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Abstract—
Obfuscation-based private web search (OB-PWS) solutions

allow users to search for information in the Internet while
concealing their interests. The basic privacy mechanism in
OB-PWS is the automatic generation of dummy queries that
are sent to the search engine along with users’ real requests.
These dummy queries prevent the accurate inference of search
profiles and provide query deniability. In this paper we propose
an abstract model and an associated analysis framework to
systematically evaluate the privacy protection offered by OB-
PWS systems. We analyze six existing OB-PWS solutions using
our framework and uncover vulnerabilities in their designs.
Based on these results, we elicit a set of features that must
be taken into account when analyzing the security of OB-
PWS designs to avoid falling into the same pitfalls as previous
proposals.

I. INTRODUCTION

Web search has become a regular activity in our lives, as
it is often the fastest and most effective way of finding in-
formation. Web search service providers, commonly known
as search engines, maintain a database of pointers to pages
in the Web. These pointers are indexed by keywords, which
relate to the content of the associated pages. In order to
perform a search in this database, a user composes a query
formed by one or more keywords related to the topics she is
interested in, and sends it to the search engine. The engine,
based on the keywords contained in the query, compiles a
list of web pages likely to contain the information of interest
and returns it to the user.

Search queries are closely related to the issues we are
interested or concerned about, and are thus a rich source
to perform user profiling. This raises privacy concerns with
respect to social sorting and discrimination, particularly as
potentially sensitive information can be inferred from search
queries, such as income level, health issues, or political
beliefs [19], [29].

Different approaches can be taken to address this problem.
Users may connect to the search engine through an anony-
mous web browsing system [3], [8], [26], which makes them
appear as having a different identity in each session; or they
may be identifiable but conceal their search profile. We note
that these two approaches are complementary. Anonymizers
hinder the creation of search profiles through query unlink-
ability; while concealing the search profile makes it harder

to re-identify anonymous users through their queries.
Private information retrieval (PIR) [16], [21] is a class

of solutions to conceal search queries. PIR allows a user
to retrieve a record from a database without the database
owner being able to determine which record was accessed,
and PIR schemes have also been proposed in the context of
web search [4]. These cryptography-based solutions provide
strong privacy guarantees, but require the search engine to
implement and run the protocols. Search engines however
do not have any incentives to implement costly protocols
they cannot profit from, and thus the deployment of these
solutions may not be realistic in practice.

In this paper we focus on a category of private web search
solutions that we call obfuscation-based private web search
(OB-PWS) systems [9], [11], [12], [13], [14], [18], [20],
[22], [23], [25], [28], [30]. One of the main advantages of
OB-PWS over PIR solutions is that they do not require the
cooperation of the search engine. The basic OB-PWS mech-
anism consists in automatically generating dummy (fake)
search queries. These dummy queries, generated by an OB-
PWS tool (e.g., a browser plugin), are not necessarily relate
to the actual interests of the user. As a result, dummy queries
introduce “noise” in the user profile obtained by the search
engine, enabling the concealment of her actual interests.
Furthermore, if confronted with a sensitive or uncomfortable
query, users may claim that it was generated by the OB-PWS
tool and obtain plausible deniability about having issued the
query.

We note that besides protecting individual users, obfus-
cation diminishes the overall utility of search profiles to
search engines and, assuming that a sufficiently large user
base adopts OB-PWS solutions, it may reduce the economic
incentives to perform mass sophisticated profiling.

The contributions of this paper are the following:
• We propose an abstract model that captures the key ele-

ments of OB-PWS systems and models the capabilities
of a strategic adversary.

• We describe an evaluation framework for OB-PWS
strategies. We define privacy properties for both search
profiles and individual queries, point out the elements
that must be considered in the security analysis, and
propose metrics to evaluate the effectiveness of differ-
ent dummy generation strategies.



• Based on our model and evaluation framework, we
evaluate six proposed OB-PWS systems and uncover
vulnerabilities in their designs as well as flaws in their
original evaluations.

• We identify key features in OB-PWS systems and
discuss their impact on the system properties.

• We provide an overview of open problems and chal-
lenges that need to be addressed in order to design
effective and robust OB-PWS tools.

II. AN ABSTRACT MODEL FOR OBFUSCATION-BASED
PRIVATE WEB SEARCH (OB-PWS) SYSTEMS

We consider a model in which a user Alice queries a
web search engine to find information in the web. Alice’s
queries consist of a set of keywords that are related to the
information she is looking for. Keywords are processed by
the search engine in order to find relevant web pages and
return them to Alice. We assume that Alice does not connect
to the search engine through an anonymous communication
channel [3], [8], [26], and thus consider that her queries can
be linked together.

Alice’s queries can be associated to topics or categories
according to the keywords in the query and other contextual
information. Alice’s search profile is modeled as a multi-
nomial distribution X = {xi} that we call real profile.
Each element xi of Alice’s profile represents her level of
interest in category or topic i. Usually, xi is computed as the
fraction of queries containing keywords related to category i,
according to some semantic classification algorithm (SCA).

We note that modeling the profiles as multinomial distri-
butions does not impose constraints on the semantic classi-
fication algorithm SCA that associates queries to categories.
Categories may range from very broad (e.g., health, sports,
music) to very specific, to the extreme of considering each
individual keyword as a category.

The OB-PWS adversary is an honest-but-curious search
engine, or any other entity with access to the user search
queries (e.g., an eavesdropper). The goal of the adversary
is to infer private information about Alice from her search
profile and queries. For this, the adversary records all the
queries received from Alice, and builds an observed profile
Y = {yi}. When all the queries received are real queries
issued by Alice herself, Y accurately represents Alice’s real
profile X (i.e., Y =X).

An OB-PWS tool is a piece of software (e.g., a browser
plugin) that runs in Alice’s computer. This tool generates
dummy queries, denoted as D, that are submitted along
with Alice’s real queries, denoted as R. Dummy queries are
fake queries that are automatically generated by the OB-
PWS tool, and thus are not necessarily related to Alice’s
real interests. Dummy queries mitigate the privacy threats
derived from search profiling by obfuscating the observed
profile Y , which now contains a mix of real and dummy
queries (i.e., Y 6= X). Without loss of generality our

model abstracts dummy keywords attached to user queries
as separate queries sent simultaneously (e.g., the query
“real OR dummy” is modeled as two queries “real” and
“dummy”).

The OB-PWS tool generates dummy queries according to
a dummy generation strategy DGS. Typically, the DGS uses
a semantic classification algorithm SCADGS that provides a
mapping between the queries and the categories associated
with them. The DGS establishes the ratio of dummy queries
to be generated, their content and semantics, their distribu-
tion amongst categories, the metadata associated to them, the
time when they are issued, and any other feature relevant for
the operation of the OB-PWS tool.

In order to be effective, dummy queries need to be
indistinguishable from real queries. Otherwise the adversary
may be able to filter them out and recover a filtered profile
Z = {zi} that is similar to the real profile X – thus
neutralizing the effect of the OB-PWS tool. Similarly, if
the DGS distorts the observed profile Y in a way that is
predictable and invertible, the adversary can remove (part
of) the noise and obtain a filtered profile Z that is a less
noisy version of X than Y .

We consider that the filtering of Y to obtain Z combines
two algorithms. The first is the dummy classification algo-
rithm (DCA). The function of the DCA is to classify queries
as either real QR or dummy QD, based on relevant features
of the dummy generation strategy, such as query semantics,
grammar, timing, or metadata. When constructing the filtered
profile Z, the adversary discards queries QD classified as
dummies and only takes into account queries QR classified
as real. The DCA fully succeeds in filtering dummy queries
when all queries D and R are correctly classified as QD
and QR, respectively. If the classification of a query as QR
or QD is independent of the query actually being real or
dummy, then we say that the DCA fails to provide any useful
information to the adversary.

The second component is the profile filtering algorithm
(PFA). This algorithm attempts to predict the way in which
the dummy queries added by the DGS modify each of the
components of Alice’s real profile, and then invert their
effect to recover a filtered profile Z = {zi} that better
represents the actual interests of the user. The PFA fully
succeeds when the filtered profile Z does not contain any
noise (i.e., Z = X).

Note that the DCA and PFA algorithms benefit from
each other: more information about the real profile X helps
identifying dummy queries, and vice versa. We assume the
adversary takes advantage of this and runs the algorithms
iteratively, refining the filtering.

Figure 1 summarizes the elements of the model. From
left to right the figure displays a user issuing real queries
R which can be represented (according to some SCA) as a
profile X . The OB-PWS tool installed in the user’s computer
receives as input the user’s real queries R and automatically
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Figure 1. An abstract model for obfuscation-based private web search

generates dummy queries D according to its dummy gener-
ation strategy DGS and associated semantic classification
algorithm SCADGS. Both real and dummy queries are sent
to the adversarial web search service provider, who (ideally)
cannot distinguish them and thus are represented as Q.
The observed profile Y is a representation of all Q queries
according to some SCA of the adversary’s choice. Further,
the adversary can implement dummy classification DCA and
profile filtering PFA algorithms that exploit vulnerabilities in
the DGS. The former is used to classify queries Q as real
QR or dummy QD, while the latter reverses the obfuscation
introduced by the DGS in Y in order to obtain the filtered
profile Z. The DCA and PFA are applied iteratively (using
an SCA to translate queries to semantic categories) to
both reduce the amount of noise in Z and enhance the
distinguishability of real and dummy queries.

III. EVALUATION FRAMEWORK FOR OB-PWS
STRATEGIES

In this section we outline an evaluation framework for
OB-PWS systems. We define privacy properties for both
search profiles and individual queries, point out the elements
that must be considered in the analysis, and propose metrics
to assess and compare the effectiveness of different dummy
generation strategies with respect to the defined privacy
properties.

We recall that the query-based and profile-based analyses
are complementary, i.e., succesfully identifying dummy and
real queries leaks information about the real profile X ,
and vice versa. A key element connecting both types of
analysis is the semantic classification algorithm, SCA. The
function of the SCA is to translate query logs into profiles,
by associating queries to profile categories.

The evaluation of an OB-PWS dummy generation strategy
(DGS) requires exploring the possible adversarial strategies
(DCA, SCA, and PFA) and their success in: (1) recovering
the user’s real profile X; and (2) identifying with a high
degree of certainty the user’s real queries R.

A. Profile-Based Analysis.

Our profile-based analysis aims to measure the uncertainty
of the adversary on Alice’s real profile X after it has
been obfuscated by the dummy generation strategy DGS.

Figure 2. Pr[X = X] in the profile space.

Analyzing the level of profile privacy provided by a dummy
generation strategy requires exploring semantic classification
and profile filtering algorithms that could be implemented by
the adversary in order to filter observed profiles and extract
as much information as possible about user preferences and
interests. The amount of profile information leaked by the
DGS is an indicator of the level of protection provided by an
OB-PWS design. This is given by the difference between the
a priori and a posteriori uncertainty of the adversary on the
real profile X , i.e., before and after obtaining the observed
Y and filtered Z profiles.

We assume that the adversary has background information
on the interests of the user population (e.g., which search
topics are more popular). We model this information as a
random variable X . Pr[X = X] describes the (a priori)
probability that a user has a particular profile X , where X
is a vector with as many dimensions as categories considered
by the SCA. Figure 2 shows an example of the probability
density Pr[X = X], simplified to three dimensions, i.e.,
profiles X = {x1, x2, x3} that have three components 0 ≤
xi ≤ 1 such that

∑
i x1 = 1. Darker areas represent highly

likely profiles, while lighter areas refer to rare profiles. We
measure the adversary’s (a priori) uncertainty on X as the
entropy [27] of X , H(X ).

The adversary can construct an observed profile Y with
the queries submitted by the user and the OB-PWS tool.
Let Y be a random variable representing the probability
of occurrence of observed profiles, and let EY denote the
conditional entropy (also known as equivocation) of X given
Y:

EY = H(X|Y) = H(X ,Y)−H(Y) .
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EY is the average uncertainty of the adversary on real
profiles X ∈ X given observed profiles Y ∈ Y . The average
amount of information leaked by observed profiles on real
profiles is given by H(X )− EY .

After recovering Y , a strategic adversary aware of the use
of the OB-PWS tool can apply DCA and PFA algorithms to
obtain a filtered profile Z. We define Z and EZ analogously
to Y and EY :

EZ = H(X|Z) = H(X ,Z)−H(Z) .

EZ is the average uncertainty of a strategic adversary on
real profiles X ∈ X given filtered profiles Z ∈ Z . The
average amount of profile information leaked by the DGS
on real profiles is given by H(X )− EZ .

An OB-PWS system provides perfect profile protection
when the adversary is unable to gain any information about
Alice’s real profile X from Z; i.e., EZ = H(X ). Conversely,
when EZ = 0 the information leaked by the DGS is H(X ),
and the adversary can perfectly reconstruct real profiles X
from filtered profiles Z . Formally, ∀Z ∈ Z , ∃X ∈ X such
that Pr[X = X|Z = Z] = 1.

In this paper we use EZ as a metric to illustrate how
previous analyses of OB-PWS tools oversee information
leaked by the used DGS hence overestimating the protection
provided by these systems. However, we note that EZ only
gives a measure of the average level of protection provided
by a dummy generation strategy to user profiles. When
EZ < H(X ), this metric does not give any guarantee on the
protection given to specific individual profiles, and further
metrics should be taken into account in a comprehensive
analysis.

B. Query-Based Analysis
One of the goals of the OB-PWS dummy generation strat-

egy DGS is to issue dummy queries D that are indistinguish-
able from real queries R. A query-based analysis requires
first studying which features of the DGS (e.g., semantics,
metadata) could be exploited by a DCA to distinguish
between real and dummy queries. Perfect query protection
is provided when for all possible dummy classification
algorithms DCA the probability of a query being classified
as QR (or QD) is independent of the query actually being
real R or dummy D; i.e., Pr[QR|Q = R] = Pr[QR|Q = D],
and analogously, Pr[QD|Q = R] = Pr[QD|Q = D].
Figure 3 shows the probabilities associated with the dummy
classification algorithm.

On the other hand, if the adversary can implement
a dummy classification algorithm DCA that classifies all
queries correctly (i.e., Pr[R|QR] = Pr[D|QD] = 1), then
the OB-PWS system offers no query privacy protection. Note
that this implies that the filtered profile will contain all real
queries and no dummies, and thus Z = X and EZ = 0.

We consider two query-based privacy properties to eval-
uate the protection offered by a DGS: unobservability,

Figure 3. DCA

denoted as U , and deniability, denoted as D. A real query
R is unobservable when the adversary classifies it as a
dummy query QD. We recall that queries classified as QD
are discarded when constructing the filtered profile Z. Thus,
unobservable queries hinder the reconstruction of Z by
misrepresenting the weight of the categories associated with
unobservable queries.

We define the average level of unobservability (U) pro-
vided by a DGS to user queries as the fraction of real queries
R that are misclassified as dummies QD by the adversary’s
DCA:

U = Pr[QD|Q = R].

Unobservability ranges from U = 0, when all real queries
are correctly identified, to U = Pr[D], when real queries
are misclassified as QD at the same rate as the ratio dummy
queries to total queries Pr[D] = D

R+D . We assume that for a
non-trivial DCA, the adversary never misclassifies more real
queries than correctly classifies dummies, i.e., Pr[QD|Q =
R] ≤ Pr[QD|Q = D].

Even if some (or many) of the users’ queries are unob-
servable, a fraction Pr[QR|Q = R] of real user queries are
still classified as real by the adversary and taken into account
for the construction of the filtered profile Z. If a significant
fraction Pr[QR|Q = D] of dummy queries are also classified
as QR, the user can plausibly deny having issued a query
R, and claim instead that the query was in fact a dummy
D generated by the OB-PWS tool. We measure the average
level of deniability (D) provided by a DGS to user queries
as:

D = Pr[D|QR] =
Pr[QR|Q = D] · Pr[D]

Pr[QR]
.

Deniability ranges from D = 0, when no dummy queries
are misclassified as QR, to D = Pr[D], when dummy and
real queries are classified as QR with the same probability
(Pr[QR|Q = D] = Pr[QR|Q = R]) and thus the adversary’s
best guess can only be based on his a-priori information on
the proportion of dummy queries issued by the OB-PWS
tool.

Table I offers a summary of the notation we have intro-
duced throughout this section.
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Table I
SUMMARY OF NOTATION

Symbol Meaning

R Real query issued by the user
D Dummy query issued by the OB-PWS tool
Q Query (real or dummy) observed by the adversary

X = {xi} Real Profile. Multinomial distribution representing the
user’s level of interest in different categories according
to some SCA

Y = {yi} Observed Profile. Multinomial distribution representing
the adversary’s view of the interests of the user different
categories according to some SCA

Z = {zi} Filtered Profile. Multinomial distribution representing the
adversary’s view of the interests of the user according to
some SCA after applying DCA and PFA algorithms

QR Query (R or D) that the adversary classifies as real
QD Query (R or D) that the adversary classifies as dummy
D Deniability
U Unobservability

DGS Dummy generation strategy of the OB-PWS system
SCA Semantic classification algorithm that associates queries

to the categories considered in the profile
DCA Dummy classification algorithm implemented by the ad-

versary that exploits weaknesses in the DGS to classify
queries as either QR or QD

PFA Profile filtering algorithm implemented by the adversary
that exploits weaknesses in the DGS to predict the noise
added by the DGS to X in order to filter it out of Y

X Random variable describing the probability over all pos-
sible real profiles X

Y Random variable describing the probability over all pos-
sible observed profiles Y

Z Random variable describing the probability over all pos-
sible filtered profiles Z

E• Equivocation or conditional entropy representing the av-
erage uncertainty of the adversary on real profiles X
given profiles •, • = {Y, Z}

IV. OBFUSCATION-BASED
PRIVATE WEB SEARCH

In this section we review six OB-PWS systems that have
been proposed in the literature. We consider that these
papers, which implement various different strategies, are a
good representation of the state-of-the-art in obfuscation-
based private web search.

A. TrackMeNot: Resisting Surveillance in Web Search

TrackMeNot (TMN) is a popular1 browser plugin de-
signed by Howe and Nissembaum [18]. TMN generates
dummy queries, D, that are sent together with Alice’s real
queries, R, in order to introduce noise in the observation of
the adversary and prevent the recovery of Alice’s search
profile X . TMN implements a number of strategies to
generate dummy queries. Although TMN focuses mainly on
generating plausible dummy queries, it seeks profile privacy
protection (informally defined as dissimilarity between the
real and observed profiles) rather than query deniability.

1As of March 2012, Mozilla reports more than 42 000 users of TMN
(https://addons.mozilla.org/en-US/firefox/addon/trackmenot/).

TMN does not formally define privacy properties and its
security is not evaluated against an adversary that is aware
of the plugin and tries to neutralize its effect [18].

TMN has been found to be vulnerable to DCA attacks that
exploit the semantics [2] and grammatical construction [5] of
dummy queries to distinguish them from real queries. Naı̈ve
machine learning techniques [24] have also been shown to
be effective in distinguishing dummy queries, assuming that
a sample of Alice’s browsing history (i.e., real queries) is
available for training the algorithms.

There are a number of other features in the DGS of TMN
that could be exploited by a DCA to identify and filter out
dummy queries. In TMN, dummy queries are composed by
keywords drawn from a “Dynamic Query List” [2] initialized
with a list of common query terms extracted from: i) RSS
feeds from popular websites such as Slashdot or CNN, and
ii) a list of popular search terms (e.g., extracted from Google
Trends2).

The initialization sources of the Dynamic Query List
are public. Let “popular” refer to keywords that appear
frequently in the Dynamic Query List. A query Qpopular
that does not contain any “popular” keywords, can be thus
classified as QR, and enjoys a low level of unobservability;
i.e., Pr[QD|R = Qpopular] ≈ 0. Note that these queries
are not deniable either, as Alice cannot plausibly claim
that the OB-PWS tool generated a query Qpopular; i.e.,
Pr[D|QR = Qpopular] ≈ 0.

TMN updates the Dynamic Query List with keywords
from Alice’s real queries, so that future dummy queries
are plausible and concordant with her search history. While
this strategy enhances individual query unobservability and
deniability, it also reduces profile obfuscation, as dummy
queries are distributed in categories similarly to real queries.
Therefore, even if some dummy queries are misclassified
as real, they will only introduce small amounts of noise
in the filtered profile – ultimately defeating TMN’s goal of
obfuscating user interests and preferences.

TMN also specifies techniques for constructing the meta-
data of dummy queries. The reuse of real queries’ metadata
in dummy queries makes the tool vulnerable to DCAs that
exploit query metadata. “Live Header Maps” ensure that
dummy requests generated by TMN have as headers the
last set of headers issued by the browser. Hence, every
time a query Qnew headers with new headers is received, the
DCA determines that the query is real, as otherwise the
headers would have remained unaltered; i.e., Pr[QD|R =
Qnew headers] ≈ 0), and Pr[D|QR = Qnew headers] ≈ 0. In other
words, real queries containing new values in the header are
observable and undeniable.

Finally, TMN implements a “Cookie Anonymization”
mechanism that mandates that cookies are only sent with
dummy queries. TMN assumes that queries sent without

2http://www.google.com/trends
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cookie (Qcookie) are anonymous, and not linkable to queries
sent with cookie (Qcookie). However, it has been shown that
browser fingerprinting techniques can be used to trivially
link together all the queries sent by a browser [10]. Thus,
the adversary can exploit the presence or absence of a cookie
as an indicator of whether the query is real or dummy (i.e.,
Pr[QD|R = Qcookie] ≈ 0, and Pr[D|QR = Qcookie] ≈ 0).

The various exploitable features of TMN’s dummy gener-
ation strategy reviewed in this section enable an adversary to
implement a DCA that classifies queries correctly with high
probability. Distinguishing and filtering out dummy queries
helps the adversary refine the filtered profile Z, so that it is
an accurate reconstruction of Alice’s real profile X .

B. GooPIR: h(k)-Private Information Retrieval
from Privacy-Uncooperative Queryable Databases

GooPIR3 [9], similarly to TMN, selects keywords from
a public dictionary to construct dummy queries. For each
of Alice’s real queries R, GooPIR generates k − 1 dummy
queries D, which are submitted together with R. The si-
multaneous submission of real and dummy queries prevents
the adversary from exploiting query timing or metadata to
identify dummies. On the other hand this strategy does not
conceal when Alice is submitting a real query. Although
sequences of real query timings may potentially be ex-
ploitable by an adversary, DCA algorithms that consider this
information are not explored in this paper and are left as
subject for future work.

GooPIR aims to offer what Domingo-Ferrer et al. call
h(k)-private information retrieval (h(k)-PIR). This prop-
erty ensures that a real query R is seen by the adver-
sary as a random variable R whose entropy is such that
H(R) ≥ h(k) for some function h. GooPIR describes a
protocol to construct dummy queries such that they are
perfectly indistinguishable from the real queries (i.e., such
that H(R) = log(k)). When perfect indistinguishability is
achieved, each of the k queries Q is classified as dummy
with probability Pr[QD|Q] = k−1

k , and as real with proba-
bility Pr[QR|Q] = 1

k .
GooPIR seeks a compromise between computational ef-

ficiency and privacy. Domingo-Ferrer et al. argue that the
higher k, the more dummy queries are sent to the search
engine, and the more privacy the system offers. In terms
of our query-based privacy properties, achieving log(k)-
PIR corresponds to maximum query unobservability and
deniability (U = D = Pr[D] = k−1

k ), which tend to one
as k increases.

Domingo-Ferrer et al. point out that the adversary may be
able to use a DCA that exploits the “popularity” of queries
(as explained for TMN) to identify and remove dummies.
To counter this attack GooPIR checks the popularity of
the keywords in the real query, and selects keywords for

3http://unescoprivacychair.urv.cat/goopir.php

Figure 4. SCA attack on GooPIR

the k − 1 dummy queries that have a similar level of
popularity. GooPIR assumes that the “popularity” of a query
is proportional to its frequency of appearance in the Web,
and that a public dictionary labeled with such frequencies is
available.

Further, to prevent disclosure attacks [1], [7] a query R
is always accompanied by the same set of k − 1 queries
D. By accompanying real queries always with the same
set of dummy queries, GooPIR prevents real queries from
appearing more frequently than dummies.

Domingo-Ferrer et al. provide in [9] a query-based anal-
ysis of GooPIR in which they evaluate the distinguishability
of real and dummy queries, and conclude that their strategy
indeed provides h(k)-PIR. Their analysis, however, consid-
ers a single set of k queries, and does not take into account
that the adversary may combine multiple sets of queries and
use a SCA to find correlations in the topics associated with
the queries.

To illustrate this, let us consider that k = 3 and
that Alice has consecutively issued the three sets of
queries shown in Fig. 4: {“ribbon”, “vacancy”, “tiger”},
{“lion”, “shower”, “stock”}, {“leopard”, “airport”, “song”}.
A SCA may reveal that big cats appear more often than oth-
ers (see Fig. 4, dark circle), and thus that it is more likely that
the user issued the queries {“tiger”, ‘lion”, “leopard”} than
any other combination. This implies that GooPIR does not
provide the promised perfect query indistinguishability [9]
when various sets of queries are taken into account, and
consequently, the unobservability and deniability provided
to queries also falls below k−1

k .

C. Plausibly Deniable Search.

Murugesan and Clifton propose “Plausibly Deniable
Search” (PDS) [22], [23], a dummy generation strategy that
aims at providing a user with “plausible deniability” with
respect to her queries. Analogously to GooPIR, each real
query is accompanied by k − 1 dummy queries, and thus
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query timing and metadata cannot be used to distinguish
dummy queries. Further, PDS substitutes user queries by
canonical queries [22], [23] to prevent the identifiability of
real queries based, e.g., on grammar or typos. Canonical
queries are formed by generic terms that can be combined
to represent any topic that could be searched by the users.

Let S denote the set of k queries S = {Q1, . . . , Qk}, of
which one query is real and k − 1 are dummies. The DGS
for choosing the k−1 dummy queries follows three rules: (i)
any real query Qi = R must generate the set S with equal
probability (i.e., the set S does not leak information about
the real query R that generated it); (ii) all Qi in S relate
to different topics (i.e., the set S is diverse with respect
to semantic categories); and (iii) all Qi in S are equally
plausible (i.e., no query in S can be filtered out because it
is more likely to have been generated by the OB-PWS tool
than by a user).

Murugesan and Clifton argue that query sets S constructed
following the aforementioned rules provide privacy, as they
enable the user to deny having issued Qi = R and to claim
instead that Qi = D and that her query was a different
Qj = R. The reasoning is that this is plausible because any
of the k queries is equally likely of having been generated
by the user, and they would all result in the same observed
set S. Assuming that the three rules are satisfied and that
there is no DCA that could identify some queries as being
more likely real than others, PDS’s definition of “plausible
deniability” is equivalent to D (as defined in Sect. III-B)
when maximum deniability and unobservability are achieved
(D = U = Pr[D] = k−1

k ).
To ensure topic diversity, the dummy generation strategy

of PDS relies on a SCAPDS called “Query-Topic Score”
(denoted as rscore). For each query Q, rscore computes
a vector with as many components as semantic categories
are considered by the SCAPDS. The value of each compo-
nent of the vector is a score that expresses the extent to
which Q relates to category i. PDS assumes that a suitable
rscore algorithm is available, and makes abstraction of its
specific implementation. PDS uses the rscore vectors to
select dummy queries that relate to semantically distant
categories, according to a topic dissimilarity metric (e.g.
cosine similarity).

The experimental evaluation of PDS presented in [22]
shows that it generates query sets S that relate to diverse
topics. Murugesan and Clifton argue that “the existence of k
diverse query mappings to the same query set S is sufficient”
for obfuscating the user profile X . Their evaluation however
falls short of analyzing to what extent a strategic adversary
(that considers sequences of queries and background infor-
mation) would be uncertain with respect to the topics of
interest for the user.

To ensure that all queries in S are equally plausible, PDS
requires that all k queries Qi ∈ S have a similar level of
“specificity” with respect to their “dominating topic”; i.e.,

the maximum value in their respective rscore vectors should
be comparable. Note that this assumes that “specificity” of
queries is the only feature that can be exploited by the
DCA to distinguish dummy queries, and disregards other
characteristics such as the frequency of appearance of key-
words in the Web (which is considered by GooPIR [9]). PDS
does however not provide evidence proving that “specificity”
is indeed the only (or even most relevant) feature to be
considered when analyzing the robustness of its DGS to
DCAs.

Given a concrete SCAPDS and a function rscore, PDS
ensures that two queries R1 and R2 that are semantically
close generate sets of dummy queries that are also semanti-
cally dependent. This aims at preventing attacks, as the one
described in the previous section for GooPIR, that exploit
correlations in the semantics of the queries in a sequence to
identify the real queries. Note however that this implicitly
assumes that the adversary will use SCAPDS in her analysis.
If the adversary uses a different SCAAdv, the semantic
correlation of dummy queries may be weakened compared
to that of the real queries, enabling the distinguishability of
real queries.

To illustrate this, let us consider a PDS system with
k = 2 (i.e., each real query is accompanied by one dummy
query). Consider for instance a user that issues the queries
{“Justin Bieber”, “Toy Story”, “Disneyland”}, and that ac-
cording to SCAPDS the dominant topics of these queries are
“music”, “cartoons”, and “amusement parks”, respectively.

Further, consider that these categories are always masked
by dummy queries about “history”, “physics”, and “cars”,
respectively, also according to SCAPDS. Now consider that
the adversary implements a different SCAAdv that classifies
all three queries “Justin Bieber”, “Toy Story”, and “Disney-
land” as being related to “kids”, rather than being associated
to “music”, “cartoons”, and “amusement parks”. Given this
SCAAdv, it would be apparent to the adversary that topics
related to kids appear more often than others, and hence that
kid-related queries are likely to be the user’s real sequence
of queries.

D. PRAW - A PRivAcy model for the Web.

PRAW is an OB-PWS tool which has been proposed,
analyzed, and improved in several articles [11], [12], [13],
[14], [20], [28]. PRAW generates dummy web transactions
to conceal the profile of interests of a user. This profile X
(called “Internal User Profile” in PRAW) is computed using
a SCAPRAW called “Browser Monitor”. The SCAPRAW maps
transactions (queries or visited web pages) to a vector that
indicates the “weight” of the transaction with respect to each
of the considered semantic categories. These vectors are then
used to: (1) construct a user profile X that represents her
overall interest in the different semantic categories or topics;
(2) assess the level of protection that PRAW is providing to
X; and (3) feed and trigger the DGS.
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PRAW generates (on average) Tr dummy queries for each
user real query. The DGS of PRAW constructs dummy
queries with “a mix of terms, originating in the IUP [“In-
ternal User Profile”], along with random terms originating
from an internal database of terms that is a glossary of terms
related to the general domain of the user’s interests” [14]
(where IUP corresponds to X). The goal of this strategy
is to generate dummy queries that relate to topics that are
not too different from those of the user, and thus prevent
the adversary from deploying clustering attacks [14] that
distinguish real and dummy queries based on their topic.
The authors of PRAW acknowledge that such a strategy may
reveal users’ broader interests, but argue that it is necessary
to generate plausible dummy queries and that preventing
the adversary from inferring specific topics of interest offers
sufficient privacy protection. For instance, the adversary may
discover that a user is interested in computer security, but
cannot learn whether her specific interest is cryptography or
intrusion detection systems.

PRAW measures profile privacy as the distance between
the real and the observed profiles (S(X,Y )), computed as
the cosine similarity between the vectors X and Y [11],
[12], [13], [14], [20], [28]. PRAW considers that the closer
S(X,Y ) is to zero, the less information Y leaks about
X . Accordingly, the DGS of PRAW (called “Transaction
Generator”) attempts to generate dummies that decrease the
similarity S(X,Y ).

PRAW has been evaluated against the aforementioned
clustering attack [14]. The evaluation found that dummy
queries are hard to filter based on their topic, and that the
attack results in S(X,Y ) that are reasonably low – thus
concluding that PRAW provides an adequate level of privacy
protection to user profiles X .

The privacy metric used in PRAW implicitly assumes
that the cosine similarity between real and observed profiles
S(X,Y ) is indicative of the uncertainty of the adversary on
X . We note that the results reported in [11] indicate that
PRAW’s strategy works in such a way that the similarity
S(X,Y ) is a function of the dummy generation rate Tr (e.g.,
generating 10 dummies per real query results in similarities
around 0.7), which can be inferred from the total number of
queries generated [24]. We argue that this is not the case,
and that a DGS that results in a predictable S(X,Y ) can
actually be exploited by a PFA to significantly reduce the
uncertainty of the adversary on X .

Let us illustrate with a simple example how a PFA can
exploit the predictability in PRAW’s strategy with respect to
the distance between X and Y .

We first consider an adversary who does not have any
prior information on the distribution of user profiles X
(i.e., all possible profiles X ∈ X are equally likely, and
the a priori uncertainty is H(X ) = log(|X |)). Figure 5
shows the space X of possible profiles X when considering
three categories (vectors X = {x1, x2, x3} are such that

Figure 5. Pr[X|Y, d̂] assuming that Pr[X = X] is uniform (or not
available).

Figure 6. Pr[X|Y, d̂] and Pr[X′|Y, d̂′] assuming that Pr[X = X] is as
depicted in Fig. 2 and available to the adversary.

∑
i xi = 1). Consider that the adversary observes profile Y ,

which in the figure corresponds to the point marked as •.
We denote as d̂ the estimated expected value of 1−S(X,Y )
given Tr. Given PRAW’s strategy, the real profile X that
resulted in observation Y lies with high probability in the
curve defined by points at distance d̂ from Y . In Fig. 5,
higher probability densities Pr[X|Y, d̂] are depicted in a
darker shade. The width of the curve is given by the
confidence interval of d̂. PRAW’s strategy leaks that profiles
lying in these dark areas are the most likely candidates for
being the real profile X of the user – thus significantly
reducing the adversary’s uncertainty with respect to X (i.e.,
EZ << H(X )).

This information leakage is aggravated if the adversary
has prior information on which are the likely user profiles
X . Let us consider that the prior probability distribution of
X , Pr[X = X], is for instance as shown in Fig. 2. Bayes’
theorem can be used to compute the posterior probability
Pr[X|Y, d̂]. This would help the adversary to further narrow
down the set of highly likely profiles to those X that are
both reasonably common in the population and that lie at
a distance d ≈ d̂ from the observed profile Y . We show in
Fig. 6 an example of combining an observation Y with the
background information on X , given two possible estimated
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distances d̂ and d̂′.
PRAW considers that privacy is proportional to distance

(inversely proportional to similarity), and thus that if d̂′ < d̂
(conversely Ŝ′ > Ŝ), then the DGS resulting in d̂ provides
better privacy than the DGS′ resulting in d̂′. We note that
in the scenario depicted in Fig. 6, considering background
information may result in d̂′ corresponding to a higher
level of uncertainty on X (larger dark surface) than d̂; i.e.,
E ′Z may be higher than EZ even though d̂′ < d̂. This
illustrates that distance is not necessarily proportional to
privacy, and that using distance-based metrics can result in
a misleading privacy evaluation. Furthermore, crafting the
DGS to maximize a particular geometric distance metric can
be exploited by the adversary, who can invert the noise added
by the OB-PWS tool to reduce her uncertainty on the user
profile.

E. Optimized Query Forgery for Private Information Re-
trieval (OQF-PIR)

Rebollo-Monedero and Forné proposed OQF-PIR [25],
an OB-PWS system that aims at optimizing the protection
provided to user profiles X when a limited budget of dummy
queries is available. OQF-PIR assumes that the population
profile Y T , a profile describing the aggregate interests of the
whole set of users, is known.

Rebollo-Monedero and Forné claim that “whenever the
user’s distribution [profile] differs from the population’s, a
privacy attacker will have actually gained some information
about the user, in contrast to the statistics of the general
population”. They propose to measure profile privacy as the
Kullback-Leibler (KL) divergence [6] dKL(Y ||Y T ) between
the observed profile Y and the population profile Y T .
They interpret dKL(Y ||Y T ) as a measure of dissimilarity
between the observed and population profiles, and consider
that privacy is perfectly protected when dKL(Y ||Y T ) = 0.
Additionally, the adversary is assumed to not be aware of the
OQF-PIR tool, and thus to take for granted that Y represents
the real profile of the user.

We note that, according to this metric, a user Alice whose
profile coincides with the average of the population (i.e.,
X = Y T ) would enjoy perfect privacy protection without
the need for any obfuscation tool, implying that privacy
protection is only needed for users who “deviate” from the
average. The adversary would however be able to perfectly
reconstruct Alice’s profile X . We argue that profile privacy
protection relates to the uncertainty of a strategic adversary
on the real user profile X , and not to how “average” or
“outlier” a user appears to be with respect to the rest of the
population (i.e., being revealed as “average” may also lead
to a privacy breach).

The DGS of OQF-PIR is designed to optimally minimize
dKL(Y ||Y T ). OQF-PIR implicitly assumes that a SCAOQF
is available to the DGS that identifies query topics and con-
structs profiles (vectors) representing the interest of the user

in each of the topics (modeled as a multinomial distribution).
In order to find the optimal dummy generation strategy

OQF-PIR models the observed profile Y as a weighted
function of the real profile X and a dummy profile W :

Y = (1− ρ)X + ρW , (1)

The dummy profile W is a multinomial distribution in
which each element wi represents the fraction of dummy
queries in category i to be generated by the DGS. The
weighting factor ρ (called redundancy) is the ratio of dummy
to total (real and dummy) queries, and represents the limited
budget of dummy queries available. For a given real profile
X and rate ρ, the optimal dummy profile W is the one that
minimizes dKL(Y ||Y T ).

The optimization algorithm works by first ordering the
profile categories in such a way that

x1
yT1
≤ · · · ≤ xi

yTi
≤ · · · ≤ xn

yTn
, (2)

and then assigning values to their corresponding wi in a
water-filling fashion. That is, dummies are added starting
by the first categories until the budget of dummies is
exhausted [15]. Let us consider for simplicity that Y T is
the uniform distribution. Assuming that ρ is such that only
the first j out of n categories can be completely filled, the
resulting observed profile Y = {y1, · · · , yn} satisfies that
y1 = · · · = yj < yj+1 ≤ · · · ≤ yn. Note that, as no
dummies are added to the last components, wi = 0 and
yi = (1− ρ)xi for i > j + 1.

OQF-PIR assumes a non-strategic adversary who does
not attempt to attack the dummy generation strategy. We
now evaluate DCAs that identify (some of the) real queries,
and PFAs that significantly reduce the uncertainty of the
adversary on X .

Let us consider an observed profile Y such that its l last
components yi have bigger values than their corresponding
yTi (i.e., yTi < yi, for n − l < i ≤ n), and let C
denote the set of categories C = {i}n−l<i≤n. The water-
filling DGS implemented by OQF-PIR does not generate
any queries on those l categories —as they would take
Y farther from, rather than closer to, the target profile
Y T . From a query analysis perspective, the adversary can
implement a DCA that exploits this feature, and identifies as
QR queries QC that are associated with categories included
in set C according to SCAOQF. Thus, these queries enjoy no
unobservability or deniability, as Pr[QD|Q = QC ] ≈ 0 and
Pr[D|QR = QC ] ≈ 0.

OQF-PIR assumes that the dummy rate ρ is a secret
parameter. We note however that a rate ρ̂ could be estimated
from the overall number of queries and default configuration
parameters. Let us assume that the adversary is able to
estimate a probability distribution of ρ̂. We consider a three-
dimensional profile space formed by categories (a, b, c), as
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Figure 7. Possible real profiles (as a function of ρ), target profile, observed
profile, and implausible real profiles, in the profile space

Figure 8. Probability of ρ over a region of the profile space.

shown in Fig. 7, and a population profile that lies at the
center of the space; i.e., at point Y T = ( 13 ,

1
3 ,

1
3 ).

Given the water-filling algorithm used by the DGS, noise
is added to profiles in a deterministic way. Consider that
the observed profile is Y ′, represented as a square dot in
Fig. 7. The components of Y ′ are such that y′b < y′c < y′a.
The gap between the two smallest components (y′b and y′c)
indicates that ρ is not sufficient to fill the smallest component
(y′b). The DGS must have generated dummies with a vector
W ′ = (w′a, w

′
b, w
′
c) = (0, 1, 0), and thus the real profile X ′

can be estimated as:

X̂ ′ = (
y′a

1− ρ̂
,
y′b − ρ̂
1− ρ̂

,
y′c

1− ρ̂
) .

Note that as ρ̂ → ρ, X̂ ′ → X ′ and EZ′ → 0, meaning
that X ′ can be determined when the dummy rate ρ can be
estimated accurately.

We depict in Fig. 7 as a dark (vertical) short line the
likely profiles X ′ that the OQF-PIR strategy might have
transformed into the observed Y ′. As we can see, the
diversity of likely X ′ is rather limited, even when the

estimation of ρ has low confidence (i.e., probability density
of ρ with high variance).

The point marked as • in Fig. 7 corresponds to another
possible observation Y = (ya, yb, yc) such that ya = yb <
yc. In this case, it is clear that the DGS is generating enough
dummies to fill the weakest category (either a or b), but not
enough to bring Y to Y T . W = (wa, wb, 0), with wa+wb =
1; and x̂c = yc

1−ρ̂ . The space of likely real profiles X̂ is
depicted as a dark diagonal line in the upper right corner of
Fig. 7. While this scenario leaves some room for uncertainty,
we can see that the set of likely real profiles X is still rather
limited.

Finally, we show in Fig. 8 a scenario in which the dummy
rate ρ is sufficient for achieving Y = Y T . We show as a dark
inner triangle the space of likely profiles X̂ that may have
originated Y = Y T given ρ̂. As we can see, even in this case
OQF-PIR does not provide a high level of profile protection.
Finally, we note that by using background information the
adversary may be able to further reduce her uncertainty on
X .

F. Noise Injection for Search Privacy Protection.

Lastly, we consider the Noise Injection for Search Privacy
Protection (NISPP) strategy proposed by Ye et al. [30].
Similarly to Rebollo-Monedero and Forné [25], NISPP aims
at finding the optimal dummy queries distribution amongst
categories. The main difference with respect to [25] is
that Ye et al. consider the mutual information between
observed and real profiles I(Y;X ) as optimization criteria.
The optimal DGS is the one that brings I(Y;X ) closer
to zero, and when I(Y;X ) = 0, the observed profile Y
does not leak any information about the real profile X .
With respect to the profile privacy properties defined in
Sect. III-A, I(Y;X ) = 0 corresponds to EY = H(X ), as
I(Y;X ) = H(X )−H(X|Y), i.e., perfect privacy protection.

With respect to query privacy properties, NISPP assumes
that dummy and real queries are indistinguishable based on
their content and metadata (but provides no specifics on how
this could be implemented in the DGS). Further, it considers
that each possible query corresponds to a category of its
own, with the goal of making their system robust to any SCA
that could possibly be implemented by the adversary. Note
that considering individual queries as categories implies that
profile-based and query-based analysis are equivalent. Thus,
I(Y;X ) = 0 also corresponds to maximum deniability and
unobservability of queries (D = U = Pr[D]).

Ye et al. propose two DGS constructions, assuming that
the user real profile X is available. The first DGS con-
struction achieves I(Y;X ) = 0 assuming that at least
NQ − 1 dummy queries are generated per real query (i.e.,
Pr[D] ≥ NQ−1

NQ
), where NQ is the number of possible

queries. For each real query the DGS is allowed to generate
all other NQ − 1 possible queries, and thus the strategy
results in a uniform observed profile Y regardless of which
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is the real profile X . This approach is however impractical
in realistic settings where NQ is large.

The second DGS construction proposed by Ye et al.
considers that only one dummy query is generated per real
query; i.e., Pr[D] = 0, 5, and proposes a (deterministic)
algorithm that outputs the distribution of dummy queries
that minimizes I(Y;X ), given X . The experimental results
presented for I(Y;X ) however do not consider a strategic
adversary who takes background information into account.
A security evaluation of the proposed DGS would also
involve (1) testing its robustness to SCAs that identify topics
of interest and in turn feed this information to a DCA
that distinguishes queries; and (2) studying whether the
noise added by the DGS is predictable and invertible, such
that a filtered profile Z can be constructed whose mutual
information I(Z;X ) is larger than I(Y;X ) (or, in other
words, such that EZ < EY ), further diminishing its privacy
properties. Such comprehensive analysis of NISPP’s second
strategy is beyond the scope of this paper.

V. SUMMARY OF BASIC FEATURES IN OB-PWS
SYSTEMS ANALYSIS

In the previous section we have described and analyzed
a series of OB-PWS tools, and pointed out a variety of
flaws in both their designs and evaluations that lead to an
overestimation of the level of privacy that they offer. In this
section we revisit our analysis and classify the reviewed
OB-PWS systems according to their features, discussing the
impact of each feature on the properties of the schemes.

Table II summarizes the main features considered in our
evaluation. In this table ticks indicate that an OB-PWS
system possesses a feature, and crosses that it does not.
We write “?” when we have not evaluated the feature for
a given system and we write “n/a” when the feature cannot
be evaluated for a system due to a lack of specification in
the original paper.

A. Dummy generation strategies

The dummy generation strategies DGS of the studied
systems can be classified in two broad categories. On the
one hand we have systems that focus on the obfuscation of
the real profile as a whole, assuming that real and dummy
queries are indistinguishable based on content and metadata.
TMN [18], PRAW [28], OQF-PIR [25], and NISPP [30] fall
into this category.

On the other hand we identify systems that focus on
hindering the adversary’s ability to distinguish real and
dummy queries, assuming that query indistinguishability
implies protection at a profile level. In this category we have
TMN [18], GooPIR [9], PDS [23], and NISPP [30].

Note that we have classified TMN and NISPP in both cat-
egories. In TMN, the DGS is mostly focused on reducing the
distinguishability of real queries, but dummies are selected
in such a way that the profile observed by the adversary is

different from the user’s real profile. NISPP, as explained in
Sect. IV-F, considers that each individual query corresponds
to a category, and hence the query and profile properties are
equivalent for this strategy.

B. Privacy Definitions

A second point in which the studied systems diverge is in
the privacy property that they aim to achieve. Even though
all schemes share a common objective, namely to prevent the
adversary from learning the users’ search interests, there are
various ways in which they formalize this abstract privacy
goal.

GooPIR and PDS are query-oriented schemes whose goal
is to generate dummy queries that are hard to distinguish by
the adversary, thus ensuring that user queries are k-deniable.
In other words, these systems provide the user with an alibi
with respect to which queries they have issued, and which
queries have been issued by the OB-PWS tool.

GooPIR and PDS suggest that users can also claim that
the profile recovered by the adversary does not reflect their
interests, as it contains noise from dummy queries. However,
it is unclear how this query k-deniability property relates to
the amount of profile obfuscation provided by these systems
—i.e., to what extent k-deniability prevents the adversary
from inferring the topics of interest of a user.

Profile-oriented systems on the other hand tend to rely
on privacy definitions that relate to the (dis)similarity of
profiles. For TMN and PRAW privacy is related to the
similarity between the real profile of the user and the profile
available to the adversary. The more dissimilar these profiles
are, the better the privacy protection provided by the system.
OQF-PIR alternatively considers that privacy increases as the
observed profile is more similar to the average population
profile. Although PDS uses a query-based approach, its DGS
takes into account semantic distance and generates dummies
on topics that are as semantically distant as possible from
the topic of the real query —thus reducing the similarity
between the real and observed profiles.

These approaches implicitly assume that there is a direct
correlation between the privacy offered by the system and
the similarity between the observed and the real (or the
observed and the population) profiles. Nevertheless, we have
shown (see Sect. IV-D and Sect. IV-E) that distance-based
metrics do not necessarily reflect the privacy protection
provided to profiles, as they are not indicative of how much
the adversary knows about the real user profile.

Finally, NISPP uses mutual information as privacy metric,
and its DGS aims at obfuscating the real profile such that
the observed profile leaks no information about it. We
recall that this metric is equivalent to the equivocation EZ
(introduced in Sect. III-A), which measures the uncertainty
of the adversary on real profiles X given the filtered profile.
The average amount of profile information leaked by the
DGS can be computed as H(X )− EZ .
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Table II
OB-PWS TOOLS: SUMMARY OF FEATURES.

TMN [18] GooPIR [9] PDS [23] PRAW [28] OQF-PIR [25] NISPP [30]

DGS Profile oriented 3 7 7 3 3 3
Query oriented 3 3 3 7 7 3

Privacy
definitions

Privacy as (dis)similarity 3 7 3 3 3 7
Privacy as query k-deniability 7 3 3 7 7 7
Privacy as information leakage 7 7 7 7 7 3

Analysis

Aware adversary 7 3 3 3 7 3
Considers background information 7 3 7 7 3 7
Considered strategic adversary 7 3 7 7 7 7
Exploitable query content 3 3 ? ? n/a n/a
Exploitable query metadata 3 7 7 n/a n/a n/a
Invertible DGS profile transformation ? ? ? 3 3 ?

C. Analysis and evaluation

Systems also differ in their assumptions on the capabil-
ities and knowledge of the adversary. TMN and OQF-PIR
consider that the adversary is not aware of users having
installed an OB-PWS tool. This is reflected in the security
evaluation that accompanies the description of the designs,
which is non-existent in TMN and flawed in OQF-PIR, as
we have shown in Sect. IV-E.

The reviewed systems vary widely in their assumptions on
background knowledge. OQF-PIR assumes that the popula-
tion profile is available to both the DGS and the adversary.
GooPIR assumes that the frequency of appearance of search
keywords in the Web is available to the tool, and also
used by the adversary to attempt to distinguish between
real and dummy queries. TMN, PDS, and PRAW neglect
in their evaluation the fact that the adversary may have
access to background information on likely user profiles
—even although it has great impact on the security they
offer (as illustrated in Sect. IV-D). Lastly, NISPP’s analysis
(explicitly) does not take adversarial background informa-
tion into account (though acknowledging that background
information would diminish the level of privacy protection
offered), while considering that the profile of the user is
available to the DGS.

Of all the studied schemes, only GooPIR’s evaluation
considers a strategic adversary that tries to attack the im-
plemented DGS. Neglecting the adversary’s knowledge of
the dummy generation strategy results in an overestimation
of the privacy provided by the system. We demonstrate the
negative effects of such disregard on our analysis of PRAW
and OQF-PIR (Sect. IV-D and IV-E, respectively) where we
show how the adversary can invert the obfuscation algorithm
and gain information about the real profile.

Dummy query filtering is possible in TMN given the
keyword popularity, semantics [2], or grammatical construc-
tion [5] of dummy queries. GooPIR protects individual
queries against attacks that exploit the popularity of the
keywords in the Web, but it is vulnerable to attacks that
consider sequences of queries and exploit their semantic

relationships. PDS attempts to prevent these attacks by
canonizing queries, and generating sequences of dummy
queries that are semantically related. The security of this
strategy however relies heavily on a semantic classification
algorithm SCAPDS , and does not necessarily guarantee that
a different SCA (with a different definition of “topics”)
will not distinguish dummy queries based on semantic
correlations. PRAW aims at preventing query content attacks
by selecting the keywords for its dummy queries on the
“general” topics of interest for the user (but on different
“specific” topics). PRAW’s strategy for generating queries
is however not sufficiently specified to allow for a thorough
evaluation. OQF-PIR and NISPP are not concerned with
individual queries and do not provide any specifics on how
to generate dummy query content.

TMN specifies several strategies for generating dummy
query metadata (headers, cookies). These strategies can
however be exploited by an adversary to distinguish dummy
and real queries. GooPIR and PDS send queries in batches
of k (one real and k − 1 dummy) such that query timing
or metadata cannot be exploited for distinguishing queries.
PRAW, OQF-PIR, and NISPP do not specify any strategies
for generating query metadata.

PRAW and OQF-PIR present strategies to obfuscate the
user profile using a specific profile transformation function:
maximizing cosine similarity with the observed profile, and
making the observed profile as similar as possible to the
average population profile, respectively. We show how these
strategies allow the adversary to predict and (partially)
reverse the transformation. NISPP’s first (impractical) con-
struction consists in making the profile appear as uniform
by generating NQ−1 dummy queries for each query issued
by the user, where NQ is the number of possible queries.
The second (practical) construction would require additional
analysis, as mentioned in Sect. IV-F. Similarly, analyzing
the effectiveness of profile filtering algorithms for TMN,
GooPIR, and PDS, would require studying how these tools
introduce noise in the observed profiles under different
SCAs. If the distortion introduced is predictable (i.e., if there
is a consistent pattern in how noise is added to profiles), the
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adversary may be able to implement PFAs that filter out
(part of) the noise introduced by the dummy queries in the
observed profile.

Finally, we would like to highlight that none of the
security evaluations presented with the reviewed systems
was done from both a query-based and a profile-based
perspectives —thus overlooking potential vulnerabilities. As
we have pointed out in our analysis framework, performing
both a query-based and a profile-based analysis is crucial for
a comprehensive evaluation of the privacy properties offered
by a OB-PWS design.

VI. CHALLENGES AND OPEN PROBLEMS

We have stated that an effective DGS should ensure that
real and dummy queries are indistinguishable. Several of the
studied systems [9], [18], [28] propose to use a predefined
lexicon. We have shown that this feature can be exploited
by a DCA to distinguish real queries formed by keywords
that are not part of the lexicon. An approach that constructs
the lexicon in a way that it is difficult for the the adversary
to predict which keywords are included in it could mitigate
this problem. Another possible countermeasure is to map
query keywords to the words in the predefined lexicon, as
the canonical queries proposed in [23]. This strategy indeed
counters the aforementioned attack, but its viability in a
practical scenario is dubious. Canonical queries reduce the
utility of the search results as they cannot be as specific as
the original queries. This effect is even more serious when
queries refer to keywords difficult to canonize, e.g., proper
nouns.

The evaluation of a DGS should consider the prior prob-
ability of a given query and also its posterior probability
given the sequence of preceding queries. The DGS should
mimic users’ behavior in terms of query timing, meta-
data, semantics, and grammar, amongst other exploitable
features [2], [5], [24]. Furthermore, related visible actions
such as links that have been clicked after the search results
have been returned to the user should also be taken into
account. Designing a DGS that outputs plausible dummies
indistinguishable from real queries and mimics other relevant
aspects of user behavior is far from trivial and still one of
the main challenges of OB-PWS.

Several of the analyzed systems [23], [25], [28] base
their dummy generation strategy on a given SCADGS, and
evaluate the privacy protection they offer assuming that the
adversary uses the same semantic classification algorithm.
This does not consider attacks in which the adversary uses a
semantic classification different from SCADGS for recovering
the profile. The design of DGS strategies that are safe against
such attacks is a hard problem, as it is very difficult to predict
what SCA the adversary will use. We note that this problem
was already acknowledged in [30] by Ye et al. who alert of
the negative consequences that the attack could have on the
privacy protection provided by their tool.

In this paper we have considered that the output of a
DCA is a binary classification of queries; either as real or
dummies. An alternative approach would be to consider a
probabilistic DCA that assigns to each query probability of
being real (or dummy). These probabilities can then be used
to assign weights to categories when reconstructing the user
profile.

We have analyzed systems from a query-based and a
profile-based perspectives. We have found that query-based
privacy, usually formalized as query k-deniability, is well
understood. On the other hand we have found that profile-
based properties seem to be much harder to articulate. We
have indicated that distance-based metrics fail to capture
privacy notions, and that designing the DGS to maximize
(or minimize) a distance metric is a fundamentally flawed
approach, as it enables the adversary to predict (and remove)
the noise introduced in the observed profile.

We have proposed to use information theoretic metrics
(similar to those introduced by Ye et al. [30]) to model
the information leaked by the different dummy generation
strategies. Nevertheless, we acknowledge that the use of
such metrics on deployed systems entails some challenges.
First, the probability distribution associated to the random
variable X may not be available to the system designer, who
may only have access to an approximation (e.g., profiles
constructed from observed queries over a limited period of
time). A more suitable metric should consider the effect
of considering this approximation on the measured privacy
level. Secondly, as mentioned in Sect. III-A, the conditional
entropy is an average measurement of the privacy protection
provided by an OB-PWS tool. This should be taken into
account when evaluating the system, so as to guarantee a
minimum level of privacy protection to all users. Comple-
mentary metrics should be considered to provide a measure
of the worst-case profile protection provided by a DGS, for
instance the conditional min-entropy:

H∞(X|Z) = − log( max
X∈X ,Z∈Z

{Pr[X = X|Z = Z]}) .

Perfect privacy protection from an information-theoretic
perspective may be impractical to achieve in reality. Further,
it is unclear that complete concealment of the profile is a re-
quirement for all users and applications. Therefore it may be
desirable to define metrics that measure information leakage
with respect to less demanding privacy requirements, such as
altering the observed level of interest in specific categories.
An interesting approach would be to let users indicate the
type of profile they would like to present to the search engine
and generate the dummy queries accordingly. Profile privacy
metrics in this case should express the extent to which the
adversary is able to detect and reverse the noise introduced
in the profile categories whose weight has been modified.

We have highlighted the importance of carrying out both
profile-based and query-based analyses when evaluating a
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DGS. Nevertheless it should be taken into account that
depending on the application the privacy goal of the system
may be more focused on profile-based or query based
properties. A system may for instance focus on preventing
the disclosure of the search interests of the user but not
be necessarily concerned about specific queries. Conversely,
the goal of the system may be to prevent the adversary
from learning whether or not specific queries are real but
not necessarily concerned about the general interests of the
user. As an example, an HIV-positive user may be interested
in concealing that her HIV-related queries are real, or that
she is interested in health-related topics in general. The
former refers to concealing specific queries, thus requires a
query-based approach; whereas the latter refers to concealing
general interests thus it seems more appropriate to choose a
profile-based approach. Regardless of the approach chosen
in the design of the system we must stress that the analysis
of the scheme must take into account strategic adversaries
that know the dummy generation strategy and try to defeat it
from both a profile and a query perspective, as vulnerabilities
detected by an profile-based analysis may influence the
query-based privacy properties, and vice versa.

Our analyses reveal that a strategic adversary can exploit
certain types of dependencies of the dummy generation strat-
egy on the user profile or on real queries. Nevertheless, our
results do not allow us to extract conclusions about which
types of dependencies result in the better or worse privacy
protection. The optimal design decisions with respect to such
dependencies in order to obtain an effective and robust OB-
PWS tool remains as an open question.

Some of the systems we have studied implicitly assume
that the adversary is unaware of the use of the OB-PWS
tool [18], [25]. In other words, they assume that the tool
is unobservable for the adversary and hence she shall not
try to invert the effect of the dummy generation strategy.
While such a property may be desirable we argue that
achieving unobservability is non-trivial and cannot be taken
as granted without a proper analysis. Techniques to construct
and analyze unobservable OB-PWS tools are left as an open
problem.

A related problem is whether the dummy queries should
contain controversial keywords, e.g., “bomb”, “HIV”, or
“gay marriage”. If the tool is unobservable and such key-
words are included, users may appear as involved in subver-
sive activities, having a particular disease, or having certain
sexual orientation, which may be undesirable in certain
situations. The opposite strategy (avoiding such keywords
in dummy queries) puts users in a delicate position: either
they expose themselves; or they refrain from issuing queries
related to sensitive topics, effectively acting as a censors
on their own queries [17]. We note that this self-censorship
conflicts directly with the purpose of private web search, that
is to allow users to freely search for information without
revealing their preferences.

The above problems are alleviated when the tool is
observable and dummy queries can contain controversial
keywords. In this case the user can plausibly claim that
queries containing these keywords were originated by the
OB-PWS tool On the other hand, if sensitive terms are not
included in the OB-PWS lexicon the user is again subject to
self-censorship, reducing the utility of the system. Finding
the optimal balance between these properties is extremely
challenging as the decision not only depends on technical
possibilities but also on subjective opinions particular to each
individual.

VII. CONCLUSION

In this paper we have reviewed the state of the art in
obfuscation-based private web search (OB-PWS) techniques.
Our study contributes towards systematizing existing knowl-
edge by improving the understanding of the conceptual
building blocks of OB-PWS systems; defining and formal-
izing relevant privacy properties; and outlining the elements
that must be taken into account in their security evaluation.

We have proposed an abstract model that captures the
key elements and processes in OB-PWS systems, and an
analysis framework that considers privacy properties asso-
ciated to both search profiles and individual queries. Using
this framework we have analyzed six proposed OB-PWS
strategies and found vulnerabilities that had not been taken
into account in their original security evaluations —implying
that the level of privacy offered by these systems was being
overestimated.

Further, we have identified a series of features that should
be considered in a systematic security evaluation of OB-
PWS systems. In particular, we argue that OB-PWS pro-
posals should be analyzed with respect to both profile-based
and query-based privacy properties regardless of the design
principles and privacy goals of the scheme. It is our hope
that our results will serve as guidance for the designers of
future robust and effective OB-PWS tools.
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