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Online social networks (OSNs) have become one of the main communication channels in

today’s information society, and their emergence has raised new privacy concerns. The

content uploaded to OSNs (such as pictures, status updates, comments) is by default
available to the OSN provider, and often to other people to whom the user who uploaded

the content did not intend to give access. A different class of concerns relates to sensitive

information that can be inferred from the behavior of users. For example, the analysis
of user interactions augments social network graphs with potentially privacy-sensitive

details on the nature of social relations, such as the strength of user relationships. A
solution to prevent such inferences is to automatically generate dummy interactions that

obfuscate the real interactions between OSN users. Given an adversary that observes

the obfuscated interactions, the goal is to prevent the adversary from recovering pa-
rameters of interest (e.g., relationships strength) that accurately describe the real user

interactions. The design and evaluation of obfuscation strategies requires metrics that

express the level of protection they would offer when deployed in a particular OSN with
its underlying user interaction patterns. In this paper we propose mutual information as

obfuscation metric. It measures the amount of information leaked by the (observable)

obfuscated interactions in the system on the (concealed) real interactions between users.
We show that the metric is suitable for comparing different obfuscation strategies, and

flexible to accommodate different network topologies and user communication patterns.

Obfuscation comes at the cost of network overhead, and the proposed metric contributes
to enabling the optimization of strategies to achieve good levels of privacy protection

at minimum overhead. We provide a detailed methodology to compute the metric and
perform experiments that illustrate its suitability.

Keywords: online social networks, privacy, obfuscation, traffic analysis, metric, mutual

information.

1. Introduction

Hundreds of millions of people use online social networks (OSNs) to share infor-
mation and interact with their friends. This increasing reliance on OSNs to com-
municate has given rise to a host of privacy risks. The most prominent concern

aThe published article is available at http://www.worldscientific.com/toc/ijufks/20/06
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relates to the fact that the OSN provider can see all the information uploaded by
the users. A number of prior works1;2;4;3 have proposed solutions to protect content
confidentiality. The main idea is to have a proxy (a browser plugin or OSN applica-
tion) encrypting the uploaded data so that it is only visible to users who have the
corresponding decryption keys, and hence not accessible to the OSN provider.

Even if content is kept confidential, interactions between users (i.e., their com-
munication profiles) may disclose potentially sensitive information.? 5;6;7 Most ex-
isting work on protecting communication profiles against traffic analysis focuses
on providing anonymity properties.? Anonymity is however not a viable option
in OSNs, as users typically have an account and a personal page and thus can at
best be pseudonymous. Moreover, often users must explicitly befriend other users
to be able to interact with them and thus friendship relationships are explicit and
known to the OSN provider. At the same time, social network users establish a
large number of friendships of which only a small fraction corresponds to close
relationships. Hence, concealing which relationships are meaningful in contrast to
non-important acquaintances provides protection against inferences that exploit re-
lationship strength information.

A common approach to conceal the “importance” (or weight) of user relation-
ships is to generate fake or dummy interactions indistinguishable from actual user
interactions. While this is a promising approach to hide meaningful relationships,
the generation of dummies imposes communication and storage overheads on the
network. In this work we propose to use mutual information to measure the degree
of profile obfuscation provided by a dummy generation strategy (DGS), which in
turn enables the search for optimal strategies that maximize protection with mini-
mal overhead. We evaluate the suitability of the metric in OSNs empirically testing
different DGSs, user behaviors, and network topologies. To the best of our knowl-
edge, this is the first work that addresses the protection of communication profiles
against traffic analysis in the specific context of OSN.

The rest of this paper is organized as follows. Section 2 describes the system
and adversary models, and Section 3 introduces the mutual information as met-
ric to evaluate the degree of obfuscation provided by a DGS, and describes our
methodology to compute it. In Section 4 we empirically validate the suitability of
the metric for OSN scenarios. We discuss some open questions in Section 5, and
finally conclude in Section 6.

2. Traffic Analysis Resistant Online Social Networks

2.1. An Abstract Model for Traffic Analysis Resistant OSNs

Content protection. We consider an OSN in which the content uploaded to the
network is protected through encryption, such that each piece of information can
only be decrypted by the designated recipients (i.e., the data is kept confidential
towards the OSN provider). We make abstraction of the concrete key management



November 27, 2012 14:28 WSPC/INSTRUCTION FILE ijufks-dummySN

3

and cryptographic protocols, and assume that a software tool (e.g., a browser plug-
in1 or an OSN application4) is available to the users. Figures 1 and 2 illustrate
the operation of the plug-in “Scramble!”1 when a user Bob browses the personal
page of his friend Alice. The page that Bob downloads from the server contains five
posts of Alice’s conversations with Bob and Charlie, encrypted with keys she shares
with them (hence the posts are not readable by the OSN provider). Bob’s plug-in
only has keys to decrypt the last three posts, as illustrated in Fig. 2b, and thus it
presents him with a version of Alice’s page in which only these three messages are
included (in clear), as shown in Fig. 2c.

Bob
internet

Bob's
browser
plugin

OSN

browse(A)

BobBobBob
Bob: '¡okw3rgihoŶJ$"9y84gh

Alice's wall

Alice: 4t5f ?çfd.,ji=&dfwis

Bob: `4+rgevfth3ytefmf

Alice: 45vf¨iop6,w8hr4+t

Fig. 1: Bob using a content protection plugin to browse Alice’s page

Bob: '¡okw3rgihoŶJ$"9y84gh

Alice's wall

Alice: 4t5f ?çfd.,ji=&dfwis

Bob: `4+rgevfth3ytefmf

Alice: 45vf¨iop6,w8hr4+t

(a) What Bob

downloads

Bob: '¡okw3rgihoŶJ$"9y84gh

Alice's wall

Alice: 4t5f ?çfd.,ji=&dfwis

Bob: `4+rgevfth3ytefmf

Alice: 45vf¨iop6,w8hr4+t

Content Bob can decrypt

Content Bob cannot decrypt

(b) What the

plugin interprets

Bob: Hi Alice! Wanna meet?

Alice's wall

Alice: Sure! When? Where?

Bob:  My place, tonight? 

(c) What Bob sees

Fig. 2: How Alice’s page looks like

Network model. We consider an OSN constituted by a set U of N users that
establish friend relationships with each other. These relationships are modeled as
links in the network graph. We make the following assumptions:

• Each user ui ∈ U has a set of friends Fi ⊆ U with whom she has a relation-
ship (link) in the OSN. We consider that friend relationships are symmetric,
i.e., ∀i, j : uj ∈ Fi ⇔ ui ∈ Fj . Users may communicate with these friends,
or just have them as contacts without interacting with them.19;20 If a user
uj is not a friend of user ui (i.e., uj /∈ Fi), then ui never communicates
with uj .
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In line with prior work,9;12;14;11 we define the communication profile ψi of
user ui as the probability distribution describing the relative frequency of
interaction wij of ui with each of her friends uj . Formally, ψi = [wi1 · · ·wiN ].
We refer to wij as the weight of the edge between ui with uj in the social
graph. The weights wij satisfy the following conditions:

wij ≥ 0, ∀j |uj ∈ Fi,
wij = 0, ∀j |uj /∈ Fi,

∑
wij∈ψi

wij = 1

Note that ui may initiate interactions with uj with more relative frequency
than uj with ui, and thus wij is not necessarily equal to wji.

Dummy interactions. We consider that the content protection software tool can
also generate dummy interactions transparently to the user, and that it filters out
dummy content in the same way as real content for which no decryption keys are
available. These interactions are indistinguishable from user generated interactions
towards the service provider, who sees both real and dummy messages as encrypted
data.

We consider that the tool implements a dummy generation strategy (DGS) defin-
ing how dummy interactions are distributed amongst friends. The DGS assigns a
dummy weight dij to each friend uj that determines the amount of dummy inter-
actions generated involving uj . Concrete examples of DGSs are given in Section 4.

2.2. Adversary model

We consider a global passive adversary who knows the list of friends of every user
in the OSN and monitors all the interactions between them (e.g., the OSN provider
in a centralized social network). The goal of the adversary is to recover the weights
w of the friendship links in the network.

Given a history of interactions, the adversary computes cij as follows. cij in-
creases by one whenever user ui initiates an interaction that involves exclusively
user uj , and by 1

|G| when it involves a subset G of her friends, uj ∈ G ⊆ Fi. Then,
the weights wij can be estimated as:

wij =
cij∑
k cik

In the presence of dummy interactions however, the adversary can only recover
an obfuscated version of the genuine weights w. Let us call the weights recovered
by the adversary observed weights and denote them as o, computed analogously to
wij , but including dummy interactions in the computation of cij .
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While we assume that the adversary cannot distinguish real from dummy in-
teractions, we note that our model is also suitable for an adversary that is able to
probabilistically (mis)classify dummy interactions. In this case, the observed weights
o would be computed filtering out interactions classified as dummy, or alternatively,
considering their contribution proportional to the likelihood of being real user in-
teractions. In addition to this, the adversary we consider does not care about the
different possible forms of interaction in OSNs (e.g., private messages, posts, page
browsings). The model can however be trivially extended to consider that certain
types of interactions contribute more than others to the weight of a friendship link.

3. Mutual Information as a Measure of Interaction Obfuscation

The mutual information is an information-theoretic quantity that captures the
amount of information that is obtained about one random variable by observing
another. Several prior works use mutual information as metric for privacy, in par-
ticular to measure anonymity properties. Moskowitz et al.16 use the mutual in-
formation to study the relationship between quasi-anonymity and covert channels.
Zhu and Bettati17 propose to measure anonymity computing the mutual informa-
tion between two random variables X and Y denoting, respectively, the actual and
the suspected sender-receiver pairs communicating through a mix.18 There are im-
portant differences between prior works and the metric proposed in this paper: i) we
consider OSNs rather than anonymous communication networks, ii) we consider the
generation of dummy traffic, and iii) the property of interest is obfuscation rather
than anonymity.

We use the mutual information to measure the amount of information that the
adversary obtains from the observed weights o about the real weights w. In order
to do this, we model the real and observed weights as random variables W and O,
respectively; then compute the mutual information between both variables as:

I(W ;O) =
∑
w∈W

∑
o∈O

p(w, o) log
(

p(w, o)
p(w) · p(o)

)
(1)

The obfuscation provided by a DGS can range from perfect, i.e., I(W,O) = 0;
to no obfuscation at all, i.e., I(W,O) = H(W ). When a DGS provides perfect
obfuscation, the observed weights o are independent from the real weights w. Hence,
p(w, o) = p(w) · p(o) and I(W,O) = 0, indicating that the observed weights o
carry no information about w. On the other extreme when a DGS provides no
protection at all, the observed weights o uniquely determine the value of w. In
this case the mutual information between both random variables is maximal; i.e.,
I(W ;O) = H(W ), where H(W ) denotes the Shannon entropy21 of W :

H(W ) = −
∑
w∈W

p(w) log(p(w))

A normalized version of the metric can be obtained by dividing the mutual
information I(W ;O) by the entropy of the real weights random variable, H(W ).
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This would result in a bounded metric, namely, its possible values would be limited
to the interval [0, 1]. A normalized metric may however be less expressive. Whereas
the proposed non-normalized metric reveals the amount of bits that the adversary
gains from the observation of o, the normalized version represents the performance
of a DGS in relative terms – and it is less intuitive to interpret.

The mutual information metric can be generalized to compare DGSs from per-
spectives other than particular relationships between two users. For instance, previ-
ous work10;11 has shown that considering full communication profiles ψi (as opposed
to individual weights wij) increases the accuracy with which the adversary can esti-
mate wij . To measure the amount of information that the adversary obtains about
the real profiles ψi from the observed profiles θi, it suffices to redefine the metric
to consider a random variable Ψ describing the real profiles ψ and a random vari-
able Θ describing the observed profiles θ. Another option is to redefine the metric
to evaluate the system as a whole by considering random variables that describe
matrices containing one real (respectively observed) profile per row, instead of just
one profile or individual weight at a time. Note however that considering more in-
formation at once (e.g., profiles versus weights, or matrices instead of profiles) may
not be feasible due to heavy computational and memory requirements.

Finally, the mutual information metric is flexible enough to evaluate other types
of leakage different from the actual relationship weights. We illustrate this by eval-
uating the effectiveness with which a DGS conceals the best friend of a user in
Sect. 4.

3.1. Computing the Metric: Practical issues.

We note that, although the relative frequency with which users communicate should
be modeled as a continuous random variable, our metric (Eq. 1) is based on the
mutual information defined for discrete random variables. This is because we con-
sider that it is unlikely to have access to the continuous versions of the random
variables W , O, and the joint variable (W,O). O and the joint (W,O) cannot be
computed analytically due to the unpredictability of interactions between users and
must be estimated from the observations. W can be obtained sampling observations
of different OSNs. In both cases it is infeasible to explore a continuous state space,
hence the random variables must be discretized.

3.1.1. Quantization.

Random variables can be quantized to reduce their outcome to a discrete series
of values. The step of quantization, ∆, defines the length of the intervals where
continuous values are mapped to a single discrete value. The influence of the step
of quantization is twofold. On the positive side, increasing the quantization step
“diminishes” the state space, reducing the number of samples required to compute
the metric. However, with a large quantization step many values of w are grouped,
hence providing coarser information to the system designer.
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In addition, note that the quantization step does not need to be uniform. For
example, we can define an arbitrary threshold t so that a user’s friends are grouped
into “close friends” (i.e., uj ∈ Fi such that wij ≥ t), and “acquaintainces” (i.e.,
uj ∈ Fi such that wij < t).

3.1.2. Sampling an OSN to estimate W , O and (W,O)

We now explain how a DGS simulator can be used to estimate the random vari-
ables W , O and (W,O). Such simulator intertwines dummy interactions with user
interactions that can be simulated or taken from existing social network data.

In each simulation, we obtain a sample of these variables by choosing two users
ui and uj uniformly at random and storing (wij , oij) computed as described in
Sect. 2.2. The process is repeated to obtain an arbitrary number s of samples.

Once samples are available, we compute the probability p((W,O) = (wx, oy))
by counting the number of occurrences C(wx,oy) of each pair of values (wx, oy) and
dividing it by the total number of samples s. (The subscripts x and y belong to
the set of quantized values that the weights w and o may take.) However, using a
finite number of samples introduces an error in the estimation. We model p(W,O)
as a multinomial distribution and use Bayesian Inference to obtain a bound on this
error.

The Dirichlet distribution is a conjugate prior for the multinomial distribution.
Its probability density function represents the belief that the probability of oc-
currence of (w, o) is p(w, o) given it has been observed C(w,o) times. We obtain δ

samples p(w, o) using the Dirichlet distribution with C(wx,oy) as input parameters:

p(W,O) ∼ Dirichlet(C(w1,o1) + 1, ..., C(w1,om) + 1, ..., C(wm,o1) + 1, ..., C(wm,om) + 1)

The “+1” in the formula above indicate that we assume very limited prior
knowledge on the real probability values, i.e., we ignore any characteristic from
the actual distribution p(W,O), other than assuming that all pairs (w, o) have a
probability greater than zero.

For each sample drawn from the Dirichlet, we calculate the mutual information
as follows:

I(W,O) =
∑
w∈W

∑
o∈O

p(w, o) log
(

p(w, o)∑
o∈O p(w, o) ·

∑
w∈W p(w, o)

)
We take the median value of I(W,O) as the estimated value of the mutual in-

formation, and consider the lowest value in the first quartile and the highest value
in the third quartile as error bounds. This means that we consider the interval con-
taining 50% of the values around the median. One can be more or less conservative
about the error choosing a looser or tighter bound.

Table 1 offers a summary of the notation we have introduced throughout this
section.
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Table 1: Summary of notation

Symbol Meaning

N Size of the social network (in number of users)
U Set of users in the online social network

ui A user in the social network

Fi Set of friends of user ui

wij Weight of the link between two users ui and uj

ψi Communication profile of ui

W Random variable of real weights w

Ψ Random variable of real profiles ψ

dij Dummy weight used by the DGS to decide which dummies from ui must

involve uj

oij Observed weight of the link between two users ui and uj

θi Observed profile of ui

O Random variable of observed weights o

Θ Random variable of observed profiles θ

cij Amount of real interactions of ui involving uj

H Shannon entropy
I Mutual information

∆ Step of quantization

4. Evaluation

In this section we illustrate the suitability of the mutual information as metric to
evaluate the information leaked by a dummy generation strategy. For this purpose
we apply the metric in different scenarios varying the DGS, the network topology,
and the user behavior. We generate synthetic traces of OSN interactions using a
Python OSN simulator,b which simulates both real and dummy interactions.22

4.1. Experimental Setup

The social graph. For the purpose of our evaluation, we use two toy-example
social networks. The first is a regular network of size N = 20 users, each of which
has 6 friends. In particular, Fi = {uj}, j = {i − 3, i − 2, i − 1, i + 1, i + 2, i + 3}
mod 20. The second is a fully connected network of size N = 4 users, i.e., all users
are friends with each other. These networks are orders of magnitude smaller than
typical OSNs. Nevertheless, they are sufficient to evaluate the effectiveness and
flexibility of our metric.

User behavior. To illustrate how the mutual information captures differences
in the performance of a DGS when the user behavior changes, we consider two
types of communication profiles. Worst case profiles model scenarios in which users

bThe code is available upon request.



November 27, 2012 14:28 WSPC/INSTRUCTION FILE ijufks-dummySN

9

communicate in pairs, i.e., each user interacts exclusively with one of her friends
and never with the rest of her contacts. In other words, each user profile has a
single weight with value 1 corresponding to the communication partner and 0 for
the other friends. We consider this profile to be a “worst case” for a DGS, as the
strategy must conceal one very strong relationship that concentrates all the user
interactions. On the other hand, Skewed profiles model a more realistic case in which
users communicate with all their friends, but some friends receive significantly more
traffic than others. We generate skewed profiles following the approach described
by Diaz et al.?

Dummy traffic generation strategies (DGS). We consider two DGS to illus-
trate how the mutual information captures the difference in the protection they
provide. Both strategies generate a set of dummy weights dij for each user ui by
drawing samples from a uniform distribution, and normalizing the resulting vector.
Note that dummy weights dij are independent from their corresponding real weight
wij .

The non-adaptive strategy simply generates dummy actions from ui to uj accord-
ing to dij without taking into account the interaction history nor the real weights.
The adaptive strategy, on the other hand, monitors the interactions generated by
ui, and generates dummy traffic so that the observed weights oij recovered by the
adversary are as close as possible to the dummy weights dij . For this purpose,
whenever the observed weights oij deviate from the target weights dij , the strategy
dynamically changes the recipients of the next dummy actions so that the value of
oij is brought back to dij .

Quantization. Varying the quantization scheme makes possible different ana-
lyses that relate to diverse adversarial goals. We study the effect of the step
and type of quantization in the performance of the metric. We consider a uni-
form quantization with the number of steps varying between two and five; i.e.,
∆ = {1/2, 1/3, 1/4, 1/5}. We expect coarser intervals of quantization (e.g., ∆ = 1/2)
to lead to smaller values of mutual information, showing that the adversary loses in-
formation by reducing the state space. Conversely, a powerful adversary with large
computation resources will most likely obtain more information when sampling the
probability space with a smaller step (e.g., ∆ = 1/5).

4.2. Results

In this section we present the experimental results of our evaluation. In all figures,
the vertical axis represents the mutual information, and the symbols represent dif-
ferent quantization steps. To better illustrate the influence of other parameters in
our experiments we keep the quantization step uniform, and fix the user profiles
to be skewed, unless stated differently. The horizontal axis represents the dummy
rate, which is the number of dummy interactions generated per real interaction. For
example, a dummy rate of 3 means that for every real user interaction the plug-in
generates 3 dummy interactions. When the rate is zero, no dummies are gener-
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ated and the weights observed by the adversary correspond to the real weights
(i.e., oij = wij). This represents the maximal information leakage (the adversary
recovers all the meaningful information), and is reflected by the mutual informa-
tion taking value H(W ) in the case of individual weights and H(Ψ) in the case of
communication profiles.

In order to minimize the estimation error, in each experiment we draw s =
500 000 samples of (w, o) and (ψ, θ) to compute p(w, o) and p(ψ, θ), respectively.
For each quantization step ∆ we represent the median value of mutual information
(δ = 1000 samples). The values of the first and third quartiles are not visible in
the figures, as they are almost identical to the median. This tiny estimation error
guarantees that enough samples of (w, o) and (ψ, θ) have been drawn.

Dummy Generation Strategy. Our first experiment is dedicated to show how the
mutual information captures the difference in the protection provided by the non-
adaptive and the adaptive dummy generation strategies. We consider an OSN with
N = 20 users. Figures 3 (a) and (b) show our results. As expected, the metric reflects
how the adaptive DGS, that takes into account the history of interactions when
choosing the recipients of dummy actions, performs consistently better than the
non-adaptive version that generates dummies independently from previous actions.

Dummy Rate. Figure3 illustrates how the mutual information captures the influ-
ence of the dummy rate. More dummies decrease the dependence of the observed
variables on the real ones, hence increasing the obfuscation and reducing the infor-
mation gain. Moreover, we see that increasing the dummy rate brings diminishing
returns. Introducing a small amount of dummies reduces considerably the amount
of information that can be extracted from the observation. Nevertheless, further
increasing the overhead in the network does not bring benefits as the profiles are
already obfuscated and there is no gain in adding dummy interactions.

Quantization step. Note that the quantization step has a great influence on the
information gain. Not surprisingly, the amount of information available to the ad-
versary about the real weights is larger for smaller quantization steps. However, we
observe that the decay function is steeper for small steps, and soon the results con-
verge. This indicates that performing computationally inexpensive analyses using
coarse information are sufficient to evaluate the performance of a given DGS, or to
compare two different DGSs.

Individual weights vs. profiles. The mutual information also captures the in-
crease in information gained by the adversary when she considers user profiles as
opposed to individual weights (see Figures 3 b and c). This is because by considering
profiles as a whole, the adversary considers interdependencies between interactions
(e.g., when Alice sends a message to Bob, she is not sending a message to Charlie)
improving the accuracy of the estimation of individual weights. However, we can
observe that the mutual information decrease with the dummy rate is very similar
for both individual weights and profiles. This suggests that performing the evalua-
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(a) Non adaptive DGS.
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(b) Adaptive DGS.

Individual weights

0 1 2 3 4 5 8 12

0

2

4

6

I(
Ψ

;Θ
)

Dummy Rate

 

 

∆ = 1/2
∆ = 1/3
∆ = 1/4
∆ = 1/5

(c) Adaptive DGS. Profiles

Fig. 3: Mutual information for adaptive and non-adaptive DGSs and individual
weights vs. profiles for different quantization steps. N = 20 users, skewed profiles.

tion at the level of individual weights may serve to predict a DGS’ performance at
the profile level, hence reducing the computational complexity of the analysis.

Non-uniform quantization. As mentioned in Sect. 3.1.1 our metric does not
require a uniform quantization step, but the quantization can be adjusted to ac-
commodate specific adversarial goals. For example, the adversary can modify the
quantization scheme to identify the “best” friend of a user, defined as the one with
which the user interacts the most. To this end, a per-user threshold is defined,
t = maxψi

(wij) such that two quantization intervals are created: one containing
the maximum weight, and another grouping the remaining weights.

Figure 4 displays the mutual information for individual weights and profiles for
both adaptive (A) and non-adaptive (nA) dummy generation strategies, demon-
strating that the metric is flexible enough to capture the change in the adversarial
goal. We observe that in this case study the mutual information decays slower than
when uniform quantization is used. This is because concealing the best friends re-
quires more dummy interactions than obfuscating the profile as a whole. These
results also confirm that adaptively generating dummies works better than gener-
ating them independently; and that the adversary gains more information when
considering full profiles instead of individual weights.

Influence of network topology and user behaviour. Lastly, we analyze how
the mutual information captures the effect of the topology and connectivity of the
social graph as well as user behaviour on the performance of the adaptive DGS. We
ran simulations in the full-meshed network of size N = 4 users described in Sect. 4.1
for both skewed and worst-case profiles.

The results shown in Fig. 5 demonstrate that the mutual information reflects
variations driven by changes in user behavior, capturing the expected negative effect
that worst-case profiles have in the performance of the DGS. There are two features
of the worst-case profiles worthy to discuss. First, we observe (Fig. 5b) that at
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Fig. 4: Mutual information for non-uniform quantization for adaptive (A) and non-
adaptive (nA) strategies. N = 20 users, skewed profiles.

dummy rate 0 there is no gain in diminishing the quantization step. Recall that users
only communicate with one of their friends; hence when no dummies are generated
no matter the quantification step used only two quantization intervals have samples
(the ones corresponding to w = 0 and w = 1). Second, unintituively, for some
dummy rates Fig. 5b shows mutual information values larger for coarse quantization
than for fine quantization. This error is due to the fact that the real weights in worst-
case profiles are far from uniformly distributed whereas the quantization used is
uniform. Nevertheless, the mutual information converges for all quantization steps
as the dummy rate increases.
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(a) Skewed profiles
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(b) Worst-case profiles

Fig. 5: Effect of topology and user behaviour. N = 4 users, fully connected topology.

The figure also shows that the mutual information decreases much faster for
skewed profiles than in the previous example (cfr. Fig. 3c), where the network was
not fully connected and there were N = 20 users. This demonstrates that the metric
correctly captures the fact that the performance of the DGS decreases as the number
of friends increases.
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5. Discussion

Simulated traffic data vs. real traffic data from deployed systems. In this
work we have used simulated OSN user interactions to assess the suitability of
the mutual information as a metric for interaction obfuscation evaluation. Many
recent works use data collected from real networks for their security and privacy
analyses.23;24;25;26 Our experiments show that the metric presented in this paper
is not tailored to a specific OSN topology, dummy strategy, or user behavior; and
hence should be able to accommodate any system and usage pattern, including those
existing in deployed social networks. We note however that even though simulated
data is sufficient to assess the suitability of the metric, our results suggest that the
effectiveness of a DGS strongly depends on parameters such as the users’ behavior
or their number of friends. Hence, designing a DGS for a particular OSN requires
an evaluation with real data (i.e., actual OSN structure and user behavior) in order
to assess the practical effectiveness of the DGS.

Scalability of the metric. We have considered in our experiments networks that
are orders of magnitude smaller than practical OSNs. The reason to do this was
to obtain results in reasonable time, as our implementation to compute the mutual
information is not optimized, hence computationally intensive. Nevertheless, the
size of the network is orthogonal to the fundamental question we want to answer in
this work, namely, how to quantify the amount of information leaked on real user
interactions when dummy interactions are generated. Our experiments show that
the mutual information is a promising candidate metric for this purpose.

Besides, as pointed out in Sect. 4.2, the result of our experiments hints that the
computation of the metric can be made efficient hence suitable for large networks
such as the ones deployed in the real world. First, the computation time of the metric
is heavily dependent on the quantification step. Our results show however that as
the dummy rate increases, the benefits of decreasing the quantization step are very
limited, as considering coarser intervals provides very similar information to more
fine-grained intervals. Hence, networks can be efficiently analyzed using a coarse
quantization scheme. Also if the considered DGS is devised to protect particular
goals (e.g., best friends), the designer can consider an asymmetric and/or dynamic
quantification step to efficiently evaluate the system.

Further, our results indicate that the decrease of mutual information as a func-
tion of the dummy rate is very similar for individual weights and for profiles. Hence,
it may be possible to perform the analysis uniquely on individual weights to evaluate
a DGS. This analysis is significantly more efficient and hence permits the analyst
to evaluate large networks.

In addition to the performance gain that can be obtained by adjusting the
parameters of the analysis as described in Sect. 4.2, future work should try to find
more efficient ways to compute the mutual information. A possible approach is to use
advanced Bayesian inference techniques that use sampling to reduce the complexity
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of the problem, as proposed in prior work for the analysis of mix networks.10;27

Network overhead. In this work we have abstracted practical issues related to the
deployment of dummy generation strategies in order to focus on the quantification
of the information leaked about real user interactions when dummy interactions
are generated. We note that prior to deployment, a feasibility analysis must be
performed besides the security evaluation to ensure that the computational and
storage requirements of a DGS are compatible with the OSN capabilities.

6. Conclusion

Previous work aimed at mitigating the privacy risks arising from the use of OSNs
focuses on providing users with means to protect the uploaded content.1;2;4;3 These
solutions disregard the fact that even when content confidentiality is guaranteed,
user interactions can still be used to infer sensitive private information.

In this paper we have proposed mutual information as a metric to measure the
information leaked on the users’ communication profiles when they are obfuscated
using dummy interactions. We have provided a methodology to compute the metric
and empirically evaluated its suitability for the OSN scenario. We have showed
that the metric correctly captures changes in the parameters of the system, and
that varying the quantization step allows to efficiently evaluate dummy generation
strategies given limited computational resources. Further work is required to develop
more efficient methods for computing the metric for large networks, as well as
to extend it to account for additional information that may be available to the
adversary.
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