
Secure Compilation Using Micro-Policies
(Extended Abstract)

Yannis Juglaret
Université Paris Diderot (Paris 7)

and Inria Paris-Rocquencourt

Cătălin Hriţcu
Inria Paris-Rocquencourt

Abstract—Micro-policies are instruction-level security monitor-
ing mechanisms based on fine-grained metadata tags. In this talk,
we will show how targeting a micro-policy machine can help in
building an efficient secure compiler for a simple object-oriented
language. We will present the challenges of devising a fully
abstract compiler for this language, and discuss the additional
challenges that arise when moving to more complex languages.

Secure—or fully abstract [1]—compilers preserve all ab-
stractions of the source language when translating a program.
This means that a low-level attacker has no more power than a
high-level one. In particular, such a compiler allows program-
mers and automated tools to reason about the security of a
program using the abstractions available at the high level. En-
forcing full abstraction all the way to the machine code level is,
however, very hard. While some fully abstract compilers have
been built [5], they often have very large overhead, large TCB,
or only provide probabilistic guarantees against specific attacks
[2]. We believe that this is the necessary price one has to pay
for using current hardware, with its lack of security. Providing
more protection at the hardware level looks like a mandatory
first step towards efficient secure compilation. Recent work [5]
has illustrated how protected module architectures, a coarse-
grained hardware isolation mechanism, can help in devising
a secure compilation scheme for a simple object-oriented
language. This compilation scheme distinguishes one trusted
component from its untrusted low-level context (attacker), and
ensures that the context cannot break the guarantees of the
protected component.

Many vulnerabilities in today’s computer systems can be
avoided if low-level code is constrained to obey sensible
safety and security properties. Ideally, such properties might
be enforced statically, but for obtaining pervasive guarantees
all the way to the level of running machine code it is often
more practical to detect and prevent violations dynamically
using a reference monitor. Our work is part of a long-term
collaborative project aimed at showing how a rich set of
micro-policies—instruction-level security monitoring mecha-
nisms based on fine-grained metadata tags—can be described
as instances of a common dynamic monitoring framework,
formalized and reasoned about with unified verification tools,
and efficiently implemented using programmable metadata-
propagation hardware [3], [4]. Micro-policies can be described
as a combination of software-defined rules and monitor ser-
vices. In a micro-policy machine, every word of data is
augmented with a word-sized metadata tag, and a hardware
monitor is in charge of propagating these tags every time
a machine instruction is executed. The rules define how the

monitor will perform tag propagation instruction-wise, while
the services allow for direct interaction between the running
code and the monitor.

Our current goal, which will be the topic of this talk,
is to show how targeting a micro-policy machine can help
in building efficient secure compilers. For this purpose, we
will present a simple object-oriented calculus with classes,
public methods, private fields, and static object declarations.
Compared to [5], we consider a finer-grained setting with
an arbitrary number of mutually distrustful components. In
this setting, we do not assume any compile-time knowledge
regarding which components may be corrupted at runtime, and
a secure compiler thus has to provide protection for each of
the high-level components separately to make sure that the
non-corrupted components’ abstractions will be preserved.

We will show the obstacles to full abstraction, and how
we can design a naive compartmentalization micro-policy that
ensures it. Then, we will consider a more efficient micro-
policy that allows low-overhead secure method calls between
different compartments; this micro-policy uses linear return
capabilities to ensure a proper call and return discipline. In
both cases, we will also outline the challenges of obtaining a
formal proof of full abstraction.

We will conclude by presenting future work. Our final goal
is to provide full abstraction for a functional programming
language. We plan to reach this goal gradually, by first
extending the source language with dynamic allocation, and
then moving to the untyped λ-calculus, in which dynamic
allocation is implicit, as a source language. To this end, we
intend to use a set of micro-policies that can be composed
to enforce the higher-level abstractions with low overhead:
control-flow integrity, stack protection, and memory safety.
We will outline some of the challenges that arise, and how
we plan to overcome them.

REFERENCES

[1] M. Abadi. Protection in programming-language translations, 1998.
[2] M. Abadi and G. D. Plotkin. On protection by layout randomization.

ACM Trans. Inf. Syst. Secur., 15(2):8, 2012.
[3] A. Azevedo de Amorim, M. Dénès, N. Giannarakis, C. Hriţcu, B. C.

Pierce, A. Spector-Zabusky, and A. Tolmach. Micro-policies: Formally
verified, tag-based security monitors. In 36th IEEE Symposium on Security
and Privacy (Oakland S&P). 2015.

[4] U. Dhawan, C. Hriţcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith,
T. F. Knight, Jr., B. C. Pierce, and A. DeHon. Architectural support for
software-defined metadata processing. ASPLOS, 2015.

[5] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and F. Piessens.
Secure compilation to protected module architectures. ACM Transactions
on Programming Languages and Systems, 2015.

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-154.pdf
http://doi.acm.org/10.1145/2240276.2240279
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-policies.pdf
http://ic.ese.upenn.edu/abstracts/sdmp_asplos2015.html
http://ic.ese.upenn.edu/abstracts/sdmp_asplos2015.html
http://people.cs.kuleuven.be/~marco.patrignani/Publications_files/scoo-j.pdf

	References

