Efficient Negative Databases from
Cryptographic Hash Functions

George Danezis, Claudia Diaz, Sebastian Faust, Emilia Kasper,
Carmela Troncoso, and Bart Preneel

K.U. Leuven, ESAT/COSIC,
Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee, Belgium.
firstname.lastname@esat.kuleuven.be

Abstract. A negative database is a privacy-preserving storage system
that allows to efficiently test if an entry is present, but makes it hard
to enumerate all encoded entries. We improve significantly over previous
work presented at ISC 2006 by Esponda et al. [9], by showing construc-
tions for negative databases reducible to the security of well understood
primitives, such as cryptographic hash functions or the hardness of the
Discrete-Logarithm problem. Our constructions require only O(m) stor-
age in the number m of entries in the database, and linear query time
(compared to O(l - m) storage and O(l - m) query time, where [is a se-
curity parameter.) Our claims are supported by both proofs of security
and experimental performance measurements.

1 Introduction

In a celebrated series of academic papers [8, 9], which have also attracted wider
public interest [1], Fernando Esponda et al. introduce the concept of negative
databases to protect the privacy of stored records. A negative database is a
representation of a set of records (the positive database) that allows its holder
to test whether particular entries are present in the database, but makes it very
hard to efficiently enumerate all entries.

Negative databases have a wide range of applications with the potential to
enhance privacy: holders of records cannot easily retrieve all entries, and lost or
compromised machines do not therefore lead to large scale privacy compromises.
As a result, data holders can also share information without fear that the re-
ceiver will be able to extract the full contents of the database. As an example
the Transport Security Administration can provide a black list of passengers as
a negative database to airline companies, who can use it to check whether pas-
sengers to fly with them are on the list. Yet the companies would not be able to
extract the full contents of the database unless they can perform an exhaustive
search on it.

The protocols of Esponda et al. for building negative databases are limited in
many ways, and lead to a database of size O(l-m) entries — where m is the number
of entries in the positive database, and [the size of each entry in bits (with the

restriction that [> 1000 for security, thus leading to total storage requirement
of O(I% - m) bits.) Furthermore, the security of their scheme relies on generating
and not being able to solve hard instances of the 3-SAT problem, which is a
non-standard security assumption in computer security and cryptography (but
note that the 3-SAT problem is NP-complete). For a detailed security analysis
the reader is referred the original papers.

In this work we present two constructions that provide exactly the same
functionality as the original negative database schemes. Our constructions are
computationally efficient for all operations and lead to much more compact
“negative” representations. We prove the security of our constructions using
standard cryptographic reductions to the security of well understood primitives,
such as cryptographic hash functions for our first scheme and the family of
Discrete-Logarithm (DL) assumptions for the second scheme. Experimental re-
sults demonstrate that implementing our first scheme is straightforward and can
efficiently scale to databases of many megabytes.

The rest of the paper is organised as follows: Section 2 presents the back-
ground and related work, including a brief overview of previous designs for
negative databases. Section 3 presents our schemes, based on cryptographic
hash functions and the DL assumptions, with security proofs being presented in
Sect. 4. We evaluate the theoretical and experimental efficiency of the schemes
in Sect. 5. Further privacy enhancing extensions, intrinsic limitations and con-
clusions are presented in Sections 6, 7, and 8 respectively.

2 Related Work

The concept of negative databases was introduced by Esponda et al. [8,9]. Each
entry in the database is represented as a bit-string of length [and the set of all
bit strings not in the database is represented in a compact form. The compact
form is a set of [bit-strings of length [each composed of ‘0’s, ‘1’s and wild cards
that could match either (i.e. “*’s). To test whether a string is present in the
“positive” database, one checks whether it matches any of the negative entries:
the string is in the positive database if it does not match any of the negative
representations.

The security of the scheme is based on the inability of the adversary to infer
which positive strings are in the database in a way that is more efficient than
enumerating all possible strings and testing them one by one. Esponda et al.
reduce the complexity of breaking the security of their proposal to solving a
hard instance of a 3-SAT problem; they conjecture that the problem becomes
intractable for strings of [> 1000 bits. Their scheme does not allow for multiple
entries to be encoded in a combined way, and therefore they require a negative
database of size O(I) to be generated for each of the m positive entries, leading
to a storage requirement of O(l2 -m) bits. Attempts to represent more than
one positive entry in an integrated manner lead to shortcuts in solving the 3-
SAT problem on which the security of the scheme is based. Dummy entries
representing no string have to be included to obfuscate the size of the positive

database, and check sums (CRC or MD5 are proposed) are appended to the
positive entries to minimise false positives.

Once constructed, negative databases can be used to efficiently check whether
a particular string, or part of a string, is present in the positive database. The
need to have check sums appended to the entries (to avoid false positives) re-
stricts the ability to query partial contents, and only allows to test whether the
full contents of a particular field are present in some row.

Our constructions for negative databases support the same operations, and
we reduce their security to the security of well known cryptographic primitives,
such as cryptographic hash functions. The idea of applying hash functions in
the context of protecting weakly chosen password databases has been proposed
before by Needham et al. [12]. It is now widely adopted to protect the confiden-
tiality of password files against accidental disclosure or corrupt insiders on most
UNIX systems. Our work starts from this idea but generalises it to database
tables with arbitrary numbers of columns (or fields) per row. We allow com-
plex queries on such databases, as well as merging databases, and adding and
deleting entries. Our constructions based on discrete-log and related assump-
tions further allow any party to prove properties of the entries in the negative
database without revealing any information.

3 Owur Schemes

Our goal is to efficiently implement the same functionalities as negative databases
in [10], with cryptographic security guarantees. In order to achieve this, our
schemes should satisfy the following properties, described in [10]:

— Hard to reverse. Given a negative database NDB, there should be no
algorithm for obtaining the positive image DB that is more efficient than
exhaustive search.

— Singleton negative database. Each hard-to-reverse entry in NDB repre-
sents either a string in DB, or no string at all, i.e., reversing the database
does not introduce “false” positive entries.

— Easy to update. There should be efficient algorithms for adding and delet-
ing entries from DB.

— Obfuscated size. The size of the positive image DB should not be visible
from NDB.

— Probabilistic. A particular binary string s € DB should have many possible
representations in NDB.

Esponda et al. mention an additional property [10]:

“String based: One of the more salient features of our scheme is that it is
based on string matching. This permits us to meaningfully affect a positive im-
age by manipulating the entries of its negative database; references [ref17,ref18]
discuss some applications of this idea. In the coming paragraphs we present
an operation that illustrates the usefulness of this property.”

Algorithm 1 Generating a hard-to-reverse negative database.
INPUT: Database DB = {DB; ;}, DB;; e M,i=0,...,m—1,j=0,...,n—1
Function H: R X M +— T

OUTPUT: Negative database NDB = {NDB; ;} , NDB;; € R x T

1: Initialize NDB = {}

2: fori=0tom—1do

3: forj=0ton—1do
Randomly choose 7;; €Er R

Compute NDBiﬂj = (7”1'7]', I{(’I"Z"J'7 DBZJ))

Set NDB = NDB U {NDB; ; }

Algorithm 2 Obfuscating database size.

INPUT: Negative database NDB = {NDB; ;}, NDB;; € R x 7,4 =0,...,m — 1,
j=0,...,n—1
integer d > 0

OUTPUT: Negative database NDB’ © NDB with d dummy entries

1: Initialize NDB’ = NDB

2: fori=mtom+d—1do

3: forj=0ton—1do

Randomly choose 7;; €Er R, ti; €Er T

Set NDB;-J = (Tij,ti;)

Set NDB" = NDB' U {NDB; ;}

Our conversion of DB elements to their negative form involves transforma-
tions that destroy their semantic structure, as opposed to the string based ap-
proach in [10]. Nevertheless, after thorough examination of the examples given
in [10] we have not found any property or functionality provided by the string
based feature that our schemes cannot satisfy. More details on functionalities
can be found in Sect. 6.1.

3.1 Algorithms for creating, updating and searching in NDB

Our negative database construction is based on a one-way function, for which
we propose two alternative implementations: the first is based on cryptographic
hash functions (explained in Sect. 3.3), and the second on the family of discrete
log assumptions (Sect. 3.4). For now, we make an abstraction of the one-way
function and present general algorithms for generating the negative database,
obfuscating its size, and verifying if a string s is in the database.

Let DB be a database that contains m records with n fields each; i.e., a
total of m - n elements. We denote by DB, ; the contents of the element (i, 5)
corresponding to the j-th field of the i-th record in DB, and M the universe of
all possible element contents.

From DB, we can efficiently generate NDB following the algorithm shown in
Alg. 1. For each element DB; ; € M, we generate a random number r; ; € R. We
define a suitable one-way function H : R X M +— 7 that maps a pair of values

(ri,j,DB; ;) to an element ¢; ; € T, ie., t; ; = H(r; j, DB, ;). The element NDB; ;
in position (7, j) of the negative database is the tuple (r; ;,%; ;). The randomized
representation of element DB; ; in NDB provides additional security guarantees
(see Sect. 4).

In order to obfuscate the number m of records in DB, we add d dummy
entries to NDB, as shown in Alg. 2. The dummy entries are pairs (r; ;,t; ;) of
random elements from R x 7. We note that m + d gives an upper bound on
the real size of the database; i.e., DB would be known to contain a maximum of
m + d real records.

Querying NDB in order to check if an element s is in the database is done
following Alg. 3. Normally, the user querying the database would want to know
if an element s is present in a given field (e.g., “is name s contained in the
names column?”). In order to do the query, the user provides the string s and
the column k (field) where s is expected to appear. Then, the function H is
applied to all pairs (7; ,s) to check if the result matches the tag ¢; ;, for some
record ¢. If there is a match, then we confirm that s is in DB, otherwise the
answer is negative.

3.2 Properties of our system

Although our NDB is not constructed by “negating” DB, we can show that it
has the same functionalities and properties as the negative databases described
in [10]. First, as NDB is constructed using a one-way function, obtaining DB
from NDB is a hard problem. We provide security arguments and proofs of this
property in Sect. 4. From the algorithms for constructing NDB and obfuscating
the size of DB, we can see that (hard-to-reverse) entries in NDB represent either
a string s in DB (if they have been generated by applying the one-way function
to s), or a random dummy string (if they have been randomly generated for
obfuscating the size of DB). The size of the positive image corresponding to
some NDB is obfuscated, since it is hard to distinguish dummy entries from
those that correspond to an element in DB (as proven in Sect. 4). The size of
NDB reveals only an upper bound to the size of DB.

It is very easy to update DB by adding and deleting entries from NDB. It
is sufficient to apply the one way function to the entry, and then add (delete)
its negative image to (from) NDB. Our scheme is probabilistic, as a particular
binary string s has many possible negative database representations (as many
as possible values for the random 7r;;), and the creation process chooses one
uniformly at random. Given two negative database entries, it is hard to determine
if they represent the same value. We prove this property formally in Thm. 3.

3.3 Negative Databases from Cryptographic Hash Functions

Cryptographic hash functions such as SHA-256 [14, 16] and RIPEMD-160 [7, 14]
are widely used cryptographic primitives. They are compressing functions that
take a variable size input and return a fixed size output (of 256 and 160 bits,
respectively). The key properties of cryptographic hash functions are preimage

Algorithm 3 Verifying “is s in DB”?

INPUT: Negative database NDB = {NDB; ;} corresponding to DB, NDB; ; € R x 7,
1=0,....m—1,7=0,...,n—1
index k € {0,...,n — 1}, value s € M

OUTPUT: Verify if s = DB, for some index 14

1: for i =0tom —1do

2 Let NDB; k. = (74,5, ti k)

3: if H(Ti,k, S) = tiyk then

4

5:

return true
return false

and second preimage resistance and collision resistance. Loosely speaking, these
mean that given a hash value h(x) it is difficult to find z; given z, h(z) it is
difficult to find another y such that h(y) = h(z); and it is difficult to find
arbitrary x,y such that h(y) = h(z).

Extensive cryptographic research has gone into understanding the security of
hash functions, with spectacular results demonstrating the insecurity [19] of the
standard MD5 [17] and SHA-1 [14, 16] algorithms. The weaknesses concentrate
on the general collision resistance of these functions which is not required to
show the security of our designs, but it is still prudent to migrate to the use of
functions such as SHA-256 and RIPEMD-160 that are still believed to be secure
under all security notions.

Thus, we instantiate the one-way function H with a cryptographic hash-
function h, so that H(r; j, DB; ;) = h(r; ;||DB; ;). In this particular application,
the adversary knows r; ;, hence partial preimage resistance is required to guaran-
tee the hard-to-reverse property. One can prove even stronger properties in the
random oracle model [2]. In this model, practical hash functions are modelled
in an idealized way, that is, as “black-box” functions that output a uniformly
random value as response to every new query. If the random oracle is queried
again with the same input, it outputs the same value as before.

3.4 Negative Databases Based on Discrete-Log and DDH
Assumptions

We propose a second instantiation for the one-way function, this time based
on the hardness of the discrete logarithm problem. Namely, let p be a large
prime and G =<g> a multiplicative group of prime order p. Let Z, be the
additive group of integers modulo p. Then, we set H : G\ {1} x Z, — G as
H(grv m) =g

To reason formally about the security of our scheme we have to introduce
the notation of negligibility.
Negligibility: A function f is negligible if for every polynomial P(k), f(k) <
m for all sufficiently large k.

The security of our scheme relies on the discrete-log assumption (where the
security parameter k is the bit-length of p):

Discrete-Logarithm (DL) assumption: For every probabilistic polynomial
time algorithm A, the probability Pr(g — G;x < Zp; A(p, g,9%) = x| is negligi-
ble.

If the DL assumption holds for a group G, then f(x) = ¢ is a one-way func-
tion. Thus, H can indeed be instantiated with H(g",m) = ¢"™. Furthermore, in
Sect. 4, we prove additional properties of the NDB under the DDH assumption:
Decisional-Diffie-Hellman (DDH) assumption: For every probabilistic poly-
nomial time algorithm A, the probability

|Prlg «— Gix,y «— Zyp; A(p, 9,97, 9", 9"Y) = 1] —
Prlg — Gix,y,z — Zp; A(p, 9, 9%, 9%, 9°) = 1]|

s negligible.

The DDH assumption says that given a tuple (¢*, g¥, g%), it is computation-
ally infeasible to decide whether z = zy. Evidently, the DDH assumption implies
the DL assumption.

4 Security Arguments and Proofs

We start by proving that a user can indeed query single values in the negative
database, i.e., that Alg. 3 returns the wrong answer with negligible probability
(in the length of the entries in NDB). In the first construction, the negligible error
probability cannot be avoided if one wants to use a compressing hash function
instead of a bijective function. In the second case, the negligible error is intro-
duced by dummy entries; if the database size is not obfuscated, the algorithm is
always correct.

Theorem 1. Assume that H : R x M — T is a random oracle. Then Alg. 3
returns the correct answer with probability at least 1 — %ﬂd, where m and d are

the number of real and dummy records (rows) in the database, respectively.

Proof. If s = DB, is in the database, then the algorithm clearly returns the
correct answer. Assume now that s € M is not in the database. For any en-
try NDB; x = (i, ti k), the algorithm incorrectly returns true if and only if

H(ri,s) = ti. Since the answers of the random oracle are uniformly dis-
tributed, Pr [H (r; x, s) = tix] = ﬁ7 and the result follows from the union bound.
O

Theorem 2. Let G =<g> be a multiplicative group of prime order |G| = p
generated by g. Define the function H : G\ {1} x Z, — G as H(g",m) = g"™.
Then Alg. 3 returns the correct answer with probability at least 1 — %, where d
is the number of dummy entries in the database.

Proof. If s = DB, is in the database, then the algorithm clearly returns the
correct answer. Assume now that s € Z,, is not in the database. For any “real”
entry DB, = s’ # s (mod p) and corresponding negative entry NDB,; =

(g"i*, g"+%"), the algorithm correctly computes H(g"ik,s) = g"iks £ griks
For any “dummy” entry NDB;; = (¢"*,g"*), the algorithm incorrectly re-
turns true if and only if H(g"i*,s) = g'i-». Since g'* was drawn uniformly at
random from G, Pr[H(g"*,s) = gli+] = %. The result then follows from the
union bound. a

Next, we turn our attention to privacy-preserving properties. Since our neg-
ative databases are constructed using one-way functions, obtaining the positive
representation from the negative one implies breaking the one-wayness assump-
tion. In particular, the security of our two constructions relies on the (partial)
preimage resistance of hash functions in the first case, and the hardness of dis-
crete logarithm in groups of prime order in the second case.

A standard design goal for hash functions is that they should withstand
preimage attacks faster than exhaustive search. More precisely, let [= log, | M|
be the length of each entry in the positive database and let = log, |R| be the
length of random values. Since values r; ; are known to the adversary, exhaustive
search for inverting a fixed value in NDB takes 2 steps in the worst case (assum-
ing that all I-bit strings are possible database entries). Inverting the whole NDB
takes at most mn2' steps. However, since the values r;,; are chosen randomly
and only become public when the database is published, full precomputation be-
fore seeing NDB takes 2/17 steps. Concretely, we propose to use random values
r;,; of 128-256 bits to thwart offline attacks. Choosing r > 128 is also sufficient
to guarantee that the random values never repeat: by the Birthday Paradox,
collisions only become likely after O(27/2) choices.

Moreover, under stronger but still reasonable assumptions, our construc-
tions benefit from indistinguishability of entries: given two negative database
entries NDB; ; and NDB;, ;/, a polynomial-time adversary cannot decide with
non-negligible probability whether these entries correspond to the same value in
the positive database, i.e, whether DB; ; = DBy ;+. For the first construction,
the result is obvious if we substitute the hash function with a random oracle and
assume that random values r; ; never repeat. We now prove the result for the
second case with a tight reduction to the Decisional Diffie-Hellman assumption.

Theorem 3. Let G =<g> be a multiplicative group of prime order |G| = p
generated by g. Define the function H : G\ {1} x Z, — G as H(g",m) = g"™.
Given two NDB entries NDB; ; = (¢",¢%), NDBy j = (grl,gz/), it 18 computa-
tionally infeasible to decide whether DB; ; = DBy j (log,r g = log, ./ g*") under
the DDH assumption.

Proof. Given a probabilistic polynomial-time adversary A that can distinguish
between database entries with advantage e, we construct another adversary B
that can break the DDH assumption with advantage €.

Let (g%, g¥,g%) be the challenge DDH tuple given to B. We let B randomly
choose r € Z,,, construct tuples (g7, ¢"") and (¢¥"",¢*~*") and send them to A.
It is easy to see that B can solve the DDH problem with advantage ¢, since:

log,- g™ =loggy—+ g & z(y—r)=2-21 S TY="2 .

O

If the adversary has some a priori information about the entry m, fast attacks
such as the baby-step giant-step method for finding the discrete logarithm may
however be possible. We discuss the impact of field entropy on security in Sect. 7.

5 Evaluation

5.1 Efficiency

In this section we discuss the efficiency of our approach, and compare it to [9],
both in terms of space and time complexity.

In the scheme proposed by Esponda et al. [9], positive database (DB) entries
cannot be negatively represented in a global way. Instead, each entry has to be
represented individually by a negative database (NDB; ;). Each of these NDB; ;
has size O(I?), where [is the size of the entry in DB (I > 1000 for security
reasons), as their scheme needs [entries of [bits per entry in the NDB in order
to conceal the positive representation. Assuming that DB contains m entries,
the complete NDB will occupy O(I? - m) bits of space.

Our construction, on the contrary, stores only one value per entry in DB,
such that the global size of the final NDB is linear in the size of the original
database, occupying O((t + r) - m) bits for a positive database with m entries,
where ¢t = log, |T| is the length of the output of the one-way function H and
r = log, |R] is the length of the random value. This may even lead to a negative
database that is smaller than the original positive database (when positive entries
are larger than ¢+ r.)

In terms of time complexity, our proposal is more efficient than the original
scheme. For answering the query “Is ¢ in DB?”, the original approach needs to
check every value in every NDB. This takes O(l - m) time. In our approach, only
m entries need to be checked. Thus, the query response time is linear in the size
of the database, O(ty -m), depending on the time needed to execute the one-way
function, tg.

Our calculations so far concern entries with a single field. When entries have
multiple fields n, the space complexity increases linearly by the same factor n.
Query time complexity does not increase, provided that the query is restricted
to a single field.

Cryptographic hash functions such as the SHA family are very fast on com-
modity processors, and can achieve speeds of up to 1 Gb/s in dedicated hard-
ware [15]. Modular exponentiation is more expensive on commodity hardware,
but techniques based on the precomputation of some values provide a consider-
able speed-up [3, 13]. Specialized hardware achieves a rate of about 50000 expo-
nentiations per second [18].

5.2 Experimental Results

We have implemented a simulation in Python in order to test the efficiency of
our proposal. In our example, each entry of the database consists of six fields:

4000 A e
3500[- S 200

3000

\

Time (ms)

Time (ms)

\

1000 e

500(- S 7

000

00 5000 T00 00 5000

60 £ 0 o %00 000 o
Size of DB (number of records) Size of DB (number of records)

(a) Time for create a database by size (b) Response time by size of the database

Fig. 1. Simulation results on a 1 GHz Pentium M.

name, family name, gender, credit card number, month of expiration and year
of expiration, as shown in Table 1. All of these fields were of length 20 bytes
whereas normally gender, month, year, etc length should be smaller. This gives
us an upper bound on performance (but should have little effect in practice.)
We use SHA-1 [16] as the one-way function to create the negative image of the
database!, with 20-byte values to randomize the output (or » = 160).

Table 1. Database entries.

Name| Family| Gender| Credit Card| Month of | Year of
name Number | Expiration| Expiration

First, we tested the time of creation of a database depending on the number
of entries. As shown in Fig. 1(a), the time for creating a database is linear in its

size, and smaller than 5 seconds for a 5000-entry database (with seven 20-byte
fields each).

Our second test measured the response time of our scheme. We assume the
worst case, when the query ¢ is not in DB, thus, all of the entries need to be
checked to give a final negative response. As expected, the time is linear with
the number of entries in the database (see Fig. 1(b)).

1 SHA-1 was chosen for ease of implementation, since it is available in the standard
libraries. Even if current shortcut attacks only reduce the complexity to find col-
lisions, SHA-1 should not be used in production systems. Instead, we recommend
RIPEMD-160 or SHA-256 that have comparable performance characteristics.

6 Extensions and Discussion

6.1 Intersection of databases

One of the advantages of negative databases is that they enable organizations
to compare their negative database images without jeopardizing the privacy of
the data subjects, or leaking sensitive information to company outsiders. Our
schemes, in spite of destroying the semantics of the original (positive) database,
support these operations.

For example, users can do private “select and project” operations without
first transmitting the whole NDB. Namely, a user interested in entries that have
a certain value v in field (column) f can request the entries in column f, apply
the one-way function locally to v (salted appropriately with the random values),
and send the indices of matching entries to the owner of NDB. The latter can
then create and send back a new NDB' of matching entries without learning the
search criterion v. Following the example in [10], authorities can also take an
intersection of two positive DBs without revealing their interests to the database
owners.

6.2 Proving Statements about Entries in Zero-knowledge

A zero-knowledge proof is an interactive proof in which the verifier learns nothing
except the fact that the statement proven is true. Honest-verifier zero-knowledge
proofs-of-knowledge protocols exist for proving various statements about discrete
logarithms in groups of known order [4, 5]. This allows to prove statements about
cryptographic primitives that operate in these groups, for instance the knowledge
of a commitment or the equality of two commitments’ openings. Moreover, note
that it is possible to prove AND and OR relations of these statements [6]. Such
protocols can be made non-interactive by applying a cryptographic technique
called the Fiat-Shamir heuristic [11].

These proof methods are directly applicable to our scheme. Our construc-
tion for negative databases based on the Discrete-Logarithm problem allows the
parties who know the positive entries, or the data subjects themselves to effi-
ciently prove statements about entries without revealing any information about
their positive representations. For example, a user can prove that two entries
correspond to his username, and that the sum of two fields is less than a certain
threshold. Similarly one can prove that the entry coresponding to their age is
larger than a certain minimum age, to gain access some age restricted informa-
tion.

7 Limitations of Negative Databases

By their very design and properties negative databases have some limitations,
and should be used with due care as part of larger privacy enhancing systems. As
we have seen, a user can query whether a particular record field value is present

or not in the positive database given only the negative representation. Such a
user can only extract additional information by exhaustively enumerating all
possible entries.

For many real world databases this may represent a severe weakness. Typi-
cal records will include fields that have little variance, such as ‘gender’ (usually
binary) or ‘date of birth’ (that contains about 7 bits of entropy.) Even fields pop-
ulated with elements from a theoretically large space, such as names or surnames,
may be efficiently enumerated by an adversary that has access to additional in-
formation such as population registers or electoral rolls, that are often public.
Therefore, by design, a negative database cannot hide such fields.

Many strategies are possible to protect negative databases against such effi-
cient enumeration attacks. The first strategy is to systematically aggregate low
entropy fields into larger fields. This makes it harder for an adversary to guess
them correctly, since the full guess much match, but also does not allow for
searches and joins on specific fields.

A second approach would be to include with each low entropy field a high
entropy key that is specific to the individual referred to by the field (such as a so-
cial security number, or a passport number.) Queries to the database would then
need to be appended by the key to be successful, restricting the ability to find
records to those that know individuals well enough to have their corresponding
key.

8 Conclusions

We have shown practical and efficient schemes to implement negative databases.
The security of these schemes is reduced to well understood cryptographic as-
sumptions that have been the subject of considerable scrutiny in the literature.
These schemes only occupy O(m) space and queries are performed in O(m) time,
in comparison with the O(m - 1) space and time complexity for the original pro-
posal. For very large fields our schemes could even achieve a compression of the
original database. Records with multiple fields only increase the cost of storage
and queries linearly.

The first scheme we show is based on the security of hash functions. Our non-
optimised implementation allows for fast queries, with about 2 milliseconds per
query for a database of 5000 elements (in worst case queries, i.e. the searched
string was not in the NDB.) The query times increase only linearly with the
number of entries and we expect that optimised implementation could be used
in industrial strength deployed systems to protect privacy. Integrating ‘negative’
tables in widely deployed Relational Database Managment Systems (RDBMS)
would be a significant step forward in deploying privacy enhancing technologies,
and our proposal is efficient and economical enough to be the basis for such
deployment.

The second construction we propose, based on the DL related assumptions,
is less efficient in space and slower than the first. Its advantage is that it can
be used by any party knowing the content of some fields to prove a wide range

of statements about them in Zero-Knowledge. This allows for building protocols
that offer even higher levels of privacy protection than in the original nega-
tive databases proposals. The cost of doing multiple exponentiation is still pro-
hibitive on commodity hardware to allow for wide deployment of this protocols.
Yet servers using standard cryptographic hardware could still benefit from its
additional properties.

Acknowledgments. This work was partially supported by the IWT SBO
ADAPID project (Advanced Applications for e-ID cards in Flanders), the Con-
certed Research Action (GOA) Ambiorics 2005/11 of the Flemish Government
and by the IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Sci-
ence Policy). George Danezis is funded by a research grant of the Katholieke Uni-
versiteit Leuven. Emilia Kéasper was partially supported by the FWO-Flanders
project nr. G.0317.06 Linear Codes and Cryptography. Sebastian Faust is sup-
ported by a research grant of the research institute IBBT (Interdisciplinary in-
stitute for BroadBand Technology) of the Flemish Government.

References

1. The non-denial of the non-self. The Economist, August 2006.

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM Conference on Computer and Communica-
tions Security, pages 62-73. ACM Press, 1993.

3. Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David Bruce Wilson.
Fast exponentiation with precomputation (extended abstract). In EUROCRYPT,
pages 200-207, 1992.

4. David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An improved pro-
tocol for demonstrating possession of discrete logarithms and some generalizations.
In EUROCRYPT, pages 127-141, 1987.

5. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
CRYPTO, pages 89-105, 1992.

6. Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In CRYPTO, pages 174-187,
1994.

7. Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A strength-
ened version of RIPEMD. In Dieter Gollmann, editor, Fast Software Encryption,
volume 1039 of Lecture Notes in Computer Science, pages 71-82. Springer, 1996.

8. Fernando Esponda, Elena S. Ackley, Stephanie Forrest, and Paul Helman. Online
negative databases. In Giuseppe Nicosia, Vincenzo Cutello, Peter J. Bentley, and
Jon Timmis, editors, ICARIS, volume 3239 of Lecture Notes in Computer Science,
pages 175—188. Springer, 2004.

9. Fernando Esponda, Elena S. Ackley, Paul Helman, Haixia Jia, and Stephanie For-
rest. Protecting data privacy through hard-to-reverse negative databases. In
Sokratis K. Katsikas, Javier Lopez, Michael Backes, Stefanos Gritzalis, and Bart
Preneel, editors, ISC, volume 4176 of Lecture Notes in Computer Science, pages
72-84. Springer, 2006.

10. Fernando Esponda, Elena S. Ackley, Paul Helman, Haixia Jia, and Stephanie For-
rest. Protecting data privacy through hard-to-reverse negative databases. Inter-
national Journal of Information Security, 2007.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In CRYPTO’ 86, pages 186—-194. Springer-Verlag,
LNCS 263, 1986.

Li Gong, T. Mark A. Lomas, Roger M. Needham, and Jerome H. Saltzer. Protecting
poorly chosen secrets from guessing attacks. IEEE Journal on Selected Areas in
Communications, 11(5):648-656, 1993.

D.M. Gordon. A Survey of Fast Exponentiation Methods. Journal of Algorithms,
27(1):129-146, 1998.

International Organization for Standardization. ISO/IEC 10118-3:200/: Infor-
mation technology — Security techniques — Hash-functions — Part 3: Dedicated
hash-functions. International Organization for Standardization, Geneva, Switzer-
land, February 2004.

R. Lien, T. Grembowski, and K. Gaj. A 1 Gbit/s partially unrolled architec-
ture of hash functions SHA-1 and SHA-512. Topics in Cryptology-CT-RSA 2004
Proceedings, pages 324-338, 2004.

National Institute of Standards and Technology. FIPS PUB 180-2: Secure Hash
Standard. National Institute for Standards and Technology, Gaithersburg, MD,
USA, August 2002. Supersedes FIPS PUB 180 1993 May 11 and 180-1 1995 April
17.

R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informational), April
1992.

Kazuo Sakiyama, Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid Ver-
bauwhede. Reconfigurable modular arithmetic logic unit supporting high-
performance RSA and ECC over GF(p). International Journal of FElectronics,
99(99):15, 2007.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-
1. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer
Science, pages 17-36. Springer, 2005.

