
Timing-Sensitive Information Flow Analysis for
Synchronous Systems

Boris Köpf and David Basin

Information Security
ETH Zurich, Switzerland

{bkoepf,basin}@inf.ethz.ch

Abstract. Timing side channels are a serious threat to the security of
cryptographic algorithms. This paper presents a novel method for the
timing-sensitive analysis of information flow in synchronous hardware
circuits. The method is based on a parameterized notion of confiden-
tiality for finite transition systems that allows one to model information
leakage in a fine-grained way. We present an efficient decision procedure
for system security and apply it to discover timing leaks in nontrivial
hardware implementations of cryptographic algorithms.

1 Introduction

Timing side channels are a serious threat to the security of cryptographic
algorithms [4, 12, 18]. By analyzing the running times of algorithms such
as RSA decryption, an attacker may be able to deduce information about
the secret key used, possibly even recovering the key in its entirety. Several
countermeasures against this threat have been proposed, including blind-
ing and randomization techniques. While these techniques successfully
defeat certain known attacks, it is difficult to argue their completeness,
in the sense that they defeat all attacks that exploit timing information.

One systematic and complete countermeasure for preventing timing
attacks is to ensure that the algorithms’ running times are independent
of the secrets processed. Agat [1] pursues this approach by giving a se-
curity type system for a simple imperative programming language. If a
program can be assigned a security type, then its running times are in-
dependent of the secrets it computes with, and hence do not reveal this
confidential information. This is shown by proving the soundness of the
type system with respect to a semantic notion of secure information flow.
Although this result (as well as other approaches that use programming
language-based models [29, 22, 3]) provides an attractive analysis method,
the timing model used is based on a high-level language and is therefore
too simplistic. Indeed, if the timing behavior of the underlying hardware
is not accurately modeled, it is unclear what is gained from such a for-
mal analysis. Unfortunately, providing precise timing models for today’s
processors seems out of reach. Giving upper bounds for the real-time be-
havior of multi-purpose processors is already a daunting task [20] and is
still not sufficient for proving the absence of timing leaks.

In this paper, we approach the problem on a different level of abstrac-
tion. We focus on special-purpose hardware implementations of crypto-
graphic algorithms, which are particularly important in resource-critical

application domains [24]. We develop a method for the information flow
analysis of synchronous (clocked) hardware circuits. To this end, we define
RI/RO-security, a parameterized and timing-sensitive notion of security
for Mealy machines, in which each transition corresponds to one clock
tick. RI/RO-security can be instantiated to standard noninterference def-
initions, but it can also be used to express that only partial information
on each confidential input is revealed through the system’s observable
behavior. In system runs of arbitrary length, this partial information can
accumulate. We show that the guarantees of RI/RO-security can be com-
bined with assumptions on the environment to derive an upper bound
on the number of distinguishable output behaviors, a measure for what
an attacker may learn about the processed secrets. We develop efficient
algorithms for deciding whether a finite-state system is RI/RO-secure.
For deterministic systems, we reduce this to a reachability problem for
a special kind of product automaton. In the nondeterministic case, we
reduce this to a generalization of the Partition Refinement Problem. We
also provide a compositionality result as a first step to scaling-up the
analysis method to more complex designs.

Finally, we report on initial experimental results using our method.
We have encoded our decision procedures in an off-the-shelf model checker
and used it to discover subtle timing side channels in a textbook hard-
ware implementation of a finite-field exponentiation algorithm. The syn-
chronous hardware description language Gezel [25] provides the link
between our analysis method and concrete hardware implementations.
Namely, Gezel allows one to specify synchronous circuits in terms of
automata, and it comes with a tool for translating the designs into a
subset of the industrial-strength hardware description language Vhdl.
The translation is cycle-true, which means that it preserves the timing
behavior within the granularity of clock ticks. Moreover, the output is syn-
thesizeable, i.e. it can be mapped to a physical implementation. Hence,
the security guarantees obtained using our analysis method translate into
guarantees for real-world hardware implementations.

Our main contributions are twofold. First, we extend well-studied no-
tions of information flow security to a model that is appropriate for the
analysis of timing side channels in hardware implementations. Second, we
develop efficient algorithms for deciding whether a system is secure and
we show that they can be practically applied to nontrivial circuits.

The remainder of this paper is structured as follows. In Section 2,
we introduce our automaton model and define security. In Section 3, we
develop reduction techniques and efficient algorithms for deciding whether
an automaton has secure information flow. We report on experimental
results in Section 4, before we present related work and draw conclusions
in Sections 5 and 6.

2 The Scenario

2.1 Machine Model

We use Mealy machines as a model for hardware circuits that are synchro-
nized by a global clock signal. We assume that one transition corresponds
to one clock cycle and that, during each clock cycle, input signals are read
and output signals generated. Furthermore, we assume input enabledness,
that is, the machine can always react to every possible input. While hard-
ware is typically designed to be deterministic, nondeterminism is useful
too, for example, for modeling requirements, and hence we will keep our
presentation general wherever possible. As there is no standard notion
of a nondeterministic Mealy machine, we use the term automaton with
output.

Definition 1. An automaton with output is a 5-tuple M = (S, Σ, Γ, δ, s0),
where S is a finite set of states, Σ is a finite input alphabet, Γ is a finite
output alphabet, δ ⊆ S × Σ × Γ × S is a transition relation, and s0 ∈ S
the initial state. We call M deterministic if for every (s, a) ∈ S×Σ there
is at most one (b, s′) ∈ Γ × S with (s, a, b, s′) ∈ δ.

In a transition (s, a, b, s′), a denotes the input and b denotes the output.
We will sometimes use the shorthand δ(s, a, b) to denote the set {s′ |
(s, a, b, s′) ∈ δ}. As noted above, we require the transition relation to
be total, i.e. for all s ∈ S and a ∈ Σ, there is at least one b ∈ Γ and
one s′ ∈ S with (s, a, b, s′) ∈ δ. We do not consider ε-transitions as they
contradict the assumption that input and output are provided during
each clock cycle. In the setting of hardware circuits, Σ and Γ will be of
the form {0, 1}n, for some n ∈NNN , and represent the values of all ingoing
and outgoing signals.

2.2 Defining Security

We specify security with respect to an observer of the system. An observer
is modeled in terms of its capabilities for distinguishing different system
behaviors. If all system runs are indistinguishable, even when the system
computes with different secret data, then the system is intuitively secure.
Conversely, information may leak if the system shows distinguishable be-
havior while processing different secrets.

Distinguishing atomic inputs/outputs. The fact that two outputs a, b ∈ Γ
are indistinguishable is captured by an equivalence relation RO ⊆ Γ ×
Γ . We say that a and b are observationally equivalent, or simply RO-
equivalent, if and only if a RO b. In other words, if the system outputs
x ∈ Γ , an observer can only deduce the RO-equivalence class [x]. Similarly,
we use the equivalence relation RI ⊆ Σ ×Σ to model to what extent an
observer can distinguish the input of the system.

In the following, IdX denotes the identity on a set X and AllX denotes
X ×X. For relations R ⊆ Γ1×Γ1 and Q ⊆ Γ2×Γ2, we overload notation

and define R × Q ⊆ (Γ1 × Γ2)2 as (r1, q1) (R×Q) (r2, q2) if and only if
r1 R r2 and q1 Q q2.

Example 1. The relation RO = AllΓ formalizes an observer who cannot
distinguish between any two system outputs. In contrast, the relation
RO = IdΓ models an observer who can determine the (singleton) IdΓ -
equivalence class of the output, or equivalently, who can see the entire
output. We can also model more fine-grained capabilities. Consider, for
example, Γ = Γ1 × Γ2, with Γ1 = {0, 1}n, and the predicate ΨΓ1 =
{(a, b) ∈ Γ1 × Γ1 | ‖a‖ = ‖b‖}, where ‖x‖ denotes the Hamming weight
of x, i.e. the number of bits set to 1. The relation ΨΓ1 × IdΓ2 models that
an observer can see the entire Γ2-component of the output, but can only
deduce the Hamming weight (determine the ΨΓ1-equivalence class) of the
Γ1-component. 3

Expressing security. Two states of a system are observationally equivalent
if every output from one state can be matched by an RO-equivalent output
from the other state whenever the corresponding inputs are RI -equivalent.
We call the observational equivalence of states RI/RO-equivalence, which
is a partial equivalence relation (Per), i.e. symmetric and transitive, but
not necessarily reflexive. If the initial state of a system is not observa-
tionally equivalent to itself, then running the system on RI -equivalent
input sequences may lead to observable differences in the system behav-
ior. This constitutes a refinement of an observer’s knowledge about the
input (modeled by RI), and thus is an information leak. If, on the other
hand, the initial state is observationally equivalent to itself, then we say
that the system is RI/RO-secure. The idea that security can be modeled
as a system being observationally equivalent to itself is formalized in the
Per model of secure information flow [23].

The next section gives a formal account of these ideas.

2.3 A Parameterized Notion of Observational Equivalence

For the systems under consideration, we model observational equivalence
of states by using a parameterized notion of strong bisimulation. This will
capture timing behavior, as every transition corresponds to a tick of the
global clock, and strong bisimulation equivalence allows one to distinguish
process behaviors that differ in the number of transitions leading to some
output.

Definition 2 (RI/RO-Equivalence). Let M = (S, Σ, Γ, δ, s0) be an au-
tomaton with output, and let RI ⊆ Σ2 and RO ⊆ Γ 2 be equivalence
relations. We define 'RI

RO
as the union of all symmetric and transitive

relations R on S with the property that for all s1, s2 ∈ S:

s1 R s2 ⇒ ∀a1, a2 ∈ Σ.(a1 RI a2 ⇒ ∀(s1, a1, o1, s
′
1) ∈ δ.

∃(s2, a2, o2, s
′
2) ∈ δ.

s′1 R s′2 ∧ o1 RO o2).
(1)

Two states s1, s2 ∈ S are RI/RO-equivalent iff s1 'RI
RO

s2.

Definition 3 (RI/RO-Security). Let M = (S, Σ, Γ, δ, s0) be an au-
tomaton with output, and let RI ⊆ Σ2 and RO ⊆ Γ 2 be equivalence
relations. Then M is RI/RO-secure iff s0 'RI

RO
s0.

It is easy to see that 'RI
RO

is a partial equivalence relation on S and that
'RI

RO
itself satisfies Property (1) of Definition 2.

We will now give several instances of RI/RO-security. We first show
how it encompasses a number of security notions from language-based
information-flow (for an overview of this area, see [21]). Afterwards, we
instantiate RI/RO-security to specify partial information flow, which will
prove to be useful in our experiments.

In the following examples, we assume two security domains, high and
low, and we restrict the flow of information from the high domain to
the low domain. A common assumption in programming language-based
approaches is that each variable is classified as either high or low and
that an observer may only see the values of the low variables. In our
setting, input and output signals take the role of variables and have high
and low components. This intuition is reflected by assuming that Σ =
ΣH × ΣL, where ΣH and ΣL represent the values of all high and low
input signals, respectively. Similarly, we assume that Γ = ΓH × ΓL. The
policy that no information flows from the high into the low domain can
then be formalized in the framework of RI/RO-equivalence by choosing
RI = AllΣH

× IdΣL
and RO = AllΓH

× IdΓL
. When Σ is understood, we

write IdL as an abbreviation for IdΣL
. We abbreviate analogously for Γ ,

AllL and the high domain.

Example 2. In the deterministic case, 'AllH×IdL
AllH×IdL

represents a notion of
observational equivalence closely related to Agat’s Γ -bisimulation [1]. In
our model, every transition takes one time unit, while in Agat’s approach
the duration of each transition is given by a label representing the prim-
itive operations of the underlying machine. 3

Example 3. In the nondeterministic case, 'AllH×IdL
AllH×IdL

represents a possi-
bilistic notion of security similar to Volpano and Smith’s concurrent non-
interference [26], which has been used to model the security of multi-
threaded programs in the presence of a purely nondeterministic sched-
uler. Note that our definition is more restrictive with respect to timing,
as it is based on strong bisimulation equivalence as opposed to the weak
bisimulation-based concurrent noninterference. 3

In addition to capturing variants of previously studied notions of secu-
rity, RI/RO-equivalence allows one to express more fine-grained forms of
information flow.

Example 4. Consider the binary predicate ΨΣ = {(a, b) ∈ Σ ×Σ | ‖a‖ =
‖b‖}, where Σ = {0, 1}n and ‖x‖ denotes the Hamming weight of x.
Suppose we have s0 'Ψ

IdΓ
s0, where s0 is the initial state of a deterministic

system. Then the system shows the same behavior for each pair of (and

hence, by transitivity of 'Ψ
IdΓ

, for all) input traces a1 · · · am and b1 · · · bm,
where ‖ai‖ = ‖bi‖ for every i ∈ {1, . . . ,m}. 3

The converse of Example 4 is more subtle. An observable difference be-
tween two output traces of a deterministic system implies that the input
traces’ Hamming weight differs at some point in time. While the leakage
of a single input’s Hamming weight might be acceptable, the leakage of
the Hamming weight of all symbols in the input trace can be used to
encode arbitrary information.

Example 5. Consider an automaton M with a single state s0, alphabets
ΣH = ΣL = Γ = {0, 1}, and transitions {(s0, (h, l), h, s0) | h, l ∈ {0, 1}}.
M maps every high input h to the identical output. Still, M is ΨH ×
IdL/IdΓ -secure. 3

To assess how much can be learned by observing the behavior of a RI/RO-
secure system, we need to consider the environment that provides it with
high input.

2.4 Environment Behavior

In this section, we consider the interaction of a deterministic automaton
M = (S, ΣH × ΣL, Γ, δ, s0) with an environment that provides it with
high input. We will show how to combine security guarantees for M with
restrictions on the environment to give bounds on the number of distin-
guishable behaviors. This is a useful measure for assessing the information
leakage from the high to the low domain since, for a deterministic system
and an arbitrary low input, variations in the output are necessarily due
to variations in the high input. Thus, a greater number of distinguish-
able output traces means that more information about the high input is
leaked.

We specify the high environment as a subset E ⊆ Σ∗
H of high input

traces of the form
⋃∞

i=0 ◦i
j=1Aj , where Aj ⊆ ΣH represents the set of

possible inputs from the high environment at time instant j and ◦ denotes
word concatentation. Dually to the requirement that M is input enabled,
we require the high environment to provide an input at every clock cycle.
For an arbitrary trace w ∈ Σ∗

L, a high environment E, and RO ⊆ Γ×Γ , we
denote the set of distinguishable behaviors by BM,RO

(E,w). Concretely,
for (s, a, b, s′) ∈ δ, we define λRO

(s, a) = [b], where [b] denotes the RO-
equivalence class of b. We canonically extend λRO

to a mapping from input
traces to R∗

O-equivalence classes of output traces. Here, the relation R∗
O

is defined as
⋃∞

i=0 Rk
O where a1 · · · ak Rk

O b1 · · · bk iff ai RO bi, for all i ∈
{1, . . . , k}. Now we can formally define BM,RO

(E,w) = {λRO
(s0, 〈v, w〉) |

v ∈ E, |w| = |v|}, where |·| is the length function and where 〈v, w〉 denotes
the trace in (ΣH ×ΣL)∗ obtained by pairing corresponding elements of v
and w.

Recall that if a Q × IdL/RO-secure deterministic system is provided
with input from a high environment E in which all traces of the same
length are Q∗-equivalent, then it will produce only R∗

O-equivalent output.

That is, |BM,RO
(E,w)| = 1 for every w ∈ Σ∗

L. If we weaken the require-
ment that the input is always Q-equivalent, the number of distinguishable
behaviors may increase. The next theorem gives an upper bound for this
number.

Theorem 1. Let M = (S, ΣH ×ΣL, Γ, δ, s0) be a deterministic automa-
ton with output, let Q ⊆ ΣH × ΣH and RO ⊆ Γ × Γ be equivalence
relations, and let E =

⋃∞
i=0 ◦i

j=1Aj ⊆ Σ∗
H be a high environment. If M is

(Q× IdL)/RO-secure, then for all w ∈ Σ∗
L we have

|BM,RO
(E,w)| ≤ Π∞

j=1|Aj/Q| .

Proof. It suffices to prove |{λRO
(s0, 〈v, w〉) | v ∈ ◦k

j=1Aj}| ≤ Πk
j=1|Aj/Q|

for all w ∈ Σk
L, as taking the limit k →∞ then leads to the desired result.

We define the mapping λ′w : ◦k
j=1Aj/Qk → {λRO

(s0, 〈v, w〉) | v ∈ ◦k
j=1Aj}

by λ′w([u]) = λRO
(s0, 〈u,w〉). λ′w is well-defined since λRO

(s0, 〈v, w〉) =
λRO

(s0, 〈v′, w〉) for all v, v′ with v Qk v′. Note that λ′w is surjective and
that the range of a function is of cardinality less or equal than its domain,
hence |{λRO

(s0, 〈v, w〉) | v ∈ ◦k
j=1Aj}| ≤ |◦k

j=1 Aj/Qk | holds. We conclude
with | ◦k

j=1 Aj/Qk | = Πk
j=1|Aj/Q|. 2

Note that the mapping λ′w from the proof of Theorem 1 expresses the
correpondence between equivalence classes of high input and output be-
haviors. The fact that its domain is independent of w shows that an
attacker cannot learn more than the Q∗-equivalence class of a fixed high
input, even if he runs the system with all possible low inputs.

Example 6. If a system is AllH × IdL/AllH × IdL-secure (see Example 3)
and is provided with input from a high environment E =

⋃∞
i=0 ◦i

j=1Aj ⊆
Σ∗

H , then the number of distinguishable output behaviors is Π∞
i=1|Aj/AllH | =

1. That is, the system can be securely operated in an arbitrary high en-
vironment. 3

Example 7. Consider again the ΨH × IdL/IdΓ -secure automaton M from
Example 5. The number of possible system behaviors is unbounded, as
|{0, 1}/ΨH

| = 2 and Π∞
j=1|{0, 1}/ΨH

| diverges. This estimation is tight in
the sense that an arbitrary amount of information can be leaked. 3

Example 8. Consider an ΨH×IdL/AllH×IdL-secure circuit in which the
high component is initialized during the first clock tick and subsequent
high input is 0. The environment here is given by E =

⋃∞
i=0 ◦i

j=1Aj where
A1 = ΣH and Aj = {0} for j > 1. Then, for each low input w, the
system shows at most |ΣH/ΨH

| distinguishable behaviors, each of which
corresponds to one ΨH -equivalence class. This correspondence is given by
the mapping λ′w from the proof of Theorem 1. Thus at most the secret
input’s Hamming weight is leaked during execution. 3

3 Deciding RI/RO-Equivalence

In this section, we reduce the question of deciding RI/RO-equivalence
to tractable, well-understood problems and we analyze the complexity of
the resulting algorithms. We start with the case when the automata are
deterministic, which turns out to be very efficiently solvable.

3.1 Deterministic Case

We first reduce the problem of deciding the RI/RO-equivalence of states
to a reachability problem for a special type of product automaton. This
may seem surprising as, in general, information flow properties are prop-
erties of sets of traces rather than properties of individual traces [16]. The
key idea behind our construction is that every trace of the product au-
tomaton corresponds to a pair of traces of the original system. Taking the
transitivity of RI/RO-equivalence into account, it suffices to analyze each
individual trace of the product automaton in order to establish RI/RO-
security for the original system.

Definition 4. Let Mi = (Si, Σ, Γ, δi, s0,i), with i ∈ {1, 2}, be deter-
ministic automata with output, and let RI and RO be equivalence re-
lations on Σ and Γ , respectively. Then M1 ×RI

RO
M2 is the automaton

(S1 × S2, RI , {0, 1}, δ′, (s0,1, s0,2)), where

δ′ = {((s1, s2), (a, b), χ, (t1, t2)) | a RI b ∧ (χ = if c R0 d then 1 else 0) ∧
(s1, a, c, t1) ∈ δ1 ∧ (s2, b, d, t2) ∈ δ2} .

A falsifying state is a state with an outgoing transition labeled with 0. We
now show that deciding observational equivalence of states is equivalent
to determining whether a falsifying state can be reached in M ×RI

RO
M .

Theorem 2. Let M = (S, Σ, Γ, δ, s0) be a deterministic automaton with
output, RI ⊆ Σ × Σ and RO ⊆ Γ × Γ equivalence relations, and let
s1, s2 ∈ S. Then

s1 'RI
RO

s2 ⇔ no falsifying state is reachable from (s1, s2) in M ×RI
RO

M .

Proof. (⇒) We show that no input w ∈ (RI)∗ can trigger a transition
labeled with 0. We proceed by induction on the length of w. The assertion
is clear for w = ε. Suppose now that w = (a, b)w′. As s1 'RI

RO
s2 and

δ is total and deterministic, there are unique transitions (s1, a, c, t1) and
(s2, b, d, t2) ∈ δ, with t1 'RI

RO
t2 and (c, d) ∈ RO. Hence M×RI

RO
M outputs

1 on this transition and we apply the induction hypothesis to (t1, t2) and
w′.

(⇐) We show that Q = {(t1, t2) | (t1, t2) can be reached from (s1, s2)}
fulfills (1) of Definition 2. Pick (t1, t2) ∈ Q and (a, b) ∈ RI . Since δ
is total and deterministic, there are unique transitions (t1, a, c, t′1) and
(t2, b, d, t′2) ∈ δ. Clearly, (t′1, t

′
2) can also be reached from (s1, s2) in M×RI

RO

M and, as no transition labeled with 0 can be triggered by assumption,
(c, d) ∈ RO holds. Hence Q is contained in the union of all relations with
(1) of Definition 2. 2

This theorem justifies a simple decision procedure where we decide RI/RO-
equivalence by searching the product automaton from Definition 4. We
use breadth-first search, as it will find a shortest path to a falsifying state.

Corollary 1. Let M = (S, Σ, Γ, δ, s0) be a deterministic automaton with
output, let s1, s2 ∈ S, and let RI ⊆ Σ and RO ⊆ Γ be equivalence re-
lations. Then s1 'RI

RO
s2 can be decided in time O(|S|2|RI |), given the

product automaton M ×RI
RO

M .

Proof. Breadth-first search can be implemented in time O(|V |+ |E|) on a
graph G = (V,E). M×RI

RO
M has |S|2 states and |S|2|RI | transitions. This

yields an O(|S|2|RI |) upper bound for the time complexity of deciding
RI/RO-equivalence. 2

3.2 Nondeterministic Case

A straightforward extension of the above reduction does not appear possi-
ble in the nondeterministic case. Instead, we use the Partition Refinement
Problem [19] as a starting point for deciding RI/RO-equivalence.

A partition of a set S is a set π = {A1, . . . , An} of pairwise disjoint
blocks with the property that

⋃n
i=1 Ai = S. A refinement of a partition π

is a partition π′ such that every block of π′ is contained in some block of
π. A partition π can also be formalized in terms of an equivalence relation
Rπ, where the elements of π correspond to the equivalence classes of Rπ.
The Partition Refinement Problem is, given a partition π and a property
P , to find the coarsest refinement π′ of π such that π′ fulfills P . This is
equivalent to finding the greatest equivalence relation Rπ′ , with Rπ′ ⊆ Rπ,
such that Rπ′ satisfies P .

Since RI/RO-equivalence is a partial equivalence relation, Per for
short, we need to generalize the Partition Refinement Problem. The Par-
tial Partition Refinement Problem is, given a partial equivalence relation
R and a property P , to find the coarsest refinement R′ of R, such that R′

satisfies P . We next show that the problem of deciding RI/RO-equivalence
can be cast as an instance of this problem. Then, following the ideas in
[11], we compute this coarsest refinement as the maximal fixed point of a
monotone mapping Φ.

The domain of a partial equivalence relation R is the set dom (R) =
{x ∈ S | x R x} on which R is reflexive, and hence an equivalence relation.
A partial partition of a set S is a pair 〈{A1, . . . , An}, C〉, where the Ai are
pairwise disjoint blocks with

⋃n
i=1 Ai∪C = S and

⋃n
i=1 Ai∩C = ∅. There

is a one-to-one correspondence between Pers R of a set S and partial
partitions 〈{A1, . . . , An}, C〉, where the Ai correspond to the equivalence
classes of R, and C = S \ dom (R). As notation, we denote this cor-
respondence as 〈{A1, . . . , An}, C〉 =̂ 〈R,C〉. Let π1 = 〈{A1, . . . , An}, C1〉
and π2 = 〈{B1, . . . , Bm}, C2〉 be partial partitions of S. We define π1 ≤ π2

to hold whenever C1 ⊇ C2 and if every block of π1 is contained in some
block of π2. The relation ≤ is a partial order on the set of all partial
partitions of a set S. In fact, it is also a lattice when we define the meet

u as 〈{A1, . . . , An}, C1〉 u 〈{B1, . . . , Bm}, C2〉 = 〈{Ei,j}, C1 ∪ C2〉, with
Ei,j = Ai ∩Bj for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

In the remainder of this subsection, let M = (S, Σ, Γ, δ, s0) be a nonde-
terministic automaton with output, and let RI ⊆ Σ×Σ and RO ⊆ Γ ×Γ
be equivalence relations.

Definition 5 (RI/RO-partition). A RI/RO-partition of S is a partial
partition 〈{A1, . . . , An}, C〉 of S, with

∀i, j ∈ {1, . . . , n}. ∀s1, s2 ∈ Ai. ∀(a1, a2) ∈ RI . ∀x ∈ Γ/RO
.

δ(s1, a1, x) ∩Aj 6= ∅ ⇔ δ(s2, a2, x) ∩Aj 6= ∅ ∧
δ(s1, a1, x) ∩ C = δ(s2, a2, x) ∩ C = ∅ ,

(2)

where δ(s, a, x) denotes the set
⋃

c∈x δ(s, a, c). A RI/RO-partition π of S
is maximal if π ≥ π′ holds for every RI/RO-partition π′ of S.

We adapt (2) of Definition 5 to a mapping on partial partitions whose
fixed points are precisely the RI/RO-partitions of S. To this end, let
π = 〈{A1, . . . , An}, C1〉 =̂ 〈R1, C1〉 be a partial partition of S. We define
Φ(π) := 〈R2, S \ dom (R2)〉, where s1 R2 s2 if and only if

s1 R1 s2 ∧ ∀j ∈ {1, . . . , n}. ∀(a1, a2) ∈ RI . ∀x ∈ Γ/RO
.

δ(s1, a1, x) ∩Aj 6= ∅ ⇔ δ(s2, a2, x) ∩Aj 6= ∅ ∧
δ(s1, a1, x) ∩ C1 = δ(s2, a2, x) ∩ C1 = ∅ .

Lemma 1. Let 〈R,C〉 be a partial partition of the set of states S. Then
the following are equivalent:

1. 〈R,C〉 is a fixed point of Φ.
2. 〈R,C〉 is a RI/RO-partition of S.
3. R satisfies (1) of Definition 2.

The proof of Lemma 1 is given in Appendix A. From Lemma 1, it follows
that the relation 'RI

RO
is a maximal fixed point of the function Φ. In

particular, 'RI
RO

itself satisfies (1) of Definition 2 and is thus contained
in every maximal fixed point of Φ. Conversely, as every fixed point of Φ
satisfies Property (1), the maximal fixed point is contained in 'RI

RO
, the

union of all such relations.
The following theorem gives a constructive way to derive maximal

RI/RO-partitions.

Theorem 3. There exists a unique maximal RI/RO-partition π∗ of S,
namely, π∗ = Φn(〈{S}, ∅〉), for some n ∈NNN .

Proof (Sketch). First observe that Φ is monotone with respect to ≤. Now
since the set of partial partitions of S is a complete lattice, it follows
from the Knaster-Tarski fixed point theorem that a unique maximal fixed
point of Φ exists. By Lemma 1, this fixed point is also a maximal RI/RO-
partition. The full proof details are given in Appendix A. 2

Theorem 3 provides the basis of an efficient algorithm for deciding the
RI/RO-equivalence of states.

Corollary 2. For two states s1, s2 ∈ S we can decide s1 'RI
RO

s2 in time

O(|S|4 · |RI | · |Γ/RO
|) ,

under the assumption that δ(s, a, x) =
⋃

c∈x δ(s, a, c) is given as an array
indexed by s ∈ S, a ∈ Σ, and x ∈ Γ/RO

.

Proof. It suffices to show that a single application of Φ can be computed
in time O(|S|3 · |RI | · |Γ/RO

|). Due to Theorem 3, a fixed point can be
obtained by iteratively applying Φ. As Φ(π) ≤ π for every partition π,
this process terminates within at most |S| applications.

We assume S = {s1, . . . , sn} and that the equivalence class of each
state is given by a representative si with minimal i, and by a distinguished
symbol ∗ 6∈ S if the state is outside the domain of the relation. For exam-
ple, in the case of π> = 〈{S}, ∅〉, the canonical representative for every
state is s1. Suppose now we are given a partial partition π = 〈R,C〉 and
we want to compute Φ(π) = 〈R′, C ′〉. To decide whether two states si and
sj relate in R′, we perform the following procedure: for all (a1, a2) ∈ RI ,
and for all x ∈ Γ/RO

, we compare the corresponding sets of R-equivalence
classes of the target states. If all of the corresponding sets coincide, si and
sj are in the same R′-equivalence class. By iterating i stepwise from 1 to
n, we perform this check for every j ∈ {1, . . . , n}. Under this ordering,
the canonical representative of the R′-equivalence class of each sj is the si

with minimal index such that equivalence of si and sj can be established,
and ∗ if there is no such si. In this way, each application of Φ can be
computed in time O(|S|3 · |RI | · |Γ/RO

|). 2

3.3 Compositionality

Compositionality is a prerequisite for scaling our analysis method to larger
systems. In this section we use the example of sequential composition
to show how the guarantees obtained from analyzing sub-circuits can
be combined to a guarantee for the entire system. To this end, we first
define an operator that connects the output signals of a machine M1

to the input signals of a machine M2. M2’s transition function is total,
hence communication never blocks. This notion of composition models a
sequential connection of two synchronous circuits with a common clock.

Definition 6. Let Mi = (Si, Σi, Γi, δi, s0,i), with i ∈ {1, 2}, be automata
with output and let Γ1 ⊆ Σ2. Then M1 · M2 is the automaton (S1 ×
S2, Σ1, Γ2, δ

′, (s0,1, s0,2)), where

δ′ = {((s1, s2), a, b, (t1, t2)) | ∃c ∈ Γ1. (s1, a, c, t1) ∈ δ1 ∧
(s2, c, b, t2) ∈ δ2} .

If the observational equivalence relation on the input alphabet of M2 is
coarser than the one on the output alphabet of M1, then we can safely
compose the two machines, as the following theorem shows.

Theorem 4. Let Mi = (Si, Σi, Γi, δi, s0,i), with i ∈ {1, 2}, be automata
with output and let RI ⊆ Σ1 × Σ1, RO ⊆ Γ1 × Γ1, QI ⊆ Σ2 × Σ2, and
QO ⊆ Γ2 × Γ2 be equivalence relations. Let s1, s2 ∈ S1 and t1, t2 ∈ S2. If
Γ1 ⊆ Σ2, RO ⊆ QI , s1 'RI

RO
s2, and t1 'QI

QO
t2, then

(s1, t1) 'RI
QO

(s2, t2) in M1 ·M2 .

The proof of Theorem 4 is given in Appendix A.

Example 9. Suppose Mi = (Si, Σi, Γi, δi, s0,i), for i ∈ {1, 2}, are automata
with output, Σ1 = ΣH × ΣL, and Γ1 = Σ2 = {0, 1}n. If the output
of M1 is not distinguishable with respect to the Hamming weight, i.e.
s0,1 'AllH×IdL

Ψ s0,1, (where Ψ = {(a, b) ∈ {0, 1}n | ‖a‖ = ‖b‖}) and if
M2 does not leak anything other than possibly the Hamming weight, i.e.
s0,2 'Ψ

IdΓ2
s0,2, then the composition M1 ·M2 does not leak any informa-

tion, i.e. the initial state relates to itself under 'AllH×IdΓ2
IdL

. 3

Analogous results hold for the parallel composition of two circuits.

4 Experimental Results

Below we report on two case studies: a simple circuit for bit-serial multi-
plication of nonnegative integers and a circuit for exponentiation in the
field F2k . Exponentiation over F2k is relevant, for example, in the gen-
eralized ElGamal encryption scheme, where decryption consists of one
exponentiation and one multiplication step [17]. We implemented and
tested both circuits in the hardware description language Gezel. In-
stead of implementing a search procedure by hand, we used the symbolic
model checker Smv to automate the search on the product automaton
from Definition 4.1 Note that we translated the Gezel implementations
to the input language of Smv by hand. However, the semantic gap be-
tween both languages is so small that an automated translation would be
straightforward.

4.1 The Circuits

Bit-serial multiplication. For multiplying two natural numbers m and n
bitwise, consider the representation n = Σk−1

i=0 ni2i, where ni denotes the
ith bit of n. The product m ·Σk−1

i=0 ni2i can be expanded to

(. . . ((nk−1 ·m) · 2 + nk−2 ·m) · 2 + . . .) · 2 + n0 ·m ,

which can easily be turned into an algorithm: starting with p = 0, one
iterates over all the bits of n, beginning with the most significant bit. If
ni = 1, one updates p by adding m and then doubling p’s value. Alterna-
tively, if ni = 0, one updates p by just doubling its value. At the end of
the loop, p = m · n.
1 The Gezel and Smv-code is given in the accompanying technical report [13].

We implemented two versions of this algorithm. In the first version,
the doubling and adding operations each take one clock cycle. Hence, the
running time reflects the number of 1-bits in n. In the second version,
we introduce a dummy step whenever no addition takes place. In this
way, the running time is independent of the operands. In our Smv imple-
mentations, the input signals are called hi_in and lo_in and they are
initialized during the first clock cycle with the values of n and m, respec-
tively. Input values of subsequent cycles are ignored. We use two output
signals: one for the result p and a flag done, which signals termination.

Exponentiation in a finite field. We analyzed a hardware implementation
of the finite field exponentiation algorithm from [6]. Basically, it consists
of the following three building blocks:

1. To compute the exponentiation of a field element x with exponent
a = Σn−1

i=0 ai2i, one iterates over all bits of the exponent

xa = (. . . (((xan−1)2 · xan−2)2 · xan−3)2 · . . .)2 · xa0 . (3)

In finite fields, every element x is represented by the coefficients of a
polynomial, and thus each square and each multiplication operation
in Equation 3 is again implemented by a loop.

2. Multiplication of polynomials q and x = Σr−1
j=0xjT

j is computed using
the expansion (. . . ((xr−1 · q) · T + xr−2 · q) · T + . . .) + x0 · q in a loop
similar to the one for bit-serial multiplication.

3. At the bit level, multiplication by T of a polynomial represented by
coefficients s = (sr−1, . . . , s0) can be implemented as follows. If sr−1 =
0, left-shift s by one. If sr−1 = 1, left-shift s by one and XOR the result
with the coefficients of the field polynomial.

In our Smv-implementation of this exponentiation algorithm, the input
signals hi_in and lo_in are initialized during the first clock cycle with a
and x, respectively. Input values of subsequent cycles are ignored. We use
two output signals, p and done, to represent the result xa and termination,
respectively.

4.2 Security Properties

We analyzed the multiplication and the exponentiation circuits from Sec-
tion 4.1 with respect to two different security properties.

Property 1. We specify that a circuit’s running time is independent of
the confidential part of the input, the input signal hi_in. Recall that, in
the case of serial multiplication, hi_in and lo_in are initialized with the
operands n and m, respectively. In the case of exponentiation, hi_in and
lo_in are initialized with the exponent a and the basis x, respectively.
For verifying that the execution time is independent of the high input,
we are only interested in when the computation terminates, that is, when
the flag done is set, and we ignore all other output. This is specified by

the relation 'AllΣH
×IdΣL

AllΓH
×IdΓL

. Here, ΣH = {0, 1}k denotes the range of hi_in,

and ΣL = {0, 1}l denotes the range of lo_in. The done-flag ranges over
ΓL = {0, 1}, and ΓH stands for all output that is not considered.

Figure 1 demonstrates how the product construction of Definition 4
can be encoded in a few lines of Smv-code. The system to be analyzed
is a module that we call circuit, which we instantiate twice in line 4.
Both instances, sys1 and sys2, are provided with the same low input
(as specified by IdΣL

), and are provided with all possible combinations of
high inputs (as specified by AllΣH

). This is reflected in lines 6 and 7. In
fact, all such input combinations are considered, as no assignments are
made to the variables lo, hi1, and hi2.

Reachability of a falsifying state of the product automaton corre-
sponds to a violation of the Ctl-formula !EF(!sys1.done=sys2.done)
in line 9. If we reach a state in which one instance’s done flag is set be-
fore the other instance terminates, then we have found a falsifying state
of the product automaton. In this case, Smv computes a counterexam-
ple, namely, two AllΣH

× IdΣL
-equivalent input sequences that lead to a

distinguishable output.

1 MODULE main

2 VAR

3 lo,hi1,hi2 : array (SIZE-1)..0 of boolean;

4 sys1 : circuit; sys2 : circuit;

5 ASSIGN

6 sys1.lo_in:=lo; sys1.hi_in:=hi1;

7 sys2.lo_in:=lo; sys2.hi_in:=hi2;

8

9 SPEC !EF(!sys1.done=sys2.done)

Fig. 1. Product construction in Smv

Property 2. While it is easy to see that the running times of the mul-
tiplication and exponentiation algorithms depend on the input to the
hi_in-signal, it is less clear what these dependencies are. We now spec-
ify and check a second property that formalizes that the running time
only depends on the Hamming weight of the hi_in input (see also Ex-
ample 4). That is, if the system is provided with two input sequences
that are indistinguishable with respect to the Hamming weight of corre-
sponding inputs to hi_in, then we require that the system has equiva-
lent timing behavior. This is specified by the relation 'Ψ×IdΣL

AllΣH
×IdΓL

, where

Ψ = {(a, b) ∈ ΣH × ΣH | ‖a‖ = ‖b‖}. Here again, ΣH = {0, 1}k denotes
the range of hi_in, and ΣL = {0, 1}l denotes the range of lo_in. The
done-flag ranges over ΓL = {0, 1}, and ΓH stands for all output that is
not considered.

The Smv-implementation of Property 2 follows along the same lines as
the implementation of Property 1. The only difference is that we modify
the input to hi_in of sys2 in line 7 of Figure 1 in the following way:

sys2.hi_in:=

case

hi1[0]+...+hi1[SIZE-1]=hi2[0]+...+hi2[SIZE-1] : hi2;

1 : hi1;

esac;

The variables hi1 and hi2 both take all possible values in their range.
Only when their Hamming weight coincides is sys2 fed with hi2. Oth-
erwise its input is hi1. In this way, we ensure that the inputs to both
instances of circuit always have the same Hamming weight and that all
such combinations are considered.

4.3 Results

Security Analysis. The table in Figure 2 presents the results of our anal-
ysis. The first column corresponds to the serial multiplication algorithm
where dummy steps are inserted to avoid timing leaks. The second col-
umn corresponds to the multiplication algorithm without dummy steps,
and the third column contains the results for the finite-field exponentia-
tion algorithm. The rows correspond to Properties 1 and 2 described in
Section 4.2. An entry X denotes that the model is secure with respect to
the corresponding notion of security, whereas × denotes that this is not
the case.

The first column reflects what was intended by inserting dummy com-
putation steps into the design: the circuit’s running time is independent
of the input to the signal hi_in. In particular, as Example 6 shows, ar-
bitrary input sequences do not lead to distinguishable behavior.

The second column shows that the running time of the multiplica-
tion algorithm without dummy computation depends on the input to the
signal hi_in. However, if the implementation is only run on inputs with
equal Hamming weight, then we cannot observe any differences between
the running times. Example 8 shows that, if the high environment pro-
vides input only during the first clock cycle, no more than the Hamming
weight of the input can be leaked. Note that this actually holds in an
arbitrary environment, as the circuit ignores input during all but the first
clock ticks.

The third column shows that the running time of the exponentiation
algorithm depends on the input to the signal hi_in, which corresponds
to the exponent. The result of the analysis with respect to inputs of equal
Hamming weights is surprising. When only considering loop 1 (see Section
4.1), one might expect the same result as for serial multiplication. How-
ever, the second row states that this is not the case: even when provided
with input of the same Hamming weight, the system shows differences in
its running times. This means that information other than the Hamming

weight can be leaked. We have not yet undertaken a precise characteri-
zation of this leak. The counterexample computed by Smv suggests that
this might be nontrivial: the first difference between the sequences of
states reached in both instances of circuit occurs after 20 steps, and
distinguishable output is not produced until 36 steps.

Multiplication
(padded)

Multiplication Exponentiation

'AllH×IdL
AllH×IdL X × ×

'Ψ×IdL
AllH×IdL X X ×

Fig. 2. Results of Analysis

Performance. We performed our experiments on a 2.4 GHz machine with
3 gigabytes of RAM. In the case of serial multiplication, we were able
to analyze designs up to 10 bits per operand within one minute. In the
case of exponentiation, we were able to analyze designs with up to 3
bits per operand within 2 minutes.2 For larger bit-widths the running
times increased notably. Note that these numbers were obtained by using
Smv “out of the box”, that is, without applying one of the many existing
optimization techniques. We expect a significant performance gain by tai-
loring the search procedure to our specific problem instance, for example
by adopting abstraction techniques for handling bit-vectors.

5 Related Work

Both timing-aware security definitions and decidability results exist in
process algebraic settings, e.g., [7, 15], to name just a few. Their standard
model of communication is event-based and differs significantly from our
time-synchronous model. Likewise, security definitions for process alge-
bras usually restrict the detection of secret events by low-level observers,
while RI/RO-security aims at protecting a stream of confidential data.
While formal connection between language-based and process algebraic
approaches can be made [8], we focus on methods from language-based
security as they are more directly related to our work.

Several authors use bisimulations to express timing-sensitive notions
of secure information flow, e.g., [29, 1, 22]. The use of arbitrary equiva-
lence relations for capturing partial information flow has been proposed
in a timing-insensitive context [2, 9]. In this context, the notion of in-
dependent composition [2] is related to our product construction ×RI

RO
.

RI/RO-security marries the timing-awareness of the bisimulation-based
2 This corresponds to a state-space size of approximately 252 for the product automa-

ton.

approaches with the accuracy of the parameterized approaches. In [10],
a parameterized and timing-aware definition of secure information flow
is given. However, it does not allow for input sequences of arbitrary
length and it is unclear whether it can be efficiently checked. The idea
of quantifying information by the number of distinguishable behaviors
has been proposed by Lowe [15] as an over-approximation for Shannon’s
information-theoretic measure.

Programming language-based approaches to counter timing leaks usu-
ally assume infinite-state transition systems, which leads to undecidable
analysis problems. One way to approximate undecidable security condi-
tions is to use syntax-driven techniques, such as security type systems.
Several security type systems for dealing with timing-sensitive notions of
secure information flow for programming languages have been proposed
[1, 29, 22, 14, 3]. We exploit the fact that the state spaces in our setting
are finite to develop a method for efficiently deciding system security.

Tolstrup et al. [28] present an information flow analysis method for
the hardware description language Vhdl that does not consider timing
issues. A recent follow-up paper [27] also incorporates timing and provides
a type-system to approximate a semantic definition of security. Analyzing
hardware on the level of Vhdl has the advantage of being very concrete,
but it also means that one has to deal with artifacts such as processes and
δ-time. Our automata-based model is more abstract and it allows for a
clean separation of program semantics and security definitions. Moreover,
our approach has the advantage of an efficient decision procedure.

6 Conclusions and Outlook

The results presented in this paper are both theoretical and practical. On
the theoretical side, we have developed a parametric notion of security for
an automaton model for synchronous systems and have given algorithms
and complexity bounds for its decision problem. In the deterministic case,
we have derived quantitative bounds for the confidential information that
a system may reveal to an attacker. On the practical side, we have shown
that our definitions encompass a number of interesting security properties
and applied our techniques to verify (or detect timing leaks in) nontrivial
hardware implementations of cryptographic algorithms.

While the notion of RI/RO-security proposed appears to be a general
and useful parametric notion of information flow, counting distinguish-
able behaviors provides only an approximate measure of the quantity of
information that a system may leak. It should not be difficult though to
incorporate probability distributions on the inputs to give more concrete,
information-theoretic bounds, e.g. along the lines of [5].

Another area for future work concerns algorithms and abstractions
that can help us manage both larger systems and those with infinite
state-spaces. It would also be interesting to use our security notions as a
starting point for techniques to automatically correct insecure systems.

References

1. J. Agat. Transforming out Timing Leaks. In Proc. POPL ’00, pages 40–53.
2. G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self-

Composition. In Proc. CSFW ’04, pages 100–114.
3. G. Barthe, T. Rezk, and M. Warnier. Preventing Timing Leaks Through Transac-

tional Branching Instructions. In Proc. QAPL ’05.
4. D. Boneh and D. Brumley. Remote Timing Attacks are Practical. In Proc. USENIX

Security Symposium ’03, 2003.
5. D. Clark, S. Hunt, and P. Malacaria. Quantitative Information Flow, Relations

and Polymorphic Types. J. Log. Comput., 18(2):181–199, 2005.
6. M. Davio, J. P. Deschamps, and A. Thayse. Digital Systems with Algorithm Im-

plementation. John Wiley & Sons, Inc., 1983.
7. R. Focardi, R. Gorrieri, and F. Martinelli. Information Flow Analysis in a Discrete-

Time Process Algebra. In Proc. CSFW ’00, pages 170–184.
8. R. Focardi, S. Rossi, and A. Sabelfeld. Bridging Language-Based and Process

Calculi Security. In Proc. FoSSaCS ’05, LNCS 3829, pages 299–315.
9. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-

interference by abstract interpretation. In Proc. POPL’04, pages 186–197.
10. R. Giacobazzi and I. Mastroeni. Timed Abstract Non-Interference. In Proc. FOR-

MATS’05, LNCS 3829, pages 289–303.
11. P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and Three

Problems of Equivalence. Information and Computation, 86:43–68, 1990.
12. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In Proc. CRYPTO ’96, LNCS 1109, pages 104–113.
13. B. Köpf and D. Basin. Timing-Sensitive Information Flow Analysis for Syn-

chronous Systems. Technical Report 526, ETH Zürich, 2006.
14. B. Köpf and H. Mantel. Eliminating implicit information leaks by transformational

typing and unification. In In Proc. FAST’05, LNCS 3866, pages 42–62, 2006.
15. G. Lowe. Quantifying Information Flow. In Proc. CSFW ’02, pages 18–31.
16. J. D. McLean. A General Theory of Composition for Trace Sets Closed under

Selective Interleaving Functions. In Proc. IEEE Symp. on Security and Privacy
’94, pages 79–93.

17. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

18. D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermeasures: the
Case of AES. In Proc. CT-RSA ’06, LNCS 3860, pages 1–20.

19. R. Paige and R. E. Tarjan. Three Partition Refinement Algorithms. SIAM J.
Comput., 6(16):973–989, 1987.

20. P. Puschner and A. Burns. A Review of Worst-Case Execution-Time Analysis.
Real-Time Systems, 18(2/3):115–128, 2000.

21. A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. J.
Selected Areas in Communication, 21(1):5–19, 2003.

22. A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Pro-
grams. In Proc. CSFW ’00, pages 200–215.

23. A. Sabelfeld and D. Sands. A PER Model of Secure Information Flow in Sequential
Programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001.

24. P. Schaumont and I. Verbauwhede. Domain-Specific Codesign for Embedded Se-
curity. IEEE Computer, 36(4):68–74, 2003.

25. P. Schaumont and I. Verbauwhede. The Descriptive Power of GEZEL. Technical
report, 2005.

26. G. Smith and D. Volpano. Secure Information Flow in a Multi-Threaded Impera-
tive Language. In Proc. POPL ’98, pages 355–364.

27. T. Tolstrup and F. Nielson. Analyzing for Absence of Timing Leaks in VHDL. In
Proc. WITS ’06 (to appear).

28. T. Tolstrup, F. Nielson, and H. Nielson. Information Flow Analysis for VHDL. In
Proc. PaCT ’05, LNCS 3606, pages 79–98.

29. D. Volpano and G. Smith. Eliminating Covert Flows with Minimum Typings. In
Proc. CSFW ’97, pages 156–168.

A Proofs

In the following, let M = (S, Σ, Γ, δ, s0) be a nondeterministic automaton
with output, and let RI ⊆ Σ × Σ and RO ⊆ Γ × Γ be equivalence
relations.

Lemma 1. Let 〈R,C〉 be a partial partition of the set of states S. Then
the following are equivalent:

1. 〈R,C〉 is a fixed point of Φ.
2. 〈R,C〉 is a RI/RO-partition of S.
3. R satisfies (1) of Definition 2.

Proof. (1. ⇒ 2.) The assertion follows by setting R1 = R2 = R in the
definition of Φ, and observing that two states s1 and s2 relate in R when-
ever they are contained in the same set Ai of the corresponding partial
partition.

(2. ⇒ 3.) Let s1 R s2, a1 RI a2, and (s1, a1, c1, s
′
1) ∈ δ. As δ(s1, a1, [c1])∩

C = ∅, we have s′1 ∈ δ(s1, a1, [c1]) ∩A for some equivalence class A of R.
By hypothesis, we also have δ(s2, a2, [c1]) ∩ A 6= ∅, and hence there is a
transition (s2, a2, c2, s

′
2) ∈ δ with c1 RO c2 and s′1 R s′2.

(3. ⇒ 1.) Let 〈R, C〉 =̂ 〈{A1, . . . , An}, C〉 and Φ(〈R,C〉) = 〈R′, C ′〉. It
suffices to show that R′ = R. The implication R′ ⊆ R follows directly
from the definition of Φ. To show that R ⊆ R′, choose s1 R s2 and
a1 RI a2. If δ(s1, a1, x) ∩ Aj 6= ∅, then there is a (s1, a1, c1, s

′
1) ∈ δ with

c1 ∈ x and s′1 ∈ Aj . As R satisfies (1) of Definition 2, there is also a
(s2, a2, c2, s

′
2) ∈ δ, with c2 ∈ x and s′2 ∈ Aj . Hence δ(s2, a2, x) ∩ Aj 6= ∅,

and R ⊆ R′ follows. 2

Theorem 3. There exists a unique maximal RI/RO-partition π∗ of S,
namely, π∗ = Φn(〈{S}, ∅〉), for some n ∈NNN .

Proof. To apply the Knaster-Tarski fixed-point theorem, it suffices to
show that Φ is monotone. To this end, consider the partial partitions
π1 = 〈{A1, . . . , An}, C1〉 =̂ 〈Q1, C1〉 and π2 = 〈{B1, . . . , Bm}, C2〉 =̂
〈Q2, C2〉, where π1 ≤ π2. Furthermore, let Φ(π1) = 〈Q′

1, C
′
1〉 and Φ(π2) =

〈Q′
2, C

′
2〉. We need to show that s1 Q′

1 s2 implies s1 Q′
2 s2. Assume

s1 Q′
1 s2. By the definition of Φ, this implies s1 Q1 s2, which implies

s1 Q2 s2. Furthermore, for all (a1, a2) ∈ RI , and for all x ∈ Γ/RO
,

we have δ(s1, a1, x) ∩ C1 = δ(s2, a2, x) ∩ C1 = ∅. As C1 ⊇ C2, we also
have δ(s1, a1, x) ∩ C2 = δ(s2, a2, x) ∩ C2 = ∅. Finally, let (a1, a2) ∈ RI

and x ∈ Γ/RO
, and suppose s′1 ∈ δ(s1, a1, x) ∩ Bi. s′1 is also contained

in some Aj ⊆ Bi, as otherwise this would contradict the assumption
δ(s1, a1, x)∩C1 = ∅. Then, as s1 Q′

1 s2, we also have δ(s2, a2, x)∩Aj 6= ∅.
Hence we conclude δ(s2, a2, x)∩Bi 6= ∅. The proof that δ(s2, a2, x)∩Bi 6= ∅
implies δ(s1, a1, x) ∩ Bi 6= ∅ follows along the same lines and concludes
the proof of the monotonicity of Φ.

As S is finite, the lattice of partial partitions of S is also finite and
hence complete. The Knaster-Tarski fixed-point theorem guarantees the

existence of a unique maximal fixed point π∗. We have Φ(π) ≤ π for every
partial partition π of S, and hence iteratively applying Φ to π> = 〈{S}, ∅〉
leads to the fixed point π∗ = Φn(π>) after a finite number of steps n. 2

Theorem 4. Let Mi = (Si, Σi, Γi, δi, s0,i), with i ∈ {1, 2}, be automata
with output and let RI ⊆ Σ1 × Σ1, RO ⊆ Γ1 × Γ1, QI ⊆ Σ2 × Σ2, and
QO ⊆ Γ2 × Γ2 be equivalence relations. Let s1, s2 ∈ S1 and t1, t2 ∈ S2. If
Γ1 ⊆ Σ2, RO ⊆ QI , s1 'RI

RO
s2, and t1 'QI

QO
t2, then

(s1, t1) 'RI
QO

(s2, t2) in M1 ·M2 .

Proof. Since s1 'RI
RO

s2 and t1 'QI
QO

t2, there are relations R1 ⊆ S1 × S1

andR2 ⊆ S2×S2 that satisfy Property (1) of Definition 2, where (s1, s2) ∈
R1 and (t1, t2) ∈ R2. It suffices to show that R1,2 := {((s, t), (s′, t′) |
|(s, s′) ∈ R1 ∧ (t, t′) ∈ R2} also fulfills Property (1). To this end, let
((s, t), (s′, t′)) ∈ R1,2 and let (a, b) ∈ RI . Choose ((s, t), a, c, (p, q)) ∈ δ′,
where δ′ is the transition function of M1 ·M2. From the definition of δ′,
there is an e ∈ Γ1 such that (s, a, e, p) ∈ δ1 and (t, e, c, q) ∈ δ2. As R1

satisfies (1) of Definition 2, there is a (s′, b, d, p′) ∈ δ1, with (p, p′) ∈ R1

and (e, d) ∈ RO. As RO ⊆ QI and (t, t′) ∈ R2, there is a (t′, d, c′, q′) ∈ δ2

with (c, c′) ∈ QO and (q, q′) ∈ R2. From the definition of δ′, we have
((s′, t′), b, c′, (p′, q′)) ∈ δ′ with (c, c′) ∈ QO and ((p, q), (p′, q′)) ∈ R1,2, as
required. 2

