,Γ1(y) ≤ β†}
Γ2, C′′ = Γ′2 t Γ′′2
C = C1 ∪ C2 ∪ C′ ∪ C′′

γ ` if (x == y){s1}{s2} : Γ1 ⇒ Γ2, C, E1 ∪ E2

ST-IFLABEL

Γ′1 = Γ1[var 7→ α†]
β† ` s1 : Γ′1 ⇒ Γ′2, C1, E1
β† ` s2 : Γ1 ⇒ Γ′′2 , C2, E2

a ∈ {A, ?}
C′ = {γ ≤ β†, a ≤ β†,Γ1(x) ≤ ?,A ≤ α†}

Γ2, C′′ = Γ′2 t Γ′′2
C = C1 ∪ C2 ∪ C′ ∪ C′′

γ ` iflabel (x v A; var){s1}{s2} : Γ1 ⇒ Γ2, C, E1 ∪ E2

ST-IFPC

β† ` s1 : Γ1 ⇒ Γ′2, C1, E1
γ ` s2 : Γ1 ⇒ Γ′′2 , C2, E2
C′ = {γ ≤ ?,A ≤ β†}

Γ2, C′′ = Γ′2 t Γ′′2
C = C1 ∪ C2 ∪ C′ ∪ C′′

γ ` ifpc (A){s1}{s2} : Γ1 ⇒ Γ2, C, E1 ∪ E2

ST-SEQ

γ ` s1 : Γ1 ⇒ Γ2, C1, E1
γ ` s2 : Γ2 ⇒ Γ3, C2, E2

γ ` s1; s2 : Γ1 ⇒ Γ3, C1 ∪ C2, E1 ∪ E2

ST-CXCAST

β† ` s : Γ1 ⇒ Γ2, C′, E
C = {pc ≤ β†, γ ≤ pc′} ∪ C′

pc′ . pc

γ ` (pc′ V pc){s} : Γ1 ⇒ Γ2, C, {pc′}

Fig. 23. Statics: statement typing

19

γ, `, g ` E : Γ1 ⇒ Γ2, C, E|`′, g′

ET-HOLE

γ, `, g ` 〈〉 : Γ1 ⇒ Γ2, C, E|`, g

ET-CX
` ≤ `′ g ≤ g′ `′ ≤ g′

β†, `′, g′ ` E : Γ1 ⇒ Γ2, C′, E|`′′, g′′
C = C′ ∪ {γ ≤ β†}

γ, `, g ` cx [`′]{E} : Γ1 ⇒ Γ2, C, E|`′′, g′′

ET-CALLING
var1, .. , varn = params (M)

Sig = signature (M)
y = return (M)

E = effects (M) Γ′1, C′ ` L′

•, •, g ` E : Γ′1 ⇒ Γ′2, C′, E ′|`′′, g′′
C′ ∪ {Γ′2(y) ≤ return} <: constraints (Sig)

E ′ <: E Γ2 = Γ1[var 7→ α†]
C′′ = {Γ1(x) ≤ α†} ∪ Sig [@var1 7→ Γ1(x ′1), .. ,@varn 7→ Γ1(x ′n),@ return 7→ α†]

C = C′′ ∪ ⊔γE
γ, `, g ` call [M , var , x, x ′1, .. , x

′
n ,L

′]{E} : Γ1 ⇒ Γ2, C, E|`′′, g′′

ET-CXCAST
pc . pc′ pc V pc′ ` `V `′

pc V pc′ ` g V g′

β†, `′, g′ ` E : Γ1 ⇒ Γ2, C′, E ′|`′′, g′′
C′′ = {γ ≤ pc, pc′ ≤ β†}

γ, `, g ` cx [pc/`/g V pc′/`′/g′]{E} : Γ1 ⇒ Γ2, C′ ∪ C′′, {pc}|`′′, g′′

ET-SEQ

γ, `, g ` E : Γ1 ⇒ Γ2, C1, E1|`′′, g′′
γ ` s2 : Γ2 ⇒ Γ3, C2, E2

γ, `, g ` E ; s2 : Γ1 ⇒ Γ3, C1 ∪ C2, E1 ∪ E2|`′′, g′′

Fig. 24. Statics: typing of execution contexts

a . a ′

CSTBL-FROM-DYNAMIC

? . a

CSTBL-TO-DYNAMIC

a . ?

CSTBL-PUBLIC-TO-STATIC

• . A

CSTBL-STATIC-TO-PUBLIC

⊥ . •

Fig. 25. Statics: typing of execution contexts

20

