
An Information-Theoretic Model for Adaptive
Side-Channel Attacks

Boris Köpf
Information Security

ETH Zurich, Switzerland
bkoepf@inf.ethz.ch

David Basin
Information Security

ETH Zurich, Switzerland
basin@inf.ethz.ch

ABSTRACT
We present a model of adaptive side-channel attacks which
we combine with information-theoretic metrics to quantify
the information revealed to an attacker. This allows us to
express an attacker’s remaining uncertainty about a secret
as a function of the number of side-channel measurements
made. We present algorithms and approximation techniques
for computing this measure. We also give examples of how
they can be used to analyze the resistance of hardware im-
plementations of cryptographic functions to both timing and
power attacks.

Categories and Subject Descriptors
D.4.6 [Software]: Security and Protection

General Terms
Security

1. INTRODUCTION
Side-channel attacks against cryptographic algorithms aim

at breaking cryptography by exploiting information that is
revealed by the algorithm’s physical execution. Characteri-
stics such as running time [18, 6], cache behavior [28], power
consumption [19], and electromagnetic radiation [15, 31] ha-
ve all been exploited to recover secret keys from implemen-
tations of different cryptographic algorithms. Side-channel
attacks are now so effective that they pose a real threat to
the security of devices like smart-cards, which can be sub-
jected to different kinds of measurements. This threat is not
covered by traditional notions of cryptographic security and
models for proving resistance against such attacks are only
now emerging [25, 37].

Two factors determine whether an attacker can successful-
ly mount a side-channel attack on a system and recover a
secret key (or other secret data): first, he must be able to ex-
tract information about the key through side-channel mea-
surements. Second, he must be able to effectively recover the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’07, October 29–November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-703-2/07/0011 ...$5.00.

key from the extracted information. To prove that a system
is resistant to side-channel attacks, one must ensure that no
realistic attacker can fulfill both conditions. In theory, key
recovery may be computationally infeasible, even if the key
is completely revealed in an information-theoretic sense.1

In practice, however, this is often not the case: keys have
been successfully recovered from side-channel information
from a broad range of cryptographic algorithms on different
platforms, e.g., [6, 8, 10, 19, 28]. When key recovery from
available information is feasible, the security of a system de-
pends entirely on the first factor: the quantity of information
about the key that can be extracted from the system’s side-
channels. There are no known results for determining this
quantity for a given system with respect to the attackers
that can interact with it as in, e.g., [6, 8, 18, 28].

In this paper, we propose a solution to this problem for
deterministic systems: we present a model that allows us
to express the quantity of information that an adaptive at-
tacker can extract from a system, and we provide algorithms
and approximation techniques for computing this quantity.

Our model is based on a definition of attack strategies,
which are explicit representations of the adaptive decisions
made by an attacker during attacks. We combine attack stra-
tegies with information-theoretic entropy measures. This al-
lows us to express the attacker’s expected uncertainty about
the secret after he has performed a side-channel attack fol-
lowing a given strategy.

Even if the attacker can perform arbitrary off-line analy-
sis on measurement data, his interactions with the system
under attack are often expensive or limited and their num-
ber needs to be considered when reasoning about a system’s
vulnerability. For example, the system may refuse multiple
interactions with the same agent or bound the number of
times it re-uses a secret, such as a session key. By quantify-
ing over all attack strategies of a fixed length n, we express
what attackers can, in principle, achieve in n attack steps.
We use this to define a function Φ that gives a lower bound
on the expected uncertainty about the key as a function of
the number of side-channel measurements. Since the bounds
given by Φ are information-theoretic, they hold for any kind
of analysis technique that a computationally unbounded at-
tacker might apply to analyze the measurements. Note that
such strong bounds are realistic. In template attacks [10],
the entire information contained in each measurement is ef-
fectively exploited for key recovery.

We give algorithms and (exponential) complexity bounds

1For example, an RSA public key contains all the informa-
tion about the corresponding private key.

for computing Φ. Furthermore, we propose two heuristic
techniques that reduce this complexity and thereby allow
us to estimate a system’s vulnerability for keyspace sizes for
which the direct computation of Φ is infeasible.

Our approach is parametric in the physical characteristics
of the side-channel, which can be described by deterministic
hardware models of the target system. In this way, the ac-
curacy of our method only depends on the accuracy of the
system model used. Furthermore, our approach accommoda-
tes different notions of entropy that correspond to different
kinds of brute-force guessing.

Finally, we have implemented our approach and we report
on experimental results using the resulting prototype. We
have analyzed hardware implementations of cryptographic
algorithms for their resistance to timing and power attacks,
thereby obtaining the following results: (1) an attacker can
extract one operand’s Hamming weight from the timing of a
direct implementation of integer multiplication, but a more
defensive implementation reveals no information; (2) only
a few timing measurements are needed to extract the enti-
re exponent information from the finite-field exponentiation
algorithm of [14]; and (3) one power trace of a finite-field
multiplication algorithm contains all information about one
of its operands. These results illustrate the potential of our
approach for both detecting possible side-channel attacks
and showing their absence.

Overall, our contributions are twofold. Theoretically, we
develop a simple model for adaptive side-channel attacks
that connects information-theoretic notions of security to
models for physical characteristics of hardware. Practically,
we show that our model can be applied to nontrivial hard-
ware implementations of cryptographic algorithms and we
use it to analyze their vulnerability to power and timing
attacks.

The remainder of this paper is structured as follows. In
Section 2 we introduce our model of adaptive attacks and
in Section 3 we extend it with information-theoretic measu-
res. In Section 4 we give algorithms and complexity bounds
for computing these measures and we report on experimen-
tal results in Section 5. We present related work and draw
conclusions in Sections 6 and 7.

2. THE MODEL
We start by describing the assumptions underlying our

model.

2.1 Attackers and Side-Channels

Attack Scenario.
Let K be a finite set of keys, M be a finite set of messa-

ges, and D be an arbitrary set. We consider cryptographic
functions of type F : K × M → D, where we assume that
F is invoked by two collaborating callers. One caller is an
honest agent that provides a secret argument k ∈ K and the
other caller is a malicious agent (the attacker) that provides
the argument m ∈ M . Examples of F are encryption and
decryption functions and MACs.

We assume that the attacker has no access to the values
of k and F (k, m), but that he can make physical observati-
ons about F ’s implementation IF that are associated with
the computation of F (k,m). Examples of such observations
are the power or the time consumption of IF during the
computation (see [19, 24] and [18, 8, 6, 28], respectively).

Typically, the key k is a long-term secret that remains
constant during different calls to F . The malicious agent
performs an attack in order to gather information for dedu-
cing k or narrowing down its possible values. Such an attack
consists of a sequence of attack steps, each with two parts:
A query phase in which the attacker decides on a message m

and sends it to the system, and a response phase in which
he observes IF while it computes F (k, m). The attack is ad-
aptive if the attacker can use the observations made during
the first n steps to choose the query for the n+1st step. An
attack ends if either the honest agent changes the key (as-
suming the independence of the old and new keys) or if the
attacker stops querying the system.

Discrete Side-Channel Measurements.
We assume that the attacker can make one side-channel

measurement per invocation of the function F and that no
measurement errors occur. Furthermore, we assume that the
attacker has full knowledge about the implementation IF .
These strong assumptions are justified as our goal is to gi-
ve bounds on what side-channel attackers can, in principle,
achieve.

Given our assumptions, a side-channel is a function fIF
:

K × M → O, where O is the set of possible observations,
and fIF

is known to the attacker. We will usually leave IF

implicit and abbreviate fIF
by f .

Example 1. Suppose that F is implemented in synchro-
nous (clocked) hardware and that the attacker is able to de-
termine IF ’s running times up to single clock cycles. Then
the timing side-channel of IF can be modeled as a function
f : K × M → N that represents the number of clock ticks
consumed by an invocation of F . A hardware simulation en-
vironment can be used to compute f .

Example 2. Suppose F is given in a description language
for synchronous hardware. Power estimation techniques such
as [27, 40] can be used to determine a function f : K×M →
R

n that estimates an implementation’s power consumption
during n clock ticks.

If the function f accurately models the side-channel, then
any randomness in a physical attacker’s measurements is due
to noise and the assumption of error-free measurements is
a safe worst-case characterization of the attacker’s capabili-
ties. One can also derive f from the implementation IF .

Example 3. Suppose a hardware implementation IF of F

is given. As in template attacks [10], average values of IF ’s
power consumption for fixed input values k and m can be
used to define f(k, m).

As in template attacks, the attacker can use noise models of
the target implementation to extract the maximal informa-
tion from his measurements, that is, the value of f .

2.2 Attack Strategies
An adaptive attacker chooses his queries with the know-

ledge of previously revealed side-channel information. We
use trees to define attack strategies, which capture these ad-
aptive choices. Subsequently, we also formalize non-adaptive
attacks, that is, attacks in which the malicious agent gathers
all side-channel information before performing any analysis.
To begin with, we motivate an abstract view of attack steps,
which is the key to the simplicity of our model.

Attacker’s Choices and Knowledge.
During the query phase, the attacker decides which mes-

sage m ∈ M to query the system with. In the response
phase, he learns the value f(k, m). In general, he cannot de-
duce k from f(k, m). What he can deduce though (assuming
full knowledge about the implementation IF and unbounded
computational power) is the set of keys that are coherent
with the observation f(k, m). Namely, assuming a fixed f ,
we say that a key k is coherent with o ∈ O under m ∈ M

whenever f(k, m) = o holds. Two keys k and r are indistin-
guishable under m iff f(r, m) = f(k, m). Note that for every
m ∈ M , indistinguishability under m is an equivalence rela-
tion on K. For every o ∈ O, the set of keys that are coherent
with o under m forms an equivalence class of indistinguis-
hability under m. The set of keys that are coherent with the
attacker’s observation under the attacker’s input is the set
of keys that could possibly have led to this observation; we
use this set to represent the attacker’s knowledge about the
key after an attack step.

Functions as Sets of Partitions.
We now provide an abstract formalization of attack steps.

As is standard, a partition P = {B1, . . . , Br} of K is a set
of pairwise disjoint blocks with

⋃r

i=1 Bi = K. Observe that
every equivalence relation R on K corresponds to a partition
PR of K, where the equivalence classes of R are the blocks
of PR. In this way, a function f : K × M → O gives rise to
a set of partitions Pf = {Pm | m ∈ M}, where Pm is the
partition induced by indistinguishability under m.

In terms of the set of partitions Pf , the two phases of an
attack step can be described as follows.

1. In the query phase, the attacker chooses a partition
P ∈ Pf .

2. In the response phase, the system reveals the block
B ⊆ P that contains k.

Conversely, given a set of partitions P, one can easily defi-
ne a (non-unique) function f , with Pf = P. In this sense,
the partition-based and the functional viewpoints are equi-
valent. Formalizing f in terms of Pf only abstracts from
the concrete values that f takes, which are irrelevant for
assessing the information that is revealed by f . For clarity
of presentation, we will subsequently focus on the partition-
based viewpoint.

For this, we need to introduce additional notation. We
say that a partition Q of a set K refines a partition P of
K (denoted by Q v P) iff every block of Q is contained in
some block of P . For A ⊆ K, we define the restriction of P

to A as {A ∩ B | B ∈ P} and denote it by A ∩ P . Clearly,
A∩P is a partition of A. For partitions P and Q, we define
P ∩ Q as the partition {A ∩ B | A ∈ P, B ∈ Q}. Note that
P ∩Q v P and P ∩Q v Q. We are now ready to generalize
from single attack steps to entire attacks.

Formalizing Attack Strategies.
To model adaptive attacks, we proceed as follows. We as-

sume a fixed set of partitions P of K and we use a tree
whose nodes are labeled with subsets of K to formalize the
attacker’s decisions with respect to his possible observations.
In this tree, an attack step is represented by a node together
with its children. The label A of the parent node is the set
of keys that are coherent with the attacker’s observation at

{1, 2, 3, 4}

@@��

{1, 2} {3, 4}

@@��
{1} {2}

@@��
{3} {4}

Figure 1: Attack Strategy

this point; hence it represents the basis for the attacker’s
decision. The labels of the children form a partition of A.
We require that this partition is of the form A∩P for some
P ∈ P. This corresponds to the attacker’s choice of a que-
ry. By observing the system’s response, the attacker learns
which successor’s block actually contains the key. This no-
de is the starting point for subsequent attack steps. Trees
of this form represent attack strategies, which we formalize
below.

Example 4. Let K = {1, 2, 3, 4} and consider the set of
partitions P = {{{1}, {2, 3, 4}}, {{1, 2}, {3, 4}}, {{1, 2, 3},
{4}}} of K. Suppose the attacker picks {{1, 2}, {3, 4}} as
his first query. If the system responds with {1, 2}, the at-
tacker chooses {{1}, {2, 3, 4}} as his next query. Otherwise,
he chooses {{1, 2, 3}, {4}}. In this way, he can determine
any key in two steps. The corresponding attack strategy is
depicted in Figure 1.

Formally, let T = (V, E) be a tree with nodes V and edges
E ⊆ V × V . For every node v ∈ V , we denote the set of its
successors as succ(v) = {w | (v, w) ∈ E}. The height of a
tree T is the length of a longest path in T .

Definition 1. Let P be a set of partitions of K. An attack
strategy against P is a triple (T, r, L), where T = (V, E) is a
tree, r ∈ V is the root, and L : V → 2K is a node labeling
with the following properties:

1. L(r) = K, and

2. for every v ∈ V , there is a P ∈ P with L(v) ∩ P =
{L(w) | w ∈ succ(v)}.

An attack strategy is of length l if T has height l. An attack
is a path (r, . . . , t) from the root r to a leaf t of T .

Requirement 1 of Definition 1 expresses that, a priori, every
key in K is possibly chosen by the honest agent. Require-
ment 2 expresses that the labels of the children of each node
form a partition of their parent’s label and that this par-
tition is obtained by intersecting the label with a P ∈ P.
A simple consequence of requirements 1 and 2 is that the
labels of the leaves of an attack strategy partition the label
of the root node. This leads to the following definition.

Definition 2. The partition induced by the attack strategy
a = (T, r, L) is the set {L(v) | v is a leaf of T}, which we
denote by Pa. We define the set of keys that are coherent
with an attack a = (r, . . . , t) as L(t).

Observe that this definition of coherence corresponds to our
prior definition considering attacks (r, t) of length 1: The
keys that are coherent with an observation o under m form

the block L(t) that the system reveals when queried with
Pm.

To clearly distinguish between adaptive and non-adaptive
attacks, we briefly sketch how the latter can be cast in our
model.

Non-adaptive Attack Strategies.
An attack strategy is called non-adaptive if the attacker

does not have access to the system’s responses until the end
of the attack. Thus, when choosing a message, he cannot
take into account the outcomes of his previous queries. In
our model, this corresponds to the attacker choosing the
same partition in all nodes at the same level of the attack
strategy.

Formally, the level of a node v ∈ V in an attack strategy
a = (T, r, L), with T = (V, E), is the length of the path from
the root r to v. A tree is full if all leaves have the same level.

Definition 3. An attack strategy a = (T, r, L) is non-
adaptive iff T is full and for every level i there is a Pi ∈ P
such that L(v) ∩ Pi = {L(w) | w ∈ succ(v)}, for every v of
level i.

Note that we require the tree to be full to exclude observation-
dependent termination of attacks. The structure of non-
adaptive attacks is simpler than that of adaptive attacks
and we can straightforwardly represent the partitions indu-
ced.

Proposition 1. Let a be a non-adaptive attack strategy
of length l against P. Then we have

Pa =

l−1
⋂

i=0

Pi ,

where Pi ∈ P is the partition chosen at level i ∈ {0, . . . , l−1}
of a.

Proof. We prove the assertion by induction on the length
l of a = (T, r, L). If l = 0, we have Pa = L(r) = K =

⋂

∅. If
l > 0, consider the full subtree T ′ of height l−1 of T . We have
Pa = {L(w) | w is a leaf of T} =

⋃

v
{L(w) | w ∈ succ(v)},

where v ranges over the leaves of T ′. By Definition 3 and the
induction hypothesis, we conclude Pa =

⋃

v
L(v) ∩ Pl−1 =

⋂l−2
i=0 Pi ∩ Pl−1 =

⋂l−1
i=0 Pi.

Observe that, since ∩ is commutative, the order of the que-
ries is irrelevant. This is consistent with the intuitive notion
of a non-adaptive attack, as the side-channel information is
only analyzed when the attack has finished.

In the next section, we will extend the model presented
with measures for the quantitative evaluation of attack stra-
tegies. Afterwards, we use this quantitative model to give
bounds on what attackers can possibly achieve in a given
number of attack steps.

3. QUANTITATIVE EVALUATION OF
ATTACK STRATEGIES

In Section 2, we used the induced partition Pa to represent
what an attacker learns about the key by following an attack
strategy a. Intuitively, the attacker obtains more informati-
on (or equivalently, reduces the uncertainty) about the key
as Pa is refined. Information-theoretic entropy measures can
be used to express the remaining uncertainty. Focusing on

the remaining entropy, instead of the attacker’s information
gain, provides a concrete, meaningful measure that quan-
tifies the attacker’s effort for key recovery by brute-force
guessing under the worst-case assumption that he can ac-
tually determine the set of keys that are coherent with his
observations during the attack. The viewpoints are informal-
ly related by the equation initial uncertainty = information
gain + remaining uncertainty, which we will make explicit
in the following.

3.1 Measures of Uncertainty
We now introduce three entropy measures, which corre-

spond to different notions of resistance against brute-force
guessing. Presenting these different measures serves two pur-
poses. First, it accommodates the fact that different types of
guesses and different notions of success for brute-force gues-
sing correspond to partially incomparable notions of entropy
[22, 7, 30]. Second, it demonstrates how the possibilistic mo-
del presented in Section 2 can serve as a basis for a variety
of probabilistic extensions.

In the following, assume a probability measure p is given
on K and is known to the attacker. For a random variable
X : K → X with range X , we define pX : X → R as
pX(x) =

∑

k∈X−1(x) p(k), which in the literature is often

denoted by p(X = x). For a partition P of K, there are
two variables of particular interest. The first is the random
variable U that models the random choice of a key in K

according to p (i.e., U = idK). The second is the random
variable VP that represents the choice of the enclosing block
(i.e., VP : K → P , where k ∈ VP (k)). For an attack strategy
a, we abbreviate VPa

by Va.

Shannon Entropy.
The (Shannon) entropy [35] of a random variable X : K →

X is defined as

H(X) = −
∑

x∈X

pX(x) log2 pX(x) .

The entropy is a lower bound for the average number of bits
required for representing the results of independent repeti-
tions of the experiment associated with X. Thus, in terms
of guessing, the entropy H(X) is a lower bound for the ave-
rage number of binary questions that need to be asked to
determine X’s value [7].

Given another random variable Y : K → Y, H(X|Y = y)
denotes the entropy of X given Y = y, that is, with respect
to the distribution pX|Y =y. The conditional entropy H(X|Y)
of X given Y is defined as the expected value of H(X|Y = y)
over all y ∈ Y, namely,

H(X|Y) =
∑

y∈Y

pY (y)H(X|Y = y) .

Entropy and conditional entropy are related by the equati-
on H(XY) = H(Y) + H(X|Y), where XY is the random
variable defined as XY (k) = (X(k), Y (k)).

Consider now an attack strategy a and the corresponding
variables U and Va. H(U) is the attacker’s initial uncertainty
about the key and H(U |Va = B) is the attacker’s remaining
uncertainty about the key after learning the key’s enclosing
block B ∈ Pa. H(U |Va) is the attacker’s expected remaining
uncertainty about the key after performing an attack with
strategy a. As the value of Va is determined from U , we have
H(UVa) = H(U). The equation H(U) = H(Va) + H(U |Va)

is the formal counterpart of the informal equation given at
the start of this section.

Guessing Entropy.
The guessing entropy of a random variable X is the avera-

ge number of questions of the kind “does X = x hold” that
must be asked to guess X’s value correctly [22].

As we assume p to be public, the optimal procedure is to
try each of the possible values in order of their decreasing
probabilities. W.l.o.g., let X be indexed such that pX(xi) ≥
pX(xj), whenever i ≤ j. Then the guessing entropy G(X) of
X is defined as G(X) =

∑

1≤i≤|X| i pX(xi). Analogously to
the conditional Shannon entropy, one defines the conditional
guessing entropy G(X|Y) as

G(X|Y) =
∑

y∈Y

pY (y)G(X|Y = y) .

G(X|Y) represents the expected number of optimal gues-
ses needed to determine X when the value of Y is already
known. Hence, G(U |Va) is a lower bound on the expected
number of off-line guesses that an attacker must perform for
key recovery after having carried out a side-channel attack
with strategy a.

Marginal Guesswork.
For a fixed α ∈ [0, 1], the marginal guesswork of a random

variable X quantifies the number of questions of the kind
“does X = x hold” that must be asked until X’s value is
correctly determined with a chance of success given by α [30].
Again, w.l.o.g. let X be indexed such that pX(xi) ≥ pX(xj),
whenever i ≤ j. Then the (α)-marginal guesswork of X is
defined as

Wα(X) = min{j |
∑

1≤i≤j

pX(xi) ≥ α} .

We define the conditional marginal guesswork Wα(X|Y)
analogously to the conditional entropy. As before, Wα(U |Va)
is a lower bound on the expected number of guesses that an
attacker needs to perform in order to determine the secret
with a success probability of more than α after having car-
ried out a side-channel attack with strategy a.

Uniform Distributions.
If p is uniformly distributed, one can derive simple explicit

formulae for the entropy measures presented so far.

Proposition 2. Let a be an attack strategy with Pa =
{B1, . . . , Br}, |Bi| = ni, and |K| = n. If p is uniformly
distributed, then

1. H(U |Va) = 1
n

∑r

i=1 ni log ni,

2. G(U |Va) = 1
2n

∑r

i=1 n2
i + 1

2
, and

3. Wα(U |Va) = 1
n

∑r

i=1 nidαnie.

Proof. For the proof of 2.2, observe that G(U |Va) =
∑r

i=1
ni

n

∑ni

j=1 j 1
ni

= 1
n

∑r

i=1
(ni+1)ni

2
. We conclude that

G(U |Va) = 1
2n

∑r

i=1 n2
i + 1

2
. The other cases are similarly

straightforward.

While there are clear connections between the entropy
measures in the uniform case, there is no general relationship

between them for arbitrary probability distributions. Mas-
sey [22] shows that one can give lower bounds for G(X) in
terms of H(X), but that there are no general upper bounds
for G(X) in terms of H(X). Pliam [30] shows that there can
be no general inequality between marginal guesswork and
Shannon entropy.

Worst Case Entropy Measures.
All entropy measures presented so far are average case

measures. We use the example of guessing entropy to illu-
strate this and to show how they can be adapted to accom-
modate stronger, worst case guarantees.

The conditional guessing entropy G(U |Va) weights each
value G(U |Va = B) by the probability that a randomly cho-
sen key from K is contained in B ∈ Pa. As G(U |Va = B)
measures the difficulty of guessing a key if its enclosing block
B is known, G(U |Va) quantifies whether keys are, on the
average, hard to guess after an attack with strategy a.

Our model also accommodates entropy measures for a
worst case analysis, in the sense that they quantify the gues-
sing effort for the keys in K that are easiest to guess. To cap-
ture this, we define the minimal guessing entropy Ĝ(U |Va) of

U given Va as Ĝ(U |Va) = min{G(U |Va = B) | B ∈ Pa}. The

value Ĝ(U |Va) is a lower bound on the expected guessing
effort for the weakest keys in K.

The following example illustrates the difference between
worst case and average case entropy measures.

Example 5. Consider a set of uniformly distributed keys
K = {1, . . . , 10} and the partitions P = {{1}, {2, . . . , 10}}

and Q = {{1}, . . . , {10}}. We have Ĝ(U |VP) = 1, which re-
flects that there exists a key that is trivial to guess with
knowledge of its enclosing block in P . The conditional gues-
sing entropy yields G(U |VP) = 4.6 which reflects that, on
the average, 4.6 guesses are still necessary for key recove-
ry. Note that Ĝ(U |VP) = Ĝ(U |VQ) and that G(U |VQ) =
1 < G(U |VP). That is, only the average case measure can
distinguish between the partitions P and Q.

Ultimately, it will depend on the application whether worst
case or average case measures are appropriate. For the re-
mainder of this paper, we will focus solely on average case
measures, as they are better suited for distinguishing bet-
ween partitions. All of our technical results, however, carry
over to the worst case versions with only minor modificati-
ons.

Given entropy measures for evaluating attack strategies,
we can now define attack optimality and give bounds for
what an attacker can, in principle, achieve by performing a
side-channel attack.

3.2 Measuring the Resistance to Optimal
Attacks

There is a trade-off between the number of attack steps ta-
ken and the attacker’s uncertainty about the key. More side-
channel measurements imply less uncertainty, which entails
fewer guesses. In the following, we give a formal account of
this for the entropy measures introduced. We then define a
function ΦE that is parameterized by an entropy measure
E ∈ {H, G, Wα} and whose value is the expected remaining
uncertainty about the key after n steps of an optimal attack
strategy. As we will show, ΦE can be used for assessing an
implementation’s vulnerability to side-channel attacks.

When assessing the vulnerability of an implementation
to active side-channel attacks, we make the worst case as-
sumption that the attacker proceeds optimally. A strategy
is optimal if an attacker who follows it can expect to have
less uncertainty about the key than with any other strategy
of the same length.

Definition 4. Let a = (T, r, L) be an attack strategy of
length l against a set of partitions P of K. We call a optimal
with respect to E ∈ {H, G, Wα} iff E(U |Va) ≤ E(U |Vb) holds
for all attack strategies b against P of length l.

Next, we define the expected remaining uncertainty as a
function of the number of attack steps taken by an optimal
attacker. In this way, we relate two important aspects of a
system’s vulnerability. Namely, how much information can
an attacker obtain and how many queries he needs for this.

Definition 5. Let P be a set of partitions of K and let
E ∈ {H, G, Wα}. We define the resistance ΦE to an attack
against P by

ΦE (n) = E(U |Va) ,

where a is an optimal attack of length n with respect to E .

We now formally justify the intuition that more attack steps
lead to less uncertainty about the key. In particular, we prove
that ΦE decreases monotonously. As notation, we say that
an attack strategy a = (T, r, L) is the prefix of an attack
strategy b = (T ′, r′, L′) if T is a subtree of T ′, r = r′, and
if L and L′ coincide on T . We denote this by a ≤ b.

Proposition 3. Let E ∈ {H, G, Wα} be an entropy mea-
sure and let a and b be attack strategies.

1. a ≤ b implies E(U |Va) ≥ E(U |Vb).

2. For all n ∈ N, we have ΦE (n) ≥ ΦE (n + 1).

Proof. We prove 3.1 for the case of the guessing entro-
py G. Consider a partition P of K. It is easy to see that

G(U |VP) =
∑

B∈P

∑|B|
i=1 i pU (xB

i), where the elements xB

of block B are indexed in order of their decreasing probabili-
ties. Observe that the probabilities in the sum do not depend
on P , but that the indices of the elements decrease as P is
refined. As a ≤ b implies Pa w Pb, 3.1 follows. Assertion 3.2
is a simple consequence of 3.1.

4. AUTOMATED VULNERABILITY
ANALYSIS

In the following, we first show that ΦE is computable for
E ∈ {H, G, Wα} and we give algorithms and complexity
bounds. The bounds are exponential and render direct com-
putation infeasible. We then present a greedy heuristic for
approximating ΦE to address this problem.

Throughout this section, let P be a set of partitions of
K and let r ≥ 2 be the maximum number of blocks of a
partition in P, i.e., r = max{|P | | P ∈ P}. We assume
that partitions are represented using standard disjoint-set
data structures with operations Union and Find (see, e.g.,
[13]). Furthermore, we assume that O and K are ordered
sets for which two elements can be compared in O(1). It is
not difficult to see that, given a function f : K × M → O,
one can build disjoint-set data structures for Pf in time
O(|M | |K| log |K|), under the assumption that f can be com-
puted in time O(1).

4.1 Computing ΦE

We begin by establishing an upper bound on the number
of attack strategies of a given length; we will use this later
when we compute ΦE by enumerating strategies.

Lemma 1. The number of attack strategies of length n

against P is bounded from above by |M |
rn
−1

r−1 . Furthermore,
every attack strategy of length n can be encoded by an rn-
tuple over {1, . . . , |M |}.

Proof. A straightforward inductive argument shows that
the partition induced by an attack strategy of length n has
at most rn blocks. We prove the claimed bound by inducti-
on on n. For n = 0, the bound is clearly valid. Assume now

that there are at most |M |
rn
−1

r−1 attack strategies of length
n. Each such attack strategy can be extended to an attack
strategy of length n+1 by assigning one of the |M | partitions
to every block of the induced partition. There are at most
rn blocks, so there are at most |M |r

n

possible extensions.

In total, there are at most |M |
rn
−1

r−1 · |M |r
n

= |M |
rn+1

−1

r−1

attack strategies of length n + 1, which concludes our in-
ductive proof. Now observe that the choices of partitions
at level j can be encoded by a rj-tuple (ij,1, . . . , ij,rj) over

{1, . . . , |M |}. As
∑n−1

j=0 rj = rn−1
r−1

≤ rn, the entire strategy
can be encoded by a rn-tuple.

Computing ΦE (n) requires identifying an optimal attack
of length n. We may compute ΦE (n) directly by brute for-
ce: enumerate all attack strategies and compute E for each
induced partition. This algorithm yields an upper bound for
the complexity of computing ΦE .

Theorem 1. The value ΦE (n) can be computed in time

O(n |M |r
n

|K| log |K|)

under the assumption that E can be computed in time O(|K|).

Proof. Let (i0; . . . ; in−1,1, . . . , in−1,rn−1), with 1 ≤ ij ≤
|M |, represent an attack strategy a of length n, where the
choices of partitions at each level are encoded as in the proof
of Lemma 1 and where the individual levels are separated
by “;”. Iterate over all k ∈ K. For each k, call Find(k) on
the representation of partition i0 to obtain the index j of k’s
enclosing block in Pi0 . Use Find(k) to obtain k’s block in
Pi1,j

. Repeat this procedure until k’s block in the partition
at depth n is determined. Save these n block indices in a list
and store it in an array I at index k. Performing this proce-
dure for all k ∈ K has time complexity O(n |K| log |K|). Two
keys are in the same block of the partition induced by a if and
only if their corresponding index lists coincide. To obtain
the equivalence classes, sort K according to the lexicogra-
phic order given by the lists in I in O(n |K| log |K|), which
dominates the running time for evaluating E on the resulting
partition. Performing this procedure for all attack strategies
yields an overall running time of O(n |M |r

n

|K| log |K|).

4.2 Approximating ΦE

Brute-force computation of ΦE requires time doubly expo-
nential in the number of attack steps and is hence infeasible
even for small parameter sizes. To address this problem, we
present a more efficient greedy heuristic and describe pro-
perties that help us approximate ΦE .

A Greedy Heuristic.
Consider an attacker who has performed a number of at-

tack steps against a set of partitions P and has narrowed
down the set of possible keys to a subset A ⊆ K. A gree-
dy choice for the subsequent query is a partition P ∈ P
that minimizes the remaining entropy of A ∩ P . To forma-
lize this, consider the random variable UA = idA that mo-
dels the random choice of a key according to the conditio-
nal probability distribution p(·|A), and the random variable
VP∩A : A → P ∩ A that models the choice of the enclosing
block in P ∩ A.

Definition 6. An attack strategy a = (T, r, L) against P,
with T = (V, E), is greedy with respect to E ∈ {H, G, Wα} iff
for every v ∈ V and all P, Q ∈ P, {L(w) | w ∈ succ(v)} =
L(v) ∩ P implies E(UA|VP∩A) ≤ E(UA|VQ∩A).

We next define an approximation Φ̂E of ΦE based on the
partition induced by a greedy strategy. Note that greedy
strategies are not unique and that the induced partitions
of two greedy strategies of the same length need not even
have the same entropy. Hence to define an approximation
Φ̂E we assume a fixed greedy strategy a of sufficient length
l whose underlying tree is full. For all n ≤ l, we denote
the full prefix of a with length n by a(n). We define Φ̂a

E

as Φ̂a

E (n) = E(U |Va(n)), for all n ≤ l. We only use a as an
artifact to consistently resolve the nondeterminism of greedy
strategies of different lengths. From now on, we assume that
a greedy strategy a of sufficient length is fixed and write Φ̂E

instead of Φ̂a

E .

Theorem 2. The value Φ̂E (n) can be computed in time

O(n r |M | |K|2) ,

under the assumption that E can be computed in time O(|K|).

Proof. For computing intersections of partitions, we as-
sume a list representation of the blocks of every partition, in
which every list is ordered with respect to the order on K.
This can be extracted from the given disjoint-set data struc-
tures in time O(|M | |K|2). For a fixed subset of K that is
represented as an ordered list, a greedy refinement can then
be computed by intersecting it with each of the (at most
r) blocks of each of the |M | partitions. As the set represen-
tations are ordered, this can be done in time O(r |M | |K|).
As the number of blocks in every partition of K is boun-
ded by |K|, computing n greedy steps can be done in time
O(n r |M | |K|2).

We state next several inequalities between the values of
ΦE and Φ̂E , which we will later use when interpreting our
experimental results.

Relating ΦE and Φ̂E .
The definition of a greedy strategy begs the question of

whether greedy strategies are also optimal. The following
example illustrates that this is not the case in general.

Example 6. Consider the set of partitions P = {{{1}, {2},
{3, 4, 5}}, {{1}, {2, 3, 4}, {5}}, {{1, 2, 3}, {4, 5}}}, a uniform
distribution, and the guessing entropy as a measure. A gree-
dy strategy refines K to {{1}, {2}, {3, 4, 5}} in a first step,
and to {{1}, {2}, {3, 4}, {5}} in a second step. Optimally,
however, one would first pick {{1, 2, 3}, {4, 5}} and refine it
to {{1}, {2}, {3}, {4}, {5}} in a second step.

greedy :: [Part k] -> Int -> [k] -> Part k
greedy f n keys = app n (greedystep f) [keys]

greedystep :: [Part k] -> Part k -> Part k
greedystep f pt = concat (map refine pt)

where refine b = minimumBy order (restrict b f)

Figure 2: Computing Φ̂E in Haskell

Although Example 6 implies that Φ̂E and ΦE do not coin-
cide in general, we can establish the following relationships.

Proposition 4. For E ∈ {H,G, Wα}, we have

1. Φ̂E (1) = ΦE (1),

2. for all n ∈ N, Φ̂E (n) ≥ ΦE (n), and

3. if Φ̂E (n) = Φ̂E (n+1), then we have ΦE (n′) = Φ̂E (n′) =

Φ̂E (n), for all n′ ≥ n.

Proof. Assertions 1 and 2 follow directly from Definiti-
ons 4 and 6. For Assertion 3, let a be the greedy strategy
underlying the definition of Φ̂E . Φ̂E (n) = Φ̂E (n + 1) implies
that Pa(n) cannot be refined by intersection with a partition
from P, hence Pa(n) =

⋂

P∈P P , which refines every parti-
tion that can be induced by intersection of elements from
P.

We will make use of Proposition 4 in our experiments. 4.2
shows that an implementation that is shown to be vulnerable
when analyzed with Φ̂E must also be vulnerable with respect
to ΦE . 4.3 implies that if Φ̂E levels off, then so does ΦE , and
their values coincide. Hence we do not need to compute ΦE

for arguments beyond this point.

4.3 An Implementation
For our experiments we have implemented Φ̂E in Has-

kell [5]. We have chosen simplicity over efficiency, forgoing
sophisticated data structures and optimizations. Instead, we
represent sets as lists and partitions as lists of lists and re-
cursively compute greedy refinements of partitions. The core
routines are given in Figure 2.

The function greedy takes as arguments a list of keys,
a list of partitions f of the list keys, and an integer n. It
refines the trivial partition [keys] by n-fold application of
a greedy refinement step through app. The refinement step
is implemented in greedystep, where each partition pt is
refined by greedily refining each individual block. This is
done in refine, which maps each block to its partition with
minimal rank among those obtained by restricting the ele-
ments of f to b with restrict. The rank of a partition is
given by the function order, which can be instantiated to
E ∈ {H, G, Wα}. Applying order to the result of greedy

yields Φ̂E . The simplicity of this implementation shows that
the automation of our techniques is indeed straightforward.

5. EXPERIMENTS
In this section, we report on case studies analyzing im-

plementations of different cryptographic algorithms with re-
spect to their vulnerability to timing and power attacks.
We focus on implementations in synchronous hardware as,
in this setting, time and power consumption are relatively
easy to determine.

As examples, we analyze the timing behavior of circuits
for multiplying integers and for exponentiation in finite fields
F2w . We also analyze the power consumption of a (constant-
time) circuit for multiplication in F2w . Exponentiation and
multiplication over F2w are relevant, for example, in the
generalized ElGamal encryption scheme, where decryption
consists of exponentiation followed by multiplication [23].

In the remainder of this section, we use the guessing entro-
py G as a measure of uncertainty and we abbreviate ΦG by Φ
and Φ̂G by Φ̂, respectively. We assume a uniform probability
distribution in our experiments and compute the remaining
uncertainty with the formula given in Proposition 2.2.

5.1 Realization

Goals and Limitations.
Our goal is to compute bounds on the information that

realistic implementations may leak to active side-channel at-
tackers.

Computing Φ using the algorithm from Theorem 1 is ex-
pensive. The time required is doubly exponential in the num-
ber of attack steps, and the sizes of the keyspace and the
message space are exponential in the number of bits used to
represent keys and messages, respectively. Hence, we cannot
feasibly compute Φ for large parameter sizes.

We use two approximation techniques to address this pro-
blem.

1. We approximate Φ by Φ̂. We will see that Φ̂ matches
Φ on our example data, although this does not hold in
general (see Example 6).

2. We parameterize each algorithm by the bit-width w of
its operands. Our working assumption is that regulari-
ty in the values of Φ for w ∈ {2, . . . , wmax} reflects the
structural similarity of the parameterized algorithms.
This allows us to extrapolate to values of w beyond
wmax. To make this explicit, we will write Φw to deno-
te that Φ is computed on w-bit operands.

Using both techniques, we can estimate Φw(n) for values of
w and n for which direct computation is infeasible.

Time and Power Estimation with Gezel.
We use the hardware description language Gezel [33] to

describe and simulate circuits. Synchronous circuits are mo-
deled in Gezel as automata, where one transition corre-
sponds to one clock cycle. The Gezel environment comes
with a compiler that maps circuit descriptions into a syn-
thesizeable subset of Vhdl. The translation is cycle-true in
that it preserves the circuit’s timing behavior within the gra-
nularity of clock cycles. In this way, the timing-guarantees
obtained by formal analysis translate to silicon implementa-
tions.

Precisely estimating a circuit’s power consumption is not
possible at this level of abstraction as it depends on the
physics of the semiconductor technology used. One needs
to employ technology-dependent power models for accura-
te predictions during simulation. In this paper, we take a
simple, technology-independent approach that is provided
by the Gezel environment to approximate a circuit’s power
consumption: we count the number of bit transitions during
each cycle. The rationale behind this is that, e.g., in CMOS
technology, the power dissipation of a signal that remains

 0

 5

 10

 15

 20

 25

 30

 2 3 4 5 6 7 8

n=1 & n=2
padded

Φ̂w(n)

w

Figure 3: Integer Multiplication

constant is negligible compared to a signal that changes.
Counting the number of bit transitions thus provides ap-
proximate information about the actual power consumption
and we will use it for our analysis. It is straightforward to
replace this simple measure with those given by more reali-
stic models. In this way, the precision of our analysis is only
bounded by the precision of the available power models.

Setup.
For each algorithm and each bit-width w ∈ {2, . . . , 8},

we use the Gezel simulator to build value tables for the
side-channel f : {0, 1}w ×{0, 1}w → O. For timing analysis,
we use O = N to represent the number of clock ticks until
termination. For power analysis, we use O = N

d to represent
the toggle count in each of the d clock cycles.

5.2 Results
In this section, we present our experimental results and

discuss their implications.

Timing Attacks against Integer Multiplication.
We represent a natural number k < 2w as a sequence

of w bits ki, with k = Σw−1
i=0 ki2

i. To multiply two natural
numbers m and k, the product m·Σw−1

i=0 ki2
i can be expanded

to (. . . ((kw−1 ·m) · 2 + kw−2 ·m) · 2 + . . .) · 2 + k0 ·m, which
can easily be turned into an algorithm. Starting with p = 0,
one iterates over all the bits of k, beginning with the most
significant bit. If ki = 1, one updates p by adding m and then
doubling p’s value. Alternatively, if ki = 0, one updates p by
just doubling its value. At the end of the loop, p = m · k. In
our implementation, the doubling and addition operations
each take one clock cycle. Hence, the running time reflects
the number of 1-bits in k, that is, k’s Hamming weight.
For illustration purposes, we use k as the key and m as the
message. For the interpretation of Figure 3, first observe that
Φ̂w(1) = Φ̂w(2) holds. Hence, by Proposition 4, the graph
actually depicts Φw .

There are two conclusions to be drawn from Figure 3.
First, the circuit’s timing behavior depends on the number
of 1-bits in the key. This leads to the hypothesis that the
Hamming weight of the key is revealed or, equivalently, that
two keys are indistinguishable iff they have the same Ham-
ming weight. The equivalence class of w-bit arguments with

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 3 4 5 6 7 8

n=1
n=2 & n=3

Φ̂w(n)

w

Figure 4: Finite-Field Exponentiation

Hamming weight l has precisely
(

w

l

)

elements. Hence, by
Proposition 2, the conditional guessing entropy for the cor-

responding partition is given by 1
2w+1

∑w

l=0

(

w

l

)2
+ 1

2
. The

values computed using this expression match the solid curve
in Figure 3, which supports our hypothesis and confirms a
result from [20].

Second, Figure 3 shows that a single side-channel measure-
ment is enough to extract the maximal information revealed
by the circuit’s timing behavior. This follows as Φw(1) and
Φw(2) coincide and is due to the fact that the circuit’s run-
ning time is independent of the message. It is out of the scope
of information-flow analysis, as in [20], to reason about the
number of measurements needed to obtain such information.

We have also implemented and analyzed a variant of the
integer multiplication algorithm described above, where we
introduced a dummy computation step whenever no additi-
on operation takes place. In this way, the algorithm’s timing
behavior does not leak any information about the input pa-
rameters. This is reflected by the dashed line in Figure 3,
which matches the guessing entropy for a key without side-
channel information, given by 0.5(2w + 1).

Timing Attacks against Exponentiation in F2w .
We analyzed a Gezel implementation of the finite-field

exponentiation algorithm from [14]. It takes two arguments,
a basis m and an exponent k, and it computes mk in F2w .
The algorithm is based on similar expansions as the inte-
ger multiplication algorithm in the previous example, but
is more complex due to nested loops. To interpret Figure
4, observe that Φw(1) = Φ̂w(1) and Φ̂w ≥ Φw follow from
Proposition 4. We conclude that one timing measurement
reveals a quantity of information larger than that contained
in the Hamming weight, but that it does not completely de-
termine the key. A second measurement, however, can reveal
all remaining key information.

Power Attacks against Multiplication in F2w .
We analyzed the power leakage of the finite-field multipli-

cation circuit from the Gezel package. It runs in constant
time and we analyzed the power traces given by counting bit
transitions, as previously explained. As in the case of integer
multiplication, we chose one operand to be secret and one to
be public. Figure 5 shows that the entire secret parameter
is determined by one power trace. A silicon implementation
with similar power consumption will hence be vulnerable to
power attacks.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 3 4 5 6 7 8

n=1 & n=2

Φ̂w(n)

w

Figure 5: Finite-Field Multiplication

Scaling-Up.
The algorithms presented in Section 4 rely on the complete

enumeration of the keyspace and therefore do not scale.2 Ho-
wever, our data exhibits regularity and we can successfully
extrapolate to larger bit-widths. Under our working assump-
tion that this regularity reflects the structural similarity of
the parameterized algorithms, we conclude that the inter-
pretations given for each algorithm hold regardless of the
implementation’s bit-width.

In all three examples, the number of attack steps perfor-
med is surprisingly low compared to the sample size used
in many published attacks, e.g., [6, 8, 18, 19]. This is due
to the fact that noise is typically dealt with by increasing
the number of measurements made. Template attacks [10]
use noise models to extract the maximum information from
every measurement and they demonstrate that key recovery
from only a few measurements is indeed possible.

6. RELATED WORK
There has been substantial work in information-flow secu-

rity on detecting or quantifying information leaks, but the
results are only partially applicable to the problem of ana-
lyzing how much information an adaptive side-channel at-
tacker can extract from a system. Early approaches focus on
quantifying the capacity of covert channels between proces-
ses in multi-user systems [26, 39, 16]. The models predate
the first published side-channel attack against cryptography
[18] and are so general that it is unclear whether and how
they could be instantiated to address the problem at hand.
Di Pierro et al. [29] show how to quantify the number of
statistical tests an observer needs to perform to distinguish
two processes in a probabilistic concurrent language. Lowe
[21] quantifies information flow in a possibilistic process al-
gebra by counting the number of distinguishable behaviors.
Clarkson et al. [12] develop a model for reasoning about an
adaptive attacker’s beliefs about the secret, which may also
be wrong.

The information measures proposed by Clark et al. [11]
are closest to ours. The authors relate observational equi-
valence to random variables and use Shannon entropy to
quantify the information flow. However, their measure cap-
tures the information gain of a passive observer instead of
an active attacker: the public input to the system is chosen

2The computation of Φ̂8(2) for finite-field exponentiation
took 40 minutes on a 2.4 GHz machine with 3 gigabytes of
RAM.

with respect to a probability distribution and is not under
the attacker’s control.

Several approaches in language-based security use securi-
ty type systems to detect timing side-channels in both se-
quential and multithreaded settings, see [1, 2, 17] and [36,
32], respectively. A successful type check implies that an at-
tacker cannot gain any information about the secret, even
if he exhaustively queries the system. However, such strong
guarantees are of unclear significance in the absence of reali-
stic timing models for high-level languages. Information-flow
analyses at the hardware level [38, 20] are based on more
realistic assumptions about the system, but do not model
adaptive attackers.

There is a large body of work on side-channel cryptana-
lysis, in particular on attacks and countermeasures. Howe-
ver, models and theoretical bounds on what side-channel
attackers can achieve are only now emerging. Chari et al. [9]
are the first to present methods for proving hardware imple-
mentations secure. They propose a generic countermeasure
for power attacks and prove that it resists a given number
of side-channel measurements. Schindler et al. [34] propose
a stochastic model for improving the efficiency of key ex-
traction. However, they do not give bounds on what can, in
principle, be achieved by their techniques. Micali et al. [25]
propose physically observable cryptography, a mathemati-
cal model that aims at providing provably secure cryptogra-
phy on hardware that is only partially shielded. Their model
has recently been specialized by Standaert et al. [37], who
show how assumptions on the computational capabilities of
an attacker can be combined with leakage functions that
measure the information that is revealed by the system’s
side-channels. Our model could be used to solve the open
problem of instantiating these leakage functions. A detailed
investigation of this is the subject of future work.

7. CONCLUSIONS AND FUTURE WORK
We have presented a quantitative model for reasoning

about adaptive side-channel attacks. It allows us to express
an attacker’s remaining uncertainty about a secret as a func-
tion of the number of his side-channel measurements. This
function provides a relevant metric for assessing a system’s
vulnerability to side-channel attacks.

On the theoretical side, our model of adaptive attacks pro-
vides a connection between information-theoretic notions of
security and physical models of hardware. Its simplicity is
reflected in the three line program (see Section 4.3) that
implements this connection. On the practical side, we have
applied our model to automatically derive meaningful asser-
tions about the resistance of hardware implementations to
adaptive side-channel attacks.

As ongoing work, we are extending our model with sta-
tistical techniques for entropy estimation [3, 4]. This allows
us to approximate Φ for larger bit-widths. Our initial ex-
periments are encouraging: we are able to confirm that the
presented integer multiplication algorithm reveals one ope-
rand’s Hamming weight—for implementations with 100 bits
per operand and with an error of less than 1%. However, the
existing confidence intervals for this estimation are too lar-
ge for practical use and, as future work, we hope to improve
them.

8. REFERENCES
[1] J. Agat. Transforming out Timing Leaks. In Proc.

POPL ’00, pages 40–53. ACM.

[2] G. Barthe, T. Rezk, and M. Warnier. Preventing
Timing Leaks Through Transactional Branching
Instructions. In Proc. QAPL ’05, ENTCS, pages
33–55. Elsevier.

[3] G. Basharin. On a Statistical Estimate for the
Entropy of a Sequence of Independent Random
Variables. Theory Probab. Appl., 47:333–336, 1959.

[4] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld.
The complexity of approximating entropy. In Proc.
STOC ’02, pages 678–687. ACM, 2002.

[5] R. Bird. Introduction to Functional Programming
using Haskell. Prentice Hall, second edition, 1998.

[6] D. Boneh and D. Brumley. Remote Timing Attacks are
Practical. In Proc. USENIX Security Symposium ’03.

[7] C. Cachin. Entropy Measures and Unconditional
Security in Cryptography. PhD thesis, ETH Zürich,
1997.

[8] J. Cathalo, F. Koeune, and J.-J. Quisquater. A New
Type of Timing Attack: Application to GPS. In Proc.
CARDIS ’03, LNCS 2779, pages 291–303. Springer.

[9] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi.
Towards Sound Approaches to Counteract
Power-Analysis Attacks. In Proc. CRYPTO ’99,
LNCS 1666, pages 398–412. Springer.

[10] S. Chari, J. R. Rao, and P. Rohatgi. Template
Attacks. In Proc. CHES ’02, LNCS 2523, pages 13–28.
Springer.

[11] D. Clark, S. Hunt, and P. Malacaria. Quantitative
Information Flow, Relations and Polymorphic Types.
J. Log. Comput., 18(2):181–199, 2005.

[12] M. Clarkson, A. Myers, and F. Schneider. Belief in
Information Flow. In Proc. CSFW ’05, pages 31– 45.
IEEE.

[13] T. H. Cormen, C. Stein, R. L. Rivest, and C. E.
Leiserson. Introduction to Algorithms. McGraw-Hill
Higher Education, second edition, 2001.

[14] M. Davio, J. P. Deschamps, and A. Thayse. Digital
Systems with Algorithm Implementation. John Wiley
& Sons, Inc., 1983.

[15] K. Gandolfi, C. Mourtel, and F. Olivier.
Electromagnetic analysis: Concrete results. In Proc.
CHES ’01, LNCS 2162, pages 251–261. Springer.

[16] J. W. Gray. Toward a Mathematical Foundation for
Information Flow Security. JCS, 1(3-4):255–294, 1992.

[17] D. Hedin and D. Sands. Timing Aware Information
Flow Security for a JavaCard-like Bytecode. In
BYTECODE ’05, ENTCS. Elsevier.

[18] P. Kocher. Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems. In
Proc. CRYPTO ’96, LNCS 1109, pages 104–113.
Springer.

[19] P. Kocher, J. Jaffe, and B. Jun. Differential Power
Analysis. In Proc. CRYPTO ’99, LNCS 1666, pages
388–397. Springer.

[20] B. Köpf and D. Basin. Timing-Sensitive Information
Flow Analysis for Synchronous Systems. In Proc.
ESORICS ’06, LNCS 4189, pages 243–262. Springer.

[21] G. Lowe. Quantifying Information Flow. In Proc.
CSFW ’02, pages 18–31. IEEE.

[22] J. L. Massey. Guessing and Entropy. In Proc. IEEE
Int. Symp. on Info. Th. ’94, page 204. IEEE.

[23] A. Menezes, P. van Oorschot, and S. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[24] T. S. Messerges, E. A. Dabbish, and R. H. Sloan.
Power Analysis Attacks of Modular Exponentiation in
Smartcards. In Proc. CHES ’99, LNCS 1717, pages
144–157. Springer.

[25] S. Micali and L. Reyzin. Physically Observable
Cryptography (Extended Abstract). In Proc. TCC
’04, LNCS 2951, pages 278–296. Springer.

[26] J. K. Millen. Covert Channel Capacity. In Proc. IEEE
Symp. on Security and Privacy ’87, pages 60–66.
IEEE.

[27] F. N. Najm. A Survey of Power Estimation
Techniques in VLSI Circuits. IEEE Transactions on
VLSI Systems, 2(4):446–455, 1994.

[28] D. A. Osvik, A. Shamir, and E. Tromer. Cache
Attacks and Countermeasures: the Case of AES. In
Proc. CT-RSA ’06, LNCS 3860, pages 1–20. Springer.

[29] A. D. Pierro, C. Hankin, and H. Wiklicky.
Approximate Non-Interference. In Proc. CSFW ’02,
pages 3–17. IEEE.

[30] J. O. Pliam. On the Incomparability of Entropy and
Marginal Guesswork in Brute-Force Attacks. In Proc.
INDOCRYPT ’00, LNCS 1977, pages 67–79. Springer.

[31] J.-J. Quisquater and D. Samyde. ElectroMagnetic
Analysis (EMA): Measures and Couter-Measures for
Smard Cards. In Proc. E-smart ’01, LNCS 2140, pages
200–210. Springer.

[32] A. Sabelfeld and D. Sands. Probabilistic
Noninterference for Multi-threaded Programs. In Proc.
CSFW ’00, pages 200–215. IEEE.

[33] P. Schaumont, D. Ching, and I. Verbauwhede. An
Interactive Codesign Environment for Domain-Specific
Coprocessors. ACM Transactions on Design
Automation for Electronic Systems, 11(1):70–87, 2006.

[34] W. Schindler, K. Lemke, and C. Paar. A Stochastic
Model for Differential Side-Channel Cryptanalysis. In
Proc. CHES ’05, LNCS 3659, pages 30–46. Springer.

[35] C. Shannon. A Mathematical Theory of
Communication. Bell System Technical Journal,
27:379–423 and 623–656, July and October 1948.

[36] G. Smith and D. Volpano. Secure Information Flow in
a Multi-Threaded Imperative Language. In Proc.
POPL ’98, pages 355–364. ACM.

[37] F.-X. Standaert, E.Peeters, C. Archambeau, and J.-J.
Quisquater. Towards Security Limits in Side-Channel
Attacks. In Proc. CHES ’06, LNCS 4249, pages 30–45.
Springer.

[38] T. Tolstrup. Language-based Security for VHDL. PhD
thesis, Technical University of Denmark, 2007.

[39] J. Wittbold and D. Johnson. Information flow in
nondeterministic systems. In Proc. IEEE Symp. on
Security and Privacy ’90, pages 144–161. IEEE.

[40] L. Zhong, S. Ravi, A. Raghunathan, and N. Jha.
Power Estimation Techniques for Cycle-Accurate
Functional Descriptions of Hardware. In Proc. ICCAD
’04, pages 668– 675. ACM.

