A Proof Technique for Noninterference In Open Systems: An extended version
(Extended Abstract)

Enrico Scapin
University of Trier, Germany

In [3], a framework has been proposed which allows tools
that can check standard noninterference properties but a priori
cannot deal with cryptography, in particular probabilities and
polynomially bounded adversaries, to establish cryptographic
indistinguishability properties, such as privacy properties,
for Java programs. The framework combines techniques
from program analysis and cryptography, more specifically,
universal composability [1], a well-established concept in
cryptography. The idea is to first check noninterference
properties for the Java program to be analyzed where
cryptographic operations (such as encryption) are performed
within so-called ideal functionalities. Such functionalities
typically provide guarantees even in the face of unbounded
adversaries and can often be formulated without probabilistic
operations and, therefore, they can be carried out by tools
that a priori cannot deal with cryptography.

At the core of the framework, there are results linking
the notion of (termination-insensitive) noninterference [4]
with the notion of cryptographic indistinguishability: in order
to assert that two systems using cryptographic operations
are computational indistinguishable, it is enough to show
that these systems are noninterferent when the cryptographic
operations are replaced by their corresponding ideal func-
tionalities.

As to checking non-interference, many program analysis
tools can only deal with closed Java programs. The systems
to be analyzed are, however, often open: they interact with
a network or use some libraries which are not necessarily
trusted and, hence, are not part of the code to be analyzed;
instead, they are considered as part of the environment with
unspecified behavior. Therefore, [3] intruduces the notion
of noninterference in an open system, i.e., in a system not
completely defined: An open system S is noninterferent if for
each environment E this system can be composed with, the
resulting close system S E is also noninterferent. As part of
the framework, a proof technique was proposed to reduce the
problem of checking noninterference in an open system to
checking noninterference for a single (almost) closed system.
Technically, this result shows how to construct, for an open
system S, a family of environments Ej; parametrized by an
input sequence #, such that S is noninterferent if and only if
S composed with Ej; is noninterferent for all i. Importantly,
the latter property can be verified using existing tools for
program analysis.

Our Contribution. The framework is formulated for a
language called Jinja+ and is proven w.r.t. the formal

semantics of this language. Jinja+ is a Java-like language that
extends the language Jinja [2] with, among others, arrays, the
type byte, and the abort primitive. In this work, we further
extend its syntax and semantics with: (a) java-interfaces,
(b) abstract classes, (c) strings. Except for the result discussed
below, all definitions and results of the framework carry out
easily to the extended language. That is, the new types
of values and the new rules of the augmented small-step
semantics do not affect the proofs in a significant way.

One result, however, namely the proof technique for
proving noninterference in open systems, required non-
trivial modifications to model the exchange of data between
the system and the environment when also strings are
involved. In particular, the exchange of data through string
references introduces subtle changes in the original result
and, technically, invalidates the main assumption the result is
based on, i.e., the separation between the state of the system
and the state of the environment. Therefore, we extend the
construction of Ej to handle exchange of string references.
Furthermore, relying on the fact that the Java (Jinja+) strings
are immutable, we relax the state separation assumption
and adopt the proof in a non-trivial way to work with the
new (relaxed) assumption. Based on this premise, we then
reshaped the proof technique for proving noninterference in
open systems taking into account string references, too. We
refer the reader to [5] for all the details.

REFERENCES

[1] R. Canetti. Universally Composable Security: A New Paradigm
for Cryptographic Protocols. In Proceedings of the 42nd Annual
Symposium on Foundations of Computer Science (FOCS 2001).

[2] Gerwin Klein and Tobias Nipkow. A Machine-Checked Model
for a Java-Like Language, Virtual Machine, and Compiler. ACM
Trans. Program. Lang. Syst., 2006.

[3] Ralf Kiisters, Tomasz Truderung, and Jiirgen Graf. A Frame-
work for the Cryptographic Verification of Java-like Programs.
In 25th IEEE Computer Security Foundations Symposium (CSF
2012).

[4] Andrei Sabelfeld and Andrew C. Myers. Language-Based
Information-Flow Security. IEEE Journal on Selected Areas in
Communications, special issue on Formal Methods for Security,
2003.

[5] Enrico Scapin. A proof technique for noninterference in open
systems: An extended version. Available at http://infsec.uni-trier.
de/publications/paper/Scapin-Inoninterference-ext-2015.pdf.



