
Fingerprinting Tor’s Hidden Service Log Files
Using a Timing Channel

Juan A. Elices #1, Fernando Pérez-González ∗,#2, Carmela Troncoso +3

Electrical and Computer Engineering Department, University of New Mexico
University of New Mexico — Albuquerque, NM 87131 — USA

∗ Signal Theory and Communications Department, University of Vigo
University of Vigo — 36310 Vigo — Spain

+ K.U.Leuven, ESAT/COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

1 jelices@ece.unm.edu, 2 fperez@gts.uvigo.es, 3 carmela.troncoso@esat.kuleuven.be

Abstract—Hidden services are anonymously hosted services
that can be accessed over Tor, an anonymity network. In this
paper we present an attack that allows an entity to prove, once
a machine suspect to host a hidden server has been confiscated,
that such machine has in fact hosted a particular content. Our
solution is based on leaving a timing channel fingerprint in the
confiscated machine’s log file.

In order to be able to fingerprint the log server through Tor we
first study the noise sources: the delay introduced by Tor and the
log entries due to other users. We then describe our fingerprint
method, and analytically determine the detection probability and
the rate of false positives. Finally, we empirically validate our
results.

I. INTRODUCTION

Anonymous access to the internet has become a necessity
for wide range of users: human rights activists, journalists,
military, dissidents, bloggers, citizens in censored countries,
etc. This need fostered the development of anonymous com-
munication systems, such as Freenet [1], Tor [2], or JAP [3].
Among these, the most popular is Tor which, for instance,
has had an important role in Iran and Egypt’s dissident move-
ments [4]. Anonymity is not only an issue for users, but it is
also important for servers. The Electronic Frontier Foundation
and Reporters Without Borders advise the use of hidden
(anonymous) services to protect the safety of dissidents who
have to overcome censorship. Unfortunately, hidden services
are also used for illegal purposes such as distributing child
pornography, or supporting terrorism.

In this paper we consider a scenario in which an entity (e.g.,
a law enforcement agency, or a censorship-prone government)
has confiscated a machine suspicious of hosting a particular
content, but this content has been deleted. This entity wishes
to leave a fingerprint on the hidden server log that serves as
proof that this particular machine actually hosted the targeted
content. We propose to create this fingerprint by sending
several HTTP requests to the server according to a pre-defined

WIFS‘2011, November, 16-19, 2011, Foz do Iguaçu, Brazil.
978-1-4244-9080-6/10/$26.00 c©2011 IEEE.

schedule. The server logs the time when these requests are
processed in the log file. Detecting the fingerprint consists on
deciding whether the desired timing pattern is present in the
log.

Finding such a pattern is not straightforward, mainly be-
cause of two issues. First, Tor achieves anonymity by relaying
web traffic through (in general) three onion routers to ensure
that no relay knows both the communication’s originator and
recipient. In the case of hidden services, both client and server
use a three-relay path, and resort to a rendez-vous point
to find each other [2]. Hence, the time when users send a
request does not coincide in general with the time logged
by the hidden service. Second, when detecting a fingerprint
it is not possible to distinguish between our log entries and
the ones resulting from other users’ requests. We overcome
these problems by estimating the log time from the date
field included in the HTTP responses to our requests; and
by statistically modelling the number of other users’ entries
in the log file. Our fingerprinting algorithm can be tuned to
achieve a probability of misdetection as small as desired, while
minimizing the probability of false positive. Further, we show
that our fingerprint is difficult to recognize, and hence to
remove, by the hidden service administrator.

The rest of this paper is organized as follows: Section 2
reviews previous approaches to the log fingerprinting prob-
lem. In Section 3 we formally describe our problem and
introduce the notation. Section 4 studies the relation between
the HTTP response date field and the requests’ log time.
Section 5 characterizes the distribution of the number of
HTTP requests received by a server. In Section 6 we describe
our fingerprinting method, and in Section 7 we analytically
derive the probability of detection and the false positive rate,
and empirically validate our theoretical results. Section 8
summarizes our contribution and provides future directions for
our research.

II. PREVIOUS WORK

Shebaro et al. [5] already studied the log fingerprinting
problem. Their solution is based on sending ki requests per

RV

RV

TOR

HS

ENTRY T

LOG

Z11
2 Z2
3 Z3
4 Z4
5 Z5
6 Z6
... ...

Rw Kw

ZNN

W

Sw= +Other Users

Law Enforcement

Fig. 1. System Model

minute representing a single fingerprint bit. Their method is
not easily adjusted to meet a desired performance and needs
a good statistical characterization of the number of requests
that the server receives, an information that is rarely available
at the client. Also their solution has the drawback of a high
detectability at the server being fingerprinted. In contrast, our
solution uses the HTTP response date field, which allows
us to obtain more reliable results, and with a much lower
detectability.

Liberatore et al. [6] also tackled the problem of tagging
(fingerprinting) P2P clients’ logs. They put their tag in the
information that is stored, a CIDR block or a peerID. However,
their algorithm cannot be used to fingerprint a webserver, as
the only values of a log entry we can control are the time
and the requested line. For reasons of detectability, we use
only the time of the request. They mention the possibility of
using the time between events, but they do not discuss how
this could be implemented, nor provide a formal analysis of
the underlying properties.

III. PROBLEM DESCRIPTION

In this section we formally describe the problem and intro-
duce the notation we use in the rest of the paper.

A. Channel Model

Figure 1 shows the basic scheme of our problem. We send
L HTTP requests to a hidden server (HS) through Tor. These
requests will appear in the server’s log file mixed with other
clients’ requests (represented in blue and red in Figure 1).
Note that in order to achieve our low detectability goal we do
not tag the requests in any way.

We consider that the ith request we send appears on the
HS’s log at time Zi = Xi + Ni, i = 1, ..., L, where Xi the
moment when it was sent and Ni is random delay introduced
by the Tor network Loesing et al. modeled Ni as a Fréchet
distribution [7], but we choose not to use this approximation
since an estimator Ẑi of the log time is available in the HTTP
response, as we discuss later.

When it comes to deciding whether the ith request appears
in the log or not, we look inside a window Wi containing
Ẑi. We denote by EWi the number of log entries that fall
inside this window. These entries can correspond to our
fingerprinting requests that we denote as KWi

, or to other
clients’ requests, whose number is denoted by RWi

. More
formally, EWi = KWi + RWi , where KWi =

∑L
j=1 I(Zj ∈

Wi), and I(·) denotes the indicator function. The sequence

{RWi} is modelled in Section V as a negative binomial (NB)
distribution.

B. Detection Accuracy metrics

To measure the performance of our fingerprinting scheme,
we use two metrics: the probability of detection (PD), which
represents the probability of detecting the fingerprint when
it is actually present in the log, and the probability of false
positive (PF), which represents the probability of deciding that
there is a fingerprint when the log has not been fingerprinted.
Formally, we can express this problem via classical hypothesis
testing with the following hypotheses:

H0: The log has not been fingerprinted.
H1: The log has been fingerprinted.

Then PD is the probability of deciding H1 when H1 holds,
whereas PF is the probability of deciding H1 when H0 holds.

Typically, performance is measured using the so-called ROC
(Receiver Operating Characteristic) curves, which represent
PD vs. PF . In a practical setting, one fixes a certain value
of PF (that has to be very small if we want to achieve a high
reliability and avoid accusing an innocent server) and then
measure PD (which we would like to be as large as possible).

In addition, we want to avoid that the presence of the
fingerprint can be easily detected by any other party than the
originator of such sequence, i.e., the sequence should have low
detectability.

IV. HTTP RESPONSE DATE INFORMATION

In this section we characterize the estimator of the log time,
Ẑi. On the header of the HTTP response, there is the “date
field”, which we use as an estimator of Zi. According to [8], in
theory, this field represents the moment just before the HTTP
response is generated. We define the estimation error as εi

.
=

Zi − Ẑi.
In order to characterize ε, we performed some experiments

on an AMD Turion 64 X2 2GHz with 3GB of memory running
Apache 2.2.15 over Windows Vista SP2. The experiments were
selected to cover a wide range of server situations:

1) Normal situation: We request a 44 bytes file 2 times per
second.

2) Large transmission time: We request a 7 MBytes file
every minute.

3) Very loaded server: We request a 7 MBytes file 10 times
per second.

4) Demanding requests: We request a dynamic file of
around 80 bytes, for which the server needs at least 5
seconds to generate the response.

Table I shows the percentage of HTTP responses that we
receive with a given response code. We can see that for valid
HTTP responses (i.e., the ones with response code 200) the
estimation error is ε = 0.

The above results were obtained using only one machine
with one server software. In order to assess that those results
can be generalized we performed a second experiment. We

TABLE I
PERCENTAGE OF RESPONSES IN APACHE 2.2.15

Code 200 Code 200 Code 5xx Code 5xx
with ε = 0 with ε 6= 0 logged not logged

Experiment 1 94.10% 0.00% 0.01% 5.89%
Experiment 2 93.60% 0.00% 0.91% 5.49%
Experiment 3 11.33% 0.00% 33.78% 54.90%
Experiment 4 100.00% 0.00% 0.00% 0.00%

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ε

P
r(

ε i ≤
 ε

)

Fig. 2. Cumulative Distribution Function of ε in Apache 1.3.33

requested one petition per second during 24 hours to a
web server at the University of Vigo. This machine is an
AMD Athlon XP 2000+ with 512MB of memory that runs
Apache 1.3.33 over Debian 4.0. Figure 2 shows the obtained
cumulative distribution function of ε.

An important conclusion is that ε depends on the machine
and its running HTTP server software. In this work we assume
that the data from Figure 2 can be extrapolated and leave the
characterization of this dependency for future work. We also
assume that no HTTP requests triggering an error appear in
the log.

In Figure 2 we observe that ε is always greater or equal to
zero. We can conclude that Wi is reasonably given by Wi =
[Ẑi, Ẑi + w], for some integer w ≥ 0. We define:

PZ(Zj ,Wi)
.
= Pr(Zj ∈Wi) = Pr(Zj − Ẑi ≤ w),

where PZ can be interpreted as the probability that the log
time of the jth request falls within the reference window of
the ith request.

V. MODELING THE NUMBER OF LOG ENTRIES RW

In the previous section we explained how to deal with the
first noise source, i.e., the delay introduced by Tor. In this
section we present a model for the number RW of requests
from other clients that fall within a window of width w
seconds.

A. Data Collection

The access logs for this research were obtained from seven
differerent World Wide Web servers: a department-level web
server at the University of Calgary (Department of Computer
Science); a research group web server at University of Vigo
(Signal Processing group); a campus-wide web server at the
University of Saskatchewan; the EPA WWW server located at
Research Triangle Park; the web server at NASA’s Kennedy
Space Center; the ClarkNet WWW server, an old commercial
Internet provider in the Baltimore - Washington D.C. region;
and the 1998 World Cup web site WWW server.

In Table II we show a summary of the different servers’
logs. We see that the number of requests per day varies by
several orders of magnitude, as we see in Section VII this has
a great impact on the probability of false positive.

B. Results

Acording to [9], the inter-time between requests follows an
exponential distribution. This implies that the requests follow
a Poisson distribution with parameter λ that can be estimated
using the Maximum Likelihood Estimator (MLE) [10]:

fPoisson(λ)(k) =
λke−λ

k!
and λ̂MLE =

1

N

N∑
i=1

ki,

where N is the number of considered samples.
Another distribution commonly used to model counting

processes is the negative binomial (NB) distribution [10]. We
can see the NB as a Poisson distribution, where λ is itself a
random variable, distributed according to Γ(r, p

1−p).

f(k) =

∫ ∞
0

fPoisson(λ)(k) · fΓ(r, p
1−p)(λ) dλ

=

∫ ∞
0

λke−λ

k!
λr−1 e

−λ(1−p)/p

(p
1−p)rΓ(r)

dλ

=
Γ(k + r)

k!Γ(r)
· (1− p)rpk.

To calculate the parameters we can use the MLE as fol-
lows [11]:

r̂MLE =

⌊
(
∑N
i=1 ki)

2

N
∑N
i=1 k

2
i − (

∑N
i=1 ki)

2 −N
∑N
i=1 ki

+ 0.5

⌋

p̂MLE =

∑N
i=1 ki

r ·N +
∑N
i=1 ki

,

where N is the number of considered samples.

TABLE III
MLE PARAMETERS AND GOODNESS OF FIT

Log Poisson NB Poisson NB
MLE Param. MLE Param. K-L Div. K-L Div.

Calgary λ = 0.024 p = 0.023, r = 1 0.9104 0.0053
Vigo λ = 0.050 p = 0.048, r = 1 0.8843 0.0350
Saskatchewan λ = 0.130 p = 0.115, r = 1 0.6956 0.0046
EPA λ = 0.557 p = 0.358, r = 1 0.3638 0.0018
Nasa λ = 0.684 p = 0.406, r = 1 0.3018 0.0002
Clarknet λ = 2.753 p = 0.579, r = 2 0.1147 0.0020
World Cup λ = 15.266 p = 0.836, r = 3 1.2198 0.0051

The estimated MLE parameters and the goodness of fit are
shown in Table III. The goodness of fit is measured using
the Kullback−Leibler divergence, that is a non-symmetric
measure of the difference between two probability distribu-
tions: the observations and the model. From these results
we can conclude that the negative binomial distribution is a
better aproximation than the Poisson distribution. This means
that: i) the data is overdispersed, i.e., the variance is larger
than the mean; and ii) the interarrival times are exponentially

TABLE II
SUMMARY OF ACCESS LOG CHARACTERISTICS

Log Calgary Vigo Saskatchewan EPA Nasa Clarknet World Cup
Access Log Duration 1 year 1year 7 months 1 day 2 months 2 weeks 8 days

Access Log Start Date Oct 24/94 Jun 5/10 Jun 1/95 Aug 29/95 Jul 1/95 Aug 28/95 May 1/98
Access Log File (MB) 49.8 377 222 4.24 355 327 907

Total Requests 726,739 1,581,971 2,408,625 47,748 3,461,612 3,328,587 10,345,553
Requests per day 2,059 4,321 1 1,255 47,748 56,748 237,756 1,293,200

−10 −5 0 5 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

T (days)

A
ut

oc
or

re
la

tio
n

Fig. 3. Autocorrelation of ClarkNet Log

distributed but the rate is not fixed, but a gamma distributed
random variable.

Some daily and weekly trends in the logs can be observed in
Figure 3. Our method ignores them and considers {RWi} as a
stationary sequence. Also, it can be seen that the peak is only
one sample width. Therefore, the requests can be considered
uncorrelated.

We note that adding negative binomial distributed random
variables with the same p results in another negative binomial
distributed random variable whose parameter r is the sum of
the respective r’s [10]. In our problem we assume {RWi} to be
a sequence of independent and identically distributed negative
binomial random variables with parameters pL and w · rL.

VI. FINGERPRINTING METHOD

This section describes our algorithms to create and detect
fingerprints.

A. Creating the Fingerprint

Ideally we would like our fingerprint to be very difficult
to detect by any other than its originator. Additionally, fin-
gerprinting should be as fast as possible, in order to be able
to read the fingerprint from a small fragment of the log
file. We compute the rate of departures of our requests as
λFP = d · λ̂S , where d is the detectability factor, i.e., the
increase in the number of requests the server will receive due
to our fingerprint (reasonable values are 0.01, 0.05, 0.1), and
λ̂S is a rough prediction of the rate of requests that the server
receives.

When we want to fingerprint a server, we generate L − 1
samples from an exponential distribution with rate λFP . These
values are our interdeparture times, and the HTTP requests are
sent to the server according to them. Therefore the expected
time to fingerprint the server is (L− 1)λFP seconds.

Note that we need to store the HTTP response “date
fields” of the correct responses (status code 200), since this

information will be later needed to recover the fingerprint. We
denote the number of succesful responses as L′.

B. Detecting the fingerprint

Detecting the fingerprint consists on deciding whether the
log file contains the fingerprint. We say that the ith request
from our fingerprint is present in the log when at least ci
entries in the log fall inside the window Wi. This can be
mathematically expressed as di = I(EWi

≥ ci), where ci =∑L
j=1 I(Ẑj ∈Wi). We denote the number of detected requests

as SL′ =
∑L′

m=1 di. We consider that a fingerprint is present
in the log when we find at least Θ requests, i.e., SL′ ≥ Θ

We note that this is not the optimal decoder, as the distri-
bution of ε is not used. However, when ε is small, as it is
the case considered in this paper (see Sect. IV), the proposed
decoder is nearly optimal.

VII. ANALYSIS

In this section we calculate the theoretical probabilities
of detection and false positives. Afterwards we do some
experiments to validate the results.

A. Probability of Detection

We recall from Section III that the number of requests in
Wi, EWi

, is the sum of ours (i.e., KWi
) and other users’ (i.e.,

RWi
) requests. Further, in Section V we showed that {RWi

}
can be modeled as an NB distribution with parameters pL and
w · rL.

Before diving into the analysis we must model KWi , that
represents the number of fingerprint entries on the log that
appear inside Wi.

We know that the jth request has a probability of
PZ(Zj ,Wi) of appearing inside Wi. Since KW is the sum
of Bernoulli random variables we can approximate it by a
binomial distribution [12] with parameters:

nk =

(∑

Ẑj∈Wi
PZ(Zj ,Wi)

)2

∑
Ẑj∈Wi

PZ(Zj ,Wi)2
+ 0.5

 and

pk =

∑
Ẑj∈Wi

PZ(Zj ,Wi)

nk
.

1) General Case: here we study the probability of detection
without making any assumption concerning λFP .

First we study Pdi that represents the probability that we
detect the ith request of our fingerprint in the log. Given that
our detection algorithm is such that this event happens when
we have at least ci entries inside Wi this probabilty is:

Pdi = Pr(KWi
+RWi

≥ ci)

=

ci−1∑
l=0

Pr(KWi
≥ ci − l)Pr(Rm = l) + Pr(RWi

≥ ci)

'
ci−1∑
l=0

(1− I1−pk(nk − ci + l + 1, ci − l)) (1− pL)rL(w+1)

·
(
l + rL(w + 1)− 1

l

)
· plL + IpL(ci, rL(w + 1)),

where Ix(a, b) is the regularized incomplete beta function:

Ix(a, b) =

a+b−1∑
j=a

(
(a+ b− 1)

j

)
xj(1− x)a+b−1−j .

Now we want to compute the probability that the number
SL′ of fingerprint entries found in the log is above the
threshold Θ, this means to detect the fingerprint. The random
variable SL′ is a sum of L′ non-homogeneous dependent
Bernoulli random variables, which we approximate by a
binomial distribution [12] with parameters:

nd =

⌊
(
∑L′

i=1 Pdi)
2∑L′

i=1 P
2
di

+ 1/2

⌋
and pd =

∑L′

i=1 Pdi
nd

.

Now we can give an approximation of the probability of
detection:

PD = P (SL′ ≥ Θ) ' 1− I1−pd(nd −Θ + 1,Θ).

2) Low λFP approximation: When the probability that two
succesive requests from the desired user fall in the same
window is very small, i.e., Pr(Ẑi+1 − Ẑi ≤ w) ' 0, we can
assume that ci = 1 ∀i. This simplifies the resulting equations.
This happens when λFP is several orders of magnitude smaller
than 1/w requests per second. In this case Pdi takes the value:

Pdi = PZ(Zi,Wi) + (1− PZ(Zi,Wi)) · IpL(1, rL(w + 1)),

and SL′ becomes a sum of L′ homogeneous independent
Bernoulli random variables. Therefore, SL′ is binomially
distributed and the probability of detection becomes:

PD = P (SL′ ≥ Θ) = 1− I(1−Pdi
)(L
′ −Θ + 1,Θ).

B. Probability of false positive
We want to achieve a very low false positive rate, in order

to avoid accusing an innocent server.
1) General Case: here we study the probability of false

positive without making any assumption.
The probability that ci entries in the log appear in an interval

of size w when no fingerprint is actually present is

Pfi = Pr(RWi
≥ ci) = IpL(ci, rL(w + 1)).

Again, SL′ is the sum of L′ non-homogeneous dependent
Bernoulli random variables, which can be approximated by a
binomial distribution [12] with parameters

nf =

⌊
(
∑L′

i=1 Pfi)
2∑L′

i=1 P
2
fi

+ 1/2

⌋
and pf =

∑L′

i=1 Pfi
nf

.

10
−6

10
−4

10
−2

10
0

10
−6

10
−4

10
−2

10
0

Probability of False Positive (PF)

P
ro

ba
bi

lit
y

of
 M

is
de

te
ct

io
n

(1
−P

D
)

L=5, w=0
L=7, w=0
L=5, w=1
L=7, w=1

Fig. 4. ROC of the simulations for our research group’s web server at the
University of Vigo. Analytical (solid line), ideal conditions (dotted) and real
conditions (dashed).

10
−6

10
−4

10
−2

10
0

10
−6

10
−4

10
−2

10
0

Probability of False Positive (PF)

P
ro

ba
bi

lit
y

of
 M

is
de

te
ct

io
n

(1
−P

D
)

L=10, w=0
L=10, w=1

Fig. 5. ROC of the simulations for the web server at NASA’s Kennedy Space
Cente. Analytical (solid line), ideal conditions (dotted) and real conditions
(dashed).

Now we can give an approximation to the false positive
probability:

PF = P (SL′ ≥ Θ) ' 1− I1−pf (nf −Θ + 1,Θ).

2) Low λFP approximation: As before, when the rate of
requests is small, we can approximate ci = 1, ∀i. This implies
that Pfi takes the value:

Pfi = IpL(1, rL(w + 1)).

Again SL′ becomes the sum of L′ homogeneous indepen-
dent Bernoulli random variables, which means it is binomially
distributed and the false positive probability becomes:

PF = P (SL′ ≥ Θ) = 1− I(1−Pfi
)(L
′ −Θ + 1,Θ).

C. Results

In order to validate our theorical analysis we created a
scenario where we can measure PD and PF . We implement
a simulator which gives us the probabilities of detection and
of false positive in two situations. The first is ideal conditions
(i.e., {RWi} is a sequence of iid NB random variables and {εi}
is a sequence of iid random variables distributed according
to Figure 2); the second is real conditions, where the log
is taken from a web server and {εi} comes from the data
of the last experiment in Section IV, preserving any existing
autocorrelation.

Each experiment is simulated 10,000,000 times. We run this
simulator for two different cases. The first one is the research
group’s web server at the University of Vigo where fingerprints
are built by L=5 and L=7 entries. We consider two window
sizes, w=0 and w=1 seconds. The second case is the web
server at NASA’s Kennedy Space Center. As it is a busier
server, we make L = 10 to bring the false positive rates to
acceptable levels, and we also use windows of size w = 0 and
w = 1 seconds.

The results are shown in Figures 4 and 5, where we can
see that the analytical results closely match the simulated
ideal conditions. This supports our theoretical analysis. We
also see that only a discrete set of points (i.e., those marked
with circles) are generated; this is due to the threshold Θ only
taking integer values from 1 to L. Note that in some cases
some points are missing, because it is not possible to measure
those false positive probabilities (since we have run 10,000,000
experiments, probabilities under 10−7 could not be measured).

We can also see the performace loss due to non-ideal
conditions. This is the gap between the dashed and the solid
lines in Figures 4 and 5. The horizontal shift comes from
assuming iid entries on the log and ignoring the trends, while
the vertical shift comes from assuming independence on {εi}.

VIII. CONCLUSIONS

This paper proposes a method to leave a timing fingerprint
in the log of a hidden server. This fingerprint can be used
as evidence that the server indeed hosted a particular content
even after this content has been deleted. We note that, although
our experiments have been carried on a Tor hidden server, the
underlying principles of the attack are valid for any web server.

Our approach is based on sending HTTP requests to the
hidden server and storing the “date field” of the responses
we get. To detect the fingerprint we check whether there is
a logged entry in a window around the time that appears
in these responses. If we find a number of entries above a
pre-defined threshold we decide there is a fingerprint in the
log. We provide analytical expressions for the probabilities of
detection and false positive. We further show that the resulting
expressions admit a simplification when the sent requests are
sparse, and finally provide an empirical validation of our
results.

Ongoing research considers the observed differences be-
tween the HTTP response date field and the log time, which
could be better modeled by including a study of their autocor-
relation. This shall hopefully improve the analytical approxi-
mations and bring them closer to the empirical results.

ACKNOWLEDGMENTS

Research supported by the European Union under project
REWIND (Grant Agreement Number 268478), the Euro-
pean Regional Development Fund (ERDF) and the Spanish
Government under projects DYNACS (TEC2010-21245-C02-
02/TCM) and COMONSENS (CONSOLIDER-INGENIO
2010 CSD2008-00010), and the Galician Regional Govern-
ment under projects Consolidation of Research Units 2009/62,

2010/85 and SCALLOPS (10PXIB322231PR), and by the
Iberdrola Foundation through the Prince of Asturias Endowed
Chair in Information Science and Related Technologies. This
work was supported in part by the Concerted Research Action
(GOA) Ambiorics 2005/11 of the Flemish Government and
the IAP Programme P6/26 BCRYPT.

C. Troncoso is a research assistant of the Fund for Scientific
Research in Flanders (FWO). The authors are really gratefull
to the people who made their logs available: R. Fridman, J.
R. Troncoso-Pastoriza, E. Fogel, L. Bottomley, J. Dumoulin,
S. Balbach, M. Arlitt and C. Williamson and to the ACM
SIGCOMM for making them available.

Thanks to all the people that have reviewed this paper or
have helped in any other way: N. Mathewson, R. Dingeldine,
B. Shebaro, P. Jamkhedkar, M. Limon.

REFERENCES

[1] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A distributed
anonymous information storage and retrieval system,” in Designing Pri-
vacy Enhancing Technologies, ser. Lecture Notes in Computer Science,
H. Federrath, Ed. Springer Berlin / Heidelberg, 2001, vol. 2009, pp.
46–66.

[2] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-
generation onion router,” in Proceedings of the 13th conference on
USENIX Security Symposium - Volume 13, ser. SSYM’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 21–21.

[3] O. Berthold, H. Federrath, and M. Kóhntopp, “Project anonymity and
unobservability in the internet,” in Proceedings of the tenth conference
on Computers, freedom and privacy: challenging the assumptions, ser.
CFP ’00. New York, NY, USA: ACM, 2000, pp. 57–65.

[4] W. J. Sullivan, “2010 free software awards announced,” May
2011. [Online]. Available: http://www.fsf.org/news/2010-free-software-
awards-announced

[5] B. Shebaro, F. Perez-Gonzalez, and J. R. Crandall, “Leaving timing-
channel fingerprints in hidden service log files,” Digital Investigation,
vol. 7, no. Supplement 1, pp. S104 – S113, 2010, the Proceedings of
the Tenth Annual DFRWS Conference.

[6] M. Liberatore, B. N. Levine, and C. Shields, “Strengthening forensic
investigations of child pornography on p2p networks,” in Proceedings
of the 6th International COnference, ser. Co-NEXT ’10. New York,
NY, USA: ACM, 2010, pp. 19:1–19:12.

[7] K. Loesing, W. Sandmann, C. Wilms, and G. Wirtz, “Performance
measurements and statistics of Tor hidden services,” in The 2008
International Symposium on Applications and the Internet. Turku,
Finland: IEEE, July 2008, pp. 1 – 7.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,”
RFC 2616 (Draft Standard), Internet Engineering Task Force,
Jun. 1999, updated by RFCs 2817, 5785. [Online]. Available:
http://www.ietf.org/rfc/rfc2616.txt

[9] M. F. Arlitt and C. L. Williamson, “Web server workload character-
ization: the search for invariants,” in Proceedings of the 1996 ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems, ser. SIGMETRICS ’96, 1996, pp. 126–137.

[10] N. Johnson, A. Kemp, and S. Kotz, Univariate discrete distributions,
ser. Wiley series in probability and mathematical statistics. Applied
probability and statistics. Wiley, 2005.

[11] L. J. Simon, “Fitting negative binomial distributions by the method of
maximum likelihood,” in Proceedings of the Casualty Actuarial Society,
vol. XLVIII, Arlington, VI, 1961, pp. 45–54.

[12] S. Y. T. Soon, “Binomial approximation for dependent indicators,”
Statistica Sinica, vol. 6, pp. 703–714, 1996.

