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Abstract

As advances in technology increase data processing and storage capabilities, the
collection of massive amounts of electronic data raises new challenging privacy
concerns. Hence, it is essential that system designers consider privacy requirements
and have appropriate tools to analyze the privacy properties offered by new
designs. Nevertheless, the privacy community has not yet developed a general
methodology that allows engineers to embed privacy-preserving mechanisms in
their designs, and test their efficacy. Instead, privacy-preserving solutions are
designed and analyzed in an ad hoc manner, and hence it is difficult to compare
and combine them in real-world solutions.

In this thesis we investigate whether general methodologies for the design and
analysis of privacy-preserving systems can be developed. Our goal is to lay down
the foundations for a privacy engineering discipline that provides system designers
with tools to build robust privacy-preserving systems.

We first present a general method to quantify information leaks in any privacy-
preserving design that can be modeled probabilistically. This method allows the
designer to evaluate the degree of privacy protection provided by the system.
Using anonymous communication systems as case study we find that Bayesian
inference and the associated Markov Chain Monte Carlo sampling techniques form
an appropriate framework to evaluate the resistance of these systems to traffic
analysis. The Bayesian approach provides the analyst with a neat procedure to
follow, starting with the definition of a probabilistic model that is inverted and
sampled to estimate quantities of interest. Further, the analysis methodology is
not limited to specific quantities such as “who is the most likely receiver of Alice’s
message?,” but can be used to answer arbitrary questions about the entities in the
system. Finally, our methodology ensures that systematic biases in information
analysis are avoided and provides accurate error estimates.

In the second part of this thesis we tackle the design of privacy-preserving
systems, using pay-as-you-drive applications as case study. We propose two
pay-as-you-drive architectures that preserve privacy by processing personal data
locally to the users, and only communicating billing information to the provider.
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Local processing enhances privacy, but may be detrimental to other security
properties such as service integrity (e.g., the provider has access to less data when
verifying the correctness of the bill). We design a protocol that, using advanced
cryptographic primitives, allows users to prove to the service provider that they
have correctly performed the computation, while revealing the minimum amount
of location data. Finally, our designs are validated from a security, performance
and legal perspective, to ensure that they are ready for deployment.

Based on the lessons learned while designing privacy-preserving schemes for pay-as-
you-drive applications, we identify the basic steps to be performed when designing
new privacy-preserving solutions that minimize the disclosure of personal data
while fulfilling other essential security requirements. We argue that, first of all,
the designer must explicitly identify the basic functionality of the system, and
the minimum set of data that needs to be revealed to service providers. Then,
multi-lateral security requirements have to be addressed and protective measures
are established to safeguard the interest of all entities in the system while enabling
users to disclose a minimum amount of personal information. Even though in this
thesis we use pay-as-you-drive applications as a central case study, the general
applicability of these steps has been tested in the design of a privacy-preserving
e-petition system, in which user’s privacy is guaranteed by hiding their identity
from the provider while revealing their preferences.



Samenvatting

De technologische vooruitgang maakt het mogelijk om steeds meer informatie te
verwerken en op te slaan. Het verzamelen van massale hoeveelheden elektronische
informatie creëert nieuwe en uitdagende privacybekommernissen. Het is daarom
belangrijk dat systeemontwerpers rekening houden met privacyvereisten en dat ze
de geschikte werkmiddelen voorhanden hebben om de privacyeigenschappen van
nieuwe ontwerpen te analyseren. De privacygemeenschap heeft evenwel nog geen
algemene methodologie ontworpen die ontwerpers toelaat om privacybehoudende
mechanismen in hun ontwerpen te verwerken en om de doeltreffendheid ervan
te testen. In de plaats daarvan worden privacybehoudende oplossingen ad hoc
ontworpen en geanalyseerd, en is het daardoor moeilijk om ze te vergelijken en
met elkaar te combineren in echte producten.

In dit proefschrift onderzoeken we of algemene methodologieën kunnen ontwikkeld
worden om privacybehoudende systemen te ontwerpen en te analyseren. Ons
doel is de grondbeginselen van een privacyontwerpdiscipline uiteen te zetten die
het systeemontwerpers mogelijk maakt om met geschikte hulpmiddelen robuuste
privacybehoudende systemen te bouwen.

Allereerst stellen we een algemene methode voor om informatielekken te kwan-
tificeren in elk privacybehoudend ontwerp dat probabilistisch kan gemodelleerd
worden. Deze methode laat de systeemontwerper toe te evalueren in welke mate
het systeem privacybeschermend is. Door anonieme communicatiesystemen als
voorbeeld te bestuderen, komen we tot de conclusie dat Bayesiaanse statistiek
en de bijhorende Markovketen-Monte Carlo-experimenttechnieken een geschikt
kader vormen om te evalueren of deze systemen bestand zijn tegen traffiekanalyse.
De Bayesiaanse aanpak geeft de analyst een welgedefinieerde procedure die hij
kan volgen, uitgaande van de definitie van een probabilistisch model dat wordt
geïnverteerd en getoetst om de interessante grootheden te schatten. Verder
beperkt de analysemethode zich niet tot specifieke vragen zoals ”wie is de
meest aannemelijke ontvanger van de boodschap van Alice?”, maar kan ze
ook gebruikt worden om arbitraire vragen over de entiteiten in het systeem te
beantwoorden. Tenslotte verzekert onze methode dat systematische vertekeningen
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in de informatieanalyse vermeden worden en levert het nauwkeurige schattingen
van foutenmarges op.

In het tweede deel van dit proefschrift behandelen we het ontwerpen van privacy-
behoudende systemen, toegepast op tolrijden. We stellen twee tolrijarchitecturen
voor die de privacy van persoonsgegevens waarborgen door persoonlijke data
lokaal te verwerken en enkel facturatiegegevens naar de dienstverlener door te
sturen. De lokale verwerking verhoogt de privacy, maar kan nadelig zijn voor
andere beveilingseigenschappen zoals de integriteit van de dienstverlening (b.v., de
dienstverlener krijgt minder informatie ter beschikking om de correctheid van de
rekening te verifiëren). We ontwerpen een protocol dat de gebruikers ervan toelaat
met geavanceerde cryptografische primitieven aan de dienstverlener te bewijzen
dat ze de berekeningen correct hebben uitgevoerd, terwijl ze een minimum aan
locatiegegevens vrijgeven. Tenslotte hebben we onze ontwerpen gevalideerd vanuit
een beveiligings-, performantie- en legaal standpunt om te garanderen dat ze klaar
zijn om in gebruik te nemen.

Op basis van de lessen die we geleerd hebben tijdens het ontwerpen van
privacybehoudende systemen voor tolrijtoepassingen, hebben we de basisstappen
geïdentificeerd die moeten worden uitgevoerd bij het ontwerpen van nieuwe
privacybehoudende oplossingen die het aantal persoonsgegevens dat moet onthuld
worden minimaliseert, en die toch geen afbreuk doen aan andere essentiële
beveiligingsvereisten. We geven aan dat de ontwerper van een systeem in de
eerste plaats de basisfunctionaliteit ervan expliciet moet identificeren, tesamen
met de kleinste hoeveelheid informatie die kan ter beschikking gesteld worden aan
de diensverleners. Pas daarna kunnen andere beveiligingsvereisten in rekening
gebracht worden en kunnen beschermingsmaatregelen worden opgesteld om de
belangen van alle partijen in het systeem te waarborgen en de gebruikers ervan
in staat te stellen om slechts een minimum aan persoonlijke informatie vrij
te geven. Hoewel we in dit proefschrift tolrijtoepassingen als centraal thema
gebruiken, wordt de algemene toepasbaarheid van deze stappen aangetoond bij het
ontwerp van een privacybehoudend ePetitiesysteem waarbij de gebruikersprivacy
gegarandeerd wordt door hun identiteit te verbergen voor de dienstverlener
wanneer hun voorkeur onthuld worden.
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Chapter 1

Introduction

1.1 Motivation

New communication technologies, such as the Internet, mobile phones, Bluetooth,
etc. enable a broad range of interactive applications, multimedia services and
pervasive communications for consumers. These services are radically changing
society, in the sense that they are affecting the way people interact with each other
and with institutions (e.g., banks, government, etc.). Electronic communications
facilitate the realization of an increasing number of activities providing better
or more accurate information, and more comfortably, for the user. As a result,
interaction amongst humans is progressively being mediated, or even substituted,
by interaction with machines. For instance, people invite friends to events using
Facebook, share their vacation photos using Google’s Picasa albums, query Google
Maps from a smart phone instead of asking strangers for directions, or use online
banking from their homes instead of going to the bank to check their account’s
balance.

The use of electronic communications changes the flow of information with respect
to an off-line society in terms of data storage, data distribution, ease of access to
data, etc. This new flow, together with an increased availability of information,
raises new concerns and risks with respect to privacy [58,135,203,253]. In the off-
line world we have established strategies to protect our private information. We
are very selective about what we tell to whom, where, and when in order to control
what others think of us, or to protect our safety. Daily examples of this include
employees not sharing their whereabouts on a Saturday night with their employers
or colleagues, or people not broadcasting that their houses will be empty during
vacation. Off-line, physical constraints eased the control of personal information;

1
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for example, walls protected private conversations from being overheard; or paper-
based communications and databases hindered automated data mining, and they
prevented information from being trivially copied and hence rapidly spread.

In the online world, however, electronic communications have drastically changed
the situation. Nowadays information can be easily collected, aggregated, analyzed,
copied, and exported to other contexts. In the past people’s whereabouts could
only be obtained by means of expensive physical surveillance, while currently they
can be obtained (remotely and at practically no cost) from voluntary disclosure
on the Internet [1, 98]; or they can be inferred from online activity records of
social networks, instant messaging, web forums, etc. These inferences become
more effective when combined with mobile communications that reveal people’s
location as demonstrated by Krumm [167], or Golle and Partridge [127]. Another
danger related to the easy collection of information is the existence of automated
advanced mining techniques, that allow for massive profiling of both individuals
and communities [58,179].

Information in physical form (e.g., microfilm, paper, etc.) is easy to delete once it
is no longer necessary: it suffices to destroy the physical container. This is not the
case for electronic data due to the problem of data remanence [125] (i.e., residual
data remains recoverable even after attempts have been made to remove or erase
these data). Sometimes, even destroying the physical container of electronic data
is not enough to guarantee that these data cannot be recovered [219]. Furthermore,
even when it can be ensured that data has been deleted in a single place, the ease
with which these data can be copied and distributed makes it extremely hard to
guarantee that the deletion has been effective, as copies could exist somewhere
else (e.g., backups). This means that digital traces are likely to have a longer life-
time than expected at creation, or even to be never forgotten. To illustrate the
downside of such an environment let us consider a blog in which political opinions
are shared. Even if people’s ideas change over time a certain opinion published in
the past is likely to be registered forever (at the service provider hosting the blog
or any other web pages where the opinion was duplicated) and possibly available
to search engines. This information jeopardizes people’s right to re-define their
identity without being permanently marked by actions from their past [34].

The research community has tackled privacy problems from different perspectives,
developing a wide range of solutions that achieve different privacy properties
such as anonymity (a subject is anonymous if she is not identifiable within a
set of subjects, the anonymity set), unlinkability (two actions are unlinkable if
they are no more and no less related than they are related concerning any a
priori knowledge), or unobservability (an action is unobservable if performing it is
indistinguishable from not performing any action at all). We refer the interested
reader to the terminology by Pfitzmann and Hansen [217] for further definitions of
privacy properties in a computer science context; and to [134] for a discussion on
how the definitions of these properties vary in social, academic and legal contexts.
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In this thesis we concentrate on technical privacy solutions developed by computer
scientists and engineers. These solutions can be classified into two main categories
depending the privacy model considered in their design.

In the first category the privacy model assumes that users reveal their private
data to trusted data controllers (e.g., service providers). Data controllers are
in charge of protecting privacy against external parties such as eavesdroppers,
hackers, malicious insiders, etc. These solutions rely on protection means such
as security policies or access control mechanisms. Further, system audits are
used to detect whether something goes wrong, and to find liable parties when
a privacy breach occurs. Consider for example technologies that support Data
Protection compliance according to the European Data Protection Directive [95].
This directive focuses on ensuring that users consent to the collection of data,
and that this collection is proportionate according to the provision of the service
forbidding further processing and transfer of the collected data.1 When these
conditions are not met the data controller may be held liable. For instance, when
data is collected without the consent of the users, the data collected is excessive for
the purpose of the application (e.g., asking customers about their marital status
when buying goods from the Internet), or the data is processed for unauthorized
secondary uses (i.e., use of data for purposes other than those for which it was
originally collected).

These solutions only offer “soft” privacy guarantees to users, in the sense that
once a user reveals her data to a trusted service provider she has little control on
how these data are later processed or shared. At this point, whether privacy is
protected or not depends on the trustworthiness of the controller, as well as her
competence when handling users’ data. We discuss further disadvantages of “soft”
privacy solutions in [133].

In the second category, instead of relying on an trusted service provider to protect
their data, the model assumes that users actively take part in protecting their
privacy by using so-called Privacy Enhancing Technologies (PETs). PETs are
technical measures to protect privacy by eliminating or minimizing the disclosure
of personal data, hence preventing unnecessary or unwanted processing of personal
data, without the loss of the functionality of the information system [274]. An
example of a PET are anonymous credentials [43], that allow users to prove that a
certain statement is true without revealing any further information. For instance, a
credential may contain someone’s address signed by a certification authority. This
credential can be used to prove that the subject lives in a given neighborhood
without revealing the particular street, house number, or any other information.
Another example is Private Information Retrieval [171] that allows authorized
users to query a database without revealing to the database owner which items
have been retrieved. These solutions offer “hard” privacy protection to their users

1There are exceptions for this prohibition when it comes to the processing of data for historical,
statistical or scientific purposes [95].
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by providing them with means to minimize the need to trust any entity in the
system with the protection and control of their personal data. It must be noted
that PETs come at a cost, as in general they require more computational and/or
communication resources than privacy-invasive technologies, but on the other hand
minimizing the data collected reduces the maintenance costs of the service provider
as the system now handles less personal data.

Although PETs limit the amount of data disclosed, their use does not preclude
“soft” privacy protection. For some applications the collection of personal data
is unavoidable and the data controller must put in place adequate mechanisms
(privacy policies, access control, etc.) to safeguard the collected personal
information. As an example, let us consider thee pay-as-you-drive applications
described in the second part of this thesis. As we will see, in these applications, in
order to provide the pay-as-you-drive service, the provider only needs to know
the final fee users must pay, but not their detailed driving record. Yet, the
provider has financial information about the users, and this information must
be kept confidential towards unauthorized parties.

Designing systems that give hard privacy guarantees is a non-trivial process in
which privacy, as well as other security requirements (confidentiality, integrity,
availability, etc.), have to be fulfilled. As new applications that introduce new
privacy and security concerns arise, new architectures, cryptographic primitives
and protocols need to be developed that address these concerns. Once the system
is designed, analyzing it to ensure that indeed no information is inadvertently
revealed is also an arduous task.

1.2 This thesis

In this thesis we tackle the problem of designing systems that provide hard privacy
guarantees to their users. We aim to lay down the foundations for a privacy
engineering discipline that provides system designers with tools to build robust
privacy-preserving systems. These tools shall allow engineers to embed privacy-
preserving mechanisms in their designs, and test them for potential information
leaks – assuming that such a leakage could lead to a privacy breach.

This thesis is divided into two parts. In the first part we deal with the analysis
of privacy-preserving systems, and in the second part we study how to design
privacy-preserving systems. We now provide a short introduction to these topics
and outline the contributions that can be found in each part.
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1.2.1 Analysis of privacy-preserving systems

The first part of this thesis investigates whether there is a general way to quantify
information leaks in any privacy-preserving design such that we can evaluate the
design’s degree of protection. We choose anonymous communication systems
as a case study to illustrate the difficulty of quantifying the amount of leaked
information, and how this leakage affects the privacy properties of the system.
As stated by Diffie and Landau [90]: “Communication is fundamental to our
species; private communication is fundamental to both our national security and
our democracy.” Protecting the content of messages is not enough to provide
private communications. An attacker can exploit traffic information such as
duration, frequency, origin, or destination of a communication to infer facts about
ongoing communications even if the content of messages is encrypted. The goal of
anonymous communications is to thwart traffic analysis and conceal who speaks
to whom.

Since Chaum proposed the first system for anonymous email in 1981 [47] there
have been numerous proposals of systems that conceal the identity of the source
and/or recipient of a communication [28,72,123,185,187,189,192,199,215,227]. The
robustness of these anonymous communications systems is analyzed and improved
using adversary models and attacks to prove the absence or presence of unwanted
leakages. The vast majority of these solutions still leak information that can be
exploited by an adversary who observes the system. From these observations,
the adversary may be able to infer who communicates with whom, or other
characteristics of the communication. In general, these attacks are enabled by
information leaks that had been unforeseen at the design stage, or leaks that are
inevitable to achieve efficiency.

We first present a simple attack that relies on classic optimization techniques
to uncover persistent patterns of communication. The attack is better at de-
anonymizing communications than previous proposals because it considers all users
at once, rather than single users iteratively. It is however computationally limited
to rather small and simple systems. We then propose a novel analysis methodology
based on Bayesian inference that incorporates all aspects of a system likely to reveal
information such as path building constraints [238], route fingerprinting [77], user
behavior [89], etc. Further, these Bayesian techniques are based on sampling,
hence they do not suffer from the computational limitations of previously proposed
methods and can be used to efficiently analyze complex systems.

Bayesian techniques provide a sound framework to analyze systems and co-
estimate multiple quantities. Contrary to previous proposals for traffic analysis,
the output of our method does not correspond to a specific inference, such as
“who is the most likely receiver of Alice’s message?,” but can be used to infer
arbitrary statements such as “has Alice ever communicated with Bob,” “is Alice
better friends with Bob or Charlie,” or “are Alice’s two best friends Debbie
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and Emily?” Besides their flexibility, Bayesian techniques provide reliable error
estimates, allowing the analyst studying the system to evaluate the confidence she
can have on the inferences.

In this thesis we use mix networks [72, 192] to illustrate how our Bayesian
framework operates. Nevertheless, we note that the framework can accommodate
any type of anonymous communication network, or other privacy-preserving
systems, and evaluate their resistance to traffic analysis. We hope that our work
serves as a starting point for the creation of standard analysis methodologies to
evaluate information leakage in privacy-preserving designs.

1.2.2 Design of privacy-preserving systems

Designing a privacy-preserving system is a complex task. As previously
discussed, encrypting the content of communications and trusting data controllers
for protecting information is insufficient to protect users’ privacy. A first,
straightforward, approach to ensure privacy could be to not give any private
information to the service provider. However, hiding all private information from
providers can be detrimental for the service because it may conflict with other
security requirements of the system, such as integrity or accountability; and in
some extreme cases even prevent the provision of the service itself. To illustrate
this problem let us consider an electronic petition system2 in which citizens can
sign formal requests addressed to an authority. For this purpose, identifiability of
signers is not strictly necessary: what is important is how many people support a
petition; not who they are. Given that petitions may encode personal information
(e.g., religious views, political opinion, etc.) it seems appropriate to allow the
signers to be anonymous. Nevertheless if enabling anonymous signatures prevents
the e-petition server from detecting that a user has signed a petition multiple
times, then the result of the petition becomes meaningless. We note that e-petition
systems in which privacy and security requirements are satisfied simultaneously
can be built [83].

The second part of this thesis deals with the design of privacy-preserving systems.
We choose pay-as-you-drive (PAYD) applications to illustrate the feasibility of
building privacy-preserving applications that satisfy other security requirements,
while being ready for real-world deployment.

Road taxes, and vehicle insurance, are usually associated with a flat rate paid
monthly or yearly by drivers. In PAYD schemes, in contrast, users are charged
a personalized fee based on their driving records. PAYD systems require that
users’ identity is revealed for accountability and billing purposes. Therefore, the
anonymous communications-based solutions we discussed in the first part of this

2http://epetitions.net/ or http://www.public-i.info/products/epetitions/

http://epetitions.net/
http://www.public-i.info/products/epetitions/
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thesis are not applicable. We must find other ways for safeguarding privacy and
minimize the disclosure of personal data, other than users’ identity, to service
providers.

Current implementations of such systems rely on sending fine-grained location
data to service providers [53, 54, 94, 208]. This creates a privacy risk for drivers
because the trajectories followed by an individual may reveal sensitive information
such as health status, political affiliation, or religious beliefs thus jeopardizing
location privacy. Beresford and Stajano [26] define location privacy as “the ability
to prevent other parties from learning one’s current or past location;” while
Duckham and Kulik [99] refine the concept of location privacy by defining it as
“a special type of information privacy which concerns the claim of individuals
to determine for themselves when, how, and to what extent location information
about them is communicated to others.” For instance, a person frequently visiting
an oncology clinic exposes her medical condition. Similarly, location records may
reveal that a user regularly visits the Republican party or the Democratic party
headquarters, hence disclosing the user’s political views. Moreover, fine-grained
location information is not strictly necessary for the provision of the service,
namely charging users depending on their driving behavior. In fact, PAYD systems
must only comply with two simple requirements: i) the provider must know the
final fee to charge; ii) the provider must be convinced that this fee is correctly
computed and users cannot undetectably commit fraud.

We present two architectures, PriPAYD and PrETP, in which users enjoy the
advantages of PAYD while preserving their location privacy. In both systems the
design principle is that personal information must be processed under the control
of the user, instead of outsourced to a service provider. This is desirable from
a privacy point of view, but in principle it makes it more difficult to protect
the interest of service providers and verify that users have not tampered with
the system. Our designs ensure that minimal personal information is revealed,
hence maximizing the privacy protection of users, while fulfilling the application’s
integrity and accountability requirements.

Our first design, PriPAYD, demonstrates that PAYD fees can be computed without
revealing fine-grained location data to the service provider, thus providing strong
privacy guarantees. Our second design, PrETP, illustrates how the system’s
security requirements can be fulfilled at the same time. PrETP combines local
computations and advanced cryptography to achieve hard privacy, integrity, and
accountability. We design a novel cryptographic protocol, Optimistic Payment,
that allows the service provider to verify that users pay the correct fee according to
their road usage, without revealing detailed location records.3 This way users can
prove that they use genuine data and perform correct operations while disclosing
the minimum amount of location data.

3We outline other mechanisms that do not rely on cryptography to verify that users do not
misbehave in [267].
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In order to evaluate and complete our design we thoroughly analyze our system
from a security, legal,4 and performance perspective. We prove Optimistic
Payment secure under standard assumptions, and demonstrate that its use
fulfills the security requirements of the system. Further, we provide an efficient
implementation of our protocol on an embedded microcontroller ready to use on
vehicles, and prove that the back-end server can be constructed with off-the-shelf
technology.

Finally, we revisit our design and identify general principles that allow to design
solutions with embedded hard privacy-preserving guarantees. These design
principles are applicable to many other applications, as for instance Smart Energy
systems [228]. It is our hope that the steps taken in our design process, further
elaborated in [133], guide the design of future privacy-preserving systems.

1.3 Outline and summary of contributions

In this section we give an overview of the outline of this thesis and summarize
the contributions that can be found in each chapter. Our goal is to facilitate
the evaluation of the overall contribution of this dissertation. The content of
Chapters 3, 4, 5, and 7 has been published in the proceedings of peer-reviewed
international conferences and journals [17,79,133,266–268,270].

Part I: Analysis of Privacy-preserving systems

Chapter 2: Traffic Analysis in Anonymous Communications. We
introduce traffic analysis, and survey several techniques that have been proposed
to analyze Anonymous Communications systems from the start of the field in 1981
until today. This chapter aims at giving context to the methodologies for analyzing
anonymous communication systems presented in Chapters 3 to 5.

Chapter 3: Perfect Matching Disclosure Attacks. We show that previous
attacks to uncover the identity of users that communicate repeatedly through an
anonymous communications system may not work in practice because of simplistic
assumptions about user behavior. We first define a non-restrictive user behavior
model, in which users have an arbitrary number of friends and arbitrary preferences
towards them. Then, we propose an attack based on finding perfect matchings
amongst senders and receivers of messages over a mix network. This attack
outperforms previous proposals. Finally, we introduce an enhanced profiling
methodology that recovers users’ profiles more accurately than its predecessors.

4For the sake of brevity the legal analysis of PriPAYD and PrETP has been left out of this
thesis. It can be found in [16,17,267,268].
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This work was published in [270] and it is joint work with Benedikt Gierlichs, Bart
Preneel, and Ingrid Verbauwhede. I have provided most of the key ideas. The
modeling and simulation workload was shared amongst the authors.

Chapter 4: Bayesian Inference to De-anonymize Persistent Communi-
cations. We re-examine the problem of extracting communication profiles and
revealing communication partners. Casting the de-anonymization problem as
an inference problem, we use modern Bayesian statistics to simultaneously infer
profiles and uncover who speaks with whom. The contributions of this chapter are:
a very general model to represent long-term attacks against arbitrary anonymity
systems; and the application of Bayesian inference techniques to traffic analysis of
anonymous communications.

This work was published in [79] and it is joint work with George Danezis. The
work was shared between the co-authors.

Chapter 5: A Bayesian Framework for the Analysis of Anonymous
Communication Systems. We introduce a framework able to accommodate
most attacks on anonymous communications systems proposed in the literature.
This framework provides an estimation of the probability distributions necessary
for computing a wide variety of anonymity metrics for relay-based mix networks.
Using Bayesian inference techniques we are able to analyze systems with arbitrarily
complex constraints and sizes for the first time. Our technique has several
advantages over previous analysis methods. First, it optimally uses all information
leaked by the system. Second, it obtains the posterior probability over all
scenarios of interest, as opposed to previous attacks that only provided most
likely candidates. Finally, it provides accurate error estimates useful to assess
the confidence one can put in the obtained results.

This work was published in [266] and it is joint work with George Danezis. The
work was shared between the co-authors.

Part II: Design of Privacy-preserving systems

Chapter 6: Location Privacy: an Overview. We introduce location privacy
and give an overview of different techniques to preserve location privacy proposed
in the literature. This chapter provides the context in which the privacy-preserving
solutions presented in the next chapter were developed.

Chapter 7: Privacy-Friendly Electronic Road Pricing Applications. We
propose two privacy-preserving solutions for pay-as-you-drive applications. Our
first contribution is a decentralized architecture that protects the privacy of drivers
by keeping sensitive data at the client side. Secondly, we introduce a cryptographic
protocol, Optimistic Payment, that allows users to prove their honesty when
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computing the fee they must pay while revealing the minimal amount of location
data. We define our protocol in the ideal-world/real-world paradigm, provide a
construction, and prove it secure under standard assumptions. We also provide
an efficient implementation of this protocol in an embedded microcontroller. Our
prototype proves that our scheme is suitable for real-world deployment. Finally,
we revisit the design decisions taken while designing the proposed solutions and
identify common tasks and activities that can be used by engineers when designing
privacy-preserving systems.

This work was published in [17, 133, 267, 268] and it is joint work with Josep
Balasch, George Danezis, Claudia Diaz, Christophe Geuens, Seda Gürses, Eleni
Kosta, Bart Preneel, Alfredo Rial, and Ingrid Verbauwhede.
I am the main contributor of [267,268] including the writing of the text, in [133] I
contributed with one of the use cases and the distillation of the design methodology,
and in [17] the work was shared amongst the co-authors.

Chapter 8: Conclusions and future work. Finally, we draw conclusions and
discuss future lines of research to continue our work.

1.4 Other contributions

The content included in this dissertation is a selection of the contributions we
have made to the field of privacy, according to their relevance for the topic we
investigate in this thesis. Our other contributions, which have been published at
several peer-reviewed conferences, have not been included here in order to maintain
a reasonable thesis length. Nevertheless, these findings have influenced the results
presented in this thesis in one way or another. In this section we shortly summarize
these publications. The publications are classified according to their main topic
and presented in inverse chronological order.

Anonymity metrics.

Revisiting A Combinatorial Approach Toward Measuring Anonymity.
We identify a flaw in the “system’s anonymity level” proposed by Edman et
al. [103], which is a combinatorial approach to measure the anonymity provided
by a system as a whole. This metric is based on the number of possible bijective
mappings between the inputs and the outputs of a mix. We show that the “system’s
anonymity level” fails to capture the anonymity loss caused by subjects sending
or receiving more than one message. We generalize the metric from scenarios in
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which user relations can be modeled as yes/no relations to cases where subjects
send and receive an arbitrary number of messages.

This work was published in [121] and it is joint work with Benedikt Gierlichs,
Claudia Diaz, Bart Preneel, and Ingrid Verbauwhede. The work was shared
amongst the co-authors.

On the Impact of Social Network Profiling on Anonymity. The
contribution of this paper is twofold. First, we propose a Bayesian method to
combine multiple available sources of information and obtain an overall measure
of anonymity. Second, we consider adversary models in which the attacker
has incomplete or erroneous prior information. We characterize the adversary’s
knowledge of the social network by its quantity, quality and depth; and discuss
the implications of these properties for anonymity.

This work was published in [89] and it is joint work with Claudia Diaz and Andrei
Serjantov. I contributed with the evaluation and simulation of the proposed method.

Does Additional Information Always Reduce Anonymity? We identify
a common misconception: the entropy of the probability distribution identifying
potential senders or receivers of a message does not always decrease given more
information. We show the relation of these a posteriori distributions with the
Shannon conditional entropy, which is an average over all possible scenarios.

This work was published in [87] and it is joint work with Claudia Diaz and George
Danezis. The work was shared amongst the co-authors.

Analysis of anonymous communications systems.

On the Difficulty of Achieving Anonymity for Vehicle-2-X Communica-
tion. Vehicle-2-X communications are hailed as the future to improve safety on
the roads. Ensuring that messages sent by vehicles contain correct information
is crucial to fulfill this objective, as misleading information could disrupt traffic
and create potentially dangerous situations. In this work we analyze two
solutions for anonymous authentication, proposed by IntelliDrive, US Department
of Transportation (DoT), that trade off privacy and efficiency [273]. We show that
by exploiting the reuse of pseudonyms and spatio-temporal constraints the service
provider is capable of tracking a large percentage of vehicles. Furthermore, we
find that one of the schemes fails to provide privacy even if the adversary does not
control the service provider and only listens to the communications of vehicles.

This work was published in [56] and it is joint work with Enrique Costa-
Montenegro, Stefan Schiffner, and Claudia Diaz. I provided most of the key ideas
for the analysis.



12 INTRODUCTION

Impact of Network Topology on Anonymity and Overhead in Low-
Latency Anonymity Networks. We study the trade-off between anonymity
and overhead for low-latency anonymity networks when dependent link padding
is used. Our main finding is that the choice of the network topology has an
important influence on the padding overhead and the level of anonymity provided.
We consider three topologies in our study: free routes, cascades and stratified
networks. We find that Free routes become impractical due to feedback effects
that induce disproportionate amounts of padding. Cascades have lowest padding
overhead at the cost of poor scalability with respect to anonymity. Finally
Stratified networks offer the best trade-off.

This work was published in [84] and it is joint work with Claudia Diaz and Steven J.
Murdoch. I contributed with the evaluation and simulation of the proposed scheme.

The Wisdom of Crowds: Attacks and Optimal Constructions. We present
a traffic analysis of the ADU anonymity scheme [193]. Our results show that the
quest for improving Crowds [226] is bound to fail, since we prove that the original
Crowds routing algorithm provides the best security for any given mean messaging
latency. Additionally we present D-Crowds, a scheme that supports any path
length distribution, while leaking the least possible information, and quantify the
optimal attacks against it.

This work was published in [68] and it is joint work with George Danezis, Claudia
Diaz, and Emilia Käsper. The work was shared amongst the co-authors.

Two-sided Statistical Disclosure Attack. We introduce a new traffic analysis
attack to uncover the receivers of messages sent through an anonymizing network
supporting anonymous replies. We show that the Two-sided Statistical Disclosure
Attack is superior to previous attacks when replies are routed in the system.

This work was published in [70] and it is joint work with George Danezis and
Claudia Diaz. The work was shared amongst the co-authors.

Design of privacy-preserving systems.

Scalable Anonymous Communication with Provable Security. We explore
new primitives for scalable anonymous communication, with a focus on providing
provable security guarantees. First, we propose a new approach for secure and
anonymous peer-to-peer communications based on a reciprocal neighbor policy.
Secondly, we propose PIR-Tor, a centralized scalable architecture for anonymous
communications based on Private Information Retrieval.

This work was published in [190] and it is joint work with Prateek Mittal, Nikita
Borisov, and Alfredo Rial. I contributed with the second proposed scheme, its
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simulation and evaluation.

Drac: An Architecture for Anonymous Low-Volume Communications.
We present Drac, a system designed to provide anonymity and unobservability for
real-time instant messaging and voice-over-IP communications against a global
passive adversary. The system uses a relay-based anonymization mechanism
where circuits are routed over a social network in a peer-to-peer fashion, using
full padding strategies and separate epochs to hide connection and disconnection
events.

This work was published in [71] and it is joint work with George Danezis, Claudia
Diaz, and Ben Laurie. The work was shared amongst the co-authors.

Efficient Negative Databases from Cryptographic Hash Functions. A
negative database is a privacy-preserving storage system that allows to efficiently
test whether an entry is present, but makes it hard to enumerate all entries. In this
paper we propose a construction for negative databases reducible to the security of
well-understood primitives, such as cryptographic hash functions or the hardness of
the Discrete-Logarithm problem. Our constructions require only O(m) storage in
the number m of entries in the database, and linear query time. These performance
values improve significantly over previous work [109].

This work was published in [67] and it is joint work with George Danezis, Claudia
Diaz, Sebastian Faust, Emilia Käsper, and Bart Preneel. The work was shared
amongst the co-authors.

Location privacy.

Unraveling an Old Cloak: k-anonymity for Location Privacy. This paper
analyzes the effectiveness of k-anonymity-based solutions for protecting location
privacy and shows that these approaches have fundamental flaws. First, we identify
an inconsistency between the cloaking mechanism and the k-anonymity metric.
Second, while a query can be k-anonymous via cloaking, this does not necessarily
protect users’ location privacy. We conclude that the inconsistencies of the k-
anonymity metric with respect to users’ actual location privacy makes k-anonymity
schemes unreliable and ineffective for location privacy.

This work was published in [248] and it is joint work with Reza Shokri, Claudia
Diaz, Julien Freudiger, and Jean-Pierre Hubaux. The work was shared amongst
the co-authors.

Steganographic file systems.
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A Framework for the Analysis of Mix-Based Steganographic File
Systems. The goal of Steganographic File Systems (SFSs) is to protect users
from coercion attacks by providing plausible deniability on the existence of hidden
files. We consider an adversary who can monitor changes in the file store and
use this information to look for hidden files when coercing the user. We outline a
high-level SFS architecture that uses a local mix to relocate files in the remote
store, and thus prevent traffic analysis attacks [269] that rely on low-entropy
relocations. We define probabilistic metrics for unobservability and (plausible)
deniability, and present an analytical framework to extract evidence of hidden
files from the adversary’s observation (before and after coercion).

This work was published in [88] and it is joint work with Claudia Diaz and Bart
Preneel. I contributed with the evaluation and simulation of the proposed scheme.

Traffic Analysis Attacks on a Continuous-Observable Steganographic
File System. We present two attacks on the continuously-observable stegano-
graphic file system proposed by Zhou, Pang and Tan [294], which is claimed to
provide provable security against traffic analysis. Our attacks are highly effective
in detecting file updates and revealing the existence and location of files. Our
results suggest that simple randomization techniques are not sufficient to protect
steganographic file systems from traffic analysis attacks.

This work was published in [269] and it is joint work with Claudia Diaz, Orr
Dunkelman, and Bart Preneel. I provided most of the key ideas. I did all the
modeling and simulation work.
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Analysis of privacy-preserving
systems
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Chapter 2

Traffic analysis in anonymous
communications

2.1 Introduction

Traditionally, computer security focuses on ensuring the confidentiality, integrity
and availability of information. When considering secure communications, these
properties are mostly achieved through cryptographic means. Protective measures,
however, are often applied only to content, leaving network layer information,
such as the identities of the participants in the communication (IP addresses),
their location, the amount and timing of data transferred, or the duration of the
connection, accessible to possible observers. These, commonly known as traffic
data, can be exploited to deduce potentially sensitive private information about
the communication.

For instance, in an e-health context messages are generally encrypted to preserve
patients’ privacy. Yet, the mere fact that a patient is seen communicating with a
specialized doctor can reveal highly sensitive information even when the messages
themselves cannot be decrypted. Another example is e-voting, where the ability to
link voter and ballot not only interferes with the very purpose of the application,
but can lead to citizens being subject of coercion fearing that governments or other
organizations take reprisals against them.

Confidential communications are not only desirable for personal reasons, but they
also play an important role in corporative environments. The browsing habits of a
company’s employees (e.g. accessing a given patent from a patent database), can
be used to infer the company’s future lines of investment, thus giving advantage to
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their competitors. The unstoppable growth of pervasive computing has worsened
the problem. It is becoming the norm that high executives carry smart devices
(e.g., smart phones, Blackberries, iPods, iPads, etc.) that allow them to be
permanently connected to the Internet, thus revealing their location to the service
provider. As well as with their browsing habits, studying the movements of these
executives can reveal their firm’s intentions. For instance, high-level employees
from two companies frequently seen together can indicate an imminent acquisition
of one company by the other, or a merger of both companies.

Anonymous communications’ main goal is the protection of some traffic data, more
precisely, they aim at concealing who speak to whom. Guaranteeing anonymity
in network communications is harder than just achieving a secure channel. There
have been proposals in this field for anonymous email [47] and anonymous Internet
browsing [123]. Further research resulted in the deployment of systems like
Mixmaster [192] or Mixminion [72] for email, and JAP [28] or Tor [93] for web
browsing that attract and increasing number of users.1 These systems rely
on a centralized architecture, but distributed approaches based on peer-to-peer
networks have also been proposed [185,187,189,199,215,227].

In this part of the thesis we are not overly concerned with the design of anonymity
systems, and we refer the reader to [69, 104] for a comprehensive survey of their
features. We focus on the analysis and exploitation of the traffic data leaked by
the different schemes in order to uncover communication partners, enhance the
tracking of messages through the network, etc. Studying how these information
leakages affect anonymity is essential in understanding the security offered by
these systems. The lessons learned are key to design new systems that incorporate
countermeasures to prevent these leakages.

We note that anonymous communications systems are also vulnerable to attacks
other than traffic analysis. For instance, Shimshock et al. demonstrate in [245]
that Minx, an encryption protocol and packet format proposed by Danezis and
Laurie [73], has a flaw that allows an adversary to recover the content of the
messages. Other attacks that exploit vulnerabilities in the cryptography used by
anonymity systems to de-anonymize communications can be found for instance
in [62,63,218,280].

2.2 Traffic analysis: basics and applications

Traffic analysis is the process of analyzing intercepted messages in order to extract
information from communication patterns. It concentrates on exploiting traffic
data (number of messages, frequency, timing, identities of communication partners,

1As of February 2011 Tor is used by roughly 250 000 (see http://metrics.torproject.org/
users.html)

http://metrics.torproject.org/users.html
http://metrics.torproject.org/users.html
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etc.) regardless of the content of the messages. Thus, it can be performed even
when messages are encrypted and cannot be decrypted by the adversary. Even
though the information obtained is not as profitable as the messages’ content, the
key quality of traffic analysis is that, compared to cryptanalysis, its deployment
is inexpensive and efficient. Usually, not all communications in a system are of
interest for the adversary. For instance, in a military context it may be of interest
to cut off the enemy’s communications, but jamming the full frequency spectrum
would require a great deal of power. Instead, traffic analysis can be used to
select targets, e.g., it can be used to identify chain-of-command communications.
Once targets are selected, the use of more expensive methods such as surveillance,
jamming, or destruction, can be optimized instead of wasting resources in attacking
all communications: by interrupting the chain of command the enemy operations
can be stopped, even if enemy soldiers inside a unit can communicate.

The amount of information that can be derived from traffic data is impressive, and
its potential has been recognized in a broad range of areas as noted by Danezis
and Clayton [65]. Communication patterns are a source of information about the
intentions and actions of the communicators. Some representative examples are:

Who talks to whom. Communicating with a particular person or entity can
reveal commercial intentions when two companies start contacting each
other, sexual orientation when contacting people from a specific community,
or that instructions are being delivered in a military context.

Who talks where. The location where communications take place can reveal
medical status of a patient visiting a clinic, political affiliation when a person
visits the headquarters of a given party, or the movement or troops in a war
scenario.

Who talks how much. Frequent communications can reveal that two people are
involved in a relationship, or imminent actions or planning in a commercial
or a military context.

Who does not talk. Absence of communications offers as interesting informa-
tion as its existence. It can reveal the completion of a plan, or a lack of
activity.

The military forces were the first in acknowledging the importance of traffic
analysis in warfare, as it enables the location of targets and their movements [138].
In their book on wiretapping Diffie and Landau concluded that “traffic analysis,
not cryptanalysis, is the backbone of communications intelligence” [90]. A cute
example of the importance of traffic analysis in the military environment was
the deception scheme deployed by the Allied army to mislead the Germans into
believing that the invasion would take place at the Pas de Calais, instead of
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Normandy. For this purpose, the Allied forces developed a radio net aimed at
faking a non-existent army ostensibly directed to Calais.

Even though traffic analysis has military roots, civilians also profit from its power.
Social Networks analysis [21, 107, 279] is increasingly gaining importance. Traffic
analysis can determine the position of an individual in the social network, which
encodes information about his or her status. As a matter of example, Jernigan and
Mistree showed that they could infer the sexual orientation of Facebook2 users by
analyzing their friendship links [154]. Another application of traffic analysis is in
criminal investigations. For instance, the techniques proposed by Carleyet al. [45,
97] can be applied to the search of terrorist cell’s leaders and efficiently disrupt
the chain of command by removing key nodes of the network. The importance of
social network analysis to national security is further illustrated by the support
given to Visible Technologies by In-Q-Tel, the CIA’s investment firm related to
access cutting-edge technologies.3 Visible crawls posts and conversations taking
place on web sites such as Flickr, YouTube, Twitter, Amazon4 or common blogging
sites; and analyzes them to determine the importance of authors or conversations.

The connectivity of social graphs (or peer-to-peer graphs) is also key for network
security. Traffic analysis exploiting graphs’ connectivity can be used for the
detection of botnets [198], Sybils [74, 288, 289], or for intrusion detection [172].
Web services can also benefit from traffic analysis. For instance Google’s
PageRank [213] algorithm that gives a higher rank to pages pointed by a large
number of links based on the assumption that they represent hubs, i.e., central
nodes, in the network; or Facebook, that improves users’ social experience by
suggesting them new friends based on their connections in the network.

Traffic analysis is specially relevant for privacy. As we have pointed out, when,
where or with whom Alice has contact leaks sensitive information. A trivial
approach to protect Alice’s privacy could be to decouple her identity from her
actions such that they appear as anonymous. However, experience has shown that
effectively dissociating users from their communications is a hard task. This is
because of the difficulty of eliminating information leaked by traffic data, that can
be exploited to reduce the anonymity of the users.

In the rest of this chapter we concentrate on the application of traffic analysis
to the de-anonymization of anonymous communications. We note that a
deep understanding and knowledge of traffic analysis techniques is essential for
anonymous communication systems designers. On the one hand, it allows to
evaluate the level of protection achieved by the system under study. On the other
hand, it is essential to obtain the probability distributions needed to compute

2http://www.facebook.com/
3http://www.iqt.org/technology-portfolio/visible_technologies.html
4http://www.flickr.com/, http://www.youtube.com/, http://www.twitter.com/, http://

www.amazon.com/.

http://www.facebook.com/
http://www.iqt.org/technology-portfolio/visible_technologies.html
http://www.flickr.com/
http://www.youtube.com/
http://www.twitter.com/
http://www.amazon.com/
http://www.amazon.com/
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anonymity metrics [52, 81, 82, 103, 238] that can be used to compare the system
under study with alternative designs.

2.3 Traffic analysis in anonymous communications

When considering anonymous communications, that intend to hide communication
partners, the main goal of traffic analysis is to uncover relationships taking
place over an anonymous communications network. In this section we overview
the analysis techniques applied to anonymous communications proposed in the
literature. We defer the discussion on anonymous communications designed for
location privacy to Chapter 6.

We classify the techniques depending on the principle according to which they
work. For each of the attacks we also indicate whether it works against high-
and/or low-latency anonymous communications systems, and the assumptions on
the power the adversary needs to perform the attack. Following the taxonomy
proposed by Raymond [224], we consider an adversary as global if she has access
to the entire communication system (e.g., all communication links), and as partial
if she only sees part of the network (e.g., a limited number of peers in a peer-to-
peer network). We also say that the adversary is passive if she only observes the
communication and/or controls some of the entities participating in the protocols
but does not interfere with the communication. If the adversary can add, delay,
alter or remove messages from the system, then we say she is active.

2.3.1 Intersection attacks

One of the main building blocks for high-latency anonymous communications is
the mix. Introduced by Chaum in 1981 [47], a mix is a router that hides the links
between its inputs and its outputs by altering the appearance and timing of the
messages. Mixes are suitable to build message-based systems, e.g., email [72,192],
that do not have latency restrictions.

Mixes offer good protection against a global passive adversary assuming that users
only send one message through the network [72]. However, if the adversary can
observe many messages from one sender to the same set of receivers traversing
the network she can perform an intersection attack [224] to disclose this sender’s
communication relationships. In turn, this information can be used to reduce the
anonymity of the each of the messages’ receiver. This attack relies on the fact
that users typically communicate with a reduced number of contacts. Hence, the
adversary can find the likely contacts of a target user by intersecting the anonymity
sets of the sent messages. Instead of the anonymity set of received or sent messages,
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intersection attacks can also exploit the fact that different messages use the same
route through the network to perform traffic analysis [30].

A type of intersection attack, the Disclosure Attack, was introduced by Kesdo-
gan et al. [5, 158] in 2002. The Disclosure Attack reveals the set of friends of a
target user, Alice, who communicates through a single threshold mix [47]. This
mix follows a very simple mixing process: it collects t input messages, applies a
cryptographic transformation to change their appearance, and outputs them in a
unique batch to eliminate timing correlations. In spite of the mixing, an adversary
observing enough rounds of communications can recover the set of Alice’s contacts
by intersecting the sets of recipients of batches in which Alice had participated.
The downside of this attack is its computation complexity, as it relies on solving an
NP-problem. A family of Hitting Set Attacks [160,161,176] that looks for unique
minimal hitting sets in order to accelerate the search, are able to find the solution
more efficiently.

A statistical variant of these attacks was proposed by Danezis [60], known as
Statistical Disclosure Attack (SDA), that outputs a very good estimation of a
user’s sending profile (i.e., the user’s preferences when choosing a recipient for
her messages. The attack is based on the observation that for a large enough
set of observations, by the Law of Large Numbers, the average of the probability
distributions describing the recipient anonymity [238] of Alice’s messages offers a
very good estimation of her sending profile. The SDA was later extended to the
analysis of pool mixes [76], to traffic containing replies [70], to recover both the
sending and receiving profiles of Alice [181], and to evaluate more complex user
models [183].

In 2008, it has been shown that co-inferring users’ profiles and assignments
of messages between senders and receivers yields better results than doing it
independently for each user. We introduced in [270] the Perfect Matching
Disclosure Attack (PMDA) and the Normalized Statistical Disclosure Attack
(NSDA), explained in detail in Chapter 3. Both attacks improve the results
obtained in previous works by considering all senders and receivers simultaneously,
accounting for the fact that relationships between sent and received messages must
be one-to-one. The PMDA looks for perfect matchings in the underlying graph
describing the potential relationships between senders and receivers of messages,
while the NSDA considers interdependencies between senders and receivers by
normalizing the adjacency matrix representing this graph.

The aforementioned attacks are limited, in the sense that they are only effective
under unrealistic assumptions. Early versions of the disclosure attack [5, 60, 70,
76, 158, 160, 161, 176] operate under the assumption that users communicate with
a fixed set of contacts and choose the recipient of each message with uniform
probability amongst them. Nevertheless, Wilson et al. have shown that it is
unlikely that in the real world users communicate this way [281]. The PMDA
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and the NSDA do not present this limitation, but they can only handle simple
systems. We propose in [79] the use of advanced Bayesian sampling techniques,
further explained in Chapter 4 to handle the simultaneous inference of profiles and
assignments in arbitrarily complex anonymity systems. The Bayesian approach has
the additional advantage that it provides the analyst with reliable error estimates,
hence giving an estimation of the confidence she can put on the results of the
attack.

Intersection attacks are also effective in the partial adversarial model. For instance,
the predecessor attack, introduced by Wright et al. [282,283], allows an adversary
who controls a fraction of the network to keep track of a persistent connection (e.g.,
VoIP) over multiple path rebuilds in low-latency communications systems such as
Onion Routing [93, 124] or Crowds [226]. Then, the identity of the source and
destination of the communication can be inferred from their frequent appearances
on the observations. The effectiveness of this attack was corroborated by Bauer
et al. in [22]. Further they show that the attack is even more dangerous, as it can
be successfully mounted by a low-budget attacker.

2.3.2 Traffic confirmation attacks

The attacks described in the previous section are effective when users communicate
repeatedly with their contacts. Nevertheless, a passive adversary can also trace
communications when they are sporadic. An adversary with access to traffic flows
can exploit the traffic shape to match incoming and outgoing streams of packets
in what is called a traffic confirmation attack [258]. These attacks can be applied
to both high-latency and low-latency anonymous communication systems, and do
not require the adversary to observe all communications (i.e., the adversary can
be global or partial).

Different features are useful when it comes to correlating streams. The simplest
technique consists in counting the packets of each connection arriving into the
network during a time interval, and the number of packets of each connection
leaving the network, and use this information to assign inputs to outputs [241,
242]. In the same paper, Serjantov and Sewell also propose to use the pattern
resulting from a connection start – an increase in the traffic from a incoming link
to an outgoing link – to trace streams. A similar attack using the connection end
pattern was introduced by Kesdogan et al. [159] in order to identify the origin and
destination of messages relayed through Stop-and-Go mixes, which delay messages
independently to hide correspondences between inputs and outputs.

Danezis also studied Stop-and-Go mixes in [61]. He presents a more general
framework for the analysis of these mixes that is also applicable to other mixing
strategies that individually delay messages or use minimum delays to allow for
real-time communications [39, 93, 112, 227]. The core idea of Danezis’ attack is to
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model the input stream and the delay processes as signals, and use signal detection
techniques to identify correspondences. Signal processing techniques were also
used by Levine et al. to re-identify flows by leveraging the differences in their
interpacket delays [173].

Murdoch and Zieliński demonstrate in [196] that in order to use traffic confirmation
the adversary does not need access to the whole flow of data. It suffices if the
adversary can sample 1 in 2 000 packets on each side of the communication, e.g.,
an attacker placed at the Internet exchanges. The attack uses simplified Bayesian
statistics and operates under the assumption that traffic is Poisson distributed.

Flow correlation is also useful to identify hidden services in the Tor network [93].
These services are hidden in that the client does not know the exact location
of the service in the network. In order to communicate with the server, instead
of directly connecting through Tor, the client opens an anonymous connection
to a rendezvous point that in turn anonymously communicates with the server.
Øverlier and Syverson [212] demonstrate that an attacker controlling at least one
Tor node can discover the location of a Hidden Server. The attack exploits Tor’s
random selection of nodes to build connections: the adversary connects to the
hidden service repeatedly until the malicious node is the neighbor of the hidden
server in the path. At this point simple correlation [61, 173, 196, 242] confirms
whether the attack is successful. The authors note that this attack could also be
used by a malicious non-hidden server to de-anonymize users, not only in Tor but
in other anonymity networks as Freedom [39] or Crowds [226].

2.3.3 Web fingerprinting attacks

One of the simplest attacks a partial attacker can deploy on a low-latency
anonymity system is called the web site fingerprinting attack [139, 141, 174]. The
attack consists of two phases. First a training phase in which the adversary
creates fingerprints for a number of sites (popular or interesting sites) and stores
them. This fingerprints represent the web page in terms of packet sizes, timings,
counts, etc. The second is a testing phase in which the attacker monitors the
encrypted traffic of the user and tries to correlate its shape with the “templates”
in her database. For this purpose the attacker only needs to have access to the
victim’s traffic, and to have knowledge of the identity of the victim (e.g., the
source IP address of the traffic). Panchenko and Pimenidis point out that local
network administrators, Internet Service Providers, or secret agencies are in this
position [214].

This attack can also be performed by a global passive adversary, who of course can
observe the victim’s traffic. Nevertheless, if the adversary can observe all inputs
and outputs of the system she can make use of a confirmation attack (such as the
ones explained in previous section), avoiding the need for a training phase.
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2.3.4 Routing constraints-based attacks

Anonymity systems impose route constraints on the paths chosen by users. For
instance, given the underlying anonymity protocol some attributes of paths are
fixed (e.g., in Tor paths are composed by three distinct relays, and the first relay
must be of a special type [93]); or given the node discovery algorithm users have
a partial view of the network, hence their paths can only be formed by a subset of
all the nodes (e.g., Tarzan [112], Salsa [199], or NISAN [215]).

The fact that routing constraints significantly affect the anonymity provided
by a system with respect to a global passive adversary was first observed by
Serjantov and Danezis [238]. Serjantov noted later on that the problem became
intractable when the number of constraints grows [237]. We proposed the use of
Bayesian inference sampling techniques [266] to reduce the computational load,
and efficiently analyze complex systems. These techniques are explained in detail
in Chapter 5.

Danezis and Clayton observe that when users have a partial view of the network
(i.e., they only know a subset of nodes) the adversary can use this information to
fingerprint routes that can only belong to certain users [64]. Later, Danezis and
Syverson showed that the adversary can improve this result by bridging [77] honest
routers: considering the path initiator’s knowledge, or ignorance, about subsequent
nodes in a route (e.g., there is only one exit node known by the initiator, or there
is only one exit node that is not known by the rest of the senders in the system).

The adversary can also try to bias the choice of nodes in her advantage in order to
increase the likelihood of controlling both ends of a target’s path, and thus be in
the position to launch a confirmation attack. Murdoch and Watson demonstrated
that an adversary with access to a botnet can easily gain control of a large fraction
of the circuits in the Tor network [195]. Further, Borisov et al. [38] showed how an
adversary with capacity to perform denial of service can lower anonymity using the
retransmission of messages to increase the opportunities for attack, thus requiring
even less resources.

Peer-to-peer anonymous networks [185,187,189,199,215,227] suffer from the same
problem. In these networks nodes must perform lookups in order to find peers
to relay their communications. Malicious nodes can misdirect these lookups to
ensure that colluding relays are chosen to form a path and violate the anonymity
of the system. To avoid these attacks peer-to-peer anonymous communication
designs incorporate defenses aimed at enabling the secure lookup of random relays.
These defenses, mostly based on redundant checks, allow an adversary controlling
a small fraction of the network to observe many non-anonymous lookup messages
effectively upgrading him to an almost-global adversary. There is a line of research
dedicated to find such flaws in anonymous lookup mechanisms [188, 236, 260, 265,
275], although to the best of our knowledge currently no secure solution has been
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found.

2.3.5 Watermarking attacks

Another powerful family of attacks that only need partial monitoring of the
network to trace flows in low-latency anonymous communications systems are
watermarking attacks. Here the adversary alters some characteristic of a
target flow (normally packet timings) in a known fashion, hence introducing a
“watermark.” The adversary then searches for this watermark in other flows. Flows
containing the watermark are considered to be the same. The most popular are
interval-based watermarks [165, 221, 276–278, 290], which modify the inter-packet
delays to mark the flows.

2.3.6 Clogging attacks

Clogging attacks are similar to watermarking attacks, in the sense that the
adversary manipulates the shape of the traffic to be able to re-identify flows of
packets. Clogging permits a partial adversary to find the route followed by a
target stream of messages in low-latency communication systems. In the simplest
version of this attack [15] an adversary sequentially clogs nodes suspected to be in
the victim’s path, and looks for the corresponding decrease in bandwidth at the
client’s connection in order to identify which of the suspects actually belongs to
the path.

A low-cost version of this attack applied to the Tor network was introduced by
Murdoch and Danezis [194], and extended by McLachlan and Hopper to peer-to-
peer networks [184]. In this attack, users can be de-anonymized by a malicious
server that colludes with a malicious Tor node. The malicious node acts as a probe
that clogs and unclogs (i.e., it mimics a pulse) the other Tor routers. When the
correct node is probed, the latency observed at the targeted output has a high
correlation with the pulses introduced by the probe, signaling the members of the
route followed by the stream. This attack was extended to use circuit latency
measurements in order to infer information about the position in the network of
the client by Hopper et al. [145].

2.3.7 Blending attacks

A global active adversary with the capability to delay messages can deploy the
so-called blending attack, also known as n - 1 attack [207,237,239] on high-latency
mix-based anonymity systems [47, 72, 192]. The attack targets one message, for
which it aims to identify the receiver. When the target message enters the mix,
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the adversary delays every other incoming message. Simultaneously she generates
many messages such that the only message unknown to her in the batch is the
target message. Hence, when the mix flushes it is trivial to pinpoint the target
amongst the outgoing messages.

2.4 Conclusion

In this chapter we have defined what traffic analysis is, and we have reviewed
its historical roots. Then, we have given an overview of the relationship between
traffic analysis and anonymous communications. We have seen that traffic analysis
is a very powerful threat for all types of anonymity systems, regardless of the
adversarial model considered in their designs. In the following chapters we
dive into a deeper discussion of our contribution to the analysis of anonymous
communication systems.





Chapter 3

Perfect matching disclosure
attacks

3.1 Introduction

Relay-based anonymous communications were first proposed by David Chaum [47],
when he introduced the concept of mix, and have since been the subject of
considerable research [69,104] and deployment [72,192]. A mix is a relaying router
that hides the relation between incoming and outgoing messages. For this purpose
it collects messages, transforms them cryptographically, and outputs them in a
randomized order. The cryptographic transformation prevents bitwise linkability:
the input and output messages appear different to a passive observer such that
connections between them based on the bits they contain is not possible. On
the other hand, the shuffling of messages prevents linkability based on the timing
and order of outgoing messages with respect to the inputs received by the mix.
In this thesis, in order to present our traffic analysis techniques, we assume the
cryptography is perfect and leaks no information, even though there have been
attacks in the literature that demonstrate that this is not always the case [245].

Mixes provide anonymity at the cost of substantial delays in the communication,
and therefore they can only be used for applications that tolerate high latencies,
such as anonymous email [72, 192] or e-voting protocols [152, 230]. They are
however not suitable for interactive applications with low-latency constraints, such
as web browsing or instant messaging, for which low-latency techniques have been
developed [28,93,123,199]. For further details on the extension and refinement of
mix-based protocols we refer the reader to the survey by Danezis et al. [69, 104].

29
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In parallel with the development of mix networks, techniques to uncover persistent
and repeated patterns of communication through them have been proposed. Such
attacks were first named “intersection attacks” [224] (see Sect. 2.3.1) since they
were based on the idea that when a target user repeatedly communicates with a
single friend it is possible to uncover the identity of the latter by intersecting the
recipient anonymity sets of this user’s messages.

Kesdogan et al. [5,158,161] introduced a family of disclosure and hitting set attacks
that generalizes this idea to users with multiple friends. After the adversary
observes a number of messages going through the system, the outcome of these
attacks is the set of friends of each sender being uncovered. Statistical variants
of these attacks were also developed, known as statistical disclosure attacks [60],
and applied to pool mixes [76], traffic containing replies [70], to recover both
the sending and receiving profiles of Alice [181], and evaluated against complex
models [183]. This family of attacks operates regardless of the internal details of
the network, thus they represent a fundamental limit on the level of protection
that an anonymity network can provide against traffic analysis, and it is likely
that they can only be avoided in a very inefficient manner by introducing dummy
traffic in the network [29].

Although these attacks are considered as a key reference in the evaluation of
new designs for anonymous communications, their effectiveness strongly relies
on unrealistic assumptions such as “users pick their communication partners
uniformly at random.” These assumptions simplify the calculation of anonymity,
and hence aid our understanding and intuition of how the traffic data leakage can
be exploited by an adversary. However, even though they make the model optimal
to illustrate the principles behind the attacks, the deviations from real world usage
jeopardize the validity of the results obtained with respect to real implementations
of anonymous communication networks.

Human behavior is hard to model and predict, and even the most sophisticated
adversary with access to vast amounts of information can only at best approximate
user behavioral profiles. Furthermore, due to the lack of available real-world data
in the academic community, little is known about how user sending profiles might
actually look like, or how they evolve in time. The first original contribution
presented in this chapter is a non-restrictive user behavior model in which users
have an arbitrary number of friends amongst which the recipient of every message
is chosen with arbitrary probability. The flexibility of this model allows us to
evaluate systems in more realistic scenarios than prior work [5,60,70,158,161,183].

Disclosure attacks were originally designed to obtain users’ communication
patterns. We call a user’s communication pattern her profile, thus the goal of
the adversary is to perform profiling. The profiles include the set of contacts with
which users communicate, together with the probability distribution that describes
the users’ preferences amongst them. The sending profiles derived in the attack
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can be used to improve the capability of the adversary to individually trace each
of the messages sent to the network [60,70]. We denote the process of uncovering
the sender of a received message as de-anonymization of that message.

Our second contribution is to show that the effectiveness of the Statistical
Disclosure Attack (SDA) [60], considered as the most efficient of the disclosure
attacks’ family [5, 60, 70, 76, 161], is strongly dependent on the users’ behavior.
We empirically compare the performance of the SDA when tracing messages in
presence of different user behavior models. We show how the SDA’s performance
worsens as the user behavior progressively differs from the model considered by
Danezis when designing the attack [60].

The third contribution in this chapter is a more advanced analysis technique,
the Perfect Matching Disclosure Attack (PMDA), that obtains good success rates
when de-anonymizing messages regardless of the user model considered. The key
idea that makes our attack more efficient is that it considers all users in a round at
once, instead of focusing on individual users. We compare the SDA and the PMDA
through simulation and show that our method is more accurate in de-anonymizing
messages.

The PMDA, although more effective than the SDA, requires expensive computa-
tions that may make the attack infeasible for scenarios with a large number of
users. For these cases we introduce the Normalized Statistical Disclosure Attack
(NSDA). The NSDA trades off between precision and speed, yielding results nearly
as good as the PMDA with a running time slightly higher than the original SDA.
If precision is needed, or if the system under analysis is more complex than the
threshold mix considered in this chapter, we refer the reader to the traffic analysis
techniques described in Chapters 4 and 5, previously published in [79,266]. These
techniques are based on the same basic principle as the PMDA, i.e., consider all
information available to the adversary at once, but they use more powerful and
flexible mathematical tools.

Finally, we propose an enhanced profiling methodology which uses the outcome of
the attacks (i.e., the result of the de-anonymization in each of the observed rounds)
as input for a new profiling step, allowing the adversary to derive more accurate
estimations of users’ profiles. We show how this technique can be combined with
any of the attacks considered, improving the quality of the profiles obtained in all
cases.

The results presented in this chapter have been extracted from our original work
Perfect Matching Disclosure Attacks published at the 8th Privacy Enhancing
Technologies Symposium [270]. Further, the findings presented in this chapter
served as inspiration for later results [79, 89, 121, 266] as pointed out along the
chapter.
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Chapter outline

This rest of this chapter is organized as follows. We explain the system model
and the user behavioral models in Sect. 3.2. Section 3.3 and Sect. 3.4 describe the
original Statistical Disclosure attack, and the Perfect Matching Disclosure attack,
respectively. We evaluate both methods in Sect. 3.5. We explain in Sect. 3.6 how to
construct enhanced user profiles and present the Normalized Statistical Disclosure
Attack in Sect. 3.7. Finally, we discuss some open questions and conclude in
Sect. 3.8.

3.2 System model

We consider a system where a set U of Nuser users send messages to each other
through an anonymous communication channel A. In this chapter we consider this
channel to function as a threshold mix. This type of mix follows a plain mixing
strategy: it collects t input messages, where t denotes the threshold, and outputs
them all at once after a cryptographic transformation. This transformation ensures
that an adversary cannot link inputs and outputs by simple observation. Further,
as messages are flushed at the same time, linkability based on the arrival/departure
time of messages [61,76] is prevented.

We define the sending profile of a user x ∈ U as the vector of probabilities Ψx of
size Nuser. A given element of this vector expresses the probability that x chooses
y ∈ U as the recipient of one of her messages. As any well-defined probability
distribution, the sum of its component adds up to 1, i.e.

∑
y Ψx(y) = 1 for all x.

Lets say that x is Alice, and that y is Bob. Then, ΨAlice(Bob) is the probability
that Alice chooses Bob as recipient when she sends a message. The distribution as
a whole describes Alice’s sending behavior with respect to the entire population
(including herself). We use the following notion of friendship: we say y is a friend
of x, if x sends a message to y with non-zero probability (i.e., Ψx(y) > 0).

As in previous work [70], we model the sending rate of each individual user x ∈
U as a Poisson distribution with parameter λx. In general, we do not expect
real users to initiate discussions in a way that can be approximated by a single
Poisson process. There will definitely be fluctuations in the communication rate
according to the time of day, the week day, the environment of the user and the
user herself. Nevertheless, the Poisson’s memorylessness property makes it ideal to
set up a framework in which we can concentrate on studying the attack’s properties
regardless of the event generation scheduling.
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3.2.1 Adversarial model

We consider a global passive adversary that monitors the system and observes
all input messages arriving to the mix (and their respective senders), as well as
all output messages leaving the mix (and their recipients), but not the internal
operations of the mix. Naturally, the messages are encrypted so the content is
hidden. The attacker observes Nmsg messages sent through the system, divided
into ρ disjoint rounds of equal size. We denote SenIr the set formed by the
senders of the t messages arriving at the mix in round r and RecOr the set of
the corresponding receivers. We denote the whole set of ρ round observations as
the trace T = (Ir, Or), 1 ≤ r ≤ ρ.

Although the attacker does not know the correspondence between inputs and
outputs, she is able to compute the probability distributions linking every input
with all possible outputs and vice versa. Computing this distribution for threshold
mixes is straightforward as in each round every incoming message has an equal
probability of corresponding to each outgoing message.

The adversary uses this probability distribution and the information in T for two
purposes. Her first goal is to recover the users’ sending profiles, i.e. discover the
users’ preferences when choosing a recipient for their messages. Secondly, she
aims at linking back the inputs and outputs of every round, i.e. uncover who
communicated with whom while the system was under observation.

3.2.2 A non-restrictive user behavior model for anonymous
communication networks

We consider three types of populations. The first one, USDA, is a simple and
very restrictive user behavior model inspired by the one used by Agrawal and
Kesdogan [5], and Danezis [60]. Modifying our assumptions on the number of
users’ friends and the user preferences amongst them, we construct two additional
populations USKW and UARB that gradually differ from USDA. We define the
models as follows:

USDA: a single user, Alice, has f randomly selected friends; her sending behavior
toward her friends is uniform; ΨAlice contains f times the value 1

f and Nuser−
f times the value zero; all other user profiles contain Nuser times 1

Nuser
.

Figure 3.1(a) depicts this profile.

USKW : every user x has an individual number fx of friends; the sending
probabilities toward the friends are generated such that the resulting profile
is skewed [281]. This means that users have a set of contacts where there
are one or two very good friends (which they choose as recipients in more
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Figure 3.1: Examples of user behavior

than 60% of the cases) and the rest have small probability of being chosen.
Figure 3.1(b) depicts this profile.

UARB: every user x has an individual number fx; the sending probabilities toward
the friends are generated such that users do not have strong preferences about
their contacts, still, their distribution is non-uniform. Figure 3.1(c) depicts
this profile.

We have developed further variants of these models to focus on different features
of user behavior which we use in [89] to evaluate the impact of social network
profiling on anonymity.

Comparison with previous models

The original Disclosure Attack and its first sequels [5, 60, 161] consider a model
that is almost equivalent to our model with population USDA. In their model,
Alice sends exactly one message in each of the rounds in which she participates.
As we demonstrate in [121], the fact that users may send and receive multiple
messages per round influences the anonymity provided by a system. Therefore,
we remove this limitation in our model and let users send an arbitrary number of
messages per round of communication.

Mathewson and Dingledine employ simulations in order to evaluate the effective-
ness of statistical disclosure attacks when it comes to recover profiles from traffic
data [183]. In their work they introduce a more complex model than the one
in the seminal paper [5]. The two main differences with respect to the original
model are: i) Alice is allowed to send more than one message in each round in
which she participates; and ii) every participant has a set of friends (as opposed
to the USDA model in which all other users’ profiles contain Nuser times 1

Nuser
).

Nevertheless, their behavior toward them is still uniform, i.e. users send the same
volume of messages to all their friends. In some of their experiments Mathewson
and Dingledine go a step further and let Alice choose with non-uniform probability
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amongst her friends, but not the rest of the users, obtaining a model closer to our
UARB .

The Two-Sided Statistical Disclosure Attack [70], another variant of the Disclosure
Attack, is tested under USDA traffic and in a variant where all users have the same
number of friends, to which they send with uniform probability. Both models allow
Alice to send several messages per round in which she participates.

The main drawback of these models is their narrowness. Our model UARB aims at
covering a more realistic range of scenarios. In particular, utilizing UARB implies
no assumption about the number of users that have friends, the number of friends
they have, or the sending behavior toward their friends.

3.3 The Statistical Disclosure Attack: profiling and
de-anonymization

3.3.1 Profiling with the Statistical Disclosure Attack

The Statistical Disclosure Attack (SDA), as presented by Danezis in [60], focuses
on revealing the likely set of friends of a target user, Alice. Alice is the only user
in the system who has a limited number of friends (ΨAlice contains f positions
with value 1/f corresponding to her f friends), and the rest of the population
choose their recipients uniformly amongst all the users (ΨSenI (RecO) = 1

Nuser
for

all ir ∈ I, or ∈ O, SenI 6= Alice).

In each round r where Alice is sending a message, an attacker deploying the SDA
computes the probability distribution Θ of the potential recipients of this message
as a combination of the profiles of all the participating senders as follows:

Θr = 1
t
ΨAlice + t− 1

t
Ψx, x ∈ SenIr \ {Alice} . (3.1)

For a sufficient number ρ of observed rounds, the law of large numbers allows to
estimate Alice’s profile from the empirical mean over the observed rounds:

Θ̄ = 1
t

ρ∑
r=1

Θr ≈
ΨAlice + (t− 1)Ψx

t
⇒ Ψ̃Alice ≈ t

∑ρ
r=1 Θr

t
− (t− 1)Ψx .

Using the round observations contained in T as input to this method, the attacker
estimates the profiles of all the users in the system. We denote the estimated
profile of user x obtained in this phase Ψ̃x,SDA, for each user x in the population,
and we denote the whole set of these profiles as Ψ̃SDA.
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3.3.2 De-anonymization with the Statistical Disclosure Attack

As suggested in [60, 70], the estimated profile can be used to rank the potential
receivers of a message from Alice according to the likelihood that Alice would send
to them. The most likely receiver Reck of her message in a round r can thus be
easily identified as

Reck = argmaxReck Ψ̃Alice,SDA(Reck), Reck ∈ Or . (3.2)

When de-anonymizing the receivers of several messages in one round, the most
obvious, though näıve approach is to repeat this procedure for each individual
message. Figure 3.2 depicts the entire de-anonymization process, where the box
marked as SDA profiling represents the profiling step described in the previous
section, and the output DSDA is the de-anonymization result of the attack.

3.4 The Perfect Matching Disclosure Attack

In this section we first recapitulate the required basic notions of graph theory
needed to understand the foundations of the Perfect Matching Disclosure Attack
(for further reading about graph theory in an anonymity context we refer the
interested reader to [148]). Then, we show how a threshold mix can be modeled
using bipartite graphs. Finally, we explain how maximum weighted bipartite
matchings can be used to efficiently de-anonymize users communicating through
this mix if the attack is transformed into a classic optimization problem.

3.4.1 Basic graph theory notions

A graph G = (N,E) consists of a set of nodes N and a set of edges E. Without
loss of generality we assume N 6= ∅. A bipartite graph G = (I ∪ O,E) is a graph
whose nodes can be divided into two distinct sets I and O such that every edge
in E connects one node in I and one node in O. In other words, there exists no
edge between nodes from the same set. In this chapter we focus on sets I and O
of equal and finite cardinality t > 1. A set of edges M ⊆ E is called a matching in
the bipartite graph G if no node in G is incident to more than one edge. A perfect
matching additionally requires that every node is incident to exactly one edge.
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If each edge el ∈ E is associated with a weight wl, the graph is denoted a weighted
bipartite graph. A maximum weighted bipartite matching is defined as a perfect
matching for which the sum of the weights wl associated with the edges in the
matching has a maximal value, i.e. the perfect matching M maximizes

∑
wl |el ∈

M . Figure 3.3 illustrates the definitions. In the rest of this work we focus on
maximum weighted bipartite matchings and assume completeness of the graph. If
the graph is not complete bipartite, i.e. edges are missing, one usually inserts the
missing edges with an associated weight of zero.

Finding such matchings is often called the assignment problem, one of the
fundamental combinatorial optimization problems in graph theory. Further, one
deals with a linear assignment problem when the two following conditions are met:
i) the sets of nodes I and O are of equal and finite size and ii) the total weight of
the assignment (or matching) is equal to the sum of the weights associated to the
edges in the assignment.

3.4.2 The optimization problem in the anonymous communica-
tion setup

We represent each of the t messages ij , j = 1, . . . , t, sent to the mix during
one round as a node. These nodes form the set I = {ij}, and we label them
with their corresponding sender’s identities Senj . Note that a node does not
represent a specific user, but a message sent by a specific user. Therefore, two
messages from one sender are represented by two different nodes with the same
label. Equivalently, the t messages received during one round form the set O where
each node ok is labeled with the receiver’s identity Reck, k = 1, . . . , t.

We model the relationship between an incoming message ij and an outgoing
message ok with an edge ejk connecting these two nodes. This edge implies that
these two messages are the same (i.e., ij = ok), therefore exhibiting the link
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Figure 3.4: Mapping of the optimization problem to the threshold mix environment

between sender and receiver (i.e., Senj chose Reck as receiver in this round). We
assign a weight wjk to these edges, representing the probability that Senj actually
chooses Reck as recipient. These weights are derived from the users’ profiles Ψx,
which can be known to the adversary, or estimated from observations of mixing
rounds as we discuss in Section 3.3.1. We recall that Ψx describes the sending
behavior of user x toward the entire population but, for a given round, only those
elements of Ψx associated with the receivers in the round are of interest. Therefore
we construct the t× t matrix P ′, and assign the weights wjk as follows:

P ′(ij , ok) = ΨSenj (Reck) , ij ∈ I,Reck ∈ O;

wjk = P ′(ij , ok) , ij ∈ I,Reck ∈ O.

The nodes I ∪ O together with the edges E = {ejk} form the complete bipartite
graph G = (I ∪O,E). We note that if a different anonymous channel was in place
ruling out some sender-receiver combinations, or if the user profiles exclude certain
individuals as possible communication partners, the relation would be represented
by an edge of weight zero. We illustrate this mapping in Fig. 3.4.

The goal of the adversary is to recover the users’ profiles as well as de-anonymize
each message that has traveled through the mix. In a nutshell, our idea is to
take advantage of the fact that all messages sent and received during one round
have to be linked in pairs (every input is linked to one, and only one, output).
Further, we are looking for the most likely assignment of inputs and outputs,
i.e. the assignment that maximizes the joint probability of the links. Thus, the
optimization problem we are facing is to find the maximum weight matching M
in G given the sets I and O, and the weights in P ′. We denote the space of all
perfect matchings on the graph G by M and require that an eligible set of edges
belongs to this space, i.e. it must be a perfect matching M ∈M.
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Applying Bayes theorem, the conditional a posteriori probability Pr[M |I,O] can
be computed as

Pr[M |I,O] = Pr[I,O|M ] · Pr[M ]
Pr[I,O] .

Given an assignment M , the sets of nodes I and O are implicitly fixed and thus
Pr[I,O|M ] = 1. It follows that Pr[M |I,O] = Pr[M ]/Pr[I,O]. Since the sets I and
O are given in the condition, Pr[I,O] is a constant term and independent of the
considered assignment M . Therefore, the assignment M maximizing Pr[M |I,O]
is the one that maximizes Pr[M ].

An assignment M is a perfect matching on G, thus Pr[M ] is the joint probability of
the individual edges ejk ∈M . Assuming that the edges ejk ∈M are independent
the joint probability Pr[M ], that we want to maximize, is the product of the
individual edge probabilities:

Pr[M ] =
∏

ejk∈M
wjk .

We consider the adversary observes the system during ρ rounds, constructing
the trace T = (Ir, Or), 1 ≤ r ≤ ρ. Given a round observation, which consists of
multisets of senders SenIr and receivers RecOr , the probability of each assignment
M is

∏
ejk∈M wjk. The assignment M maximizing Pr[M ] also maximizes

Pr[M |Ir, Or].

In our model we mandate that all senders choose when to communicate according
to a Poisson distribution with the same parameter. Thus, all combinations
of senders are equally likely to be observed. Besides, each sender chooses the
recipient(s) of her message(s) independently of the choice(s) of all other senders.
If a user sends multiple messages, the receivers of these messages are also chosen
independently. Therefore, our model easily accommodates the case that a user
sends two (or more) messages by considering that these messages have been sent
by two (or more) distinct senders with identical profiles that each send one message
to independently chosen receivers.

3.4.3 De-anonymizing messages with the Perfect Matching
Disclosure Attack

As we have explained, the adversary’s goal is to find a maximum weighted bipartite
matching on the graph representing her observation of messages entering and
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leaving the mix. In terms of algorithmic computer science, once the graph
and its edges’ weights are known, this is an assignment problem with known
solution [91,169].

In order to derive the weights wjk the adversary uses the trace T to estimate
simple user profiles Ψ̃SDA as described in Sect. 3.3.1, and for each round r, she
constructs the t× t matrix P ′:

P ′(ij , ok) := Ψ̃Senj ,SDA(Reck) , ij ∈ Ir, ok ∈ Or .

With these values, the adversary can compute the joint probability of all t links
in an assignment M as

Pr[M ] =
∏

ejk∈M
P ′(ij , ok) =

∏
ejk∈M

ΨSenj (Reck) , ij ∈ Ir, ok ∈ Or .

We have shown in Sect. 3.4.2 that the assignment M that maximizes pjoint is the
adversary’s best guess about the correspondences between inputs and outputs. In
order to transform the maximization of pjoint into a linear assignment problem
we replace each element of the matrix P ′(Ir, Or) with its logarithmic value
log10(P ′(Ir, Or)) before associating it to the edge ejk linking message ij to message
ik (see Fig. 3.5):

log10(pjoint) = log10(
∏

ejk∈M
P ′(Ir, Or)) =

∑
ejk∈M

log10(P ′(Ir, Or)) .

Having each edge associated with a log-probability, we can use a suitable algorithm
to solve linear assignment problems [25,91,169] and obtain the most likely sender-
receiver combination for all t messages in the round as the perfect matching M ∈
M.
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3.5 Empirical evaluation of de-anonymization tech-
niques

In order to evaluate the performance of the Perfect Matching Disclosure Attack, we
deploy it in different scenarios and compare it to the original Statistical Disclosure
Attack. Our goal is to study the impact of system parameters on the effectiveness
and viability of both attacks.

3.5.1 Experimental settings

Our experiments are carried out on populations U of size Nuser = 1000 users who
send messages through a threshold mix with threshold t = 100, ensuring that a
considerable fraction of the users participate in each mixing round. Every user
x ∈ U chooses her recipients according to her profile Ψx, which depends on the
considered user behavior model (see Sect. 3.2.2), and initiates communications
with the same frequency λ. We note that the choice of this parameter’s value is
arbitrary. As long as all users send messages to the network with equal rate, their
frequency of appearance as senders does not depend on its precise value. Although
real users are expected to send messages with different frequencies, we chose to
fix this parameter in order to create an optimal scenario in which to study the
effectiveness of the attacks.

We study how the number of rounds observed by the attacker affects the
performance of the PMDA and the SDA. Concretely, we concentrate on their
effectiveness, efficiency, and scalability.

For the purpose of our studies we have generated 100 000 mixing rounds. An
experiment consists of three steps: i) estimating all user profiles Ψ̃SDA from
ρ round observations; ii) de-anonymizing 5000 rounds with the SDA; iii) de-
anonymizing the same 5000 rounds with the PMDA.

Tables 3.1 and 3.2 summarize the parameters and their values in the experiments.
Note that when only 1000 rounds are available to the adversary, the steps 2 and
3 of our experiments only consider those rounds.

3.5.2 Results

In this section we present the results of our experiments. To measure the
effectiveness of the attacks we define two metrics (both metrics are computed
over all 5000, respectively 1000, rounds):
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Table 3.1: Parameters of the experiments: µ is the average number of messages
used to profile one user, γ is the average number of de-anonymization trials per
user PPPPPPPParam

ρ 1k 5k 10k 25k 50k 100k

Nuser 1000
t 100
µ 100 500 1000 2500 5000 10000
γ 100 500 500 500 500 500

Table 3.2: Parameters of the experiments: User behavior
Population ] friends f Profile
USDA {5, 25, 50} Uniform
UARB random [5, 50] Non-uniform

Individual success rate: expresses the accuracy of the attack when de-anonymizing
the receiver of a message from a particular sender, i.e. successfully linking
a specific sender to a receiver. It is computed by counting the number of
messages sent by each user that have been correctly de-anonymized by the
attack. The success rate per sender is then computed by dividing this number
by the number of messages sent by each user.

Round success rate: the percentage of links correctly de-anonymized per round.
We calculate it as the average number of sender-receiver pairs successfully
identified in each round.

We consider that a message has been de-anonymized correctly if and only if the
attack has identified the correct receiver of that message.

Population USDA

We test both attacks in three USDA populations where Alice has f friends. We
look at the influence of the number ρ of rounds used in the profiling step on the
success rates of the attacks.

Figure 3.6 illustrates the individual success rates. All users except Alice send
uniformly to the entire population; therefore, the attack cannot make inferences
about these users’ preferences, and the results refer only to Alice’s messages and
the individual success rate corresponding to these γ = 500, respectively γ = 100,
messages (see Table 3.1). This limits the number of messages used when computing
the graph resulting in fluctuations of the PMDA success rate. We stress that these
fluctuations have no statistical significance.
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Figure 3.6: Individual success rate in a USDA population

We can see that both attacks score similarly. On the one hand this is because the
rest of senders in the round provide no information. Since their profile is uniform,
they give no hints about who Alice is not sending to. On the other hand, Alice
chooses uniformly amongst her friends. Therefore, if two or more of her friends
appear in the set RecOr , the best our algorithm can do is to choose randomly
amongst them. This last problem also affects the SDA’s effectiveness. One can
observe in the graph that, the smaller the number of friends (thus the smaller the
probability that this case arises) the higher the success rate of both attacks.

As expected, increasing the number ρ of profiling rounds increases the likelihood
of successful attacks. It is remarkable, however, that this rate does not increase
constantly. When the number of Alice’s friends is small (f = 5), not much
improvement is achieved by increasing the number of profiling rounds above 10 000.
Nevertheless, having more rounds helps the attacker when the number of friends
increases, as more rounds are needed to observe Alice sending messages to all of
her friends.

Populations USKW and UARB

Contrary to the USDA case, where the SDA and the PMDA performed similarly,
the PMDA achieves higher de-anonymization success rates when applied to a more
general scenario. Figure 3.7 shows the percentage of users participating in the
communication for which the attacks obtain a certain individual success rate in
both USKW and UARB scenarios. We represent different values for the number ρ
of rounds used for profiling with different line styles.

We see that the PMDA outperforms the SDA in both experiments, but there is a
significant difference between them. With respect to the USKW case (on the left
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Figure 3.7: Individual success rate attacking USKW (left) and UARB (right)
populations

side of the figure) and ρ = 10 000 one can observe that the SDA achieves an average
individual success rate of 71.5% while the PMDA scores an average individual
success rate of 96.04% and de-anonymizes more than 90% of the messages correctly
for 99.6% of the users. With respect to the UARB case (right side of the figure)
and ρ = 10 000, the SDA achieves an average individual success rate of 26% while
the PMDA scores 55.35%.

Figure 3.8 presents the round success rates of the SDA and the PMDA. Like in
the individual success rate, our attack outperforms the SDA. In the USKW case
(left), the SDA has a high rate (71.5% in average) of round de-anonymization,
independently of the number of rounds observed. However, the PMDA improves
this result de-anonymizing in average 96.05% of the messages in each round when
10 000 rounds have been used for profiling and correctly de-anonymizes the full set
of links in 17.22% of the cases. The success of both attacks diminishes when users’
sending patterns are uniform toward their friends (case UARB , right). For the
same number of ρ = 10 000 observed rounds the SDA achieves an average round
success rate of 25.6% and the PMDA 55.3%.

It is important to note the influence of the number of rounds observed by the
attacker on the success rates of the attacks. Increasing the number of observations
makes both attacks more accurate. However, the actual improvement notably
depends on the type of population attacked. When the attacks are carried out in
a USKW scenario, the users’ profiles have a low entropy, thus the strong friends are
identified in the first rounds and no additional information is extracted from further
round observations. Moreover, the type of attack itself also influences the result.
Analyzing a higher number of rounds provides more information, a fact exploited
by the PMDA. On the contrary, the SDA’s simple decision algorithm takes little
advantage of this extra information and we see that almost no improvement is
achieved by observing more than 5000 rounds.
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Figure 3.8: Round success rate attacking USKW (left) and UARB (right)
populations

Table 3.3: Timings of the attacks: estimation of profiles from 50 000 rounds and
de-anonymization of 5 000 rounds

Attack t = 100 t = 500 t = 1 000
Time Success rate, mean (min) Time Time

SDA profiling 3.08m - 38.33m 66.16m
SDA de-anon 10m 25.6% (0.00%) 3.48h 12.91h

PMDA de-anon 10.2m 62.9% (38.8%) 12.9h 4.69days
NSDA de-anon 13.33m 60.2% (33.5%) 4.28h 15.3h

3.5.3 Scalability of the attacks

We evaluate the efficiency of both attacks in terms of time. We implemented both
attacks in Matlab, version 7.6.0.324 (R2008a) without any optimizations, using
the Hungarian algorithm [169] to solve the linear assignment problem as part of
the PMDA.1 We show in Table 3.3 the time it takes to de-anonymize messages
with the SDA (see Fig. 3.2), and with the PMDA (see Fig. 3.5) in UARB scenarios
with mix thresholds t = 100, t = 500 and t = 1 000, respectively. In all cases
the profiles Ψ̃SDA have been derived from ρ = 50 000 rounds and have been used
to de-anonymize 5000 rounds (i.e., find the recipients for all ij ∈ Ir, 1 ≤ j ≤ t,
1 ≤ r ≤ 5 000). We executed our code on a machine with a processor running at
2.8 GHz and 512 KB cache for scenarios with threshold 100 and 500; and on a
machine with a processor running at 2.2 GHz and 1 MB cache when the threshold
was 1000. The table includes the success rates for t = 100 to illustrate the trade-off
between accuracy and speed.

The PMDA de-anonymization is slower than the SDA de-anonymization and the
1As the Hungarian algorithm aims at minimizing the sum of the edge weights we substitute

P ′(·, ·) = −P ′(·, ·) before attacking each round.
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Figure 3.9: Obtaining enhanced profiles with the Perfect Matching Disclosure
Attack

difference grows as the size of the threshold, and thus the underlying bipartite
graph, increases. Nevertheless, it yields higher success rates. In Sect. 3.7 we
propose the Normalized Statistical Disclosure Attack (NSDA), that combines
accuracy and speed. Table 3.3 includes the success rate and timings for the
operations shown in Fig. 3.12 inside the dotted line. Note that all of the attacks’
running times would substantially benefit from optimized implementations. In
particular, the PMDA is inherently suited for parallelization.

3.6 Enhanced profiling with the Perfect Matching
Disclosure Attack

So far we have focused on the de-anonymization capability of the attacks. In this
section, we show how the derived maximum weighted bipartite matchings Mj can
be used to better estimate user profiles.

When estimating Alice’s profile the SDA considers every receiver in a round as
equally likely to be the recipient of a message (see Eq. 3.1). This is because a
priori the adversary has no information as to whom are Alice’s friends. However,
once the PMDA has been performed, the adversary has better knowledge of Alice’s
preferences. Thus, she can build better estimation of ΨAlice by considering the
receiver(s) indicated by the matching Mj as the most likely, instead of considering
all possible receivers of her message(s) in a round r as equally likely. This can
be achieved by assigning z to the receiver assigned to Alice’s message(s) by Mj

and (1 − z)/(t − 1) to the rest of the elements in RecOr . We denote this step as
“PMDA profiling” (see Fig. 3.9).

The choice of the weight z, which expresses the confidence on the accuracy of
the perfect matchings Mj , is not that crucial. We tested several values for this
parameter and observed that its influence on the profile estimation is minor. The
only restriction is that the weight z must be strictly greater than (1− z)/(t− 1).
Choosing z = (1− z)/(t− 1) turns the second profiling step useless as this setting
is equivalent to the original SDA, and choosing z < (1−z)/(t−1) effectively hides
the actual users’ relationships. In our experiments we arbitrarily chose z = 0.5.
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Figure 3.11: Alice’s profile and estimations (logscale) for UARB , ρ = 100 000. From
left to right: ΨAlice, Ψ̃Alice,PMDA, Ψ̃Alice,eSDA, and Ψ̃Alice,SDA

The same procedure can be applied to the decision Dj of the de-anonymization
phase of the SDA, yielding a more accurate profile than the one estimated by the
original SDA and denoted by Ψ̃Alice,eSDA.

For a USDA scenario where Alice has five friends (f = 5), Fig. 3.10 shows the
profile ΨAlice we initially generated for Alice, her profile after the PMDA’s profiling
step, the approximation of her profile derived with the enhanced SDA, and her
profile estimated using the original SDA. Figure 3.11 shows the corresponding set
of profiles for a UARB scenario.

We observe in both cases that the profile estimation Ψ̃Alice,eSDA is more precise
than Ψ̃Alice,SDA but not as good as Ψ̃Alice,PMDA.

In the USDA scenario, all three estimations allow the adversary to easily identify
the set of Alice’s friends, even if the exact number k of friends is unknown.
However, the enhanced methods increase the contrast between friends and non-
friends. In the UARB scenario, Ψ̃Alice,SDA does not allow to identify friends, and
even worse, there exist non-friends of Alice that have higher probability than some
of her friends. Ψ̃Alice,eSDA improves the estimation and allows to identify Alice’s
best friends (those with high probability in ΨAlice), but it fails to show more
unlikely receivers as for example user 19. The profile Ψ̃Alice,PMDA, on the other
hand is a better estimation where all of Alice’s friends have higher probabilities
than her non-friends.
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Figure 3.12: Normalized Statistical Disclosure Attack

Note that the same ρ round observations used to construct the simple profile
Ψ̃Alice,SDA are reused to estimate the enhanced profile Ψ̃Alice,PMDA. This
straightforward method for reusing information is far from optimal. For instance,
if initially the PMDA is misled and outputs a matching Mj signaling erroneous
correspondences between senders and receivers, this error will be accentuated when
the information is reused. In order to avoid this effect, we propose to use advanced
machine learning techniques when information is to be reused [79,266]. A summary
of this methodology can be found in Chapters 4 and 5.

3.7 The Normalized Statistical Disclosure Attack

In this section we present a variant of the Perfect Matching Disclosure Attack.
The Normalized Statistical Disclosure Attack (NSDA) offers an alternative that
trades precision for computational load.

The NSDA, illustrated in Fig. 3.12, has a similar structure as the SDA but it
additionally constructs the matrix P ′ as in the PMDA and it includes a matrix
normalization step. The normalization step consists on the transformation of P ′
into a doubly stochastic transition matrix that, by definition, has the property that
each row and each column sums up to one. For this transformation we rely on the
method proposed by Sinkhorn in 1964 [250]. He showed that an arbitrary positive
α × α matrix (i.e., each element is greater than zero) can be transformed into
a doubly stochastic matrix by iteratively normalizing the rows and the columns
of the matrix, and that this iteration converges and has a unique solution. This
process is known as iterative proportional fitting.

An element of the normalized transition matrix P ′ represents the probability of a
link between input messages (row) and output messages (column). This ensures
that each sent message is received (all rows sum up to 1) and each received message
was sent (all columns sum up to 1). The receiver of a given message ij is chosen
as the one who maximizes the individual link probability P ′(ij , ·).

The iterative proportional fitting spreads the information contained in each
element of P ′ over the entire matrix, causing two main effects. The first effect
is best explained in a noise-free toy example in which the per sender maximum
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likelihood decision approach of the SDA achieves 66.66% success rate. The matrix
P ′ before and after normalization is the following:

P ′ =

 0.5 0.5 0
1 0 0
0 0.5 0.5

 normalize−→

 0 1 0
1 0 0
0 0 1

 .

The normalization process over the matrix P ′ implicitly takes interdependencies
between the matrix elements in different rows and columns into account and
eliminates impossible combinations. In the toy-example, the certainty P ′(2, 1) = 1
implies P ′(1, 1) = 0. Hence, P ′(1, 2) becomes 1 to fulfill the doubly-stochastic
requirement in the first row. This implies that P ′(3, 2) becomes also 0 and hence
P ′(3, 3) = 1. Therefore, a per sender maximum likelihood decision approach based
on the normalized matrix takes more information into account and leads to the
only correct assignment with success rate one.

To explain the second effect, we use a noisy version of the same initial matrix
P ′ that contains Gaussian noise with standard deviation 0.1. In this case the per
sender maximum likelihood decision of the SDA based on the initial P ′ leads to the
correct assignment for the senders 1 and 2 but to a wrong assignment for sender 3.

P ′ =

 0.4006 0.4208 0.1786
0.7810 0.1432 0.0757
0.0997 0.4580 0.4424

 normalize−→

 0.2776 0.4369 0.2856
0.6673 0.1834 0.1494
0.0552 0.3798 0.5651

 .

Based on P ′ after the normalization step, also the third assignment is identified
correctly. The estimated profiles obtained by an adversary in a realistic scenario
contain noise. The normalization step partially eliminates this noise yielding more
reliable data.

The combination of these two effects allow the NSDA to de-anonymize messages
with a higher success rate than the original SDA. As we show in Table 3.3, this
attack runs faster than the PMDA for t = 500 and t = 1000, yet it achieves a lower
success rate. It is a decision of the adversary which method suits her purposes
best.

3.8 Conclusions

The main drawback of previously published practical Disclosure Attacks is their
susceptibility to changes in the user behavioral model. Each of them seems to



50 PERFECT MATCHING DISCLOSURE ATTACKS

be optimized for a specific and restricted scenario. Our first contribution is a
more general user behavior model, where the number of users’ friends and the
distribution of sending probabilities toward them is not restricted. Although this
model is more flexible than previous proposals, it is not as versatile as one would
desire and most probably far from real user behavior. More research needs to be
performed on the influence of parameters like the users’ sending rate or its variance
over time on the effectiveness and efficiency of attacks in order to evaluate their
impact on real anonymous communication networks.

In this chapter we have introduced the Perfect Matching Disclosure Attack
(PMDA), that operates successfully without making assumptions on the users’
preferences. Contrary to previous Disclosure Attacks it considers information
about all senders participating in a round simultaneously, rather than focusing
on individual users iteratively. This is bound to yield better results because it
takes into account that all messages sent in a round are received only once (that
is every input is liked to one, and only one, output). On the other hand focusing
individually on users misses this information and as a result previous attacks can
assign the same received message to several input messages. We have empirically
compared it with previous work and have showed the advantage of our method
when de-anonymizing messages.

A second advantage of the PMDA over previous work is its enhanced ability
to estimate user profiles. Concerning a very restrictive user behavior model we
empirically confirm that the PMDA yields a better separation of friends and non-
friends than previous work. With respect to a general scenario we show that the
PMDA reliably identifies users’ friends when previously proposed methods fail.
In our original paper [270], we also show how the enhanced profiles can be used
as input for a new instance of de-anonymization. In fact, the PMDA can be
chained as many times as desired, each time yielding a (slight) improvement over
the outputs of the previous iteration.

Although we have shown that the PMDA is practical, it is computationally more
expensive than previously proposed methods. Besides the fact that our proposal
can be parallelized to a high degree to solve this problem, we have proposed a
significantly sped-up variant, the Normalized Statistical Disclosure Attack. The
NSDA is slightly less successful than the PMDA but it is almost as fast as the
original SDA.

In this chapter we have focused on a basic anonymous channel as the threshold mix
in order to better illustrate our attacks and their properties. However, realistic
anonymous communication systems are expected to use more complex mixing
algorithms. In the original paper [270] we show how the PMDA could be adapted
to the scenario where a pool mix [192] is used. Further research is needed to
validate our proposal.



Chapter 4

Bayesian inference to
de-anonymize persistent
communications

4.1 Introduction

We have seen in the previous chapter that mix-based systems do not protect
the anonymity of users that persistently communicate with their contacts. After
a number of messages are exchanged, the set of friends of each sender can be
disclosed by a global passive adversary. The Perfect Matching Disclosure Attack,
presented in previous chapter, allows to guess communication partners in a round
of mixing with higher accuracy than its predecessors. Further, we have shown
how this information can be in turn used to improve the estimation of users’
sending profiles. However, we have seen that reusing information in a näıve manner
to improve de-anonymization results, or to enhance the quality of the extracted
profiles, is not optimal.

In this chapter we re-examine the problem of extracting profiles from traffic traces
of anonymous communications and, in parallel, uncover who is talking with whom.
We re-define the disclosure attack in anonymity systems [5,158,161], and analyze it
using advanced Bayesian statistics. We note that at the heart of long-term traffic
analysis lies an inference problem: from a set of public observations the adversary
tries to infer a “hidden state” relating to who is talking to whom, as well as their
long-term contacts. Applying Bayesian techniques provides a sound framework
on which to build attacks using standard, well-studied algorithms to co-estimate

51
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multiple probabilities.

Contrary to previous analysis techniques, the samples output by Bayesian
algorithms do not correspond to a specific inference, like “who is the most likely
receiver of Alice’s message?.” In fact, they can be combined in many ways to
infer arbitrary statements. For instance, the adversary may be interested in
knowing whether Alice ever speaks to Bob, or if two target messages have the
same originator. Besides their flexibility, Bayesian techniques output reliable error
estimates, allowing the adversary to evaluate the confidence she can put on the
results obtained. For instance, the algorithm can point at Charlie as Alice’s most
likely receiver. Nevertheless, it is not the same when the adversary is 100% certain
of this assignment, than when her certainty is only fifty percent. The ability to
obtain accurate error estimations allows the attacker to judge the quality of her
inferences when operating in the wild.

Our key contributions are first a very general model to represent long-term
attacks [5, 158, 161] against any anonymity system. This model generalizes
the one presented in Chapter 3 by abstracting the concrete user behavior,
and conceptually separating the application layer (i.e., the users’ profiles) from
the communication layer (i.e., the anonymous routing scheme). Second, we
introduce the application of Bayesian inference techniques to the traffic analysis of
anonymous communications. Throughout this chapter we show that our models
and techniques lead to effective de-anonymization algorithms, while producing
accurate error estimates. Furthermore they are far more flexible and reliable than
previous ad hoc techniques.

The results presented in this chapter have been extracted from our original work
Vida: How to use Bayesian inference to de-anonymize persistent communications.
published at the 9th Privacy Enhancing Technologies Symposium [79]. The
techniques presented here are complemented by the ones introduced in the next
chapter (originally published in [266]). The content of both chapters is extended
in [78].

Chapter outline

The rest of this chapter is organized as follows: Sect. 4.2 offers an overview of
Bayesian inference techniques, their relevance to traffic analysis, as well as an
overview of the Gibbs sampling algorithm; Sect. 4.3 presents the Vida general
model for anonymous communications, that can be used to model any system.
In Sect. 4.4 we present a simplification of the model, the Vida Red-Blue model,
that allows an adversary to perform inference on selected targets, as it would be
operationally the case, along with an evaluation of the effectiveness of the inference
technique. Finally we conclude in Sect. 4.5.
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4.2 Bayesian inference and Monte Carlo methods

Bayesian inference is a branch of statistics with applications to machine learning
and estimation [180]. Its key methodology consists in constructing a full
probabilistic model of all variables in a system under study. Given observations of
some of the variables, the model can be used to extract the probability distributions
over the remaining, hidden, variables.

To be more formal let us assume that an abstract system consists in a set of hidden
state variables HS and observations O. We assign to each possible set of these
variables a joint probability Pr[HS,O|C] given a particular model C. By applying
Bayes rule we can find the distribution of the hidden state given the observations
as:

Pr[HS,O|C] = Pr[HS|O, C] · Pr[O|C]⇒ Pr[HS|O, C] = Pr[HS,O|C]
Pr[O|C] ⇒

(4.1)

Pr[HS|O, C] = Pr[HS,O|C]∑
∀HS Pr[HS,O|C] ≡ Z = Pr[O|HS, C] · Pr[HS|C]

Z
. (4.2)

The joint probability Pr[HS,O|C] is decomposed into the equivalent Pr[O|HS, C] ·
Pr[HS|C], describing the model and the a priori distribution over the hidden state.
The quantity Z is simply a normalizing factor.

There are key advantages in using a Bayesian approach to inference that make it
very suitable for traffic analysis applications:

• It provides a systematic approach to integrating all information available
to an attacker, simply by incorporating all aspects of a system within the
probability models [153].

• The problem of traffic analysis is reduced to building a generative model of
the system under analysis. Knowing how the system functions is sufficient
to encode and perform the attacks, and the inference details are, in theory,
easily derived. In practice, computational limitations require carefully
crafted models to be able to handle large systems.

• The output of the inference engine allows to compute probability distribu-
tions over all possible hidden states, not only the most probable solution as
many other traffic analysis methods do (e.g., the attacks presented in the
previous chapter).

The last point is the most important one: the probability distribution over hidden
states given an observation, Pr[HS|O, C], contains a lot of information about



54 BAYESIAN INFERENCE TO DE-ANONYMIZE PERSISTENT COMMUNICATIONS

all possible states. The probability of error of particular aspects of the hidden
state can be calculated to inform decision making. It is very different to assert
that the most likely correspondent of Alice is Bob with certainty 99% than with
certainty 5%. Extracting probability distributions over the hidden state allows us
to compute such error estimates directly, without the need for an ad hoc analysis
of false positives and false negatives. Furthermore, the analyst can use the inferred
probability distribution to calculate directly anonymity metrics [86,238] as we will
see in the next chapter.

Despite their power, Bayesian techniques come at a considerable computational
cost. It is often not possible to compute or characterize directly the distribution
Pr[HS|O, C] due to its complexity. In those cases, sampling-based methods are
available to extract some of its characteristics. The key idea is that a set of
samplesHS0, . . . ,HSι ∼ Pr[HS|O, C] are drawn from the a posteriori distribution,
and used to estimate the marginal probability distributions of interest. For
this purpose, Markov chain Monte Carlo methods have been proposed. These
are stochastic techniques that perform a long random walk on a state space
representing the hidden information, using specially crafted transition probabilities
that make the walk converge to the target stationary distribution, namely
Pr[HS|O, C]. Once the Markov Chain has been built, samples of the hidden states
of the system can be obtained by taking the current state of the simulation after
a certain number of iterations.

4.2.1 Gibbs sampler

The Gibbs sampler [119] is a Markov chain Monte Carlo method to sample from
joint distributions that have easy-to-sample marginal distributions. These joint
distributions are often the a posteriori distribution resulting from the application
of Bayes theorem, and thus Gibbs sampling has been extensively used to solve
Bayesian inference problems. The operation of the Gibbs sampler is often referred
to as simulation, but we must stress that it is unrelated to simulating the operation
of the system under attack.

For illustration purposes we assume that an a posteriori distribution Pr[HS|O, C]
can be written as a joint probability distribution Pr[X,Y |O, C] that is difficult to
sample directly. If, on the other hand, there is an efficient way of sampling from
the marginal distributions Pr[X|Y,O, C] and Pr[Y |X,O, C], then Gibbs sampling is
an iterative technique to draw samples from the joint distribution Pr[X,Y |O, C].
The algorithm starts at an arbitrary state (x0, y0). Then it iteratively updates
each of the components through sampling from their respective distributions, i.e.
xi ∼ Pr[X|Y = yi−1,O, C], and yi ∼ Pr[Y |X = xi,O, C]. After a sufficient number
of iterations, the sample (xi, yi) is distributed according to the target distribution,
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and the procedure can be repeated to draw more samples. We stress that in this
process the computation of the normalizing factor Z is not needed.

The other parameters of the Gibbs algorithm, namely the number of iterations
necessary per sample, as well as the number of samples are also of some importance.
The number of iterations has to be high enough to ensure the output samples
are statistically independent. Calculating this number exactly is difficult so we
use conservative estimates to ensure that we get good samples. The number of
samples to be extracted, on the other hand, has an effect on the accuracy needed
when estimating the marginal distributions, which can be achieved by running the
sampler longer.

4.3 The Vida general Black-box model for anonymity
systems

Long-term attacks traditionally abstract the internal functioning of any anonymity
system and represent it as a black box, effectively operating as a very large
threshold mix. This model has its limitations, and some studies have attempted
to extend it. In this section we first propose the Vida Black-box model, the most
flexible abstraction of an anonymity system so far, and base our Bayesian analysis
on this model.

We start by proposing a ‘forward’ generative model describing how messages are
generated and sent through the anonymity system. We then use Bayes rule to
‘invert’ the problem and perform inference on the unknown quantities. The broad
outline of the generative model is depicted in Figure 4.1.

An anonymity system is abstracted as comprising Nuser users that send a total of
Nmsg. Each user is associated with a sending profile Ψx describing how they select
their correspondents when sending a message. We assume in this work that those
profiles are simple multinomial distributions. We sample each user’s distribution
independently to determine the receiver of each sent message. We denote the
collection of all sending profiles by Ψ = {Ψx|x = 1 . . . Nuser}.

We consider that a sequence of senders Sen1, . . . ,SenNmsg , out of the Nuser users of
the system, send a message while we observe the system. Using their sending
profiles a corresponding sequence of receivers Rec1, . . . ,RecNmsg is selected to
receive their messages. The probability of any receiver sequence is easy to compute.
We denote this matching between senders and receivers as M :

Pr[M |Ψ] =
∏

x∈[1,Nmsg]

Pr[Senx → Recx|Ψx] .
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Figure 4.1: The generative model used for Bayesian inference in anonymous
communications.

Besides the matching process where users choose their communication partners,
an anonymity system A is used to route the messages. This anonymity system is
abstracted as a bipartite graph linking input messages ij with output messages ok,
regardless of the identity of their senders and receivers (see Sect. 3.4.2). We note
that completeness of the bipartite graph is not required by the model. The edges of
the bipartite graph are weighted with the probability of the input message ij being
output as ok: Pr[ij → ok|A]. In the previous chapter, the considered anonymity
system A was a single threshold mix. When this mix is used, an input message ij
in a given round r is equally likely to correspond to any of the output messages
ok of that round, and has zero probability to be a message received in any other
round. More formally, when a threshold mix handles t messages per round,

Pr[ij → ok|A] =
{

1/t if ij ∈ Ir, ok ∈ Or
0 otherwise.

This anonymity system A is used to determine a particular assignment of messages
according to the weights Pr[ij → ok|A]. A single perfect matching on the bipartite
graph described by A is selected to be the correspondence between inputs and
outputs of the anonymity system for a particular run of the anonymity protocol.
We call this matching the assignment of inputs to outputs and denote it by Φ.
Contrary to previous work [246] on probabilistic modeling, and following the
strategy introduced in the previous chapter, we consider all inputs simultaneously.
In this case, the probability of the assignment Φ is easy to calculate, given the set
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of all individual assignments (ij → ok):

Pr[Φ|A] =
∏
j

Pr[ij → ok|A]∑
free il Pr[il → ok|A] .

This is simply the probability of the matching given the anonymity system weights.
By free il we denote the set of sent messages i that has not yet been assigned an
output message o as part of the match.

The assignment Φ of the anonymity system and the matching M of senders and
receivers are combined to make up the observation of the adversary, denoted as
O. An adversary observes messages from particular senders Senx entering the
anonymity system as messages ij , and on the other side messages ok exiting the
network on their way to receivers Recy. No stochastic process takes place in this
combination and therefore Pr[O|M,Φ,Ψ,A] = 1, given the choices of the users
and the links between input and output messages the adversary’s observation is
uniquely defined.

Now that we have defined a full generative model for all the quantities of interest in
the system, we turn our attention to the inference problem: the adversary observes
O and knows the properties of the anonymity system A, but is ignorant about the
profiles Ψ, the matching M and the assignment Φ. We use Bayes theorem to
calculate the probability Pr[M,Φ,Ψ|O,A]. We start with the joint distribution
and solve for it:

Pr[O,M,Φ,Ψ|A] = Pr[M,Φ,Ψ|O,A] · Pr[O|A]

Pr[O,M,Φ,Ψ|A] = Pr[O|M,Φ,Ψ,A] (≡ 1)

· Pr[M |Φ,Ψ,A] (≡ Pr[M |Ψ])

· Pr[Φ|Ψ,A] (≡ Pr[Φ|A])

· Pr[Ψ|A]

⇒ Pr[M,Φ,Ψ|O,A] =Pr[M |Ψ] Pr[Φ|A]
Pr[O|A] ≡ Z Pr[Ψ|A] .

We have discussed how to calculate the probabilities Pr[M |Ψ] and Pr[Φ|A]. The
quantity Pr[Ψ|A] ≡ Pr[Ψ] is the a priori belief the attacker has about user
profiles and it is independent from the chosen anonymity system A. We consider
throughout our analysis that all profiles are a priori equally probable and reduce
it to a constant Pr[Ψ] = c. Taking into account those observations we conclude
that the posterior probability sought is,

Pr[M,Φ,Ψ|O,A] ∼
∏

x∈[1,Nmsg]

Pr[Senx → Recx|Ψx] ·
∏
j

Pr[ij → ok|A]∑
free il Pr[il → ok|A] ,
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where we omit the constant normalizing factor Pr[O|A] as it is very hard to
calculate. This restricts the methods we can use to compute the sought a posteriori
distribution.

It is computationally infeasible to exhaustively enumerate the states of this
distribution. Hence, to calculate the marginals of interest such as users’ profiles, or
likely recipients of specific messages, we have to resort to sampling states from that
a posteriori distribution. Sampling directly is very hard (due to the interrelation
between the profiles, the matches, and the assignments) hence Markov chain Monte
Carlo methods are used.

4.3.1 A Gibbs sampler for the Vida Black-box model

Sampling states (Mι,Φι,Ψι) ∼ Pr[M,Φ,Ψ|O,A] directly is hard, due to the
complex interactions between the random variables. A Gibbs sampler significantly
simplifies this process by only requiring us to sample from the marginal
distributions of the random variables sought. Given an arbitrary initial state
(Φ0,Ψ0), we can perform ιmax iterations of the Gibbs algorithm as follows:

for ι := 1 . . . ιmax :

Φι,Mι ∼Pr[Φ,M |Ψι−1,O,A]

Ψι ∼Pr[Ψ|Φι,Mι,O,A] .

Each of these marginal probabilities distributions is easy to sample:

• The distribution of assignments Pr[Φ,M |Ψι−1,O,A] is subtle to sample
directly. Each message assignment ij → ok has to be sampled, taking into
account that some message assignments are already taken by the time input
message ij is considered. For each input message ij we sample an assignment
ok according to the distribution:

ij → ok ∼Pr[ij → ok|free ok,∀assigned ov iv → ov,A,Ψ] =

= Pr[ij → ok|A] · Pr[Senx → Recy|Ψx]∑
free ok Pr[ij → ok|A] · Pr[Senx → Recy|Ψx] .

For complex anonymity systems A, this algorithm might return only partial
matches, when at some point an input message ij has no unassigned
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candidate output message ok left. Since we are only interested in perfect
matchings, where all input messages are matched with different output
messages, we reject such partial states and re-start the sampling of the
assignment until a valid perfect matching is returned. This is effectively
a variant of rejection sampling, to sample valid assignments.
The matchings between senders and receivers are uniquely determined by the
assignments and the observations, so we can update them directly without
any need for sampling, and regardless of the profiles (i.e. Mι = f(Ψι,O)).

• The distribution of profiles Pr[Ψ|Φι,Mι,O,A] is straightforward to sample
given the matching Mι and assuming that individual profiles Ψx are
multinomial distributions.
We note that the Dirichlet distribution is a conjugate prior of the multinomial
distribution, and we use it to sample profiles for each user. We denote as
Ψx = (Pr[Senx → Rec1], . . . ,Pr[Senx → RecNuser ]) the multinomial profile of
user Senx. We also define a function that counts the number of times a user
Senx is observed sending a message to user Recy in the match M , and denote
it as CtM (Senx → Recy). Sampling profiles (Ψ1, . . . ,ΨNuser) ∼ Pr[Ψ|M ]
involves sampling independently each sender’s profile Ψx separately from a
Dirichlet distribution with the following parameters:

Ψx ∼ Dirichlet(CtM (Senx → Rec1) + 1, . . . ,CtM (Senx → RecNuser) + 1) .

If the anonymity system A describes a simple bipartite graph, the rejection
sampling algorithm described can be applied to sample assignments ij → ok
for all messages. When this variant of rejection sampling becomes expensive,
due to a large number of rejections, a Metropolis-Hastings [48] (see Sect. 5.2)
based algorithm can be used to sample perfect matchings on the bipartite graph
according to the distribution Pr[Φ,M |Ψι−1,O,A]. Our implementation was tested
against mix-based anonymity systems, with bipartite graphs representing the
anonymity system that do not lead to any rejections.

The Gibbs sampler can be run multiple times to extract multiple samples from
the a posteriori distribution Pr[M,Φ,Ψ|O,A]. Instead of restarting the algorithm
at an arbitrary state (M0,Φ0,Ψ0), it is best to set the starting state to the last
extracted sample, that is likely to be within the typical set of the distribution.
This speeds up convergence to the target distribution.

4.4 A computationally simple Vida Red-Blue model

As showed in the previous chapter, co-estimating sender profiles with the
assignments has some advantages, and our Bayesian analysis so far reflects this
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approach. Senders are associated with multinomial profiles with which they choose
specific correspondents. We sample these profiles using the Dirichlet distribution,
and use them to directly sample weighted perfect assignments in the anonymity
system. The output of the algorithm is a set of samples of the hidden state,
that allows the adversary to estimate the marginal distributions of specific senders
sending to specific receivers.

We note that this approach is very general, and might go beyond the day-to-
day needs of a real-world adversary. An adversary is likely to be interested in
particular target senders or receivers, and might want to answer the question:
“who has sent this message to Bob?” or “who is friends with Bob?.” We present
the Vida Red-Blue model to answer such questions, which is much simpler, both
mathematically and computationally, than the general Vida model presented in
the previous sections.

Consider that the adversary chooses a target receiver Bob (that we call “Red”),
while ignoring the exact identity of all other receivers and simply tagging them
as “Blue.” The profiles Ψx of each sender can be collapsed into a simple binomial
distribution describing the probability sender x sends to Red or to Blue. It holds
that:

Pr[Senx → Red|Ψx] + Pr[Senx → Blue|Ψx] = 1 . (4.3)

Matchings M map each observed sender of a message to a receiver class, either
Red or Blue. Given the profiles Ψ the probability of a particular match M is:

Pr[M |Ψ] =
∏

Pr[Senx → Red / Blue|Ψx] .

The real advantage of the Vida Red-Blue model is that different assignments Φ
now belong to equivalence classes, since all Red or Blue receivers are considered
indistinguishable from each other [121]. In this model the assignment bipartite
graph can be divided into two sub-graphs: the sub-graph ΦR contains all edges
ending on the Red receiver (as she can receive more than one message in a mixing
round), while the sub-graph ΦB contains all edges ending on a Blue receiver. We
note that these sub-graphs are complementary and any of them uniquely defines
the other. The probability of each Φ can then be calculated as:

Pr[Φ|A] =
∑
∀ΦB

Pr[ΦB ,ΦR|A] =
∑
∀ΦB

Pr[ΦB |ΦR,A] · Pr[ΦR|A] =

= Pr[ΦR|A] ·
∑
∀ΦB

Pr[ΦB |ΦR,A] = Pr[ΦR|A] .
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The probability of an assignment in an equivalence class defined by the assignment
to Red receivers, only depends on ΦR describing this assignment. The probability
of assignment ΦR can be calculated analytically as:

Pr[ΦR|A] =
∏
j∈ΦR

Pr[ij → ok]∑
free il Pr[il → ok] .

The assignment ΦR must be a sub-graph of at least one perfect matching on the
anonymity system A, otherwise the probability becomes Pr[Φ|A] = 0. As for the
full model the probability of all the hidden quantities given the observation is:

Pr[M,Φ,Ψ|O,A] = Pr[M |Ψ] Pr[ΦR|A]
Pr[O|A] ≡ Z Pr[Ψ|A] . (4.4)

The a priori probability over profiles Pr[Ψ|A] is simply a prior probability over
the parameters of a binomial distribution. Each profile can be distributed as
Pr[Ψx|A] = Beta(1, 1), equivalent to a standard uniform distribution, if nothing
is to be assumed about the sender’s Senx relationship with the Red receiver.

In practice a prior distribution Pr[Ψx|A] = Beta(1, 1) is too general, and best
results are achieved by using a prior supporting skewed distributions, such as
Beta(1/100, 1/100). This reflects the fact that social ties are a priori either strong
or non existent. Given enough evidence the impact of this choice of prior fades
quickly away.

4.4.1 A Gibbs sampler for the Vida Red-Blue model

Implementing a Gibbs sampler for the Vida Red-Blue model is very simple. The
objective of the algorithms is, as for the general model, to produce samples
of profiles (Ψι), assignments and matches (Φι,Mι) distributed according to the
Bayesian a posteriori distribution Pr[M,Φ,Ψ|O,A] described by Eq. 4.4.

The Gibbs algorithm starts from an arbitrary state (Ψ0,Φ0) and iteratively
samples new marginal values for the profiles (Φι,Mι ∼ Pr[Φ,M |Ψι−1,O,A])
and the valid assignments (Ψι ∼ Pr[Ψ|Mι,Φι,O,A]). The full matchings are a
deterministic function of the assignments and the observations, so we can update
them directly without any need for sampling (i.e. Mι = f(Ψι,O)).

As for the general Gibbs sampler, sampling from the desired marginal distributions
can be done directly. Furthermore the Vida Red-Blue model introduces some
simplifications that speed up inference:

• Sampling assignments. Sampling assignments of senders to Red nodes
(i.e. ΦRι,Mι ∼ Pr[Φ,M |Ψι−1,O,A]) can be performed by adapting the



62 BAYESIAN INFERENCE TO DE-ANONYMIZE PERSISTENT COMMUNICATIONS

rejection sampling algorithm presented for the general model. The key
modification is that only assignments to Red receivers are of interest, and
only an arbitrary assignment to blue receivers is required (to ensure such an
assignment exists). This time for each Red output messages ok we sample
an input message ij according to the distribution:

ij → ok ∼Pr[ij → ok|free ij ,∀assigned iv iv → ov,A,Ψ] =

= Pr[ij → ok|A] · Pr[Senx → Red|Ψx]∑
free il Pr[il → ok|A] · Pr[Senl → Red|Ψx] .

• Sampling profiles. Sampling a profile Ψι ∼ Pr[Ψ|Mι,Φι,O,A] for every
user x simply involves drawing a sample from a Beta distribution with
parameters related to the number of links to Blue and Red receivers. To be
formal we define a function CtM (Senx → Red, Blue) that counts the number
of messages in a match that a user x sends to a Red or Blue receiver. The
profile of user x is then sampled as:

Ψx ∼ Beta(CtM (Senx → Blue) + 1,CtM (Senx → Red) + 1) .

This yields a binomial parameter that is the profile of user x, describing the
probability they send a message to a Red target user.

The cost of each iteration is proportional to sampling Nuser Beta distributions,
and sample from the distribution of senders of each of the Red messages. Both the
sampling of profiles, and the sampling of assignments can be performed in parallel,
depending on the topology. In case a large number of samples are needed multiple
Gibbs samplers can be run on different cores or different computers to produce
them.

4.4.2 Evaluation

The Vida Red-Blue model for inferring user profiles and assignments was evaluated
against synthetic anonymized communication traces, to test its effectiveness. The
communication traces include messages sent by up to 1000 senders to up to 1000
receivers. Each sender is assigned 5 contacts at random, to whom they send
messages with equal probability. Messages are anonymized in discrete rounds
using a threshold mix that gathers 100 messages before sending them to their
receivers as a batch.

The generation of communication patterns was peculiar to ensure a balance
between inferring the communications of a target user (as in the traditional
disclosure, hitting set and statistical disclosure attacks) to a designated Red
receiver, as well as to gain enough information about other users to build helpful
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Figure 4.2: Performance of the Vida Red-Blue model in assigning senders to the
target red receiver, as a function of the number of rounds observed. Twenty sample
experiments are used per round number.

profiles for them. A target sender was included in 20% of the rounds, and the
Red node was chosen to be one of their friends. A sequence of experiments were
performed to assess the accuracy of the attack after observing an increasing number
of rounds of communication.

The aim of each experiment is to use the samples returned by a Gibbs sampler
implementing the Vida Red-Blue model to guess the sender of each message that
arrives at a designated Red receiver. The optimal Bayes criterion [46] is used to
select the candidate sender of each Red message: the sender with the highest a
posteriori probability is chosen as the best candidate. This probability is estimated
by counting the number of times each user were the sender of a target Red message
in the samples returned by the Gibbs algorithm. The Bayesian probability of error,
i.e. the probability another sender is responsible for the Red message, is also
extracted, as a measure of the certainty of each of these “best guesses.” For each
experiment the Gibbs sampler was used to extract 200 samples, each using 100
iterations of the Gibbs algorithm. The first 5 samples were discarded, to ensure
stability is reached before drawing any inferences.

A summary of the results for each experiment is presented in Figure 4.2. The top
graph illustrates the fraction of correct guesses per experiment (on the x axis –



64 BAYESIAN INFERENCE TO DE-ANONYMIZE PERSISTENT COMMUNICATIONS

we selected 20 random experiments to display per round number) grouped by the
number of rounds of communication observed (16, 32, 64, 128, 256, 512 and 1024).
For each experiment the fraction of correctly identified senders is marked by a
circle, along with its 90% confidence interval. The dashed line of the same graph
represents the prediction of success we get from the Bayesian inference engine.
The bottom graph on Figure 4.2 illustrates, for each of the experiments, on a
logarithmic scale the inferred probability with which the target sender chooses the
Red node as recipient. We also plot the 50% confidence interval over the profile
inference. The solid circle on both graphs represents that the inferred probability
that the target sends to the red receiver is high (median greater than 1%).

Some key conclusions emerge from the experiments illustrated on Figure 4.2:

• The key trend we observe is, as expected, that the longer the observation
in terms of rounds, the better the attack. Within 1024 rounds we expect
the target sender to have sent only about 40 messages to the designated
Red target. Yet, the communication is traced to them on average 80% of
the cases with high certainty. Even when only 256 rounds are observed the
correct assignment is guessed in about 50% of the time.

• The quality of the inference when it comes to the correspondence between
messages, senders and receivers, is intimately linked to the quality of the
profile inference. The solid circles mark experiments in which the inference
process indicates that the median value for the probability the target sender
is friends with the target Red receiver is high (greater than 1%). We observe
that these experiments are linked to high success rates when it comes to
linking individual messages to the target sender. We also observe that the
converse is true: insufficient data leads to poor profiles, that in turn lead to
poor predictions about communication relationships (e.g., 16 or 32 rounds
observed).

• The probability of success estimates (represented on the top graph by a
dotted line) predict well the success rate of the experiments. Our prediction
systematically falls within the 90% confidence interval of the estimated error
rate. This shows that the Vida Red-Blue model is a good representation of
the process that generated the traces and thus the estimates coincide with
the actual observed error rate, on average. This is due to the very general
model for Vida Red-Blue profiles that represent reality accurately after a
few rounds. Yet, when few rounds are observed the a priori distribution of
profiles dominates the inference, and affects the error estimates.

A key question is how the results from the Vida Red-Blue model compare with
traditional traffic analysis attacks, like the Statistical Disclosure Attack (SDA [60,
183], see Sect. 3.3), the Normalized Statistical Disclosure Attack (NSDA [270], see
Sect. 3.7) or the Perfect Matching Disclosure Attack (PMDA [270], see Sect. 3.4).
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Figure 4.3: Performance of the Vida Red-Blue inference model (RB) compared to
the SDA (S), NSDA (N) and PMDA (P).

The SDA attack simply uses first order frequencies to guess the profiles of senders.
It is fast but inaccurate. The NSDA constructs a traffic matrix from senders to
receivers, that is normalized to be doubly stochastic. The operation is as fast
as matrix multiplication, and yields very good results. The PMDA finds perfect
matchings between senders and receivers based on a rough profile extraction step
– it is quite accurate but slow.

Figure 4.3 illustrates the relative performances of the different attacks compared
with the Vida Red-Blue model proposed. We observe that the inference based
technique is worse than the SDA, and performs much worse than the NSDA
and PMDA in most settings. This is due to our strategy for extracting best
estimates for the senders: we use the output samples to chose the sender with
highest marginal probability instead of extracting a full match with the maximal
marginal probability. In that sense applying an algorithm to find the maximal
perfect matching based on the marginal probabilities output by the RB attacks
should produce much better results.

Despite the lower success rate inference-based techniques can be advantageous.
Their key strength is the certainty that no systematic bias has been introduced
by using data twice, as reported in [89, 270], and the tangible and reliable error
estimate they output. A traffic analyst is thus able to judge the quality of the
inference.

A second important advantage is the ability to infer who is the “second most
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likely” receiver, compute anonymity metrics, or other arbitrary statements on
the a posteriori probability distribution of profiles and assignments. This can
be done efficiently simply using the samples output by the Gibbs algorithm.
Furthermore the correct probabilities of error can be associated with those
probabilistic statements.

4.5 Conclusions

The contribution of this chapter is two-fold: first it presents Vida, the first truly
general model for abstracting any anonymity system, in the long term, to perform
de-anonymization attacks. Users and their preferences are modeled in the most
general way, using multinomial profiles, eliminating the need to know the number
of contacts each sender has. Instead of abstracting an anonymity system as a
single threshold mix, or even pool mix, an arbitrary weighted mapping of input to
output messages can be used. We show that the model performs well when it comes
to guessing who is talking to whom, as well as guessing the profiles of senders.
Further, we presented the Vida Red-Blue model. It allows the traffic analyst to
focus on specific targets instead of dealing with the full system. Additionally,
the Vida Red-Blue model has the potential to be implemented efficiently and
parallelized aggressively.

The second contribution is methodological. We have shown how Bayesian
inference, and in particular Markov chain Monte Carlo sampling, is an appropriate
framework to evaluate the resistance of an anonymity system to traffic analysis
attacks. It allows the analyst to re-use information while ensuring that no
systematic bias is introduced, as occurred in the enhanced profiling methodology
we introduced in Chapter 3. Our method indicates a clear way to start the analysis
with the definition of a probabilistic model that defines the likelihood of inputs
corresponding to outputs (respectively senders communicating with receivers).
This model is later inverted by applying the Bayes rule in order to find a probability
distribution easier to sample from such that the analyst can infer quantities of
interest. These quantities can answer arbitrary questions about the events in the
system. As opposed to previous work in which just the question “who is the
most likely receiver of Alice’s message?” could be answered, other statements, for
instance “have Alice and Bob communicated?” can be evaluated. Further, the
method outputs reliable error estimates for these inferences that allow the analyst
to evaluate the confidence she can have in the results obtained.

In this chapter we have performed a first step in the exploration of the applicability
of inference techniques to problems in traffic analysis – in the hope that it
eventually outperforms established techniques. Some future directions include the
definition of better user models, the analysis of the internals of anonymity systems
(started in the next chapter), as well as a better integration of prior information
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and learning. The inference approach leans itself well to be extended to encompass
these problems, that have in the past been a thorn on the side of traffic analysis
techniques.





Chapter 5

A Bayesian framework for the
analysis of anonymous
communication systems

5.1 Introduction

In the previous chapter we have shown how Bayesian inference can be used
to extract communication profiles and uncover communication partners from
traffic traces of anonymous communications systems. In order to illustrate our
techniques, we abstracted the anonymity network A as an opaque threshold
mix and considered that all inputs are equally likely to correspond to any
outgoing message. However, we cannot expect that real anonymity systems can
be abstracted in this way. Routing constraints or background knowledge of the
adversary may bias these probabilities, changing the result of the analysis.

Extracting probability distributions over possible receivers of messages in an
anonymity system, subject to constraints on its functioning and the observations
of an adversary, is also the basis to compute anonymity metrics. Measures of
anonymity based on information theory and decision theory were proposed [52,81,
86,238,263] to quantify the security of such systems. Although very popular, these
metrics are difficult to apply in the presence of constraints that deployed systems
impose, since the exact calculation of the required distributions is an intractable
problem (as pointed out by Serjantov [237]).

Our key contribution is a framework to estimate, with arbitrarily high accuracy,
the distributions necessary for computing a wide variety of anonymity metrics

69
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for relay-based mix networks. We achieve this by casting the problem of
extracting these distributions as a probabilistic inference problem, and solve it
using established Bayesian inference frameworks. In particular, in this chapter we
consider the Metropolis-Hastings algorithm, another Markov chain Monte Carlo
(MCMC) sampling technique similar to the Gibbs sampler introduced in the
previous chapter.

Our analysis of mix networks incorporates most aspects and attacks previously
presented in the literature: constraints on paths length, node selection [238],
bridging and fingerprinting attacks [77], social relations of users [89], and erratic
user behavior. For the first time, all these aspects are brought under a common
framework allowing the adversary to combine them all when the analyzing a
system. Further extensions to describe other aspects of mix networks can also
be accommodated. This is the most comprehensive and flexible model of a mix-
based anonymity network so far.

The Bayesian traffic analysis techniques presented have two key advantages. First,
they allow optimal use of all information when drawing conclusions about who is
talking to whom. Second, they provide the analyst with an a posteriori probability
over all scenarios of interest, whereas previous attacks only provided the most
likely candidate solution. The evaluation of our work focuses on establishing the
correctness of those distributions.

The results presented in this chapter have been extracted from our original
work The Bayesian Analysis of Mix Networks. published at the 16th ACM
Conference on Computer and Communications Security (CCS 2009) [266]. The
techniques presented here complement the results introduced in the previous
chapter (originally published in [79]). The content of both chapters is extended
in [78].

Chapter outline

The chapter is organized as follows: we present a brief overview of the Metropolis-
Hastings algorithm, a Markov chain Monte Carlo method in Sect. 5.2. Section 5.3
describes a generic probabilistic model of a mix network, and Sect. 5.4 shows how to
build a Metropolis-Hastings-based engine to infer its hidden state. The correctness
and accuracy of the inference engine is studied in Sect. 5.5, and Sect. 5.6 explains
how to use the output of the sampler to compute anonymity. Finally, we discuss
some future directions and conclusions in Sect. 5.7.
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5.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm [136] is a Markov chain Monte Carlo
method that can be used to sample from arbitrary distributions (see Sect. 4.2
for further information on Bayesian inference and MCMC methods). It operates
by performing a long random walk on a state space representing the hidden
information, using specially crafted transition probabilities that make the walk
converge to the target stationary distribution, namely Pr[HS|O, C]. Its operation
is often referred to as simulation, but we must stress that it is unrelated to
simulating the operation of the system under attack.

The MH algorithm’s key state is a single instance of the hidden state, called the
current state and denoted HSι. Given the current state, a candidate state HS ′ is
selected according to a probability distribution Q(HS ′|HSι). A value α is defined
as:

α = Pr[HS ′|O, C] ·Q(HSι|HS ′)
Pr[HSι|O, C] ·Q(HS ′|HSι)

. (5.1)

When α ≥ 1, the candidate state is accepted as the current state, otherwise it
is only accepted with probability α. This process is repeated multiple times, and
after a certain number of iterations δ the current state is output as a sampleHSι+1.
More samples can be extracted by repeating this process. It must be taken into
account that before collecting the first sample we must wait a burn-in period until
the sampler converges and visits states according to the probability distribution
sought. The pseudocode representing the Metropolis-Hastings operation is shown
in Algorithm 1.

The algorithm is very generic, and can be used to sample from any distribution
on any state space, using custom transition probabilities Q. It is particularly
interesting that the distribution Q used to propose new candidates can be arbitrary
without affecting the correctness of the process, as long as both Q(HS ′|HSι) > 0
and Q(HSι|HS ′) > 0, and the Markov Chain it forms fully connects all hidden
states and it is ergodic.1 Despite the apparent freedom in choosing the distribution
Q, in practise it must be easy to compute and sample, and be fast mixing to reduce
the number of iterations between independent samples. Since the probabilities
Pr[HS ′|O, C] and Pr[HSι|O, C] need to only be known up to a multiplicative
constant to calculate α, we do not need to know the normalizing factor Z (see
Eq. 4.1).

As for the Gibbs algorithm presented in the previous chapter, the number of
samples and the number of iterations necessary to get them are of some importance

1Connection and ergodicity are needed in order to ensure that all states can be visited, that
they can be visited more than once, and that the samples output are independent of the initial
state chosen to start the inference engine.
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Algorithm 1 Metropolis-Hastings algorithm
HSι // arbitrary initial state
cnt = 0 // sampler iterations counter
s = 0 // samples output counter
while s 6= NMH do

sample HS ′ ∼ Q(HS ′|HSι) //propose candidate state HS ′

compute Q(HS ′|HSι) {probability of proposing HS ′ departing from HSι}
compute Q(HSι|HS ′) {probability of proposing HSι departing from HS′}
compute α {as in Eq. 5.1}
if α ≥ 1 then
HSι+1 = HS ′ {the proposed state becomes the current state}

else
HSι+1 = HSι {the current state states unchanged}

end if
if cnt (mod δ)==0 & cnt >burn-in then

store HSι+1 as a sample
s = s+ 1 {increase the counter of samples}

end if
cnt = cnt+ 1 {increase the counter of iterations}

end while

for the correctness of the inferences. We choose the number of iterations of the
MH algorithm experimentally such that the output samples are independent; and
collect enough samples to demonstrate the utility of our techniques. We recall that
the number of MH samples increases the accuracy of the marginal distributions
that are estimated. Higher accuracy can be achieved by running the sampler longer
than in our experiments.

The MH method can be run in parallel on multiple processors, cores, or a
distributed cluster: all processes output samples that can be aggregated and
analyzed centrally. Our experiments made use of this property on a multi-core
two processor machine.

5.3 The mix network model

The first step to perform Bayesian inference is to define a probabilistic model
that describes all observations and hidden states of a system. In this section,
we present such a model for a set of users sending messages over a mix network
to a set of receivers. The model includes traditional aspects of mix networks,
e.g. path length constraints, and further incorporates incomplete observations,
erratic clients, bridging attacks, and social network information (who is friends
with whom, relationships’ strength, etc.).
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Figure 5.1: Observation of the network and Hidden State

We consider an anonymity system formed by Nmix threshold mixes [47] through
which a population of Nuser users sends messages. When sending a message, a
user selects a receiver amongst her set of contacts and a path in the network to
route the message. The path is determined by the preferences of the user and a set
of constraints C imposed by the system (e.g., maximum path length, restrictions
on the choice of mixes, etc). We denote the sender of an incoming message to the
system ij as Senj and the receiver of an outgoing message from the system ok as
Reck.

In order to carry out our analysis we observe the system over a period of
time from T0 to Tmax (assuming that all mixes are empty at T0). During this
period, Nmsg messages traveling through the system are monitored by a passive
adversary, generating an Observation (O). This observation is formed by records
of communications between the entities (senders, mixes, and receivers).

Our goal is to determine the probability that a message entering the network
corresponds to each of the messages leaving it, given an observation O. This is
equivalent to determining the correspondence between inputs and outputs in each
of the mixes. We call the collection of the input-output relationships of all mixes
the Hidden State of the system, and denote it as HS.

Figure 5.1 depicts an instance of a system where 3 users send 3 messages through
a network formed by 3 threshold mixes with threshold t = 2. In this setting a
passive observer can monitor the following events (x � y denotes entity x sending
a message to entity y) and construct an observation O with them:

O = { Sen0 � mix1 , mix1 � mix3 , mix2 � Rec2 ,
Sen1 � mix1 , mix1 � mix2 , mix3 � Rec0 ,
Sen2 � mix2 , mix2 � mix3 , mix3 � Rec1 }

These events are represented with solid lines in Fig. 5.1. A possible HS
(correspondences between incoming and outgoing messages at all mixes) for this
instance is represented with dashed lines.

Given an observation and a hidden state we define a path Pj for each of the
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messages ij entering the network, representing its trajectory through the system.
A path consists of a series of observed events that are linked by the relations
stated in the hidden state. In the example, message i1 follows the path P1 =
{Sen1 � mix1,mix1 � mix3,mix3 � Rec1}. We note that a set of paths P =
{Pj , x = 1, . . . , Nmsg} uniquely determines an observation and a hidden state.
Hence, given a set of constraints C, their probability should be strictly equal, i.e.
Pr[P|C] = Pr[O,HS|C]. By applying Bayes theorem we can relate the probability
of a hidden state (that we are trying to infer) to the observations and the paths
that it forms as Pr[HS|O, C] = Pr[P|C]/Z where Z is a normalizing constant.

Proof: Given that the probability of a path is restricted by the constraints C and
that Pr[O, C] is a constant we obtain the following equation:

Pr[P|C] = Pr[O,HS|C] = Pr[HS|O, C] · Pr[O, C]

⇒ Pr[HS|O, C] = Pr[O,HS|C]
Pr[O, C] = Pr[O,HS|C]∑

HS Pr[HS,O|C] ≡ Z = Pr[P|C]
Z

�

(5.2)

Hence, we can say that sampling hidden states Pr[HS|O, C] is equivalent to
sampling paths Pr[P|C] using Bayesian inference techniques. In the next sections
we present a probability model of paths under different system-based and user-
based constraints. Ultimately, we describe how to use the Metropolis-Hastings
method to sample from that model.

We must stress that we have arbitrarily chosen the probability distributions that
are used in this thesis to describe the mix network constraints. The model we
present is, however, flexible enough to accommodate any other distribution instead.
The analyst that wants to apply our analysis methods must make sure that the
probability distributions he chooses actually represent the network under study.
Note that routing constraints are in general easy to model as they are encoded in
the software used by the clients, following public algorithms. Social characteristics,
however, are more difficult to model as they are specific to users and change
over time. This difficulty can be overcome by inferring them in parallel with
correspondences amongst input and output messages as described in the previous
chapter.

5.3.1 Basic constraints

First, we present our model for basic constraints concerning the user’s choice of
mixes to relay messages and the length of the path.

We assume that the system allows the user to choose paths of length Lj , Lj =
Lmin, . . . , Lmax. We consider that the user selects this length uniformly at



THE MIX NETWORK MODEL 75

random amongst the possible values. There is nothing special about the uniform
distribution of path lengths, and an arbitrary distribution can be used instead.
The probability of path Pj being of length l is:

Pr[Lj = l|C] = 1
Lmax − Lmin + 1 ,

that is, the probability of choosing a length between Lmin and Lmax given that
any length is equally likely.

Once the length is determined, the user has to choose the mixes on the path. We
consider any sequence of mixes of the chosen length as equally likely, with the only
condition that mixes have to be distinct. The possible ways in which the l mixes
forming a path can be chosen is given by the permutations of length l out of the
Nmix mixes forming the system. Thus, the probability of choosing a sequence Ωj
of l distinct mixes is:

Pr[Ωj |Lj = l, C] = 1
C(Nmix, l)/P (l) = P (l)

C(Nmix, l)
= (Nmix − l)!

Nmix! .

Assuming that the choice of the length of a path and the choice of mixes belonging
to it are independent, the probability of selecting a path Pj formed by the l mixes
in Ωj is:

Pr[Pj |C] = Pr[Lj = l|C] · Pr[Ωj |Lj = l, C] · Iset(Pj) , (5.3)

where the last element represents an indicator of the choice of mixes being a set or
a multiset. This indicator takes value 1 when all mixes in the path are different,
0 otherwise.

Since the observation is limited in time, it may be the case that some messages
enter the network during the observation period but have not left it when the
period ends. This happens when messages enter mixes that do not receive enough
inputs to flush, and thus stay in those mixes at the end of the observation. For
these messages, it is not possible to derive the choices of the user in terms of path
length and mixes, as we only have a partial observation of the path. Such an
example is shown in Fig. 5.2, representing an instance of a network formed by
threshold mixes (t = 2) in which users can choose paths of length Lj ∈ [2, 3]. The
message sent by Sen2 arrives at mix4, but it is never forwarded to any other mix or
to its recipient since no more messages are received by this mix (this trajectory is
shown in lighter gray in the Fig. 5.2). At this point, an adversary cannot assume
Sen2 chose L2 = 2 and must consider the possibility that the choice could be
L2 = 3 as well.

When the adversary observes a path Pj ending in an unflushed mix, he must take
into account that the probability of this path must reflect all possible choices the
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Figure 5.2: Example where the message sent by Sen2 never arrives to its destination
because mix4 does not receive enough inputs in order to flush (in grey).
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Figure 5.3: Black box abstraction of the system

user could have made. Thus, the attacker computes probability of this path as:

Pr[Pj,unf|C] =
Lmax∑
l=Lunf

Pr[Lj = l|C] · Pr[Ωj |Lj = l, C] .

In the above formula, Lunf = min(Lmin, Lobs), where Lobs is the observed length of
the path from the sender until the mix where the message is held. The intuition is
that, if the length of the observed unflushed path is larger that the minimum length
allowed by the system (Lmin), the adversary knows the client has not chosen Lmin,
otherwise the message would have already been sent to its receiver. Therefore,
the minimum length that could have been chosen is Lobs. There is no a priori
information in the observation about the maximum length, and the adversary
must assume any length up to Lmax could have been chosen.

As we have done in the previous chapter, we abstract the system as a black
box operating as a large threshold mix, reflecting a one-to-one relationship
amongst incoming and outgoing messages. (Figure 5.3 depicts an example of
this abstraction for the network in Fig 5.1.) In other words, and as indicated in
Chapter 3, the messages at the exit of the black box must be a permutation of the
messages at the entrance [103]. The number of permutations of Nmsg messages is
Nmsg!. Without any a priori information, the probability of the real permutation
being any of them is: 1/Nmsg!. This information can be easily integrated in
the computation of the probability of a set of paths, assuming that users decide
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independently about the routing of their messages:

Pr[P|C] =

Nmsg∏
j=1

Pr[Pj |C]

 · 1
Nmsg! . (5.4)

Finally, we recall that the probability of a hidden state is proportional to the
probability of all users choosing a set of paths P (see Eq. 5.2). Hence:

Pr[HS|O, C] ∝ Pr[P|C] =

Nmsg∏
j=1

Pr[Pj |C]

 · 1
Nmsg! . (5.5)

5.3.2 Advanced constraints

In this section we present our modeling of advanced constraints which account for
additional knowledge of the adversary about the users’ behavior. The constraints
described here can be selectively combined to refine the probabilistic model of the
system, resulting in more accurate attacks. We note that our choice of advanced
constraints is not comprehensive. The goal of this section is to illustrate the
flexibility of our model, and show how it can be easily adapted to accommodate
new attacks or constraints.

Bridging & mix preferences

Bridging attacks were proposed by Danezis and Syverson in [77]. These attacks
exploit the fact that users of a large anonymity network might not know all the
routers present in the system. In this case it is possible to “bridge” honest routers
considering the knowledge (or ignorance) about subsequent mixes in a path that
the originator of the communication has. For example, given a message sent
through a honest mix, its path through the network can be “bridged” if either:
i) there is only one outgoing mix known by its sender, or ii) if there is only one
outgoing mix that is not known by all the senders of the other messages present
in the round.

Bridging attacks can be incorporated in our model through the definition of an
indicator variable Ibridge(Pj) associated with each path. This variable takes the
value 1 if all mixes in a given path Pj are known to the initiator of the path,
and is set to 0 otherwise. It guarantees that paths containing nodes unknown to
the initiator are assigned probability zero. Using this variable we can incorporate
bridging in Eq. 5.3 as follows:

Pr[Pj |C] = Pr[Lj = l|C] · Pr[Ωj |Lj = l, C] · Iset(Pj) · Ibridge(Pj) .



78 A BAYESIAN FRAMEWORK FOR THE ANALYSIS OF ANONYMOUS COMMUNICATION SYSTEMS

This probability can in turn be used in Eq. 5.4 to obtain the probability of a set
of paths Pr[P].

A probabilistic version of bridging can also be incorporated into the model, moving
beyond the possibilistic bridging attacks described in [77]. Detailed knowledge of
the attacker as to which client knows which server, as well as their probability
of choosing it, can be used to build probability distributions over the paths
Pr[Pj |Senj , C]. Such distributions can represent the knowledge of each sender
about the mix network infrastructure, but also any preferences they might have
about the choice of mixes. The use of guard nodes [282] in Tor [93] can be modeled
in this manner.

Non-compliant clients

Our model so far assumes that all clients make routing decisions according to the
standard parameters of the system. This is overwhelmingly the case, since most
users will be downloading client software that builds paths for them in a particular
and known fashion. We call those clients and the paths they create compliant. For
example, the Tor [93] standard client will choose paths of length three as well as
distinct onion routers. Furthermore the first router will be a “guard” [282] node.
However, some users may modify the configuration of their client to chose paths
differently.

Paths built by these non-compliant clients have different associated probabilities
from what our model has assumed so far. We are very liberal with those paths,
and make as few assumptions as possible about them. Non-compliant clients
may select shorter or longer path lengths than usual in the system, i.e., Lcp =
Lmincp , . . . , Lmaxcp with Lmincp 6= Lmin and Lmaxcp 6= Lmax. Furthermore, they
may use a multiset of mixes (i.e., a mix can appear more than once in the path)
to route their messages. We indicate with C that the path has been constructed
by a non-compliant user, and its probability can be computed as:

Pr[Pj |C] = Pr[Lj = l|C] · Pr[Ωj |Lj = l, C] = 1
Lmaxcp − Lmincp + 1 ·

1
N l

mix
.

The first term in the multiplication represents the probability of choosing length
l uniformly at random from the interval [Lmincp , Lmaxcp ]. Note that although we
have arbitrarily chosen a uniform distribution for the length of the non-compliant
paths, the model is flexible enough to accommodate any other distribution instead.
The second term is the probability of choosing a sequence Ωj of l mixes (where a
mix can appear several times in the path). Further, the indicator variable Iset(Pj)
enforcing the need for selecting distinct nodes on the path has disappeared from
the equation with respect to Eq. 5.3.
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Bridging attacks are still applicable to non-compliant users, as the fact that they
choose routing paths based on their own criterion does not affect the mixes they
know. If bridging information is available to the adversary, the indicator Ibridge(Pj)
can still be incorporated to the formula to account for user’s partial knowledge of
the network and increase the accuracy of the attack.

In this work we assume that individual users are non-compliant with probability
pcp. If non-compliant clients are present in the network we calculate the joint
probability of all paths assuming that each user is compliant or not independently,
and assigning a probability to their path accordingly. We denote Pcp and Pcp the
set of paths originated by compliant and non-compliant users respectively. We
extend the probability model from Sect. 5.3.1 and derive:

Pr[P|C] =

Nmsg∏
j=1

Pr[Pj |C]

 · 1
Nmsg!

=

 ∏
Pi∈Pcp

pcp Pr(Pi|C) ·
∏

Pj∈Pcp

(1− pcp) Pr(Pj |C)

 · 1
Nmsg! .

In this formula, the product representing the probability of a set of paths P =
{Pj , x = 1, . . . , Nmsg} being chosen is decomposed in two products, according to
the nature (compliant or non-compliant) of the initiators of these paths.

Integrating social network information

A number of attacks, starting by Kesdogan et al in [5, 158], and further studied
in [60,70,76,161,183,270], show that adversaries can sometimes extract profiles of
the “friends” of users. These social profiles can then be integrated in the traffic
analysis process to narrow down who the receiver of each sent message is [78]. We
are initially concerned with incorporating this information into our basic model,
as the discussion of how to extract those profiles has already taken place along
Chapter 4.

Let us assume that each sender Senj can be associated with a sending profile
Ψj , i.e., a probability distribution where each element Ψj(Reck) expresses the
probability of sender Senj choosing Reck as the recipient of a message. When
this information is available the probability distribution of the messages at the
exit of the black box being a given permutation of the messages at the entrance
is not uniform anymore. Hence, Eq. 5.4 does not apply anymore. Instead, we can
include the information given by the profiles on the individual paths’ probability
calculation as follows:

Pr[Pj |C] = Pr[Lj = l|C] · Pr[Ωj |Lj = l, C] · Iset(Pj) ·Ψj(Reck) ,
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Senj being the originator of the path Pj and Reck the recipient of her message.
This means that the probability of a hidden state would be now proportional to:

Pr[HS|O, C] ∝ Pr[Pj |C] = Pr[Lj = l|C] · Pr[Ωj |Lj = l, C] · Iset(Pj) ·Ψj(Reck) .

5.4 A Markov chain Monte Carlo sampler for mix
networks

Given an observation O of some messages’ routed through an anonymity network
and some knowledge about the constraints C imposed by its routing algorithms and
its users’ behavior, traffic analysis aims to uncover the relation between senders
and receivers. Equivalently, the goal of traffic analysis is to find the links between
incoming and outgoing messages. This comes down to obtaining an a posteriori
distribution Pr[HS|O, C] of hidden states HS given an observation O and a set of
constraints C.

However, enumerating Pr[HS|O, C] for all HS is computationally unfeasible, due
to the very large number of possible hidden states. Instead we have shown in
Sect. 5.3 that we can sample states HS ∼ Pr[P|C]. These samples are then used to
infer the distributions that describe events of interest in the system. For instance,
it is easy to estimate the probability Pr[ij � ok|O, C] of an incoming message ij
corresponding to any of the outgoing messages ok as:

Pr[ij � ok|O, C] ≈
∑
ι∈NMH

Iij�ok(HSι)
NMH

,

where Iij→ok(HSι) is an indicator variable expressing if messages ij and ok are
linked in hidden state HSι, and NMH is the number of samples HS ∼ Pr[P|C]
available to the adversary.

Similarly, we can estimate the sending profile Pr[Senj � Reck|O, C] of a given user
Senj sending a message to recipient Reck. In this case the indicator variable would
be ISenj�Reck(HSι), indicating whether Senj communicates with Reck in hidden
state HSι:

Pr[Senj � Reck|O, C] ≈
∑
ι∈NMH

ISenj�Reck(HSι)
NMH

.

Note that this probability is not the same as Pr[ij � ok|O, C] because users can
send, or receive, more than one message in an observation [121].

If we compute the probabilities Pr[Senj � Reck|O, C] over all possible k we would
obtain an estimation of the sender profile of Senj . We note that this profile could
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Figure 5.4: Observation of a network where 10 messages are sent to 3 mixes of
threshold t = 4

be better estimated by integrating the probabilities Pr[ij � ok|O, C] described in
this chapter in the Vida model introduced in the Chapter 4, and inferring them
in parallel with the de-anonymization process.

We present a Metropolis-Hastings (MH) sampler for Pr[P|C] following the
probability mix network model described in Sect. 5.3. For the sake of simplicity
in the remainder of the section we omit the conditioning to the observation O
and the constraints C in all probabilities unless stated differently (e.g., we write
Pr[ij � ok] when we refer to Pr[ij � ok|O, C]).

5.4.1 A Metropolis-Hastings sampler for mix networks

Let us consider an anonymity network where users behave as described in Sect. 5.3.
An instance of such a network where 10 messages are sent through 3 mixes of
threshold t = 4 can be seen in Fig. 5.4. This is a simple toy example that we use to
illustrate our modeling. We note that increasing the number of messages sent can
considerably complicate the observation, see Fig. 5.5. In this figure we still consider
that the mixes’ threshold is t = 4, which is far from reality. Considering more
realistic threshold values would likely result in a more complicated observation.

In the figures, senders are represented as triangles and labeled “Sn,” n being their
identity. Likewise for receivers, represented as triangles labeled “Rn.” The triangle
labeled as “U” represents Unknown, a fake receiver that models the fact that some
messages stay in mixes that have not flushed at the end of the observation period.
Finally, mixes are represented as ovals, and labeled as “MmRr,” where m expresses
the identity of the mix and r the round of flushing.

Note that, although we defined the network to consist of three mixes (M0, M1
and M2), in Fig 5.4 messages seem to be sent to 4 different mixes (M0R0, M1R0,
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Figure 5.5: Fraction of a larger toy observation

M2R0 and M2R1). This is because of the mixing strategy used by the threshold
mix, which empties the memory of the mix after flushing. Thus, messages sent to
the same mix in separate rounds do not mix with each other. To illustrate this, let
us take mix M2 in our example. Senders S0, S1, S2, S5, S6 and S7 send messages
to this mix, that also receives a message output by M1. However, the messages
sent by S0, S2, S5 and S7 to mix M2 (M2R0 in Fig 5.4) are flushed before the
messages from S1 and S6 arrive to the same mix (M2R1). Therefore the adversary
is certain that the outputs of M2R0 do not come from S1 and S6; and the outputs
of M2R1 do not (directly) come from S0, S2, S5 or S7, but from S1, S6 or M1.

Let us call the series of mixes that represent a same mix in different rounds as
different entities: “virtual mixes;” and denote the set they form as vmixes (in the
example vmixes = {M0R0, M1R0, M2R0, M2R1}).

We define a hidden state as a set of internal connections between inputs and



A MARKOV CHAIN MONTE CARLO SAMPLER FOR MIX NETWORKS 83

outputs in the virtual mixes, such that an input corresponds to one, and only one,
output. The aim of the sampler is to provide hidden state samples, according to
the actual probability distribution over all possible hidden states. We compute the
probability of a hidden state Pr[HS|O, C] ∝ Pr[P|C] following the model presented
in Sect. 5.3 with both basic and advanced constraints. For simplicity, we denote
this probability as Pr[HS] in the remainder of the section.

We now explain how to ensure that the random walk performed by the Metropolis-
Hastings algorithm actually provides samples from the target distribution Pr[HS].
In our sampler we select an arbitrary initial state to start the Markov Chain. Given
a state HSι and a transition Q that leads to the candidate state HS ′, we decide
whether HS ′ is a suitable next state for the walk by computing α:

α = Pr[HS ′] ·Q(HSι|HS ′)
Pr[HSι] ·Q(HS ′|HSι)

.

The new state HS ′ is accepted with probability 1 if α ≥ 1 or with probability α
otherwise, as the Metropolis-Hastings algorithm dictates (Sect. 5.2).

The algorithm requires a proposal probability distribution Q(HS ′|HSι) according
to which candidate states HS ′ to continue the random walk are selected. We
describe in the next sections a possible proposal strategy for our mix network
model. We explain how to obtain Q(HSι|HS ′) and Q(HS ′|HSι) to be used when
computing α.

Basic constraints

When only basic constraints (see Sect. 5.3.1) are considered we define two
transitions for the proposal of states:

• Qnone: this transition does not change the current state (i.e., the current
state is the candidate for next state in the walk),

• Qswap: this transition creates a candidate state by swapping two internal
connections in a virtual mix (See Fig. 5.6).

The transition Qnone, although seemingly trivial, is necessary to ensure that the
Markov Chain resulting from the sampling is ergodic (see Sect. 4.2). To illustrate
this need, let us assume the hidden states we are sampling form a fully connected
bipartite graph with no self loops. In this graph all transitions take the chain
from one set in the bipartite graph to the other. Hence, the initial state and the
number of iterations determine in which of the disjoint sets of the bipartite graph
the sampler is at each point, biasing the result of the Montecarlo simulation. A
priori we have no knowledge about the probability distribution over hidden states,
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Figure 5.6: Qswap transition operation on the second and third links of a mix

we thus introduce Qnone to ensure that even rare cases, as the bipartite graph
example, do not affect the result of the sampling.

Q(HS ′|HSι) (and conversely Q(HSι|HS ′)) is the probability of selecting stateHS ′
as candidate given that the previous state was HSι (respectively HS ′). It depends
on the transition Q selected and the probability of selecting this transformation
(Pr[Qx], x = none, swap). The values of Pr[Qx] are not key for the correctness
of the sampling, but have some effect on the mixing speed of the random walk.
In our evaluation Pr[Qx] is chosen experimentally such that the walk converges
fast. Given that a transformation Qnone or Qswap has taken place, we compute
Q(HS ′|HSι) as:

Q(HS ′|HSι) =
{

Pr[Qnone] · 1 if Qnone
Pr[Qswap] · 1

|vmixes| ·
1
t

1
t−1 if Qswap

When the chosen transition is Qnone, the candidate state HS ′ is the same as the
current state with probability 1. If on the other hand the selected transition is
Qswap, the probability of choosing a candidate state HS ′ is the probability of
choosing one of the virtual mixes (vmixes) in the observation and choose two of
its links to be swapped.

Advanced constraints: non-compliant clients

When taking into account non-compliant clients, the hidden states are not anymore
uniquely defined by the set of internal connections in the virtual mixes “present”
in the observation O. In this case a client Senj can be compliant or non-compliant
(Senj,cp or Senj,cp, respectively) resulting in a different probability for the path
Pj it initiates, and hence leading to different hidden state probabilities Pr[HS].
We augment the hidden state to include the internal connections in the virtual
mixes, as well as sender labels (Labj = x, x = cp, cp for sender Senj initiator of
path Pj) indicating whether we assume that the sender takes routing decisions
compliant with the system or not. Further we also define path labels Compj that
denote whether a path Pj is compliant, i.e. it is built according to the standard
parameters of the system (Compj = cp); or non-compliant (Compj = cp).
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In this augmented model the random walk Q must modulate the path’s labels as
compliant or not. Thus, the transitions between states must ensure that senders’
labels can change. For this purpose, every time a path is altered by a swap
operation, we change its label with probability pflip(a, b); where a = Labj in HSι,
and b = Compj in HSι. At each iteration ι+1 we choose the probability pflip(a, b)
to depend on two factors:

• the label Labj that sender Senj had in the previous iteration, i.e., in hidden
state HSι.

• whether the new path in the candidate state HS ′ complies with the system
standard parameters or not

Therefore we define four values for pflip(a, b):

pflip(a, b) =


pflip(cp, cp) if Labj = cp in HSι and Compj = cp in HS ′
pflip(cp, cp) if Labj = cp in HSι and Compj = cp in HS ′
pflip(cp, cp) if Labj = cp in HSι and Compj = cp in HS ′
pflip(cp, cp) if Labj = cp in HSι and Compj = cp in HS ′

(5.6)

As with other parameters, the actual value of this probabilities affect only the
mixing speed of the chain, not its correctness. In our experiments we choose them
empirically to ensure fast mixing.

Augmenting the hidden state to include non-compliant senders affects the proposal
probability distribution Q(HS ′|HSι), that now must account for the probability
of flipping the labels assigned to senders. In order to integrate this information
in Q(HS ′|HSι) we define an auxiliary variable πflip. Let us assume that in the
transformation from HSι to propose HS ′ paths Px and Py have been the subject
of a link swap, and that Labj,ι, Labj,′ , Compj,ι, Compj,′ denote the labels of the
senders and the compliance of the paths in both states. Then πflip represents the
probability of sender Senx being assigned Labx,′ , and sender Seny being assigned
Laby,′ , in HS ′ given that in the current state HSι they had labels Labx,ι and
Laby,ι, respectively. We can compute this probability as follows:

πflip =
∏

j={x,y}

pflip(Labj,ι,Compj,′ )·ILabj,ι 6=Labj,′+(1−pflip(Labj,ι,Compj,′ ))·ILabj,ι=Labj,′ .

In this formula ILabj,ι=Labj,′ and ILabj,ι=Labj,′ are two indicator variables that
indicate whether the label of sender Senj is the same in HS and HS ′ or not,
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respectively. For each of the two paths, we check whether its sender’s label has
changed to know whether the transition happened with probability pflip(a,b) or
(1-pflip(a,b)), and take the appropriate pflip(a,b) accordingly to Eq. 5.6.

A further consideration that must be taken while proposing states is that it can
be the case that some input messages are assigned to a “deterministic” path. This
can happen, for example, when a message immediately enters a mix that is never
flushed. Given the proposal strategy we have described so far the unflushed mix
would never be eligible for a swap, and the label of this message’s sender would
remain unchanged throughout the simulation. As a result, some possible hidden
states would never be visited by the random walk. In order to ensure that the
sampler explores the full state space we define a third type of transition Qdet,
chosen with probability Pr[Qdet]:

• Qdet: this transition modifies the compliant status of the sender of one of
the Ndet deterministic paths present in the network. If no clients are deemed
to be non-compliant or no deterministic paths exist, this transition is never
applied (Pr[Qdet] = 0).

Finally, we integrate πflip and Qdet in Q(HS ′|HSι). Depending on which transition
has been selected to propose HS ′:

Q(HS ′|HSι) =


Pr[Qnone] if Qnone
Pr[Qswap] · 1

vmixmax ·
1
t

1
t−1 · πflip if Qswap

Pr[Qdet] · 1
Ndet

if Qdet

Given these three possible transitions: Qnone, Qswap, and Qdet, our sampler’s flow
of operations is illustrated in Fig. 5.7. In the diagram u is an auxiliary variable to
express the choices made during each iteration.

5.5 Evaluation

The aim of our evaluation is to ensure that the inferences drawn from the
Metropolis-Hastings samples are “correct.” In the context of this work, correctness
means that the a posteriori distributions returned by the sampler represent indeed
the probabilities of correspondences between incoming and outgoing messages. In
other words, the probabilities that we estimate using the output of the sampler
represent the real probability with which events happen in an observation.

We evaluate the inference engine with small (3 mixes) and larger (5 to 10 mixes)
networks. For these networks, we create different observations inserting Nmsg
messages (Nmsg ∈ {10, 50, 100, 1000}) from users that choose paths of length
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Figure 5.7: Flowchart of our Metropolis-Hastings sampler for mix networks.
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between Lmin = 1 and Lmax = 3 and select the mixes belonging to these paths
uniformly at random. In some of the experiments, we consider the users to be
non-compliant with probability pcp = 0.1. This means that on average there are
10% of non-compliant clients in each observation.

5.5.1 Metropolis-Hastings parameters

The sampler parameters are important to ensure that the samples returned are
from the desired distribution Pr[HS].

The number of iterations δ the sampler runs between two output samples must
guarantee these samples are independent. There is no straightforward procedure
to obtain the optimal value for this parameter and we have to estimate it. We
consider δ to be large enough when the second order statistics of the marginal
distributions Pr[ij � ok] (respectively Pr[Senj � Reck]) are the same as the first
order statistics. Informally we want to ensure that the probability that an input
ij corresponds to an output ok at sample ι is independent of the output of ij at
sample ι− 1. Formally, the property we are looking for is:

Pr[ij � ok in HSι|ij � oh in HSι−1] = Pr[ij � ok in HSι] , (5.7)

for any output oh. We experimentally test different values of δ to determine a
suitable number of iterations that the sampler must run before outputting an
independent sample. We note that any higher δ would also ensure independence
between samples.

The higher the number of samples NMH extracted, the better the estimate of the
a posteriori distributions at the cost of more computation. If we use few samples
for our estimation, the estimations regarding events with low probability is likely
to have poor quality. In our experiments we choose the number of samples we
collect to estimate probabilities based on the order of magnitude of the a posteriori
probabilities we expect to infer.

When adapting our experiments to consider non-compliant clients, we need to
choose a value for the parameters pcp, which determines the average percentage of
non-compliant clients in the network, and pflip(a, b), the probability of flipping the
senders’ labels in a swap operation. We decided to assign pcp = 0.1 so that the
percentage of non-compliant clients using the network is small (as expected in a
real network) but their presence in the network has a non-negligible impact on the
analysis. We recall that the probability pflip(a, b) is not crucial for the correctness
of the sampler, but is important to the speed of mixing. A study of optimal values
for pflip(a, b) given pcp

2 is left as subject of future research.
2Although in this work we assume pcp is known to the attacker, it could be included in the

hidden state and inferred together with the rest of hidden variables.
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Parameter Value
Nmsg 10 50 100 1000

Network Nmix 3 3 10 10
parameters t 3 3 20 20

[Lmin, Lmax] [1,3]
pcp 0.1

Advanced
pflip(cp, cp) 0.9

constraints
pflip(cp, cp) 0.01
pflip(cp, cp) 0.02
pflip(cp, cp) 0.3

[Lmincp , Lmaxcp ] [1,32]

Sampler δ 6011 6011 7011 7011

parameters burn-in 8011
NMH 500 500 500 500

Table 5.1: Parameters of the Metropolis-Hastings sampler implementation

The values for the parameters used in our experiments are summarized in Table 5.1.
We chose the network parameters to produce observations that we can analyze.
Had we always considered a realistic mix network, with at least Nmix = 10 with
threshold t = 10, and few messages (10 or 50), we would run the risk of many
mixes not flushing and therefore not observing any flow of messages.

5.5.2 Evaluation methodology

For a given observation, we collect NMH samples from Pr[P] (Pr[P] ∝ Pr[HS])
using the Metropolis-Hastings algorithm with the transitions Q described in
Sect 5.3. Using these samples we estimate the marginal probability distributions
Pr[ij � ok] linking input messages to output messages.

Let us call each of the samples obtained in the MH simulation Pι, ι ∈
{1, . . . , NMH}. The result of our basic experiment is a point estimate of Pr[ij � ok]
for each of the messages ij entering the network:

Pr[ij � ok] =
∑
ι∈NMH

Iij�ok(Pι)
NMH

. (5.8)

Our methodology aims to establish whether these probabilities are correct.

Our test consists of running our basic experiment over 2000 observations. In each
of them we select a random input message (ij) and a random output message (ok)
as targets and we store the tuple:

(Pr[ij � ok], Iij�ok(trace)) .
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The first element of the tuple is the inferred probability that ij corresponds to
ok computed with Eq. 5.8 from the samples output by the MH simulation. The
second element, Iij�ok(trace), is an indicator variable that takes the value 1 if ok
actually corresponded to ij when the trace was generated, and 0 otherwise.

Once these tuples are collected, we make a histogram using the first element,
Pr[ij � ok], for the classification of the tuples. Given that Pr[ij � ok] is a
continuous variable we quantify the interval in 30 “bins” of equal size. We denote
as bin(a, b) the histogram bin corresponding to Pr[ij � ok] : a ≤ Pr[ij � ok] <
ba = σ ∗ 1/30 , b = (σ ∗ 1/30) + 1/30 , σ = 0, 1, . . . , 29, and denote as Len(a, b) the
number elements in that bin. For each of the bins we compute:

psampled(a, b): which corresponds to the arithmetic mean of the Pr[ij � ok]
belonging to the tuples contained in the bin:

psampled(a, b) =
∑

Pr[ij�ok]∈bin(a,b) Pr[ij � ok]
Len(bin(a, b)) .

The value psampled(a, b) represents the expected probability for an event given
the MH simulation output (Eq. 5.8).

pempirical(a, b): the 95% Bayesian confidence intervals that represents the “actual”
probability with which the targeted events happened in the observations.
Given how many tuples there are on a bin and the amount of these tuples
whose second element is Iij�ok(trace) = 1 we compute this interval using
the Beta function:

τ =
∑

Iij�ok∈bin(a,b)

Iij�ok(trace) + 1 ,

υ = Len(bin(a, b))− τ + 2 ,

pempirical(a, b) ∼ Beta(τ, υ) .

The beta distribution can be interpreted as the posterior probability of the
parameter Pr[ij � ok] of a binomial distribution, in which success is defined
as ij corresponds with ok, after observing τ successes (with probability
Pr[ij � ok] of success); and (Len(bin(a, b)) − τ) failures (with probability
(Pr[ij � ok]) of failure). In summary, the 95% confidence interval of this
distribution indicates likely values of Pr[ij � ok] that could have generated
the observation.

We note that the test could be also carried on using senders and receivers as targets.
As demonstrated in [121] there can be a substantial difference between considering
just correspondences amongst input and output messages and considering the
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identities of the sender and receivers of these messages. The difference with respect
to the analysis described above is that the tuples stored would be:

(Pr[Senj � Reck], ISenj�Reck(trace)) .

The first element is the estimation of the probability that Senj has sent a message
to Reck computed as:

Pr[Senj � Reck] =
∑
ι∈NMH

ISenj�Reck(HSι)
NMH

.

The second element, ISenj�Reck(trace), is an indicator variable that takes the value
1 if Reck actually received a message from Senj when the trace was generated, and
0 otherwise.

In our experiments we expect the mean psampled(a, b) to fall within the interval
pempirical(a, b), i.e. the estimated probability being close to the probability with
which events actually happen in the generation of the traces. If this is the case we
conclude that the implementation of the Metropolis-Hastings sampler is correct.
The size of the confidence interval is also meaningful: small intervals indicate that
many samples have been used thus, it accurately represents pempirical(a, b). On the
other hand, if few samples are used to compute the interval (if a bin contains few
events), we obtain a poor estimate of pempirical(a, b) and the results based on it are
rather meaningless.

Evaluation methodology example

Let us illustrate the evaluation method with a toy example, in which we observe
5 networks (Net1, . . . ,Net5) from which we collect NMH = 5 samples: P1, . . . ,P5.
For simplicity we limit the explanation to the computation psampled(a, b) and
pempirical(a, b) for one bin, for instance, bin(0.4, 0.433). Hence, we only consider
events ij � ok with probability (0.4 ≤ Pr[ij � ok] < 0.433) through our example.
In the first network, for the target event ij � ok, we obtain the following:

Iij�ok(P1) = 0, Iij�ok(P2) = 1, Iij�ok(P3) = 0,
Iij�ok(P4) = 0, Iij�ok(P5) = 1 .

This means that input message ij was assigned to ok in the sets of paths P2 and
P5, but not in P1, P3, and P4. With this information we can compute:

Pr[ij � ok] =
∑
ι∈NMH

Iij�ok(Pι)
NMH

= 0 + 1 + 0 + 0 + 1
5 = 0.4 .
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Additionally, we note down whether in the generation of the network ij and ok are
actually the same message. Let us assume that for this first network this was not
the case, hence we record Iij�ok(Net1) = 0.

We run the MH sampler for the other four network instances and at the end of the
process we have collected the following tuples in the bin of interest, bin(0.4, 0.433):

bin(0.4, 0.433)
Network (Pr[ij � ok],Iij�ok(Net))
Net1 (0.4, 0)
Net2 (0.4, 0)
Net3 (0.4, 1)
Net4 (0.4, 1)
Net5 (0.4, 0)

Len(bin(a, b)) = 5 tuples

With this information, we can compute psampled(0.4, 0.433) and pempirical(0.4, 0.433):

psampled(0.4, 0.433) =
∑

Pr[ij�ok]∈bin(0.4,0.433) Pr[ij � ok]
Len(bin(0.4, 0.433)) = 5 · 0.4

5 = 0.4 .

There are 2 observations in which the experiment “succeeds” (networks Net3
and Net4) and 3 in which it fails we know that the actual probability of events
pempirical(0.4, 0.433) is distributed according to:

pempirical(0.4, 0.433) ∼ Beta(2 + 1, 3 + 1) .

The 95% confidence interval of pempirical(0.4, 0.433) is [0.0005, 1]. As only 5
samples are available, the interval is large and not much confidence can be as
to which was the actual probability of the observed events. Thus, even though
psampled(0.4, 0.433) = 0.4 falls in this interval, we cannot have much confidence in
the correctness of the sampler. If we would like to increase our confidence on the
correctness of these samples, it suffices with collecting more samples such that we
have more certainty as to which is the actual probability pempirical(0.4, 0.433).

5.5.3 Evaluation results

We conducted several experiments considering both the basic constraints and the
full model (including non-compliant clients) in small and large networks.

Figure 5.8 shows the result of our evaluation using only basic constraints to
generate the trace and model it. The lower graph is a histogram of the number of
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Figure 5.8: Results for the evaluation of an observation generated by 50 messages
in a network with Nmix = 3 and t = 3, when all clients behave in a compliant way

experiments per bin, Len(bin(a, b)). The upper graph represents with crosses the
mean of the bins psampled(a, b), and the Bayesian confidence intervals pempirical(a, b)
with vertical lines. Most crosses fall in the intervals, meaning that our algorithm
is providing samples HSι according to the correct distribution (only 95% are
expected to fall within the intervals). Most messages fall in bins with psampled ∈
[0.07, 0.4], and their confidence intervals are very small, indicating that we have a
high certainty our sampler works correctly in that region.

It is noticeable that some paths fall in the psampled = 1 bin. This denotes total
certainty about the correspondence between an input and an output, with no
anonymity provided. These are deterministic paths (explained in Sect. 5.4.1) where
the attacker is completely sure that the message ij corresponds to the potential
output message ok because it is the only message inside a mix.

We also performed experiments in which some of the clients behave in a non-
compliant fashion. The result for Nmsg = 10 messages is shown in Fig. 5.9(a). We
observe more events with psampled = 1 that represent deterministic paths. This
increase is due to long non-compliant paths (Lj,cp >> Lmax) whose links cannot
be swapped to form compliant paths.

A second difference, with respect to the compliant case, is the appearance of a
significant number of events with probability psampled ∈ [0.7, 1]. These are paths
with no compliant alternative, that now appear as non-compliant paths, with the
associated small probability. The probability of these paths is diminished more
(generating events with probability psampled ≈ 0.7) or less (generating events with
probability psampled ≈ 0.95) depending on how likely the non-compliant path is.
These events happen rarely and the number of samples falling in these bins is
small, resulting in large confidence intervals.
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(a) Nmsg = 10 messages

0

0.5

1

P
em

p
ir

ic
al

(e
ve

n
t)

0 0.2 0.4 0.6 0.8 1
0

100
200
300

E
xp

er
im

en
ts

P
sampled

(event)

(b) Nmsg = 50 messages

Figure 5.9: Results for the evaluation of an observation of a network with Nmix = 3
and t = 3, when non-compliant clients are present
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(a) Nmsg = 100, Nmix = 10, t = 20
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(b) Nmsg = 1000, Nmix = 10, t = 20

Figure 5.10: Results for the evaluation of big networks

Figure 5.9(b) shows our results when considering 50 messages. As one would
expect, we can see in the histogram at the bottom that when more messages
travel through the network the attacker is less certain about their destination.
There are also fewer samples in the psampled = 1 bin, which reflects the increase
in the anonymity that the presence of more traffic in the network provides to its
users.

Finally, we tested the effectiveness of our sampler for longer observations (100
and 1000 messages in the network). The results of the experiments are shown in
Fig. 5.10. In these cases, we find that the mix network provides good anonymity
for all messages. An attacker cannot link incoming and outgoing messages with
a probability higher than psampled = 0.4 when 100 messages have been observed,
and psampled = 0.1 if more messages are seen.

In all examples, we obtain the expected result: approximately 95% of the samples
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Table 5.2: Metropolis-Hastings RAM requirements
Nmix t Nmsg Samples RAM (Mb)

3 3 10 500 16
3 3 50 500 18
10 20 100 500 19
10 20 1 000 500 24
10 20 10 000 500 125

fall into the confidence intervals. We conclude that our implementation produces
samples from the correct a posteriori probability distribution and implements the
optimal Bayesian inference an adversary can perform.

5.5.4 Performance evaluation

Our Metropolis-Hastings sampler is composed by 1443 LOC of Python, including
the code associated to the evaluation. Our implementation is not optimized for
size, memory usage or running time, and an equivalent implementation in C or
C++ would outperform it.

The sampler implementation uses a “two-states” strategy for the proposal and
acceptance/rejection of candidates HS ′. This strategy stores two states HS0
and HS1 that are initialized to the same value (the initial state). In order to
propose a candidate we apply a transition Q on HS1, and compute α (considering
HSι = HS0 and HS ′ = HS1). If the state is to be accepted, we apply the same
transformation to HS0 (HS0 = HS1). If on the contrary there is a rejection, we
undo the modification on HS1 (HS1 = HS0). Then we restart the process with
a new transition Q. This strategy apparently doubles the memory requirements,
but actually reduces the amount of extra information needed to walk forward and
backwards between states, resulting in a smaller total overhead, and significant
ease of implementation.

The memory requirements of the sampler are well within the range of a commodity
computer. Table 5.2 presents the memory requirements for different sizes of the
observation given by the parameters Nmix, t, and Nmsg. More memory is needed
as observations O and consequently samples HS grow. Furthermore, we keep
the samples HSι in memory, multiplying the overhead for the number of samples
collected (double in the case of having 1000 or more messages with respect to the
case when only 50 or 10 messages are considered).

Finally, we measured the computation time for processing observations of distinct
size. For each of the sizes we collected 100 measurements of the analysis time and
averaged over them. These timings are shown in Table 5.3.



96 A BAYESIAN FRAMEWORK FOR THE ANALYSIS OF ANONYMOUS COMMUNICATION SYSTEMS

Table 5.3: Metropolis-Hastings timings
Nmix t Nmsg δ Full analysis One sample

(min) (ms)
3 3 10 6011 4.24 509.12
3 3 50 6011 4.80 576.42
10 20 100 7011 5.34 641.28
10 20 1 000 7011 5.97 716.72

Computation time increases as the observations increase for two reasons. First,
more iterations δ are needed to produce independent samples. Second, the timings
include the analysis of all messages in the system, that grow with the observation.
Although the time necessary to perform the analysis is already practical, it can be
reduced considerably through parallelizing several MH simulations for the same
observation to get samples HSι faster.

5.6 Measuring anonymity

A lot of research has been done regarding the evaluation of anonymity systems.
Several tools have been proposed to measure the anonymity provided by these
systems [52, 81, 103, 263], amongst which the most popular are the metrics based
on Shannon entropy [86, 238]. These metrics are computed over the probability
distributions associated with random variables representing user’s sending profiles,
network level profiles (incoming to outgoing messages correspondences), etc. They
give a measure of the uncertainty of the attacker about the possible outcome of
the random variable under study.

It is important to realism that the methodology presented in this work does
not output a probability distribution, but samples that allow us to approximate
probabilities of certain events: Pr[ij � ok], being ij an incoming message and
ok an outgoing message. However, only events that have been sampled can be
estimated, and we cannot assume that not-sampled events have a null probability.
After a finite MH simulation there may be events with very small probability
which the random walk has not yet visited (or that have been visited but not
sampled) but this does not mean that they are impossible to reach. The estimation
of probabilities using MH samples introduces an inherent error coming from the
normalization over the sampled events, and not all possible ones. Hence, it cannot
be considered a proper probability distribution and it is not possible to measure
anonymity by directly applying previously proposed metrics. In this section we
explain how to use the MH samples to obtain bounds on the anonymity provided
by the system.
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Let us consider that we want to measure the anonymity provided by the system
to a given message ij . We denote the probability distribution of this message
corresponding to any of the possible Nmsg outgoing message as Ψj = {Pr[ij � ok],
y = 1, . . . , Nmsg}. Following the approach of Serjantov and Danezis [238] we
would measure the anonymity for ij as the Shannon entropy of this probability
distribution:

H(Ψj) = −
∑
k

Pr[ij � ok] · log Pr[ij � ok] ,

but as we said we do not have the full probability distribution, and only samples
coming from it.

An approach to the estimation of H(Ψj) is to model Ψj as a multinomial
distribution that determines the probability of outputs ok corresponding to an
input ij , and resort again to Bayesian inference to estimate it from the samples.
For this purpose we also define an auxiliary function that counts the number
of times a message ij is assigned to a message ok in the set of samples, and
denote it as CtO(ij � ok). We note that the Dirichlet distribution is a conjugate
prior for the multinomial distribution. A sample from this distribution expresses
the belief that the probability of the events ij � ok is Pr[ij � ok] given that
we have observed CtO(ij � ok) occurrences of each of them. Hence we can
use the Dirichlet distribution assuming poor prior knowledge over the actual
correspondence (Dirichlet(1,. . . ,1)) to obtain samples from Ψj [180]. We compute
the entropy H(Ψj) of n samples Ψj from the posterior distribution:

H(Ψj) where Ψj ∼ Dirichlet(CtO(ij � o0) + 1, . . . ,CtO(ij � oNmsg) + 1) .

We note that, for the receivers ok that do not appear in the samples, Ctij�ok = 0.

We order the samples H(Ψj) in decreasing order and take as bounds for the
anonymity offered by the system the γ% confidence interval for this distribution,
i.e., an interval within the range [0, 1], encompassing γ% of the probability mass
of the a posteriori distribution.

5.7 Conclusions

In this chapter we have dealt with the computation of probability distributions over
correspondences between inputs and outputs of a mix-based anonymity system.
Our work has demonstrated that we can extract accurate a posteriori distributions
about who is talking to whom, from a complex anonymity system, with a vast
hidden state-space, and a large observation. For the first time we are able to
calculate the distributions necessary to apply any information theoretic or decision
theoretic anonymity metrics.
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Our models of mix networks are far from arbitrary: the parameters and
architectures we use are inspired by the routing constraints of the deployed
mixmaster and mixminion remailers [72]. They can be used to assign to messages
a correct degree of anonymity, using probabilistic measures [52, 81, 86, 238, 263],
which was not possible before. However, each proposed mix system is slightly
different from others, and our model has to still be extended to deal with different
mixing strategies [207,240], dummy traffic [75,85,207] as well as observations that
start while the mix network is running.

Our model of mix networks is flexible enough to be the basis of such extensions.
This has been demonstrated in our comparison of network topologies for low
latency, traffic analysis resistant networks [84]. However, it must be stressed that
performing efficient inference to estimate the probability of the hidden state in
each of these networks might require some craftsmanship.

The traffic analysis methodology we have employed, that defines a probabilistic
model over the full system, and performs Bayesian inference to measure the
security of the system, is a strong candidate to define the standard by which
candidate anonymity systems are proposed and evaluated. In particular the ability
to integrate all information in a traffic analysis, as well as extracting probabilities
of error, should be seen as essential for proposing robust attacks.
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Chapter 6

Location privacy: an overview

6.1 Introduction

The widespread of smart mobile devices has fostered the development of a
variety of successful location-based services. In these services users share location
information in peer-to-peer wireless networks [3, 102, 106], or send their location
data to a service provider [4, 105, 149, 235]. In exchange, users enjoy services that
may, for instance, enhance their social experience, e.g., a user can look for a perfect
dating match in her surroundings [102, 106] or can be able to track one’s friends
movements in real time [128]; ease their daily activities, e.g., a user can request
information about traffic conditions, nearest place of interests (restaurant, gas
station, etc.) [216, 271]; or improve their safety in the road, e.g., users’ vehicles
can communicate to avoid collisions in highways or intersections [33,287].

Even though location-based services have an enormous potential to benefit service
providers and users, these advantages come at a cost for the users. Pervasive
communication implicitly generates a large amount of sensitive information
encoded in the location and timing where and when this communication takes
place. The fact that individuals interact with their environment may allow
the service provider, or even passive eavesdroppers, to track users’ movements.
The analysis of location data can expose aspects of users’ private lives that
may not be apparent at first, and sensitive information can be inferred from
it [127,132,151,167].

Let us consider an example in which a user registers to a real time traffic
information service using a fake identity to protect her privacy. From Monday
to Friday this user sends to the service provider the route from A to B at 8 am,
and the route from B to A at 5 pm, as depicted in Fig. 6.1(a). From these data the
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provider can infer that with high probability the user lives at address A and works
at address B, even if the user gave another set of addresses upon registration.
Moreover, crossing this information with a public database (e.g., the U.S. census
data) the real identity of the user can be recovered [127]. Now assume that one day
this user, for which now the provider can infer identity, home, and work addresses
(that the user wanted to keep private), starts sending the trajectory shown in
Fig. 6.1(a) on Thursdays’ evening. Here the user travels from A to B stopping at
C for some time, where C is the address of a known cancer clinic. By revealing
this information to the service provider, the user may be unintentionally disclosing
highly sensitive medical information.

Home address

Work address

(a)

Home address

Work address

Cancer clinic

(b)

Figure 6.1: Inferring sensitive information from location data: toy example. (This
image was created using http://maps.google.com/.)

It is not the purpose of this thesis to discuss the implications of revealing fine-
grained location data to third parties and we refer the reader to [37] for further
details on the consequences of violating location privacy.

Protecting users’ location privacy, while enabling them to still benefit from
location-based services, is a challenging problem. In this chapter we give an

http://maps.google.com/
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overview of the different techniques for location privacy proposed in the literature
and their properties. In our survey, we base our classification in the categories
introduced by Shokri et al. [247]. We note that this categorization is not strict,
in the sense that the privacy-preserving schemes introduced could be classified
into more than one category. We choose to assign each system to the category
that best defines its privacy protection principles, acknowledging that this choice
is not unique. Finally, we would like to emphasize that this chapter is not an
extensive survey of the literature but aims to introduce the principles used to
protect location privacy.

6.2 Anonymizing unlinkable events

An adversary who can trace an individual along several locations may also profile
the individual’s behavior over time. A family of solutions to this problem tries
to break the linkability of subsequent location samples by changing the identity
assigned to them (which can be a one-time or a persistent pseudonym).

In a centralized architecture, in which a trusted third party is in charge of
the anonymization process, this is mainly implemented by replacing the users’
identities with group pseudonyms, or even having no identity [55, 156]. However,
only removing the identity may not be enough as spatio-temporal relations can
be exploited to link back the anonymous unconnected samples [56, 131, 167]. To
illustrate this, imagine that in the example we used in the previous section the
user does not send full trajectories but only samples of her location assigned to
a one-time pseudonym. On a trip from home to work the samples the user sends
are shown in Fig. 6.2. Given that the samples are timestamped, even if they
appear to be sent by different users is not difficult to link them as belonging to
the same individual. As we have already discussed once the trajectory is recovered
the adversary can infer further information.

Therefore, in addition to identity, it is necessary to protect timing patterns
that could be exploited to recover trajectories. Several approaches have been
proposed in the literature, all of them relying on the same principle. Inferences
are jeopardized by changing the users’ identity during a silent period in which
the adversary cannot listen to any communications. The assumption is that while
no communication takes place the adversary loses track of users and thus their
pseudonyms before and after this silent period are unlinkable. This prevents the
attacker from recovering full trajectories, reducing the risk of a privacy leakage.

The earliest proposal in this direction are mix zones, by Beresford and Stajano [26],
further studied in [41, 113, 114, 116]. Mix zones are regions in which users change
their credentials while they do not communicate with the environment. When
several users traverse a mix zone simultaneously the adversary cannot link ingoing
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Figure 6.2: Inferring trajectories from location samples: toy example. (This image
was created using http://maps.google.com/.)

and outgoing users because the new pseudonyms exiting the mix zone could have
been chosen by any of the users seen entering the zone. Figure 6.3 illustrates
this principle. The adversary observes two users entering the mix zone, and two
users leaving. Without prior information both users are equally likely to have
chosen Pseudonym 3, respectively Pseudonym 4, as their next identity. Therefore,
given the observation on the left the adversary cannot distinguish whether the
movements of the users correspond to those in Scenario A or those in Scenario B.

Pseudonym 

1

Pseudonym 

2

Pseudonym 

3

Pseudonym 

4

MIX

ZONE

Pseudonym 

2

Pseudonym 

3

Pseudonym 

4

Pseudonym 

1

Pseudonym 

2

Pseudonym 

3

Pseudonym 

4

Pseudonym 

1

SCENARIO A

ADVERSARY’S OBSERVATION

SCENARIO B

Figure 6.3: Two users traversing a Mix zone. Given the observation the adversary
cannot distinguish between Scenario A and Scenario B.

Huang et al. [146, 147] follow a similar approach. In their scheme mobile
nodes interleave periods of normal communication and periods of silence (no
communication at all). During silent periods the nodes’ identity is changed in
such a way that there is uncertainty of when and where this change takes place.

http://maps.google.com/
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The silent periods effectively act as mix zones because this uncertainty hinders the
adversary’s efforts to link samples based on their spatio-temporal relation. The
main difference with respect to Beresford and Stajano’s system is that when to
become silent is an individual choice of the nodes as opposed to a pre-determined
location. Random silent periods are also used in AMOEBA [234] for vehicle to
vehicle communications. Pre-determined mix zones or random silence periods are
not the only options to decide when to change pseudonyms. For instance, Song
et al. propose to select when to change the identity using the neighboring node
density as a threshold [254,255]. The methods can also differ in the cryptographic
protocols used for the change of pseudonym (e.g., group signatures [42], or ring
signatures [115]).

6.3 Adding dummy events

An alternative to anonymization for achieving location privacy is to add fake
samples to the location traces. These dummy events, indistinguishable from real
actions in the eyes of the adversary, aim to confuse the attacker as to which are
the actual movements of the user. Let us assume a user in search for a restaurant
that sends her actual position to a location based service provider, as shown in
Fig. 6.4(a). The provider may be able to infer the political affiliation from this
user. To protect her privacy, the user can send multiple queries corresponding to
different locations, as in Fig. 6.4(b), where three out of the four queries correspond
to dummy locations. In this case the provider cannot not sure anymore as
to which is the actual position of the user preventing easy inferences on users’
behavior. Several authors have chosen this approach to mitigate location privacy
problems [49,51,163,168,286].

Location Based
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Political party 
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(a)

Location Based
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Figure 6.4: Adding dummy locations to a query: toy example. (This image was
created using http://maps.google.com/.)
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The success of the strategies depends on the ease with which an adversary can tell
apart real and fake events. For instance, choosing dummy locations at random may
not give good protection as they can fall in the ocean, desert, or in the middle of a
lake, hence making filtering a trivial task. Further, real samples have a continuity
in time and space which is unlikely to happen with random dummy locations.
Duckam et al. [99] point out statistical techniques that can be used to filter out
false locations in the random walks proposed by Kido et al. [163]. The key idea is
that random walks do not follow the road network nor have a goal as humans do.

Therefore, care has to be taken when creating plausible false location reports. In
order to generate good dummy events for vehicular communications Krumm [168]
builds a probabilistic model from GPS tracks from over 250 volunteer drivers. The
model accounts for GPS noise, chooses realistic start and end points, plausible
driving speeds, etc. A simpler algorithm is introduced by Chow and Golle [51].
They propose to add noise to traces generated by a trip planner. The method is
less realistic than Krumm’s as people do not always chose optimal routes such as
the ones provided by a route planner. Nevertheless the method does not require
a database of GPS traces to generate dummy events, which potentially eases its
deployment.

Even though many proposals exist, how to generate a trace of events that resembles
a normal user’s trajectory remains an open problem. See [140] for more details
on the difficulty of generating convincing fake data from the point of view of pure
statistics.

6.4 Obfuscating events

A third approach to achieve location privacy is to modify the location and/or
the timing of events. This adds inaccuracy or imprecision to the adversary’s
observation [99] hampering inferences on users’ behavior. This can be implemented
by adding noise to the actual times and or locations, or by coarse graining them.

Among all obfuscation methods, cloaking is by far the most popular protection
scheme for location privacy [19, 117, 118, 130, 155, 191, 233, 261, 284, 293]. The
concept of k-anonymity was originally proposed by Samarati and Sweeney in the
field of database privacy [231, 232, 257], where subsets of attributes, called quasi-
identifiers, can be used to facilitate the indirect re-identification of individuals in
anonymized databases. To overcome this problem, the approach of k-anonymity
suggests the suppression and generalization (obfuscation) of quasi-identifiers to
make an individual’s data entry indistinguishable from others.

In the context of location privacy, the k-anonymity metric was initially adapted
to measure location privacy by Gruteser and Grunwald [130]. In this model, each
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query sent to the service provider (including the user’s pseudonym, her position
and the query time) is equivalent to one entry in a database, and the location-time
information in the query serves as the quasi-identifier. In order to protect a user’s
location privacy using k-anonymity, each of her queries must be indistinguishable
from those of at least k−1 other users. To this end, first, the pseudonyms of these k
users are removed from their queries. Next, the location-time pair in their queries
is obfuscated to the same location-area and time-window, named cloaking region,
large enough to contain the users’ actual locations. To illustrate the concept let us
consider the same example as in the previous section (also shown in Fig. 6.5(a)).
In order to protect her privacy, instead of sending her location along with a query,
the user can send a region containing three other users (as depicted in Fig 6.5(b))
such that the adversary is uncertain about who is the query issuer.

Location Based

Service

Location

Political party 

headquarters

(a)

Location Based

Service

Location

Political party 

headquarters

Park

Shop

Bar

(b)

Figure 6.5: Cloaking: a 4-anonymous query. (This image was created using http:
//maps.google.com/.)

The k-anonymity scheme for location privacy has become very popular, mainly due
to its simplicity. A large body of research has focused on increasing the efficiency
of k-anonymity schemes and reducing the cost of query obfuscation [19, 117, 118,
155, 191, 261, 284], extending the obfuscation method to protect traces [31], or
adapting the architecture presented in [130] to different scenarios [233,293]. Most
of these papers take for granted the location-privacy properties enunciated in [130]
and focus on improving the quality of service.

In [248] we analyze the effectiveness of k-anonymous cloaking regions for
protecting the location privacy of users. We show that there exists a common
misunderstanding in the literature, namely a confusion between query anonymity
and location privacy. The former refers to the decoupling of a query and the
identity of its sender, whereas the latter aims at preventing the adversary from
learning the physical location of users. We have shown that by users cloaking a
query can be k-anonymous, but their location privacy is not necessarily protected.

http://maps.google.com/
http://maps.google.com/
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Cloaking regions may not be enough to protect location privacy. If the k-
anonymous region contains only one point of interest (e.g., a bar, a clinic, etc.)
then an attacker can still infer the destination of the user. Bellavista et al. [24]
propose to create cloaking regions based on Points Of Interest (POI), rather than
on other users’ positions of the system. The idea is to base the granularity of
the region on the number of POIs inside it. The larger the number of POIs the
stronger the privacy guarantees as there is more uncertainty as to which POI is
the destination of the user.

An alternative scheme was proposed by Ardagna et al. [10] in which circular
cloaking regions are obfuscated by enlarging the radius, shifting the center, or
reducing the radius. This way users can adjust their level of privacy depending on
their preferences and the application context.

6.5 Hiding events

There are applications, e.g., traffic monitoring, in which users are forced to disclose
their accurate positions over time in exchange for a service. The techniques
described in the two last sections are not suitable for these cases. Dummy locations
or obfuscated positions would bias the statistics computed at the server defeating
the purpose of the application. Further, the accuracy of the released samples
enables tracking and re-identification (see Sect. 6.2) discouraging anonymization
as a standalone solution to protect privacy.

An alternative is to not only to anonymize the location samples but also remove
a subset of them before they are transferred to the server in charge of computing
statistics. Two schemes have been proposed that follow this approach, both in a
centralized [143, 144] and a distributed [142] architecture. The idea is to remove
the location samples in a “clever” manner, such that no trajectory can be recovered
from the data. As an example, Hoh et al. suggest in [143, 144] to use Shannon’s
entropy [244] to measure the uncertainty of the adversary when linking location
samples. The samples are released only if this uncertainty is above a threshold.

However, hiding some locations is not always desirable. For example in pay-as
you-drive applications, such as Electronic Toll Pricing or personalized insurance
policies (explained in more detail in the next chapter). In these applications the
service provider charges users depending on where and when they drive. For this
purpose vehicles carry an On-Board Unit (OBU) that collects the position of the
vehicle over time and relays it to the service provider that computes the users’
fee [53, 54, 94]. In order to compute this fee the full location record is needed.
Therefore, locations cannot be removed from the trace before this computation
takes place. A solution to this problem is to allow clients to compute their own
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fees while hiding the location traces from the provider in such a way that the
provider is convinced that the computation was performed correctly.

A number of papers have focused on the design of secure multi-party protocols
between the provider and the clients that allow the provider to compute the total
fee and detect misbehavior while protecting location privacy. Solutions proposed
in [35, 36, 223] resort to general reductions for secure multi-party computation
and are very inefficient. A more efficient protocol, VPriv, was proposed in [220].
The dea consists in drivers sending the location data sliced into segments to the
provider, in such a way that it is not possible for the latter to link segments
belonging to the same client. The provider calculates the subfees of all segments
and returns them to all the clients. Each client uses this information to compute
her total fee and, without disclosing any location data, proves to the provider that
the total fee is computed correctly, i.e., only using the subfees that correspond to
the location data input by this particular client. Moreover, in order to prevent
malicious users from spoofing the GPS signal to simulate cheaper trips, VPriv
has an out-of-band enforcement mechanism. This mechanism is based on the use
of random spot checks that demonstrate that a vehicle has been at a location
at a time (e.g., a photograph taken by a road-side radar). Given this proof, the
provider challenges the client to prove that its fee calculation includes the location
where the vehicle was spotted.

The protocol proposed in [220] has several practical drawbacks. First, to provide
unlinkability of segments it requires vehicles to send anonymous messages to the
server (e.g., by using Tor [93]) imposing high additional costs to the system.
Second, their protocol only avoids leaking any additional information beyond what
can be deduced from the anonymized database. As the database contains path
segments, the provider could use tracking algorithms to recover paths followed
by the drivers [131, 143, 167] and infer further information about them. Third,
the scalability of the system is limited by the complexity of the protocol on the
client side, as it depends on the number of drivers in the system. Practical
implementations require simplifications such as partitioning the set of vehicles
into smaller groups, thus reducing the anonymity set of the drivers. Fourth, VPriv
only uses spot checks to verify correctness of the location, and thus needs an extra
protocol to verify the correct pricing of segments. This extra protocol produces an
overhead both in terms of computation and communication complexity. Finally,
users are required to have a device to carry out the client-side application (e.g.,
a smart phone or a home personal computer) and a mechanism to transfer the
location data from the OBU to this device is needed.

In the next chapter we present a solution, PrETP, that does not require messages
between the client and the provider to be anonymous as the computation of the
fee is made locally and no location data is sent to the provider. Thus, no database
of location data is created and we do not need to rely on database anonymization
techniques to ensure users’ privacy. Further, the client’s operations depend only
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on the data it collects, independently of the number of vehicles in the system.
Contrary to VPriv we leverage the information in spot checks to not only check
that clients employ correct location data but also to check that the price paid
is correct according to these data, eliminating the need for an extra protocol
that makes this verification. Finally, our protocol can be integrated into a stand-
alone device without the need of external devices to carry out the cryptographic
protocols.

A protocol that employs spot checks to verify both correctness of the location and
of the fee calculation is due to de Jonge and Jacobs [80]. In this solution, clients
commit to segments of location data and its corresponding subfees when reporting
the total fee to the provider. They employ hash functions as commitments. Upon
being challenged to ratify the information in the spot check, clients must provide
the hash pre-image of the corresponding segment, and demonstrate that indeed
the location was used to compute the final fee.

The de Jonge and Jacobs’ protocol is limited by the fact that using hash-based
commitments one cannot prove that the commitments to the subfees add to the
total fee. As solution, they propose that the client also commits to the subfees
corresponding to bigger time intervals following a tree structure. Each tax period is
divided into months, each month is divided into weeks, and so forth, and subfees
for each month, week, day,. . . are calculated and committed. Then, instead of
asking the client to open only one commitment containing the instant specified
in the proof, the provider asks the client to open all the commitments in the tree
that include that instant. This indeed proves that the sum is correct at the cost
of revealing much more information to the provider.

PrETP avoids this information leakage. The reason is that, in our scheme,
commitments are homomorphic and thus allow the provider to check that the
commitments to the subfees add to the total fee without additional data. The
use of homomorphic commitments was also proposed and briefly sketched in [80].
However, their scheme does not prevent the client from committing to a “negative”
price, which would give a malicious client the possibility of reducing the final fee by
sending only one wrong commitment. Given the amount of commitments sent, this
“negative” commitment has an overwhelming probability of not being detected by
the spot checks.

The solutions we have so far described are adequate for applications in which the
service depends on the processing of large amounts of data (either at the client,
at the service provider, or at both). If the number of computations required is
small, e.g., querying a database for the nearest restaurant to the current location of
the user instead of computing a fee over the whole vehicle’s trajectory, the client
can resort to Private Information Retrieval [50] to query the service provider’s
database without revealing her position. Schemes that follow this approach [120,
137,162,210,292] do not suffer from the privacy vulnerabilities of obfuscation-based
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and anonymity-based solution, but incur higher communication and computation
costs. Other cryptographic techniques, such as oblivious transfer [222], have also
been suggested to hide users’ positions [166].





Chapter 7

Privacy-friendly
pay-as-you-drive applications

7.1 Introduction

Vehicular communications are viewed by governments and industry as a perfect
tool to support new services. In recent years we have witnessed the appearance
in many countries of applications such as electronic toll collection [53, 54,
94], automated traffic law enforcement [110, 211], commercial location-based
systems [235], personalized vehicle insurances [208], etc.

In this chapter we focus on what are known as Pay-As-You-Drive applications.
In these applications customers are charged depending on the roads they use and
at what time they drive instead of a fixed monthly or yearly fee. That is, a
personalized fee is computed on the driving log according to a policy defined by
the service provider. This policy lays out the exact fares for driving depending on
the type of road, time of day, etc. In particular, we study two very similar pay-as-
you-drive applications: Pay-As-You-Drive Insurance (PAYD) and Electronic Toll
Pricing (ETP).

Insurance represents a large fraction of the cost of owning a car. In order to
lower costs for both owners and insurers, insurance companies have developed
pay-as-you-drive (PAYD) schemes. In contrast to the current pay-by-the-year
policy, customers are charged depending on their driving habits. In PAYD, the
insurance fees applied to each user are fairer than the ones in the pay-by-the-year
scheme, as customers are only charged for their actual road usage. Customers
can reduce their monthly bill by choosing cheap itineraries or by just not using
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their car. This, in turn, would make vehicle insurance affordable for lower-income
car users (e.g., young people), for people that user their car occasionally, or for
people who wish to have a second vehicle. Besides, PAYD policies can be socially
beneficial by encouraging responsible driving, for instance, discouraging youngsters
from driving at night. Due to all these advantages, PAYD insurance policies are
supported by motorist associations like the National Motorist Association [13] and
the American Automobile Association [12]; and they are being widely implemented
by insurance companies all over the world like Uniqa Group [272] (Austria), Hollard
Insurance [150] (South Africa), MAPFRE [182] (Spain) or Aioi [6] (Japan), among
others.

A similar concept can be applied to road taxes. Currently, citizens are charged
a flat fee. In Electronic Toll Pricing, on the contrary, ad hoc fees are calculated
for each citizen, according to the distance covered and the kind of road used,
among others. Studies [157, 175, 291] show that ETP brings benefits to citizens
and governments. The former pay only for their actual road use, while the latter
can improve road mobility by applying “congestion pricing.” This strategy assigns
prices to roads depending on their traffic density such that driving in congested
roads is more expensive. This in turn will encourage users to search for alternative
routes (or even avoid using their vehicles) thus reducing congestion. The European
Commission, through the European Electronic Toll Service (EETS) decision [54,94]
(and also some states in the United States [53]) are currently promoting Electronic
Toll Pricing.

In order to charge clients depending on their road usage, location information
must be used. For this purpose, in the pay-as-you-drive architectures proposed
so far, both for ETP [53,54,94] and for PAYD insurance [208,256], vehicles carry
an On-Board Unit (OBU) that collects the position of the vehicle over time (e.g.,
with a GPS receiver). These data are in turn used to compute the final fee at the
end of the billing period. A straightforward implementation of a pay-as-you-drive
system is one in which the computation of this fee is performed by the service
provider. In this approach the OBU acts as a mere relay that collects location
data (and, depending on the policy, other information related to the vehicle) and
sends it to a back end server. This server is in charge of processing the data to
obtain a final premium, which is then sent to the client.

A centralized design can be advantageous in some ways, nonetheless there is a
downside for privacy. In this design it is usually argued that the users’ privacy
is preserved if their private information is protected from eavesdroppers and
communication providers (e.g., by means of encryption). Indeed, access to the
information in the messages can be hidden from these entities. Yet, the traffic
data available to them (e.g., the location where communication takes place) can
be used to infer private information (as we have discussed in Chapter 6). Even
if the traces are anonymized, the driver’s identity can be inferred from the traces
themselves [127,167].
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Further, in a centralized architecture the service provider must be trusted not
to abuse the collected data (e.g., Data Protection legislation [95] in Europe).
In general, one of the aims of this legislation is to limit the processing of the
collected data to the one necessary for the purpose of the service (in this case
billing users according to their road usage). However, a malicious provider with
access to users’ fine grained location data, as continuous GPS collection produces,
is left in a privileged position to make inferences of what is considered highly
sensitive information about customers as we discussed in the previous chapter.
This information is highly valuable for the service provider when it comes to
obtain a business advantage, as it can be used to profile users and offer them
better services. Further, the centralization of the service results in the database
being a single point of failure, opening the door to accidental leaks [177] or insiders’
leaks (e.g., US secret documents published by Wikileaks [2]). Finally, the collection
of these data introduces potential privacy risks as massive sales of data [264]; or
abuse by state agencies [108,251,252].

The first contribution in this chapter is PriPAYD, a privacy-friendly scheme for
pay-as-you-drive insurance, where the premium is calculated by the OBU, and only
the minimum information necessary to bill the client is received by the insurance
company. We provide an overview of our architecture, in which well-understood
techniques are combined to give assurance to the user that the insurance company
does not get more information than necessary, while granting her (or a judge in
case of dispute) access to all the data. Our techniques also permit easy policy
management and policy enforcement by the insurer.

Local processing of location data gives strong privacy guarantees because no
private data is transferred to the provider. Yet, it has a downside. When the
provider receives the raw location data, data mining can be used to find anomalies
in the traces and combat fraud. This verification becomes more problematic when
no location is revealed by the OBU.

The second contribution in this chapter is PrETP, a privacy-preserving ETP
system in which, without making impractical assumptions, On-Board Units
i) compute the fee locally, and ii) prove to the service provider that they
carry out correct computations while revealing the minimum amount of location
data. PrETP employs a cryptographic protocol, Optimistic Payment (OP), in
which OBUs send commitments [40] to the locations and prices used in the fee
computation to the service provider along with the final fee. These commitments
do not reveal information on the locations or prices. Moreover, they ensure that
drivers cannot claim that they were at any other location, nor used different prices,
from the ones used to create the commitments.

In order to check the veracity of the committed values, we rely on the service
provider having access to evidence (e.g., a photograph taken by a road-side radar
or a toll gate) that a car was at a specific location at a particular time, as previously
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suggested in [80, 220]. Upon being challenged with this evidence, the OBU must
respond with some information proving that the location point where the vehicle
was spotted was correctly used in the calculation of the final fee. To this end, it
opens the commitment containing this location, thus revealing only the location
data and the price for the instant specified in the evidence provided by the service
provider. This information suffices for the provider to verify that correct input data
(location and price) was used to calculate the fee. We suggest further techniques
for fraud detection when such evidence is not available, as is the case of a insurance
company, in [267].

Before diving into the details of the schemes it is important to delineate our threat
model. Our goal is to provide a comparable level of privacy protection comparable
to what road users already expect today. We assume that any adversary with
extensive physical control of the car will be able to track it (by simply installing
their own tracking system). Our objective is to limit casual and/or deliberate
surveillance by the service provider or other third parties with limited physical
access to the car, as well as preventing the aggregation of vast amounts of location
information in centralized databases. Fine-grained location/timing information
should be hard to obtain for any third party except the user, who has the right
to audit the bill and ensure its fairness. In summary, we are satisfied that no
systemic surveillance risk is introduced beyond what is already possible today.

The results presented in this chapter have been extracted from our original
articles: PriPAYD: Privacy Friendly Pay-As-You-Drive Insurance published at
the Workshop on Privacy in the Electronic Society 2007 [268], its extended
version PriPAYD: Privacy Friendly Pay-As-You-Drive Insurance published at the
IEEE Transactions on Dependable and Secure Computing [267], PrETP: Privacy-
Preserving Electronic Toll Pricing published at the USENIX Security Symposium
2010 [17], and Engineering Privacy by Design published at the 4th International
Conference on Computers, Privacy & Data Protection 2011 [133].

Chapter outline

The rest of this chapter is organized as follows: we present PriPAYD and analyze
its security in Sect. 7.2. Section 7.3 introduces PrETP, offers a high level
description of our scheme and its cryptographic components, and presents our
prototype implementation and its evaluation. We discuss some practical issues
and summarize the steps taken while designing our schemes in Sect. 7.4. Finally,
we conclude in Sect. 7.5.
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7.2 PriPAYD: Privacy-friendly pay-as-you-drive insur-
ance

Pay-as-you-drive policies are offered by many insurance companies around the
world. This companies gather location data in a variety of ways. We can
distinguish three types of policies, based on how privacy-invasive they are. Some
of them do not imply any breach of privacy since the amount of kilometers
traveled (no location information) needed to compute the premium, is provided
only once a year from a fixed location. The second type, despite not recording
location information, collects data in geographically distributed points, allowing
the insurance company to estimate the movements of the vehicle. Finally, the
last model collects GPS data to track all vehicle’s location over time. A thorough
survey of PAYD implementations belonging to the three categories can be found
in [267,268].

In order to have a reference point against which we can compare PriPAY D we
consider the straightforward implementation described in the previous section in
which the raw location data is relayed to the provider. This is one of the most
privacy-invasive PAYD models that is available today. It works as follows: as the
car is being driven, GPS data is collected by the OBU. All these data is sent to
the insurance company, who computes the client’s premium and send the bill by
traditional post, together with a user-friendly summary of the customer’s GPS
data (see Fig. 7.1(a)). This is very close to the services offered by Octo [208], or
Coverbox [57]. The model is a generalization of all the other PAYD approaches,
meaning that it can accommodate less privacy-invasive policies (such as those that
only take into account yearly odometer readings).

It is important to note that in this model the correctness of the billing depends
on the OBU. For this reason, both the customer and the insurer have stakes in
its correct functioning, as well as incentives to game it to their advantage. To
prevent malicious behavior in practice, the OBUs are provided by the insurance
company and should be protected using tamper-evidence and tamper-resistance
techniques [8] making it hard for the car user to alter their behavior. Moreover,
the car user receives a detailed bill that allows her to audit the vehicle’s log and
legally challenge the premium if they do not correspond with the actual routes the
user had driven.

We present the PriPAYD architecture in Fig. 7.1(b). This architecture follows
closely the straightforward implementation, with the exception that the raw and
detailed GPS data is never provided to the service provider, or any other third
party. The main advantage of PriPAYD, is that the insurance company receives
only the billing data, but not the exact vehicle locations (thus cannot infer the
users private information) while being sure that the data received is correct. The
client can check that only the final premium is being transferred to the insurance
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company, and the raw data is available for the client to check the correctness of
the bill in case of dispute between user and insurer.

Our design safeguards simultaneously the privacy of the customer and the integrity
of the billing information. Yet, similarly to previous PAYD schemes, some attacks
against availability cannot be prevented while using cheap, off-the-shelf, technology
such as GPS and GSM. Our design attempts to detect that such attacks are
taking place, but how they are dealt with has to be the subject of agreement
between the insurance company and the customer, and appropriate actions or
penalties that deal with them must be codified in the contract. Our guiding design
philosophy is that the privacy-friendly mechanisms should introduce no additional
vulnerabilities in PAYD with respect to the straightforward implementation.
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Figure 7.1: Straightforward PAYD scheme (a) and Privacy-friendly PAYD model
(b).

The key difference between PriPAYD and the straightforward implementation is
that the processing of GPS data to obtain the premium data are performed in the
OBU. We consider that the data involved in this calculation are the number of
kilometers traveled, the hour of the day, the road the user has chosen, and the
rate per kilometer depending on the hour and road type (an example policy used
by Octo Telematics [208]). To perform the conversion, maps have to be available
to the OBU, such that it can match the GPS coordinates with road types. These
operations are already supported by any off-the-shelf commercial GPS navigation
system or SmartPhone.

The rates imposed by the insurer and other policy parameters can be initialized
in the OBU at the time of installation. This information can be updated later in
a trustworthy manner through signed updates. For the purposes of this work we
consider that policies are uniquely identified by an identifier IDpolicy. A similar
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mechanism can be used to perform software upgrades (uploading new firmware to
the OBU) with identifier IDcode.

Once the premium for a period of time is calculated, the amount to be paid, along
with the current policy, IDpolicy, and code version, IDcode, is sent in a secure way
to the insurance company. This can be done via GPRS, or even the cheaper SMS
services (as currently done by MAPFRE [182], a Spanish insurance company). A
timestamp TS is included to prevent reply attacks, in which a client could try to
re-submit a message with a small premium later in time. The data is signed by
the OBU using a secret (symmetric) key, and encrypted under the public key of
the insurance company.

To ensure that the OBU is not acting maliciously in favor of the insurance company,
we need to allow a car user or owner to audit the billing. For this purpose, we
propose the use of an off-the-shelf USB memory stick. The data is recorded in
an encrypted way on this token so that only the customer can access it, and it
is signed by the OBU to ensure its authenticity and integrity, and such that it
can be used as evidence if there is a dispute. The symmetric encryption key is
generated by the OBU and provided to the customer in two shares (that can be
used to reconstruct the key): one written on the USB stick and the other relayed
through the insurance company and delivered by post with the bill. To ensure
forward privacy a mechanism that allows the encryption key to be reset, such as
pushing a button on the box for some time, can be put integrated in the OBU.
We note that certification is needed to ensure that the box properly resets this
key and does not keep old information that may lead to a privacy breach in the
future (e.g., when the OBU is returned to the insurance company at the end of
the contract). See Sect. 7.4.1 for a more detailed discussion on the certification
process.

7.2.1 The security of PriPAYD

At the heart of the PriPAYD security policy we have a two level Bell-La Padula
policy [23]: the confidential (high) level contains the sensors and records of the
vehicle position and at the restricted (low) level we have the billing information.
The only party that is authorized to access the confidential information is
the customer, while the insurance company is only authorized to access the
billing information. (Note that there is no restriction in the insurance company
sending information up to confidential, i.e. policy or software updates.) In this
context transferring billing information to the insurance company is an act of
declassification, since the data at high level is sanitized (only the amount of the
final premium is sent) to not leak any information, and sent to low. The provision
of the detailed location records by the customer, as part of a dispute, is an even
more radical act of declassification.



120 PRIVACY-FRIENDLY PAY-AS-YOU-DRIVE APPLICATIONS

Three key security properties are required from the channel that transfers the
billing data from the vehicle to the insurance company:

Authenticity. Only the OBU can produce billing data that is accepted as genuine
by the insurer or any other third party.

Confidentiality. Only the insurer and the car owner should be able to read the
billing data transmitted.

Privacy. The customer should be able to verify that only the billing data is sent
to the insurer.

Authenticity and Confidentiality. A public key signature scheme [186] can
be used to certify that the data has been generated and sent by the OBU. As
in the straightforward implementation, the signature key in the OBU is difficult
to extract due to a custom tamper resistant solution [7] or established smart-
card [197] technology. Public key encryption [186] can be used to encrypt the
billing information (Data) under the public key of the insurer. There is no key
distribution problem since the fingerprints of all public keys are seeded in the box
when the device is fitted.

We denote a message sent by the OBU to the insurance company,

M = EncInsurer Key(D,SigBox Key(D)) . (7.1)

In Eq. 7.1 D = (Data, IDpolicy, IDcode, TS = timestamp), where IDpolicy and
IDcode indicate the policy and the firmware used in the computation of Data. We
note that the Privacy property, that allows the user to verify that only billing data
is transferred, can also be enforced. Any signature scheme (SigBox Key(·)) as well
as public key encryption scheme (EncInsurer Key(·)) are verifiable: the customer can
be convinced that the encryption is correct by being given the randomness used
to perform the encryption operation (in the detailed audit log). The signature
can then be verified to ensure it is correctly computed on D. Verifying these only
requires the public key of the insurance and the verification key of the OBU, that
are public.

Privacy. The task of verifying that no other information is contained in the
messages is made difficult by the existence of subliminal channels [9, 249] (or
covert channels) in signature schemes with the potential to leak information from
a maliciously programmed OBU back to the insurance company. Subliminal
channels, as well as techniques to limit their capacity, have been extensively studied
in the multi-level secure systems literature. PriPAYD implementations should
either use signature and encryption schemes that are free from such channels, or
estimate their capacity and keep it under a certain threshold [122]. For instance,
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the client should have control over the source that produced the randomness used
in the encryption such that no message can be embedded on it (see Sect. 7.4.1).
A further security measure would be to let the user choose when and where
does the OBU communicate with the insurance company. This measure avoids
covert messages hidden in the time or location where the message was sent and
has a positive influence in the privacy-preserving properties of the system (see
Sect. 7.4.1). Other ways to give the user full control over the data transmitted
would be to use signcryption [164] or a deterministic authenticated encryption
scheme [229].

Privacy-friendly auditing. A detailed log of all the vehicle’s movements
(consisting of location and time) and other audit information can be extracted
from the OBU (signed to ensure its authenticity and that the client cannot tamper
with the data), by plugging a portable device such as a USB stick on it. However,
it should only be accessible to the customer. This is not a trivial requirement to
fulfill since the OBU and the customer need to share a symmetric key, unknown
to any third party (including the insurance company). We solve the key exchange
problem by having the OBU generate the symmetric key and deriving two shares
of it (using a secure secret sharing scheme [243], for instance Ks = Ks1 ⊕ Ks2 ,
where ⊕ denotes the exclusive or operation). We note that if Ks is not refreshed
often enough the amount of data encrypted may jeopardize the security of the
system [32]. Thus, we suggest to use a regularly updated session key K ′ to encrypt
the location data, and only encrypt this key under Ks.

It may be the case (e.g. if the insurance and the mechanic collide) that both shares
of the key are stolen, in an attempt to compromise the privacy of the customer.
To avoid this, any time the OBU is asked to output the encryption key, it creates
a fresh pair of shares to be used to encrypt any further data guaranteeing forward
security. A user worried that her keys were otherwise compromised can also force
the re-initialization of the system. Upon re-initialization the OBU records a fresh
key share Ks1 on the USB stick, and sends the second fresh share Ks2 to the
insurance company. To ensure forward secrecy, the old keys and past audit data
are securely deleted from the box (see Sect. 7.4.1).

Detection of the OBU’s inputs tampering. Even if the insurance company
can verify the authenticity of the data and can trust the OBU for correctness, once
the box is installed in the car, the company has no control over its environment.
A malicious client may try to take advantage of the situation and tamper with the
incoming and/or outgoing signals (GPS, GSM, etc.) to reduce the final premium.

Given the difficulty of preventing attacks on technologies such as GSM or GPS, our
approach consists in focusing on the detection of such attempts. A solution based
on the availability of evidence that a vehicle was at a given location (e.g. photo
taken by a road-side radar) is explained in Sect. 7.3. For the sake of brevity in
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this thesis we omit the description of technical solutions for the cases in which
this evidence is not accessible. For further details we refer the reader to [267]. We
note that these threats are common for any PAYD model using GPS and GSM
technologies, hence the proposed countermeasures should not increase the costs of
deploying PriPAYD with respect to the straightforward implementation.

7.3 PrETP: privacy-preserving Electronic Toll Pricing

In the previous section we described a system for pay-as-you-drive insurance in
which customers’ privacy is guaranteed. To this end, the design choice is to ensure
that fine grained location data never leaves the domain of the user. This system
strongly relies on tamper resistance for the insurer to believe in the correctness of
the computations carried out by the OBU.

In this section we present PrETP, a system based on the same design principles as
PriPAYD, that uses cryptographic commitments to prevent fraud. We propose a
protocol, Optimistic Payment OP, that makes use of homomorphic commitments
which allow the OBU to prove remotely to the service provider that it carries out
correct computations, thus relaxing the tampering resistance requirements.

PrETP is optimized for Electronic Toll Pricing, in which we recall citizens are
taxed ad hoc fees according to their road usage. The architecture and technologies
employed by PrETP are those recommended at European level [54,94], although it
could be adapted to other systems, such as [53]. The system model, illustrated in
Fig. 7.2 (left), comprises three entities: an On-Board Unit (OBU), a Toll Service
Provider (TSP), and a Toll Charger (TC). The OBU is an electronic device
installed in vehicles subscribed to an ETP service, and it is in charge of collecting
GPS data and calculating the fee at the end of each tax period. The TSP is
the entity that offers the ETP service. It is responsible for providing vehicles
with OBUs and monitor their performance and integrity. Finally, the TC is the
organization (either public or private) that levies tolls for the use of roads and
defines what is considered the correct use of the system. In agreement with the
TC, the TSP establishes prices for the road usage. Such pricing policy can depend
on the type of road (e.g., highways vs. secondary roads), its traffic density, or the
time of the day (e.g., rush hours vs. the middle of the night). Additionally, prices
can also depend on attributes of the vehicle or of the driver (e.g., low-pollution
vehicles, or discounts for retired people).

While the vehicle is driving, the OBU collects the location of the vehicle and
calculates the subfees corresponding the trajectories it follows according to the
TSP pricing policy. At the end of each tax period, the OBU aggregates all the
subfees to obtain a total fee and sends it to the TSP. This process safeguards the
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Figure 7.2: Entities in our Electronic Toll Pricing architecture (left). Enforcement
spot-check model (right).

privacy of the driver from the TSP, the TC, or any other third party eavesdropping
the communications, as no location data leaves the OBU.

Besides preserving users’ privacy, the system has to protect the interests of both the
TC and the TSP, and provide means to prevent users from committing fraud. Our
threat model considers malicious drivers capable of tampering with the internal
functionality of the OBU, as well as with any of its interfaces. Under these
considerations, we define the security goals of our system as the detection of:

Vehicles with inactive OBUs. Drivers should not be able to shut down their
OBUs at will to pretend that they drove less.

OBUs reporting false GPS location data. Drivers should not be able to
spoof the GPS signal and simulate a cheaper route than the actual roads on which
they are driving.

OBUs using incorrect road prices. Drivers should not be able to assign
arbitrary prices to the roads on which they are driving, to lower the final fee. If
the policy assigns a price p to a road, drivers cannot use a price p′ < p for this
road.

OBUs reporting false final fees. Drivers should not be able to report an
arbitrary fee, but only the result from the correct calculations in the OBU. If at
the end of the tax period the final fee corresponding to the GPS location data
collected by the OBU is fee, a driver cannot claim that she must pay fee′ < fee.

Focusing on the detection of tampering rather that at its prevention allows us
to consider a very simple OBU with no trusted components. This has two main
advantages: first, reducing the trusted core reduces the production costs of the
device. Second, reducing the trusted core to the minimum decreases the number of
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system components in which the security and privacy guarantees rely, effectively
diminishing the risk of security and privacy violations.

In order to perform tamper detection, reliable information about the vehicle’s
whereabouts is required. We consider that the TC can perform random “spot
checks” that are recorded as evidence of the time and location where a vehicle has
been seen. Such spot checks can be carried out using an automatic license plate
reader, a police control, or even challenging the OBUs using Dedicated Short-
Range Communications (DSRC) [54]. Without loss of generality in this work
we assume that the evidence is gathered using an automatic license plate reader.
This evidence can be used to challenge the OBU to verify its functioning. In
order to be able to respond to this challenge while revealing as least location data
as possible, the OBU slices the recorded trajectories in segments and computes
their corresponding subfees. The sum of these subfees adds up to the final fee
transmitted to the TSP. For each segment, the TSP receives a payment tuple that
consists of a commitment to location data and time, a homomorphic commitment
to the subfee, and a proof that the committed subfee is computed according to
the policy. These payment tuples, explained in detail in the next section, bind the
reported final fee to the committed values such that the OBU cannot claim having
used other locations or prices in its computations. Furthermore, they are signed
by the OBU to prevent a malicious TSP from framing an honest driver.

The verification process, depicted in Fig. 7.2 (right), is initiated when the TC
gathers evidence about the location of a vehicle at a certain point in time. This
information is forwarded to the TSP, along with a request to check that users
and OBUs are not misbehaving (i.e., that the security goals enumerated above are
met). To this end, the TSP challenges the OBU to open a commitment containing
the location and time appearing in the evidence gathered by the TC. The TSP
verifies that both challenge and response match, for instance as explained in [220],
and reports to the TC whether or the OBU is honest. We assume that the TC
(e.g., the government in the EETS architecture) is honest and does not use fake
evidence to challenge OBUs.

7.3.1 Optimistic Payment

In this section we sketch the technical concepts necessary to understand the
construction of Optimistic Payment, and we outline our efficient implementation
of the protocol. For a comprehensive and more formal description of OP, we refer
the reader to the original paper [17].
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Technical preliminaries

Signature Schemes. A signature scheme consists of the algorithms SigKeygen,
SigSign and SigVerify. SigKeygen outputs a secret key sk and a public key pk.
SigSign(sk, x) outputs a signature Sigsk(x) of message x, that we abbreviate as sx
in the reminder of the chapter for the sake of brevity. SigVerify(pk, x, sx) outputs
accept if sx is a valid signature of x and reject otherwise. A signature scheme must
be correct and unforgeable [126]. Informally speaking, correctness implies that the
SigVerify algorithm always accepts an honestly generated signature. Unforgeability
means that no p.p.t. (probabilistic polynomial time) adversary should be able
to output a message-signature pair (x, sx) unless he has previously obtained a
signature on x.

Commitment schemes. A non-interactive commitment scheme consists of the
algorithms ComSetup, Commit and Open. ComSetup(1k) generates the parameters
of the commitment scheme paramsCom. Commit(paramsCom, x) outputs a
commitment cx to x and auxiliary information openx. A commitment is opened by
revealing (x, openx) and checking whether Open(paramsCom, cx, x, openx) is true.
A commitment scheme has a hiding property and a binding property. Informally
speaking, the hiding property ensures that a commitment cx to x does not reveal
any information about x, whereas the binding property ensures that cx cannot be
opened to another value x′. Given two commitments cx1 and cx2 with openings
(x1, openx1) and (x2, openx2) respectively, the additively homomorphic property
ensures that, if c = cx1 · cx2 , then Open(paramsCom, c, x1 + x2, openx1 + openx2).

Proofs of Knowledge. A zero-knowledge proof of knowledge is a two-party
protocol between a prover and a verifier. The prover proves to the verifier
knowledge of some secret values that fulfill some statement without disclosing
the secret values to the verifier. For instance, let x be the secret key of a public
key y = gx, and let the prover know (x, g, y), while the verifier only knows (g, y).
By means of a proof of knowledge, the prover can convince the verifier that he
knows x such that y = gx, without revealing any information about x.

Intuition behind our construction

We consider a setting with the entities presented in the beginning of Sect. 7.3.
During each tax period tag, the OBU slices the trajectories of the driver
in segments formed by a structure containing GPS location data and time.
Additionally, this data structure can contain information about any other
parameter that influences the price to be paid for driving on the segment. We
represent this data structure as a tuple (loc, time). The TSP establishes a function
f : (loc, time) → Υ that maps every possible tuple (loc, time) to a price p ∈ Υ.
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For each segment, the OBU calculates f on input (loc, time) to get a price p,
and computes a payment tuple that consists of a randomized hash h on the data
structure (loc, time), a homomorphic commitment cp to its price, and a proof π
that the committed price belongs to Υ. The randomization of the hash is needed
in order to prevent dictionary attacks to recover (loc, time).

At the end of the tax period, the OBU and the TSP engage in a two-party protocol.
The OBU adds the fees of all the segments to obtain a total fee fee. The OBU adds
all the openings openp to obtain an opening openfee. Next, the OBU composes a
payment message m that consists of (tag, fee, openfee) and all the payment tuples
(h, cp, π). The OBU signs m and sends both the message m and its signature
sm to the TSP. The TSP verifies the signature and, for each payment tuple,
verifies the proof π. Then the TSP, by using the homomorphic property of the
commitment scheme, adds the commitments cp of all the payment tuples to obtain
a commitment c′fee, and checks that (fee, openfee) is a valid opening for c′fee.

When the TC sends the TSP a proof φ that a car was at some position at a given
time, the TSP relays φ to the OBU. The OBU first verifies that the request is
signed by the TC, and then it searches for a payment tuple (h, cp, π) for which
µ(φ, (loc, time)) outputs accept. Here, µ : (φ, (loc, time)) → {accept, reject} is
a function established by the TSP that outputs accept when the information in
φ and in (loc, time) are similar in accordance with some metric, such as the one
proposed in [220]. Once the payment tuple is found, the OBU sends the number of
the tuple to the TSP together with the preimage (loc, time) of h and the opening
(p, openp) of cp. The TSP checks that (p, openp) is the valid opening of cp, that
(loc, time) is the preimage of h and that µ(φ, (loc, time)) outputs accept.

Intuitively, this protocol ensures the four security properties enunciated in the
previous section. Drivers cannot shut down their OBUs, nor report false GPS
data as they run the risk of not having committed to a segment containing the
(loc, time) in the challenge φ. We note that after sending (m, sm) to the TSP,
OBUs cannot claim that they were at any position (loc′, time′) different from the
ones used to compute the message m. Similarly, OBUs cannot use incorrect road
prices without being detected, as the TSP can check whether the correct price for a
segment (loc, time) was used once the commitments are opened. The homomorphic
property ensures that the reported final fee is not arbitrary, but the sum of all
the committed subfees. Moreover, by making the OBU prove that the committed
prices belong to the image of f , we avoid that a malicious OBU could decrease the
final fee by sending only one wrong commitment to a negative price in the payment
message, which would give it an overwhelming probability of not being detected by
the spot checks. Additionally, the fact that the OBU signs the payment message
m ensures that no malicious TSP can frame an OBU by modifying the received
commitments, and that a malicious OBU cannot plead innocent by invoking the
possibility of being framed by a malicious TSP. Similarly, the fact that the TC
signs the challenge φ prevents a malicious TSP sending fake proofs to the OBU,
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e.g. with the aim of learning its location. Finally, the privacy of the drivers is
preserved as the OBU does not need to disclose more location information than
that in the payment tuple that matches the proof φ (already known to TSP).

Efficient instantiation: high level specification

We now outline at high level our efficient instantiation of Optimistic Payment. We
employ the integer commitment scheme due to Damg̊ard and Fujisaki [59] and the
CL-RSA signature scheme proposed by Camenisch and Lysyanskaya [44]. Both
schemes use cryptographic keys based on special RSA modulus n of length ln. A
commitment cx to a value x is computed as cx = g0

xg1
openx (mod n), where the

opening openx is a random number of length ln and the bases (g0, g1) correspond
to the commitment public parameters. Given a public key pk = (n,R, S, Z), a
CL-RSA signature has the form (A, e, v), with lengths ln, le, and lv respectively,
such that Z ≡ AeRxSv(mod n). To prove that a price belongs to Υ, we use a
non-interactive proof of possession of a CL-RSA signature on the price. We also
employ a collision resistant hash function H : {0, 1}∗ → {0, 1}lc .

Initialization. The pricing policy f : (loc, time) → Υ, where each price p ∈
Υ has associated a valid CL-RSA signature (A, e, v) generated by the TSP, the
cryptographic key pair (pkOBU, skOBU), the public key of the TSP (n,R, S, Z), the
public key of TC, and the public parameters (g0, g1) of the commitment scheme
are stored on the OBU. Similarly, the TSP possesses its own secret key (skTSP)
and knows all the public keys in the system.

Tax period. Protocol 1 illustrates the calculations and interactions between the
OBU and the TSP under normal functioning during the tax period. We denote
the operations carried out by the OBU as Pay(), and the operations executed by
the TSP as VerifyPayment(). While driving, the OBU collects location data and
slices it in segments (loc, time) according to the policy. For each of the N collected
segments, the OBU generates a payment tuple (hk, cpk , πk). This iterative step is
broken down in lines 1 to 21 in Protocol 1. The most resource consuming operation
is the computation of πk, which proves the possession of a valid CL-RSA signature
on the price pk (lines 9 to 20). The length of the random values used in this step is
specified in the original paper [17]. At the end of the tax period the OBU generates
and signs the payment message m including the tag tag, the total fee, the opening
openfee, and all the payment tuples (hk, cpk , πk), lines 22 to 26. Finally it sends
(m, sm) to the TSP.

Upon reception of a payment message, the TSP executes the VerifyPayment()
algorithm. First the TSP verifies the signature sm using the OBU’s public key
pkOBU. Next, it proceeds to the verification of the proof πk included in each of
the N payment tuples contained in m, lines 12 to 22. In each iteration it performs
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Protocol 1 Protocol between OBU and TSP during taxing phase

OBU Pay() TSP VerifyPayment()

1: // Main loop
2: For all 1 ≤ k ≤ N tuples do:
3: pk = f(lock, timek)
4: // Hash computation
5: hk = H((lock, timek))
6: // Commitment computation
7: openpk ← {0, 1}ln
8: cpk = g0

pkg1
openpk (mod n)

9: // Proof computation
10: openw, w ← {0, 1}ln
11: Ã = Ag0

w (mod n) OBUverify(pkOBU,m, sm)
12: cw = g0

wg1
openw (mod n) // Main loop

13: rα ← {0, 1}lα For all 1 ≤ k ≤ N tuples do:
14: tcpk = g0

rpk g1
ropenpk (m, sm)

−−−−−−→
t′cpk

= cchpkg0
spk g1

sopenx

15: tZ = ÃreRrpkSrv (g−1
0 )rw·e t′Z = ZchÃseRspkSsv (1/g0)sw·e

16: tcw = grw0 g
ropenw
1 t′cw = cchw g0

swg1
sopenw

17: t = crew (g−1
0 )rw·e(g−1

1 )ropenw·e t′ = Csew (1/g0)sw·e(1/g1)sopenw·e

18: ch = H(β||tcpk ||tZ ||tcw ||t) ch′ = H(β||t′cpk ||t
′
Z ||t′cw ||t

′)
19: sα = rα − ch · α ch′

?= ch
20: πk = (Ã, cw, ch, sα) se ∈ {0, 1}le+lc+lz
21: End for spk ∈ {0, 1}lp+lc+lz

22: // Fee reporting End for
23: fee =

∑N
k=1 pk // Commitment validation

24: openfee =
∑N
k=1 openpk c′fee =

∏N
k=1 cpk

25: m = [tag, fee, openfee, (hk, cpk , πk)Nk=1] cfee = g0
feeg1

openfee (mod n)
26: sm = OBUsign(skOBU,m) cfee

?= c′fee

α ∈ {pk, openpk , e, v, w, openw, w · e, openw·e}
β = (n||g0||g1||Ã||R||S||g−1

0 ||g
−1
1 ||cpk ||Z||cw||1)

a series of modular exponentiations, and uses the intermediate results to compute
the hash ch′. Then, it checks whether ch′ is the same as the value ch contained
in πk. If this verification, together with the two range proofs in lines 20 and 21,
is successful, the TSP is convinced that all the prices pk used by the OBU are
indeed a valid image of f . Finally, the TSP validates the commitments cpk to
ensure that the aggregation of all subfees add up to the final fee (lines 24 to 26).
For this, it calculates c′fee as the product of all commitments cpk , and computes
the commitment cfee using the values fee and openfee provided by the OBU. If
both values are the same, the TSP is convinced that the final fee reported by the
OBU adds up to the sum of all subfees reported in the payment tuples.
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Proof Challenge. We denote as OBUopen() and Check() the algorithms carried
out by the OBU and the TSP, respectively, when the former is challenged with
φ. When running the OBUopen() algorithm, the OBU searches for the pre-image
(lock, timek) of a hash hk containing the location and time satisfying φ, and sends
this information to the service provider along with the price pk and the opening
openpk .

Upon reception of this message, the TSP executes the Check() algorithm. First,
it verifies whether the segment (lock, timek) actually contains the location in φ.
Then, it computes the value h′k = H(lock, timek) and checks whether the OBU
had committed to this value in one of the payment tuples reported during the
tax period. Lastly, the TSP uses openpk to open the commitment cpk and verifies
whether p′k = f(lock, timek) equals the price pk reported by the OBU during the
OBUopen() algorithm. If all verifications succeed, the TSP is convinced that the
location data used by the OBU in the fee calculation and the price assigned by
the OBU to the segment (lock, timek) are correct.

7.3.2 PrETP evaluation

In this section we evaluate the performance of PrETP. We start by describing
the test scenario and both our OBU and TSP prototypes. Next, we analyze the
performance of the prototypes for different configuration parameters. Finally, we
study the communication overhead in PrETP, and compare it to existing ETP
systems.

Test scenario

Policy model. The first step in the implementation of PrETP consists in
specifying a policy model in the form of the mapping function f : (loc, time)→ Υ.
We decide to follow the same criteria as currently existing ETP schemes [208],
i.e., road prices are determined by two parameters: type of road and time of the
day. More specifically, we define three categories of roads (‘highway’, ‘primary’,
and ‘others’) and three time slots during the day. For each of the possible nine
combinations we assign a price per kilometer p and we create a valid signature
(A, e, v) using the TSP’s secret key. We note that the choice of this policy is
arbitrary and that PrETP, as well as OP, can accommodate other price strategies.

Location data. We provide the OBU with a set of location data describing a real
trajectory of a vehicle . These data are obtained by driving with our prototype
for one hour in an urban area, covering a total distance of 24 kilometers. We note
that such dataset is sufficient to validate the performance of PrETP, since results
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for different driving scenarios (e.g., faster or slower) can easily be extrapolated
from the results presented in this section.

Parameters of the instantiation. The performance of OP depends directly on
the length of the protocol instantiation parameters, and in particular, on the size
of the cryptographic keys of the entities (ln). In our experiments we consider three
case studies: medium security (ln = 1024 bits), high security (ln = 1536 bits), and
very high security (ln = 2048 bits). The value lp is determined by the length of
the prices p, which in turn determines the value of le. Therefore, both lengths are
constant for all security cases. The value of lv varies depending on the value of
ln. Finally, the rest of parameters (lh, lr, lz, and lc) are set as the output length
of the chosen hash function primitive (see Sect. 7.3.2). These lengths determine
the size of the random numbers generated in line 13 in Protocol 1 (see [17] for a
detailed explanation). Table 7.1 summarizes the parameter lengths considered for
each security level.

Table 7.1: Length of the parameters (in bits)
Parameter ln le lv lp lr,lh,lz,lc
Normal Sec. 1 024 128 1 216 32 160
High Sec. 1 536 128 1 728 32 160
Very high Sec. 2 048 128 2 240 32 160

OBU Platform. In order to make our prototype as realistic as possible, we
implement PrETP using as starting point the embedded design described in [18],
which implements the PriPAYD protocols thus performs the conversion of raw
GPS data into a final fee internally. We extend and adapt this prototype with the
functionalities of OP to make it compatible with PrETP.

At high-level, the elements of our OBU prototype are: a processing unit, a GPS
receiver, a GSM modem, and an external memory module. We use as benchmark
the Keil MCB2388 evaluation board [178], which contains an NXP LPC2388 [205]
32-bit ARM7TDMI [11] microcontroller. This microcontroller implements a RISC
architecture, it runs at 72 MHz, and it offers 512 Kbytes of on-chip program
memory and 98 Kbytes of internal SRAM. As external memory, we use an off-the-
shelf 1 GByte SD Card connected to the microcontroller. Finally, we use the Telit
GM862-GPS [262] as both GPS receiver and GSM modem.

As our platform does not contain any cryptographic coprocessors, we implement
all functionalities exclusively in software. Note that although we could easily add
a hardware coprocessor (e.g., [206]) to the prototype in order to carry out the
most expensive cryptographic computations, we choose the option that minimizes
the production costs of the OBU. Besides, this approach allows us to identify the
bottlenecks in the protocol implementation, leaving the door open to hardware-
based improvements if needed.
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We have constructed a cryptographic library with the primitives required by our
instantiation of the OP protocol, namely: i) a modular exponentiation technique,
ii) a one-way hash function, and iii) a random number generator. For the first
primitive we use the ACL [20] library, a collection of arithmetic and modular
routines specially designed for ARM microcontrollers. As hash function we choose
RIPEMD-160 [96], with an output length lh of 160 bits. As our platform does not
provide any physical random number generator, we use the Salsa20 [27] stream
cipher in keystream mode as third primitive. We note that a commercial OBU
should include a source of true randomness.

In order to keep the OBU flexible and easily scalable, we arrange data in
different memory areas depending on their lifespan. Long-term parameters
(pkOBU, skOBU, pkTSP, commitment parameters) are directly embedded into the
microcontroller’s program memory, while short-term parameters (payment tuples,
(loc, time) segments) and updatable parameters (digital road map, policy f) are
stored separately on the SD Card. We note that our library provides a byte-
oriented interface with the SD Card, resulting in a considerable overhead when
reading/writing values.

TSP Platform. We implement our TSP prototype on a commodity computer
equipped with an Intel Core2 Duo E8400 processor at 3 GHz, and 4 Gbyte of RAM.
We use C as programming language, and the GMP [111] library for large-integer
cryptographic operations.

Performance evaluation

Table 7.2: Execution times (in seconds) for an hour journey of 24 km, for all
possible security scenarios.

Medium Security High Security Very high Security
Algorithm Segment Full trip Segment Full trip Segment Full trip
Mapping() 76.10 s 839.11 s 76.10 s 839.11 s 76.10 s 839.11 s

Pay()

7.88 s 183.91 s 22.13 s 528.47 s 47.79 s 1 143.30 s
hk 0.08 s 1.08 s 0.08 s 1.08 s 0.08 s 1.08 s
Ek 0.43 s 6.35 s 0.43 s 6.35 s 0.43 s 6.35 s
cpk 0.76 s 18.19 s 2.25 s 54.08 s 5.69 s 136.82 s
πk 6.20 s 158.09 s 19.45 s 466.96 s 41.64 s 999.05 s

OBU performance. The most time-consuming operations carried out by the
OBU during the taxing phase are the Mapping() algorithm and the Pay() algorithm.
The Mapping() algorithm is executed every time a new GPS string is available in
the microcontroller. Its function is to search in the digital road map the type
of road given the GPS coordinates. When the vehicle drives for a kilometer, the
OBU maps the segment to the adequate price pk as specified in the policy. At
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this point, the Pay() algorithm is executed in order to create the payment tuple.
For each segment, the OBU generates: i) a hash value hk of the location data, ii)
a commitment cpk to the price pk, and iii) a proof πk proving that the price pk
is genuinely signed by the TSP (and thus belongs to the image of f). To protect
users’ privacy we also require that no sensitive data is stored in the SD Card
in plaintext form. For this purpose we use the AES [204] block cipher in CCM
mode [101] with a key length of 128 bits. We denote this operation as Ek. At the
end of the taxing phase, the OBU adds all the prices pk mapped to each segment
to obtain the fee, and all the openings openk to obtain openfee. Finally, the OBU
constructs and signs the payment message m and sends it to the TSP.

As it does not involve the key, the computing time of the Mapping() algorithm
is independent of the security scenario. Further, this time only depends on the
duration of the trip and is independent of the speed of the vehicle: the Mapping()
algorithm is always executed 3 600 times per hour, taking a total of 839.11 seconds
in our prototype. However, for each of the segments this time can vary depending
on the number of points that have to be processed, i.e., depending on the speed of
the vehicle. In our experiments it requires 76.10 seconds for the longest segment,
i.e., the one where the vehicle spent more time to drive one kilometer and thus
(lock, timek) contains the larger number of points. We must stress that the
Mapping() algorithm used by our prototype is not optimized for speed, hence
the figures we present are an overestimation of the actual times that one could
achieve in a commercial implementation.

Similarly, the execution time for hk and Ek depends exclusively on the length of
the segments (lock, timek), as it is proportional to the number of GPS points in
the segments. The amount of points per segment varies not only with the average
speed of the car but also depending on the length of the segments defined in the
pricing policy. In our experiments, computing hk and Ek takes 0.08 seconds and
0.43 seconds, respectively, for the shortest and the longest segments. For the
Mapping() algorithm and both hk and Ek operations, more than 90% of the time
is spent in the communication with the SD card.

On the other hand, the execution time for cpk and πk is constant for all
segments, as it does not depend on the length of a particular slice (see lines 6
to 20 in Protocol 1). In order to calculate cpk , the OBU needs to generate a
random opening openpk and perform two modular exponentiations and a modular
multiplication. The computation of πk involves the generation of ten random
numbers and a hash value, and the execution of fourteen modular exponentiations,
nine modular multiplications, eight additions, and eight multiplications. The
bottleneck of both operations is determined by the modular operations. Although
we could take advantage of fixed-base modular exponentiation techniques, we
choose to use multi-exponentiations algorithms [92], which have less storage
requirements. Multi-exponentiation based algorithms, which compute values of
the form abcd(mod n) in one step, allow us to speed up the process. The average
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execution times for computing cpk are 0.76 seconds, 2.25 seconds, and 5.69 seconds
for medium, high, and very high security respectively. For πk, these times are 6.20
seconds, 19.45 seconds, and 41.64 seconds, respectively.

Table 7.2 summarizes the timings for all OBU operations and routines for a journey
of one hour. We note that, even when 2048-bit RSA keys are used, the OBU
can perform all operations needed to create the payment tuples in real time.
While the trip lasted one hour, the Mapping() and Pay() algorithms only required
1 982.41 seconds. The computation time is dominated by the Pay() algorithm,
which depends on the number of GPS strings in each segment (loc, time). This
number varies with the speed of the vehicle and the pricing policy. If a vehicle
is driving at a constant speed, policies that establish prices for small distances
result in segments containing less GPS points than policies that consider long
distances. Similarly, given a policy fixing the size of the segments, driving faster
produces segments with less points than driving slower. In both cases, πk has to
be computed fewer times and the Pay() algorithm runs faster. Thus, the policy
can be used as tuning parameter to guarantee the real-time operation of the OBU.

Using the values in Table 7.2, for each of the levels of security we can calculate
the time our OBU is idle – in our case (3 600 − 839.11) seconds, with 839.11
seconds being the time required by our non-optimized Mapping() algorithm. Then,
considering our current policy, we can estimate the number of times the Pay()
algorithm could be executed, which in turn represents the number of kilometers
that could have been driven by a car in one hour, i.e., the average speed of the
car. For normal security, our OBU could operate in real time even if a vehicle
was driving at 350 km/h. This speed decreases to 124 km/h when 1536-bit
keys are used, and to 57 km/h if the keys have length 2048 bits. Only when
using high security parameters our OBU would have problems to operate in the
field. However, as mentioned before, including a cryptographic coprocessor in the
platform would suffice to solve this problem whenever high security is required.
Also, if the Mapping() algorithm were optimized the OBU would have more time to
execute the Pay() algorithm hence being able to handle faster vehicles. Moreover,
in our tests we consider a worst-case scenario in which all GPS strings are processed
upon reception. In fact, processing fewer strings would suffice to determine the
location of the vehicle. As the execution time required by the Mapping() algorithm
would decrease linearly, OBUs would be able to support higher vehicle speeds.

In the OBUopen() algorithm, only executed upon request from TC, the OBU
searches its memory for a segment (loc, time) in accordance to the proof sent by
the TSP. Here, the time accuracy provided by the GPS system is used to ensure
synchronization between the data in φ and the segment (loc, time). The main
bottleneck of this operation is the decryption of the location data corresponding
to the correct segment. On average, our prototype can decrypt such a segment in
0.27 seconds.
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TSP performance. The most consuming task the TSP must perform
corresponds to the VerifyPayment() algorithm, which has to be executed each time
the TSP receives a payment message. This algorithm involves three operations: the
verification of the proof πk for each segment, the multiplication of all commitments
cpk to obtain cfee, and the opening of cfee in order to check whether it corresponds
to the reported final fee. The most costly operation is the verification of πk, in
particular the calculation of the parameters (t′cm , t′Z , t′cw , t′) which requires a total
of eleven modular exponentiations (lines 14 to 22 in Protocol 1).

Table 7.3 (left) shows the performance of the VerifyPayment() algorithm for each
of the considered security levels when segments have length one kilometer. We
also provide an estimation of the time required to process all the proofs sent by
OBU during a month, assuming that a vehicle drives an average of 18 000 km per
year (1 500 km per month).

Table 7.3: Timings (in seconds) for the execution of VerifyPayment() in TSP (left).
Number of OBUs supported by a single TSP (right).

VerifyPayment() Segment Month
Medium Sec. 0.0105 s 15.750 s
High Sec. 0.0295 s 44.250 s
Very high Sec. 0.0587 s 88.050 s

Segment Medium High Very high
size Security Security Security

0.5 km 82 000 29 000 14 000
0.75 km 123 000 43 000 22 000
1 km 164 000 58 000 29 000
2 km 329 000 117 000 58 000
3 km 493 000 175 000 88 000

These results allow us to extrapolate the number of OBUs that can be supported
by a single TSP in each security scenario for different segment lengths. Intuitively,
the capacity of TSP increases when segments are larger, as the payment messages
contain fewer proofs πk. The number of OBUs supported by a single TSP is
presented in Table 7.3 (right). For a segment length of 1 km, the TSP is able
to support 164 000, 58 000, and 29 000 vehicles depending on the chosen security
level. Even when ln is 2048 bits, only 36 servers are needed to accommodate one
million OBUs. This number can be reduced by parallelizing tasks at the server
side, or by using fast cryptographic hardware for the modular exponentiations.

Communication overhead

We now compare the communication overhead of PrETP with respect to
straightforward ETP implementations and VPriv [220] (see Sect. 6.5). Both in
straightforward ETP implementations and in VPriv the OBU sends all the GPS
strings to the TSP. Let us consider that vehicles drive 1 500 km per month
at an average speed of 80 km/h. For this month, transmitting the full GPS
information to the TSP requires 2.05 Mbyte (considering a shortened GPS string
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of 32 bytes containing only latitude, longitude, date and time). VPriv requires
more bandwidth than straightforward ETP systems, as extra communications
are necessary to carry out the interactive verification protocol (see Sect. 6.5).
Using PrETP, the communication overhead comes from the payment tuples that
must be sent along with the fee. For each segment, the OBU sends the payment
tuple (h, cp, π) to the TSP. When sent uncompressed, this implies an overhead
of approximately 1.5 Kbyte per segment, i.e., less than 2 Mbyte per month, for
medium security (ln=1024 bits). Additionally, less than 50 Kbyte have to be sent
occasionally to respond a verification challenge after a vehicle has been seen at a
spot check. As we can see, this overhead is similar to that of the straightforward
implementation, although it increases for higher levels of security. We believe that
PrETP’s communication overhead is not excessive for the additional security and
privacy properties the system offers.

The communication overhead in PrETP is dominated by the payment message
m sent by the OBU to the TSP. The length of this message depends on the
number of segments covered by the driver. Therefore, the segment length can be
seen as a parameter that tunes the trade-off between privacy and communication
overhead. The smaller the segments, the larger the communication overhead,
because more tuples (hk, cpk , πk) need to be sent. Allowing larger segments
reduces the communication cost but also reduces privacy because the OBU must
disclose a bigger segment when responding a verification challenge.

Further, the communication overhead can be almost eliminated if at the end of
each tax period the OBU sends only the hash of the payment message, instead of
sending the full sequence of tuples. The downside of this approach is that the TSP
loses the ability to remotely check that the fee reported is the sum of the subfees,
and that these subfees are computed using genuine prices. Following the spirit of
the random “spot checks” used for checking that no GPS spoofing is happening
and that correct road prices are used, the OBUs could occasionally be challenged
to prove it is operating correctly. To respond this challenge, the OBU would send
the payment message corresponding to the preimage of the hash sent at the end
of a random tax period. With this payment message the TSP can make the same
verifications as in our original description of the protocol.

7.4 Discussion

We have so far provided a technical description of PriPAYD and PrETP. In
this section we first discuss some issues related to cost, privacy, certification and
practical issues regarding the deployment of our systems. Further discussion on
the legal compliance of our systems can be found in [17, 267, 268]. Secondly we
revisit the decisions we have made throughout the design of our solution from a
methodological point of view, according to the design steps described in [133].
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7.4.1 Technical discussion

Cost

In terms of hardware requirements, a processing unit with GSM and GPS interfaces
is required for any PAYD or ETP model, hence the only additional hardware
required in our system’s OBU is an external memory module (e.g., a simple SD
card) which should not considerably increase the production costs. Both PriPAYD
and PrETP do require more computations and mapping data in the OBU than
a straightforward implementation of pay-as-you-drive. Yet, these are comparable
to what current commercial GPS navigation systems do. Our OBU prototype,
constructed with off-the-shelf components, demonstrates that these systems can
be built at a reasonable cost.1 The additional engineering effort that is required
for building a slightly more complex OBU should be more than balanced by the
reduced costs of the back end systems, since they handle less, as well as less
sensitive, data.

Tamper resistance is needed for the insurance company to trust that the PriPAYD
OBU makes correct computations. The security of PrETP’s Optimistic Payment
scheme does not rely on any countermeasure against physical attacks by drivers.
Nevertheless, for liability reasons it is desirable to use OBUs with a certain level of
tamper resistance. Since On-Board Units in the market [208, 256] already require
tamper resistance, no additional costs should be expected from this either.

Another source of costs is GSM communications. The PriPAYD model should
be cheaper since only billing data, instead of raw location data, is sent to the
provider. Billing data can be aggregated to further reduce those costs. In the
case of PrETP, where more data than in PriPAYD is transferred to the service
provider, our analysis in the previous section demonstrates that the overhead with
respect to a privacy-invasive scheme is negligible.

Updates for maps and policies can be pushed to the OBU either through the GSM
communications or during the servicing of the car. It can be argued that the need
for policies and maps updates in PriPAYD an PrETP implies extra communication
costs with respect to the straightforward implementation. We note, however that
these updates can be considered occasional as it is reasonable to assume that the
frequency with which fees are recalculated is low and so is the rhythm with which
new roads are constructed and ready for usage thus integrated into maps.

Our architectures keep the trust infrastructure to a minimum, and particularly
they do not require a public key infrastructure because there is no need for an
external Certification Authority. The identity infrastructure and key management
and distribution are based on the pre-existing relationship of the client with the

1The cost of our prototype amounts to $500; such a number would be drastically reduced in
a mass-production scenario.
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insurance company, or of the citizen with the government, respectively. Hence
there is no cost associated with either of these.

Strengthening privacy

Some additional privacy concerns should be tackled as part of a real-world
implementation.

A first concern is the use of GSM to transfer the data back to the service provider.
In our scheme the billing data does not contain any sensitive location information,
but an active GSM device registered in the network does leak the cells the vehicle
is transmitting from. Hence it is prudent to keep the GSM system powered down
at all times except when transmitting. The transmission time and location must
be chosen to minimize location leakage because of the GSM technology. Defining
and using a preferred known ‘home’ location, recorded in the box when initialized,
should easily address this concern. Still, a timer in the OBU should ensure that,
even if the car is not present at this location for a long period of time (e.g. long
trip), the monthly premium is sent to the company.

Although our systems protect privacy by keeping the location data in the client
domain and exploiting the hiding property of cryptographic commitments, there
exist a few sources of information available to the TSP. First, as in many
other services, users must subscribe to the service by revealing their identity,
and most likely their home address, to the TSP. Second, the final fee and all
the commitments must be sent to the TSP at the end of each tax period, and
this allows the TSP to estimate the number of kilometers driven. In fact, in
our example policy where prices are assigned to entire kilometers, the number
of tuples in the payment message leaks the exact distance traveled by the user.
The TSP can apply decoding techniques (e.g., [66]) to these data, and infer the
trajectories followed by a vehicle by inspecting the possible combination of prices
per kilometers that could have generated the total fee. A possible solution to this
problem is to give users the possibility to send data associated to dummy segments.
In order to keep the correctness of the final fee, we assign a price zero to these
dummy segments. Further, we include a price p zero in the pricing policy so that
the proofs πk are still accepted by the TSP. The downside of this approach is that
it introduces an overhead in both the computation and communication cost of the
system.

Finally, in some cases it is desirable to securely delete past location data to
safeguard privacy. For this purpose we advise implementers to never automatically
store encrypted GPS data from the audit record; and users to keep this, or key
material, only on the USB stick to which they were written by the OBU. This
allows the user to easily destroy the data by destroying or deleting the USB stick.
Further, the OBU would need a mechanism to reset the encryption key such that
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no GPS data is encrypted under the destroyed key nor the destroyed key can be
recovered. This resetting mechanism needs to be intuitive for the user but such
that it cannot be inadvertently activated, e.g., pushing a button on the box for
some time, ask for confirmation or PIN code before resetting, etc. We must stress
that once audit records of the detailed locations have been deleted it is difficult
to challenge any bills that seem incorrect. Hence, the user must be very careful
when deciding whether her privacy needs justify her inability to contest the bill.

Certification and independent monitoring

A key objective in our design is to reduce to the minimum the tamper resistance
requirements of the OBU to guarantee user’s privacy. However, as the OBU
is commissioned by the service provider the user has limited capacity to check
whether it is functioning correctly or leaking private information. Our design
choice is to allow users to have a full view of the output of the OBU and to ensure
that only the minimum billing information is transmitted.

One option is to allow a device (e.g. a USB mass storage device would be sufficient)
to record all data sent between the OBU unit performing the calculations, and the
GSM subsystem that relays all the information back to the insurer. This solution
is not invulnerable to a maliciously programmed OBU that only reveals part of the
conversation. On the other hand it makes certification easier, since only a trivial
property needs to hold: that all data transmitted using GSM is also recorded on
the auditing device. A second approach, that offers stronger guarantees, is to
physically separate (and shield) the OBU from the GSM transmitter, and link
them with a recording device controlled by the user. This device would record all
traffic, and allow the users to verify that the data transmitted only contains the
billing information. We note that the information recorded for monitoring can be
deleted straight away after the verification that no privacy leakage is happening,
thus does not conflict with the privacy-strengthening solutions we discussed in the
previous section.

Nevertheless, without third-party certification it is impossible to ensure that the
OBU is not recording precise location data with the intent to provide them to a
third party. Since such a device has no way of transmitting the recorded data
over the air, physical access would be required to extract the data, making it
difficult to turn this weakness into a remote surveillance tool. This is a known
open problem [129], and the control of physical access would require additional
certification.

Certification cannot guarantee that there are no covert channels left between the
OBU and the service provider. However, even though this risk is fully eliminated,
it be can reduce to a minimum. The certification goals for the OBU to provide
high grades of assurance are:
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• The random number generation should be based on a physical source of
randomness. A pseudo-random number generator with a seed known to the
provider would produce predictable encryption keys, leaving the audit logs
unprotected. An alternative strategy would be for a device controlled by the
user to be able to set the initial state of the random number generator.

• The deletion operation of the keys and the data in the OBU should be
effective. Otherwise an adversary may be able to get access to keys and
logs from the past. An alternative could be for the OBU to not hold any
non-volatile memory, aside a removable memory chip – that the user can
physically remove and destroy to preserve privacy.

• A thorough side channel analysis is necessary to ensure that the OBU
does not leak or transmit information through any other means than the
audited GSM transmission. Enclosing the OBU into a Faraday cage, using
a conductive cover, could ensure this. Yet the GPS antenna, as well as the
GSM module should be outside the enclosure.

• The correct implementation of the protocols procedures should be certified:
the OBU only records the premium payment information; all raw location
information is stored only in an encrypted form using the appropriate keys;
correct slicing is performed previous to encryption; etc. This is only required
to protect against adversaries with local access, since auditing minimizes the
risk that personal data is transmitted remotely.

Finally, for security reasons, the provider should be able to update the software to
patch bugs. For instance, the full update can be signed by a certification authority
after evaluation of the new features. Such re-evaluation is expensive, and might
slow down the deployment of critical security updates.

Practical issues

Although throughout the chapter we mentioned that the cost associated with roads
could depend on attributes of the driver (e.g., retired users may get discounts) or
on attributes of the car (e.g., ecological cars may have reduced fees), the pricing
policy used by our prototype is very simple. We note that this is a limitation of
the prototype and that the architecture can support more flexible policies. Also,
personalized discounts can be easily integrated in the system. For instance, the
TSP or the insurance company can apply discounts to the total fee reported by the
OBU, without the knowledge of fine grained location data. Further, the system
model in this work considers only one service provider. However, the European
legislation [54, 94] points out that several TSPs may provide services in a given
Toll Charger domain. PrETP can be trivially extended to this setting.
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The Optimistic Payment scheme we described as part of PrETP (see Sect. 7.3.1)
allows the OBU to prove its correct operation to the TSP while revealing a
minimum amount of information. Nevertheless, we note that fee calculation is
not flexible. The reason is that the OBU should store signatures created by the
TSP on all the prices that belong to Im(f), and thus, for the sake of efficiency, we
need to keep Im(f) small. For this purpose, in our evaluation f is only defined
for trajectory segments of a fixed length (one kilometer) and of a fixed road type.
There are two obvious cases in which this feature is problematic: when a vehicle
has driven a non-integer amount of kilometers, and when one of the segments
contains pieces of roads with different cost (e.g., when a driver leaves the highway
entering a secondary road). Given that the policy provided by the TSP assigns a
price per kilometer and type of road, no signed price for these “special” segments
is available to the client? Hence, the OBU cannot produce a payment tuple.

There are two possible solutions to this problem. A first option would be to solve
them at contractual level. The policy designed by the TSP could include clauses
that indicate how to proceed when these conflicts arise. For instance, in the first
case the TSP could dictate that the driver must pay for the whole kilometer, and
in the second case the policy could be that the price corresponds to the cheapest of
the roads, or to the most expensive. We note that these decisions do not conflict
with the general purpose of the system: congestion control, as in all cases, on
average, drivers will pay proportionally to their use of the roads. The second
option would be to change the way in which the OBU proves that the committed
prices belong to Im(f). In the construction proposed in Sect. 7.3.1, the OBU
employs a set membership proof to prove that the committed prices belong to the
finite set Im(f). Alternatively, we can define Im(f) as a range of (positive) prices,
and let the OBU use a range proof to prove that the committed prices belong to
Im(f). Since now Im(f) is much bigger, f can be defined for segments of arbitrary
length that include several types of road. We outline a construction that employs
range proofs in [16].

Another issue is that our OP scheme does not offer protection against OBUs that
do not reply upon receiving a verification challenge. In this case, the TSP should
be able to demonstrate to the TC that the OBU is misbehaving. To permit
this, the TSP can delegate to the TC the verification of the “spot-check,” i.e, the
TSP sends the payment message m and the signature sm to the TC, and the TC
interacts with the OBU (electronically, or by contacting the driver through some
other means) to verify that m is valid.

7.4.2 Methodological discussion

So far there exists little experience in how to integrate privacy enhancing
technologies in the engineering of systems to be deployed in the real world. We
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are lacking a general methodology to define privacy requirements, as well as to
find solutions to fulfill them. This is further complicated by the disconnection
between systems engineers, that design and implement systems to be deployed
in the real world, and the field of privacy research. New tools to build
systems with strong privacy guarantees (e.g.. anonymous credentials [43], private
information retrieval [50], secure multiparty computation [285], or cryptographic
commitments [40]) and new findings that shake our assumptions about which are
the limits of privacy protection (e.g., the impossibility of database anonymization
with strong privacy guarantees [100, 202, 209]) are often ignored by systems
designers.

In [133] we provide a thorough discussion on how to close the gap in privacy
engineering, and on how novel research can be embedded in the design of systems.
For this purpose we describe five main steps that engineers can use as guidelines in
the design of privacy-preserving systems. In this section we revisit these steps and
map them to the design decisions we took when building PriPAYD and PrETP.
With this exercise, we aim to better illustrate the design process and improve our
understanding about what is required at each of the steps.

Functional Requirements Analysis: The first step in the design of a system in
which we want privacy embedded at the core is to clearly describe its functionality.
That is, the goal has to be well defined and feasible. In the application which we
are dealing with in this thesis, an Electronic Toll Pricing system, the functionality
was clearly delimited: charge users according to when, where and how they drive
(e.g., which roads they use, what time of the day they travel, etc.).

This step is a cornerstone in the path towards finding a solution that ensures strong
privacy protection. Vague or implausible descriptions have a high risk of forcing
engineers into a design that would collect more data, as massive data collection is
needed in order to guarantee that any alternative realization of the system can be
accommodated by the design. In the ETP case, wider functionality descriptions
in which the system could be used for other purposes such as support for law
enforcement or for location-based services would render our solutions useless. If
data needs to be eventually available to the police (or other service providers), for
purposes not clearly defined at the design stage, the local processing of location
data would be ruled out of the design space. The only approach left would be
to transmit all data to a centralized server that processes and distributes these
data, and deals with the associated privacy risks (discussed at the beginning of
this chapter).

We must stress that requiring that the functionality of a system is well-defined
does not necessarily impose a limit on the system’s purpose. In the ETP case
the purpose of the system is simple. However, for some applications the designed
solution may need to be flexible enough to integrate additional services. In these
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cases, these additional services also need to be articulated precisely so that their
requirements can be taken into account at the early stages of the design.

Data Minimization: For a given functionality, the data that is absolutely
necessary to fulfill the functionality needs to be analyzed.

In the ETP case the minimal set of data needed to tax drivers is their identity
and the amount to be charged. No other private data, such as where and when
the vehicle was, is strictly necessary. The service provider only needs to know the
amount to charge to each of the users, regardless of their actual driving records.
For instance, if Alice drives for 3km on a highway which has an assigned price of
$1 per kilometer, the service provider only needs to know that Alice must pay $3
but not whether she was traveling to New York, or New Jersey.

We note that the decision as to which data is absolutely necessary for a given
purpose involves a deep knowledge of the state-of-the-art research to explore which
data can be minimized. In some cases, advanced privacy-preserving cryptographic
techniques [40, 43, 50, 285] allow to further minimize data in a new and counter-
intuitive ways. Further, advances in the cryptographic computation capabilities of
the hardware platforms on which systems are built also open new possibilities for
the designer. A privacy engineer must be well aware of the latest research results
in order to take informed decisions that lead to the most up-to-date privacy-
preserving design.

Modeling Attackers, Threats and Risks: Once the desired functionality is
settled and the data that will be collected is specified, it is possible to start
developing models of potential attackers, e.g., curious third parties, the service
provider; the types of threats these attackers could realize, e.g., public exposure,
linking, profiling.

In our design we consider that both the communication provider and the service
provider are a threat for users’ privacy. We then analyze the data that is available
to these parties, and study the attacks on privacy that could be performed with
this information.

The communication provider, as any other external adversary, cannot see
the content of communications between users and the Toll Service Provider.
Nevertheless, it has access to the traffic data associated to these communications
and hence is in the position of performing traffic analysis to determine the location
or typical trajectories of users. The service provider receives only the final fee to
be paid, which in principle do not reveal sensitive information about the users.
However, as we have discussed above, the adversary could still extract information
if this fee is such that it could only be generated by a limited amount of trajectories.
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The analysis of the likelihood and impact of the realization of the threats is not a
trivial exercise. First, it requires awareness of recent research results on potential
attacks and vulnerabilities. It may not always be evident which of the collected
data, if any, may pose a privacy threat. Going back to the example of database
de-anonymization, without the proper knowledge about the latest results on the
topic [100,200–202], it may seem reasonable from a privacy point of view to collect,
share and/or publish anonymized data. Finally, the analysis requires analytical
expertise to extrapolate these novel results to the application under study.

Multilateral Security Requirements Analysis: Besides the system’s purpose
itself, the engineer must account for other constraints that ensure the security
and correct behavior of the entities in the system, as expected by the different
stakeholders of the system. The inclusion, analysis and resolution of these
conflicting security requirements is also known as multilateral security.

In our case study the security requirements of the system imply that none of the
involved parties can take advantage of the ETP system. Thus, no entity in the
system (i.e., neither the service provider, nor the users) must be able to claim that
a user should pay an amount different to the fee that actually corresponds to her
driving records. If this requirement is fulfilled, the service provider can be sure
that users do not misuse the system, while users have guarantee that they only
pay for what they drive.

The goal of this analysis is to find a design in which privacy measures cannot be
detrimental to other important security objectives such as integrity, availability,
etc. and vice versa. For the ETP case study, the sought solution must provide
means for each to check the correctness of the operations that the other entities
perform, while limiting the amount of location data disclosed.

Implementation and Testing of the Design: The final step in the design of
the system is to implement the solution that fulfills the multilateral security
requirements revealing the minimal amount of private data. Further, the potential
vulnerabilities have to be scrutinized, and the functioning of the system according
to the articulated functional requirements have to be validated.

In the first step and second steps of the design approach, we concluded that the
service provider does not need access to fine-grained location data. Hence, in our
design we chose to place the processing of these data in the users’ domain, and only
communicate the final fee to the service provider. After modeling the adversaries
we deal with and analyzing their capabilities, we choose to mandate that the GSM
system must be only switched on when the vehicle needs to transmit data, and
that this transmission must take place at a pre-determined time and location. This



144 PRIVACY-FRIENDLY PAY-AS-YOU-DRIVE APPLICATIONS

is done to further limit the information leakage and avoid traffic analysis on the
communication data.

The most challenging aspect of the design process is the reconciliation of security
and privacy requirements. In PrETP, besides protecting privacy through the local
processing of sensitive information, we use cryptographic commitments in order to
allow the service provider to check that these local operations have been correctly
preformed. Besides the fact that minimal amount of location data are collected
under normal operation, also minimal information is disclosed while answering
a challenge to prove the drivers’ honesty. For this purpose, location data are
sliced in segments, and a sub-fee and a commitment per segment are computed.
Thus, when responding to a challenge, the user only needs to disclose a small
trajectory segment containing the challenged location, which is already known to
the provider.

In order to complete our design, we have implemented a prototype OBU and
demonstrate that, contrary to common belief, the overhead introduced by privacy
enhancing technologies is moderate, and that they are efficient enough to be
integrated in commercial in-vehicle devices. Finally, we have verified that the
design is compliant with the legal framework in which the application is to be
deployed [17,267,268].

We recall that there are some fundamental limits to the privacy protection offered
by technical means. As a complement to our solution, in the previous section we
have outlined a series of non-technical measures to mitigate privacy threats that
cannot be addressed using engineering solutions.

7.5 Conclusions

Pay-as-you-drive policies present a number of advantages, are bound to gain
popularity in vehicular applications. However, if care is not taken when designing
these systems the resulting implementations may incur in a fundamental disregard
for the privacy of vehicle owners, which might slow or even limit their deployment.

In this chapter we have proposed two systems, PriPAYD and PrETP, that support
the deployment of PAYD policies while also providing strong privacy guarantees.
The key principle of our designs is to avoid the need for centralized databases
holding vast amounts of location data. For this purpose we push operations
performed on sensitive data to a device in the user’s domain. The security of this
device is based on simple and well-understood multi-level security components.

Our architectures rely (as previous systems) on secure hardware for correct
accounting, but privacy properties can be checked independently of the correctness
of the billing just by auditing its output. This separates correct accounting from
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privacy concerns, allowing On-Board Units to remain fully under the control of
the provider, while users can be sure that their location data is not leaking.

However, the system also needs to provide means to protect the interests of the
service provider. Hence, the detection of fraud is an important requisite. In the
second part of the chapter we have introduced a protocol, Optimistic Payment,
that allows OBUs to prove that they operate correctly while leaking the minimum
amount of information. In particular, upon request of the service provider, OBUs
can attest that the location data for the calculation of the fee is authentic and
has not been tampered with. While performing this attestation the OBU must
reveal some location data to the service provider, but we note that at the time
of disclosure these data are already known to the provider. We have defined and
constructed our protocol as well as proved it secure under standard assumptions.
We also provide an efficient instantiation based on known secure cryptographic
primitives.

There is no component or infrastructure required by PriPAYD or PrETP
that would make them significantly more expensive than their privacy-invasive
alternatives, as we demonstrate with our prototype. One could in fact argue that
in the long run PriPAYD and PrETP, as any other privacy enhancing technology,
are cheaper than privacy-invasive systems. The costs of protecting private data
stores is often overlooked in the accounting of costs, as is the risk of a single
security breach leaking the location data of millions of customers [14]. In addition,
our systems keep sensitive data locally in each car, in a system that is easy to
engineer and verify. A back-end system that provides the same level of privacy
protection to masses of data would be not only prohibitively expensive, but simply
unimplementable.

At the end of the chapter we have revisited the decisions taken while building
PriPAYD and PrETP, in an effort to understand the critical steps in the design
of privacy-preserving systems. This dissection of the design philosophy behind
our systems can be used as a reference to guide future designs. However, we
must stress that the particular solutions described along this chapter are tailored
to the requirements of pay-as-you-drive applications. Other applications may
have different requirements, and at every step the decisions must be carefully
reconsidered to find the best design and implementation.





Chapter 8

Conclusions and future work

In the last years electronic communications have become part of an increasing
number of our everyday activities. Interactions between people and/or institutions
are progressively being mediated by machines. This tendency continuously raises
new privacy concerns forcing researchers and engineers designing systems to face
new problems with diverse constraints and requirements.

The privacy community lacks a general methodology for the design and analysis
of systems, and the effectiveness of privacy-preserving solutions is usually tested
using ad hoc analysis specific to the system under study. This deficiency has driven
the community into a disorganized arms race between designs and attacks to find
the best privacy-preserving solution for each application. As a result, there is little
knowledge about how to compare and validate systems in a general way, which
in turn jeopardizes the development of robust privacy-enhancing designs that are
ready to be integrated in real-world applications.

In this thesis we have considered the design of privacy-preserving systems from the
point of view of the engineer that has to conceive a privacy-preserving solution,
as well as analyze its privacy properties. In the first part of the thesis we
have proposed a general methodology to quantify information leaks in anonymity
systems. In the second part we proposed two privacy-preserving architectures for
pay-as-you-drive services, PriPAYD and PrETP, in which security and privacy
requirements are fulfilled simultaneously. Based on our experience building these
applications, we have identified basic steps in the design of privacy-preserving
systems. The rest of this chapter summarizes our findings, and we conclude
discussing future lines of research that can extend our work.

147



148 CONCLUSIONS AND FUTURE WORK

The analysis of privacy-preserving systems

In the first part of the thesis we have presented a general methodology to model and
analyze information leakage, using anonymous communications systems as a case
study. Anonymous communications aim at protecting the privacy of their users by
hiding who is communicating with whom. However, anonymous communication
systems are known to be vulnerable to traffic analysis attacks, as we thoroughly
discussed in Chapter 2. These attacks exploit various kinds of traffic information,
e.g., the amount and timing of data transferred or the duration of the connection,
to uncover relationships taking place over an anonymous communications network.

Our first observation, discussed in Chapter 3, is that the de-anonymization
of messages is more effective when the adversary considers all users at once,
rather than focusing on them individually. We present two attacks for de-
anonymizing messages that outperform previous work: the Perfect Matching
Disclosure Attack (PMDA) and the Normalized Statistical Disclosure Attack
(NSDA). These attacks differ from each other in the underlying principle used
to consider all users simultaneously. The PMDA is based on finding perfect
matchings between senders and receivers of messages and, although it outputs
precise results, it is computationally expensive. The NSDA relies on matrix
normalization to consider interdependencies between senders and receivers. It
requires less computation power than the PMDA, but it provides less accurate
results. An additional advantage of our attacks is that they are robust with
respect to changes in the user behavior model, as opposed to previously published
Disclosure Attacks [5,60,70,76,158,161] which are optimized for a specific scenario.
Further, we show that simultaneously de-anonymizing messages and estimating
sender profiles yields better results than performing these tasks separately.

However, the analysis methods presented in Chapter 3 are limited. First, the
straightforward manner in which we reuse information when co-inferring profiles
and assignments of senders to receivers is far from optimal. Second, when
considering complex systems, simultaneous estimation of profiles and sender-
receiver correspondences may require a large amount of computational resources.
As a solution, in Chapters 4 and 5 we propose to cast the traffic analysis problem as
an inference problem, and use advanced Bayesian statistics to compute probability
distributions over possible receivers of messages in an anonymity system. The
techniques we present are based on sampling. Hence, they do not suffer from
computational limitations, allowing us to deal with complex systems and to
compute anonymity metrics in the presence of arbitrary constraints, contrary to
previous results in which this was considered an intractable problem [237].

Our findings demonstrate that probabilistic modeling, Bayesian inference, and the
associated conceptual toolkit relating to Markov chain Monte Carlo sampling are
an appropriate basis on which to build traffic analysis attacks: i) it provides a clear
framework to perform the analysis starting with the definition of a probabilistic
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model, that is inverted and sampled to estimate quantities of interest; ii) it ensures
that information is used properly, avoiding overfitting or systematic biases; iii)
it enables the analyst to answer arbitrary questions about the entities in the
system with a clear probability statement; and iv) it provides good and clear
estimates of error. These qualities are in sharp contrast with previous work on
traffic analysis, that provides ad hoc best guesses of very specific quantities, with
a separate analysis to establish their accuracy based on labeled data – something
that the traffic analyst does not have when deploying attacks on the ground.

The design of privacy-preserving systems

In the second part of the thesis we presented two architectures that follow common
principles to integrate strong privacy guarantees in their design. Starting from
the basic functionality of the system under study (in our case pay-as-you-drive
applications) we identify the minimum set of data that needs to be revealed to the
service provider: the final premium to be billed. Further, we demonstrate that
the fulfillment of other security requirements, as integrity or accountability, is not
incompatible with the provision of strong privacy guarantees. By using advanced
privacy-preserving cryptographic primitives we are able to safeguard the interests
of all entities in the system while enabling users to disclose a minimum amount
of personal information. In order to evaluate the suitability of our solutions for
deployment in the real world we complete our design with an evaluation of its
properties from a security, performance and legal perspective.

Our designs avoid the massive collection of personal information in centralized
databases while providing the same functionality as data-collection-based ap-
proaches. Limiting the private information available to the provider reduces the
chances of voluntary or involuntary leakage or abuse, minimizing the privacy risks
inherent to the existence of these databases. Further, data collection minimization
reduces the amount of information to be protected, reducing the management and
maintenance cost of the database.

The design principles behind PriPAYD and PrETP are applicable to many other
contexts, as for instance Smart Energy systems [228]. It is our hope that the steps
taken in our design process, further elaborated in [133], lay the foundation for a
general privacy engineering discipline that serves as guidance for future privacy-
preserving systems designers. We must stress, however, that the specific design
decisions we have taken in PriPAYD and PrETP cannot be seen as a general rule
for achieving privacy protection in other applications. Our solutions limit the
privacy risk by revealing the identity of the user while minimizing the amount
of sensitive data disclosed to the service provider. While this choice is sufficient
for the purposes of the application under study in this thesis, it is not the only
approach to protect privacy. Consider the anonymous communication systems
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discussed in the first part of this thesis. Contrary to PriPAYD and PrETP in
these systems sensitive data is disclosed and privacy is preserved by hiding the
users’ identity. For example, an adversary observes a cancer specialized doctor
receiving messages but cannot identify the sender of those messages.

The two parts of this thesis study cases in which privacy is protected either
by anonymously disclosing the transaction data, or by limiting the amount of
sensitive information disclosed along with the identity. We note that these
results do not represent the limits of the protection that can be offered to users.
Other applications may have different requirements or constraints that allow for
simultaneous anonymity and minimal disclosure of transaction data. Similarly, the
development of new cryptographic primitives and protocols may allow to re-design
previous solutions enhancing their privacy protection properties.

When a new solution needs to be built, it is the job of the designer to consider
the requirements of the system and study the state-of-the-art in technology at the
time of choosing the architecture and technologies that provide maximal privacy
guarantees. This design process is specific to the application under consideration.
We must stress that given the complexity of this engineering task it is not advisable
to reduce privacy-enhancing design methodologies to “privacy check lists” that can
easily be ticked away for compliance reasons without mitigating some of the privacy
risks that a more thorough study would identify. Further, this study must not be
limited to the technical part of the design but requires understanding over the
legal, social, political, and economical framework in which the application has to
be deployed, and the implications of these constraints on the engineered system.

Finally, even though in this thesis we have treated the analysis and design of
systems as separate processes, the design and the security analysis activities have
to be re-iterated to achieve maximal security. Once a system is outlined the
analysis of the information leakage may uncover risks overseen at the design stage
that require further minimization of data, and hence requires modifications in the
proposed solution.

8.1 Future work

The analysis of privacy-preserving systems

The Bayesian treatment of long-term attacks against anonymity systems intro-
duced in Chapter 4 is promising, but still very immature. We foresee some key
theoretical, as well as implementation-related, steps to move the state of the art
forward.

• The Vida Black-box model as well as the Vida Red-Blue model represent
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an observation from an anonymity system as a generic weighted bipartite
graph, linking senders with receivers. Our experiments, on the other
hand, only considered anonymity systems working in discrete rounds, in
which the observation is represented by a series of full bipartite sub-
graphs corresponding to the rounds. This is a limitation of our sampler
implementation, that could be removed in order to deal with the general
case of any bipartite weighted network, as the ones studied in Chapter 5.
While in theory this modification is straightforward, in practice it is hard
to directly sample matchings from arbitrary bipartite graphs. The rejection
sampling algorithm suggested in Chapter 4 can be inefficient, since it might
use edges that are not part of a perfect matching, forcing multiple aborts.
It might be wise to first prune the assignment graph from such edges
using techniques from the constraint satisfaction literature such as Regin’s
algorithm [225].

• Traditional hitting set as well as disclosure attacks [60,76,161] make extensive
use of the number of friends of a target sender to be applicable at all,
whereas the presented approaches do not require such information. Yet,
adding related constraints would yield better results. The a priori model
for user profiles is very general, meaning that it can represent, and thus
learn, any multinomial distribution of receivers per sender. While keeping
the generality, more information could be incorporated into the model, for
instance if it is known to the adversary that the profiles belong to a social
network (with some standard characteristics like degree, clustering etc).

• It has been an open problem in the literature how to incorporate known
information about communication patterns to help the inference of unknown
communication patterns. Diaz et al. presented in [89] an ad hoc technique
to integrate social network information in the de-anonymization of traces,
along with a discussion of the systematic errors that can be introduced. The
sampling techniques presented in this work can be straightforwardly modified
to incorporate known correspondences between senders and receivers: the
Gibbs sampler is modified to only sample valid assignments that contain the
known matches. These known assignments, far from being useless, drive the
sampling of profiles (as part of the Gibbs sampling) leading to higher quality
profiles, which in turn become higher quality assignments for the unknown
messages.

The model we proposed in Chapter 5 is very rich and encompasses aspects of mix-
based communications never before unified under a common framework. Its clear
structure is ideal to incorporate further aspects of anonymous communications
that have not been taken into account in this thesis such as:
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• Other mixing strategies can be incorporated into the model besides the
traditional threshold mix considered so far. The technique of Serjantov and
Newman [240] can readily be adapted to model pool mixes in the current
model: each round of the pool mix is represented as a separate threshold
mix, where some of the messages (the pool) simply transit from one round
to the next. The only modification to the current model is for this transition,
from one round to another round of the same mix, not to increase the length
of the path.
More complex mix strategies require more state to be held per mix, and some
of them require inference of this hidden state. Our framework is ready to
accommodate such inference, effectively extending the Bayesian framework
described in [207].

• Dummy messages generated by mixes to foil traffic analysis can be also
incorporated in the model, by simply guessing which messages are dummies
(i.e., including a flag signaling whether a message is a dummy or not in the
hidden state), and describing the probability of their paths. This can be
useful for foiling the protection afforded by active mixing strategies [85,207],
or to model RGB-mixes [75].

• Strategies similar to the guard nodes [212] used by the Tor [93] path selection
algorithm, in which only a small set of nodes per user is eligible to build the
first hop of a tunnel. These strategies can be seen an as a special case of
bridging, and it is trivial to incorporate them to our model.

• Finally, we have assumed that the start of all paths is known, even though the
observation may be truncated before the end of the path is observed. Other
models of partial network observation can also be envisaged: the adversary
might just be able to observe a window of time, or only some links in the
network. Models that extend the concepts of “unknown” sources or sinks of
traffic can be built for these circumstances.

In this thesis we have dealt with mix networks. Nevertheless, the ‘Holy Grail’
of Bayesian traffic analysis would be its application to the setting of low-
latency anonymity systems based on onion-routing [259], such as the deployed
Tor [93] network, which attracts an increasing number of users. An adversary
in such system is constrained to observe only a fraction of the network, but
the observations leak precise cell timing data that can be used to trace streams.
Murdoch and Zielinski [196] present a simplified analytical Bayesian analysis in
such a setting, under the assumptions that traffic is Poisson distributed. Presenting
a general model of an onion routing system, and a practical sampler to perform
inference would be a significant step forward in this line of work.

The Bayesian techniques we have introduced have a strong potential to analyze
privacy-preserving systems beyond anonymous communications. As long as a



FUTURE WORK 153

system has users with multinomial preferences, that are expressed and anonymized
in an arbitrary manner, our algorithms are applicable to de-anonymize the
preferences and extract user profiles. Thus, our approach is suitable for problems
as the de-anonymization of databases [200], social networks [201] or mobile
communications [26,114,116].

Besides its versatility to analyze systems with multiple constraints, the Bayesian
framework could also be extended to consider temporal variations of the variables
to infer. If the evolution of profiles over time can be modeled, as for instance in
social networks [170], it can be integrated into the generative model and taken
into account by the inference engine during the learning process.

The theoretical flexibility of the proposed framework makes it a strong candidate
to become the standard method to evaluate anonymous communications systems.
However, in practice crafting models to analyze new systems is a laborious
task. Nevertheless, many of these systems have common features, e.g., routing
constraints, mixing strategies, etc. Finding a way to automate the analysis of these
features such that they could be combined when evaluating complex systems is a
necessary step to popularize the use of Bayesian inference as the default analysis
methodology.

The design of privacy-preserving systems

The design principles identified in Chapter 7 need to be backed up with advances
in other fields of research. In order to obtain a proof of honest behavior from the
client in the pay-as-you-drive case study we had to design a new protocol and find
an efficient instantiation such that it could be implemented on a microprocessor.
This is an example of an application in which even though the requirements
allow for minimal disclosure of data, the technology needed for this minimization
was assumed to be not available or too expensive. When new applications
with new requirements emerge, new cryptographic primitives and protocols will
be needed that provide wider and more flexible functionality to the designers.
Further, privacy-preserving cryptographic tools are often too inefficient at the
time they are proposed to be used in deployed systems. Hence, in order to
easily integrate privacy-enhancing technologies in real-world systems the advances
in cryptography must be followed by research that provides fast, small, and
inexpensive implementations appropriate for their use in commercial products.

The lessons learned while designing PriPAYD and PrETP are valuable, but serve
only as example of how to embed privacy in the design of systems. In order
to develop a general methodology for the design of privacy-preserving systems
more applications have to be studied to identify the critical activities in the design
process. We take a first step in this direction in [133], where we study a second use
case: a privacy-preserving e-petition system, in which user’s privacy is guaranteed
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by hiding their identity from the provider while revealing their votes [83]. Our
study shows that, even though these applications differ considerably in their
requirements and the nature of their privacy-preserving solutions, there are many
common activities in the design of these solutions. More case studies are needed
to refine the description of the activities described in [133].

Finally, it has been pointed out by Gürses that eliciting privacy requirements is
not an easy task due to the subjective nature of privacy itself [134]. The knowledge
gathered by studying new use cases can also be useful to extend and refine the
methodology for eliciting privacy requirements in [134], which in turn shall ease
the task of engineering privacy-preserving systems.
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[133] Seda Güerses, Carmela Troncoso, and Claudia Diaz. Engineering Privacy by
Design (extended abstract). In 4th International Conference on Computers,
Privacy & Data Protection (CPDP 2011), page 25. Springer, 2011.
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