
Engineering Privacy by Design Reloaded

Gürses, Seda ∗

Princeton University
fgurses@princeton.edu

Troncoso, Carmela †

Gradiant
ctroncoso@gradiant.org

Diaz, Claudia ‡

COSIC/iMinds, Dept. of Electrical Engineering, KU Leuven
Claudia.Diaz@esat.kuleuven.be

1 Introduction

The concept of “privacy by design” has gained traction in policy circles in the
last decade. However, The actual design, implementation and integration of
privacy protection in the engineering of products and services remains however
an open question. Different parties have proposed privacy-by-design methodolo-
gies that promise to be a holy grail for organizations collecting and processing
personal data. These efforts aim at addressing the engineering aspects of pri-
vacy by design by pointing to design strategies, but fall short of relating how
these strategies can be applied when building privacy preserving information
systems [1, 9, 11].

In response to this status quo, we wrote a paper in 2011 on how data mini-
mization can be applied to address privacy concerns in information systems [8].
In this paper, we used two case studies, a system for anonymous e-petitions [5],
and a privacy- preserving Electronic Toll Pricing system (PrETP) [2], to illus-
trate in a concrete manner how a design process guided by the principle of data
minimization would lead to a reduction of privacy risks, avoid function-creep,
and provide users with maximum control over sensitive information.

The publication of our paper spurred a discussion with other experts in
the field in which it became apparent that the “data minimization” metaphor
may be misleading. In a system with a privacy-preserving design, the flow of
sensitive data to a centralized entity (the service provider) is indeed “minimal”,
yet all the privacy-sensitive user data is captured and still stored on devices

∗Some of this work was completed during the author’s time at New York University Infor-
mation Law Institute and at COSIC, KU Leuven
†Some of this work was completed during the author’s time at COSIC, KU Leuven. This

work is supported in part by the EU PRIPARE (FP7 GA No. 610613) and WITDOM (H2020
GA No. 64437) projects.
‡This work was partially funded by the projects FWO G.0360.11N, FWO G.0686.11N, and

KU Leuven BOF ZKC6370 OT/13/070, and EU H2020 Panoramix project.

1



within the boundaries of the system. The difference to a “straightforward”
implementation of a privacy preserving system is that the sensitive data only
resides in components of the system under the control of the user. By that we
mean that sensitive data may be kept on a user device; in encrypted form where
the user holds the key; or data may be distributed across entities where the
user is the only one who can re-compile the data. No matter which design is
the enabler of user control, sensitive data resides somewhere in the system. As
engineers refine their design, many things are being minimized, but certainly
not data. So we asked ourselves, if the number of engineering activities that we
engage in is not magically “vaporizing” data in the system, what is it doing?

After further examination of existing privacy preserving system designs, it
became evident that a whole family of design principles are lumped under the
term “data minimization”. The term conceals a number of design strategies
that experts apply intuitively when developing privacy preserving systems. A
number of these are constraints on information flows like minimizing collection,
disclosure, linkability, replication, retention and centrality. Systems engineered
by applying these constraints intend to “minimize risk” by avoiding a single
point of failure, and minimize the need to trust data collectors and processors
by putting data under the user’s control.

These findings are in line with the main contribution of another paper in
which a host of privacy design principles – called privacy design strategies– are
described [9]. In this paper, “privacy design strategies” refer to distinct ap-
proaches that can be used to achieve privacy protection. Privacy enhancing
technologies (PETs) on the other hand are used to implement “privacy de-
sign patterns” – a commonly recurring structure of communicating components
that solves a general design problem within a particular context. Privacy design
strategies make explicit the different approaches that are available to protect pri-
vacy when designing systems. For each privacy design strategy the appropriate
privacy design patterns and related PETs can be leveraged to enable the imple-
mentation of a privacy preserving system. For example, “hiding” information
is defined as a strategy, and refers to “hiding any personal information that is
processed from plain view”. Hiding personal information can be achieved using
the common privacy design pattern “mix networks” for anonymous communica-
tion. A privacy enhancing technology that enables hiding of traffic information
using mix networks is Tor1 [6].

This elegant distinction between privacy design strategies and how they re-
late to PETs is illuminating. However, in and of itself, having access to a catalog
of design strategies and patterns is not sufficient to provide insight into the pro-
cess through which these can be applied. It leaves open the question how these
strategies can be put to use in practice. Experts know how to do this: they
perform a number of activities during which they apply these strategies. How-
ever, this practice is not self-evident to non-experts that may want to integrate
PETs into systems.

Our quest is to respond to this gap in knowledge by spelling out how ex-

1https://www.torproject.org/

2



perts apply privacy design strategies. We hope that a deeper understanding
of their practice can inform future methods for engineering privacy by design.
Specifically, providing greater insights into the definition and formalization of
these strategies; how they can be related to the privacy design patterns; and,
the way they guide the design process is in this context valuable and desirable.
Moreover, our initial work shows that these three parts are interdependent. The
definitions of the privacy design strategies and the process through which they
can be applied needs some fitting, another aspect we believe would benefit from
further elaboration.

In this paper we make the modest contribution of summarizing our initial
conceptualization of how experts apply data minimization strategies. Specifi-
cally, based on a study of existing privacy preserving systems, we first elaborate
the design strategies hidden behind the term data minimization. We then pro-
vide a preliminary description of the activities that a privacy engineer performs
to apply the right data minimization strategies. Based on this process descrip-
tion, we then discuss where the definitions are useful, and where they need
further tweaking. Through this exercise, we intend to make explicit some of the
reasoning that PETs experts apply and that are difficult to grasp for outsiders.
We intend this paper to start another round of discussion with experts but also
method engineers on privacy engineering processes.

Why focus on PETs, security engineers and data minimiza-
tion?

Throughout our study, we assume we can learn from the existing practices of
security engineers that develop PETs about the art of engineering privacy pre-
serving systems. This may not seem sensible to someone who believes privacy
engineering activities should be derived from data protection or privacy laws.
Our justification for starting with these technical experts is twofold. First, we
believe that engineering knowledge and experience, and not only those of se-
curity engineers, should be part and parcel of the conception of activities that
can be summarized as privacy engineering. Second, while other fields of com-
puter science and engineering contribute to privacy engineering practice, privacy
enhancing technologies have predominantly been conceived and developed by se-
curity engineers. In engineering privacy preserving systems, the knowledge base
of this community is unique and hence deserves our attention.

Furthermore, privacy engineering may benefit from the systematization of
knowledge around designing systems using PETs. Security engineers engaged
in PETs learn their trade by participating in a community of researchers and
by implementing their ideas in concrete technical systems. Using the language
in [9], these are experts at the cutting edge of defining novel privacy design
patterns and enabling their implementation through (a combination of) concrete
privacy enhancing technologies (PETs). It is then also unsurprising that they
are the main figures who know how to put these privacy design strategies to
work – valuable knowledge we hope to capture and make explicit to the best of
our linguistic abilities.

3



Privacy engineering activities can be fruitful in tackling all aspects of data
protection during system design. However, in this paper, our focus remains
on “data minimization strategies”. In other words, we are interested in those
engineering activities that intend to minimize the risk of privacy breaches by
minimizing trust in data collectors and processors handling sensitive data prop-
erly. Further privacy design strategies can be applied to increase the integrity
and transparency of systems once sensitive data flows to data collectors and
processors. For example, technical mechanisms may be introduced to guarantee
that these entities respect their privacy policies with regard to data processing,
to validate the integrity of algorithms, or demonstrate compliant handling of
data. Such approaches are complementary to what we are doing and not in the
scope of this paper.

As we turn our focus to privacy engineering, we make a number of assump-
tions about the world. Certain security issues, e.g., the security of users’ devices,
of the privacy enabling cryptographic mechanisms, as well as the secure execu-
tion of collection and processing activities are instrumental but orthogonal to
the efforts we explain here. Furthermore, we assume we can trust the engineers
with their designs, i.e., we trust that the systems they build will do approx-
imately what they promise. This is a trust assumption which deserves many
papers on its own.

The paper intends to contribute to the maturing field of privacy engineering
by developing a clear vocabulary to express pertinent elements of its practice.
By gaining a better understanding of the privacy engineering practice, we hope
that policy makers will also be in a better position to articulate laws or other
regulation by design frameworks. Finally, while it is unreasonable to expect
the general public to understand the state of the art in privacy engineering,
by making the reasoning explicit, we hope to contribute to making privacy
engineering more accountable as a practice.

2 Unpacking Data minimization: a realm of strat-
egies

Most intuitively, data minimization refers to not collecting certain data inputs,
i.e., if not necessary for achieving the desired functionality of the system, data
should not be collected in the first place. By ensuring that no, or no unnecessary,
data is collected, the possible privacy impact of a system is limited [9]. In our
previous paper [8], we argued that there is a less intuitive way to minimize data
using state of the art in mathematical and computational capabilities. However,
once we laid out and described how these capabilities are used, it became evident
that many things were happening but the data in the system was not being
minimized, reduced or removed using these capabilities. Rather, we found that
with data minimization experts refer to a number of other design strategies that
make it possible to constrain the flow of data from the user controlled domain
to the domains controlled by other parties.

4



Through a systematic study of privacy preserving systems, we identified a
set of data minimization strategies that we use to jump-start this paper. These
strategies were inferred from the case studies presented in our previous paper,
i.e., PrETP and privacy preserving e-petition, as well as other prominent PETs
like Tor [6] or OTR [3]. To infer them, we did the cyclical exercise of identifying
different data minimization strategies in a case study, and then testing the new
set against another case study, until we were not able to identify additional
strategies. Yet, as we discuss in Sect. 4 it is not clear whether these are the
only strategies, nor whether our definitions are complete and coherent. We will
therefore revisit and elaborate on these definitions once we have a better grasp
of the process through which experts apply these strategies.

Before moving to the definitions of the data minimization strategies, it is
important to clarify what we mean by a system. First, we assume the experts
are about to develop a system that is going to be introduced into an environ-
ment. By system, we refer to all the entities that capture, process or further
disseminate data, the technical parts of which the engineer is responsible for
designing. For example, Fig. 1 describes an electricity smart metering system.
This system includes all the users, the smart meters, as well as the servers of the
utility provider. If the engineer were designing an app, then all entities running
that app would also be seen as part of the system, including the software and
hardware. In some cases, entities are hardware or software taken off the shelf,
e.g., the phone of a user, app libraries, and the engineer has to decide whether
this entity provides the necessary infrastructure for the privacy engineering task.

2.1 Data Minimization Strategies

We identified minimization of risk and the need for trust in other entities to be
the primary privacy design strategies:

Risk whenever possible limit the likelihood and impact of a privacy breach.

Need for trust whenever possible limit the need to rely on other entities to
behave as expected with respect to sensitive data.

A short clarification may be useful here. Minimizing need for trust is not
about an emotional distrust towards any entity other than the user. Rather, it
is about relying on entities to fulfill the functionality of the system, without this
reliance being conditioned upon them collecting and handling large amounts of
sensitive data that may later lead to privacy breaches. In most cases, minimizing
the need for trust is seen as being equivalent to minimizing risk of privacy
breaches materializing. However, there may be cases where the two are not
aligned, e.g., cases where in order to avoid privacy breaches, sensitive data may
be better handled by other parties.

The following are the strategies that can be used to minimize risk and the
need for trust:

Minimize Collection: whenever possible limit the capture and storage of data
in the system.

5



Minimize Disclosure: whenever possible constrain the flow of information to
parties other than the entity to whom the data relates.

Minimize Replication: whenever possible limit the amount of entities where
data is stored or processed.

Minimize Centralization: whenever possible avoid single point of failure in
the system.

Minimize Linkability: whenever possible limit the inferences that can be
made by linking data

Putting temporal limitations is orthogonal to the five strategies above and
can be applied to all data and information flows in the system:

Minimize Retention: whenever possible minimize the retention of data in the
system.

Privacy-preserving systems typically aim to protect privacy by combining
these principles. For example, in PrETP [2], collection is not minimized, i.e,
data collected on the On Board Units (OBUs), devices in the vehicle doing local
computations assumed to be under control of the user, does not get removed and
hence remain in the system. However, disclosure, replication and centralization
are all minimized. The location data remains on the OBU, while only the
information necessary to fulfill the functionality of the system, the final fee, plus
some data needed for service integrity flows to the service provider. This avoids
the replication and the centralization of location data. Users are registered with
the service provider, hence fees can be linked to the user, but not the location
data. Spot checks are used for fraud detection, but these are designed such
that only the location information that is being probed is released to the service
provider, minimizing disclosure. As a result of this design, users do not need
to trust the service provider with the protection of their location data. Since
the service provider does not have a large database of location data, the risk of
privacy breaches are also minimized.

It was a considerable task to unpack the different data minimization strat-
egies that were followed in PrETP, but how did the experts get to this design?
How did they decide where which data will be collected, to whom the infor-
mation will flow, and which privacy design patterns would best help them get
there? In the next section, we scratch the surface of how this process unfolds
for the experts.

3 Engineering Privacy by Design with Data min-
imization strategies

In the previous sections we have identified a set of strategies that steer the
design of ICT systems towards privacy-preserving implementations. In this

6



section we continue our reflection about how and when experts apply the data
minimization strategies. The idea is to provide designers and engineers with
insights that shall help them to make choices that increase the level of users’
privacy in the system.

Before diving into details, it is important to note that the thoughts reflected
in this paper only deal with choices taken when designing systems from scratch,
and it is not clear that they are of use when re-designing or modifying systems.
Furthermore, we note that the paper only tackles the design step and not previ-
ous steps (e.g., requirements elicitation, the threat analysis), nor posterior steps
(e.g., concrete implementation).

3.1 Starting assumptions

At the beginning we assume that the engineer has an idea of a “straightforward”
design of the desired system. For example, if they are going to develop a road
tolling system, they have an imagination of the basic elements of the design of
such a system with a database and some sort of tracking mechanism. Typically,
similarly to most deployed ICT systems, this idea would be engineered in such
a way that the entity providing a service must have access to all of the data
produced in the system in order to fulfill the required functionality. We call
this straightforward design the reference system, and we consider its privacy
protection level the baseline against which privacy-preserving systems can be
compared to. More concretely, we assume that at the beginning:

1. There exists an initial reference system that allows to fulfill the desired
functionality, whether it is based on an existing system or concocted by
the designer. We assume that for this reference system:

(a) There exists a system model: an abstract architecture of the reference
system that could fulfill the functional requirements. Stakeholders
are identified, and situated in the architecture (i.e., their interactions
with the different system components).

(b) There exists an information model: a model reflecting the data that
will be collected and/or processed by the reference system.

As it will become apparent later in this section, in order to enable the de-
signer to take privacy-preserving choices we must further assume that:

2. The functionality of the desired system is well defined. This means that
the goal of the system is concrete and specific.

3. The privacy concerns of the system’s stakeholders, and the service integrity
requirements of the system are identified.2 By service integrity require-
ments we mean those that guarantee that interactions in the system are

2We are on purpose overlooking other fundamental security requirements (e.g., availability,
data integrity, etc.) since, as already mentioned in the introduction, the techniques to achieve
such properties are well known and orthogonal to the purpose of this paper.

7



complete, coherent and accountable. In layman terms, requirements that
allow parties to check that others acted responsibly within the system.

Example: Electricity smart metering system

1. The reference system consists on the following:

(a) System model : the stakeholders are identified (Users, Utility,
Regulatory authorities such as governmental agencies or indus-
try self-regulation bodies) and there is a reference architecture
of the system, where stakeholders roles and their interactions
are identified (see Fig. 1).

(b) Information model : the data flowing in the system is identified:

• Personal data of users subscribed to the system: the data
needed by the Utility to identify customers (e.g., name, ad-
dress, etc.)

• Billing data of users subscribed to the system: the data
needed by the Utility to bill users (bank account and amount
to be billed)

• Consumption data of users, i.e., their consumption records

• Transaction data, i.e., log of transactions required by regu-
lation authorities (e.g., proofs of billing, proofs of payment,
etc.)

2. The well-defined goal of the system is “to bill users depending on
how much electricity they consume at each billing rate”3as opposed
to a less specific description such as: “to bill users depending on their
energy consumption habits”

3. The privacy and security requirements are the following:

• Privacy Requirements:

– Users: to hide their fine-grained consumption from all actors
in the system, to hide their billing information and other
personal data from all actors but the Utility

– Utility: -

– Regulatory authorities: -

• Service Integrity requirements

– Users: must be billed accurately for their consumption (i.e.,
the utility cannot charge them for more than what they
actually consumed)

– Utility: requires service integrity, i.e., the bill must include
the full consumption record (i.e., the users cannot pay for
less than what they actually consumed)

8



Figure 1: Electricity smart metering system – Reference abstract architecture.

– Regulatory authorities: require to be able to check that all
transactions have been done correctly

3.2 Guidelines to apply the strategies

Departing from the assumptions in the previous section, we now propose four
activities that are intended to help the designer decide when and how to apply
the strategies in order to safeguard the privacy of users in the designed system.
We have separated and ordered activities to improve readability, but we must
stress that while articulating the activities we recognized that they are not
always disjoint and that the order does not necessarily need to be as stated
in this paper. From here on we also refer to our observations of how experts
perform these activities, the generalization of these practices into a useful and
practical methodology is a topic of future research.

3.2.1 Activity 1: Classification of system entities in domains

A first hidden assumption taken by experts is the implicit classification of enti-
ties in the system in two domains:

• User domain: these are entities which are assumed to be under the
control of the user. Hence, experts consider it to be ok to collect or
process the user’s sensitive data in these entities.

• Service domain: these are entities which are not under the control of the
user. They include data processors and data controllers, but can include
other entities involved in the system. Since they are not under the control
of the user, experts consider that sensitive data should not be accessible
to these entities.

Figure 2 shows a possible definition of these domains in the Smart Energy
example. The users, as well as the smart meters, are considered under the

1We are aware that Electricity smart metering system could be based in more complex
policies, we chose a simple one to ease the explanation. We note that these policies could also
be well defined and limited.

9



Figure 2: Electricity smart metering system – User and Service Domains.

control of the user4, and hence they compose the User domain. The Utility
provider and Regulatory bodies are not considered to be under control of the
user and hence they form the Service domain.

3.2.2 Activity 2: Identification of necessary data at the service do-
main

A second activity taken by experts that is difficult to grasp without years of
training is the identification of the set of data necessary at the service domain
for achieving the purpose of the system. It is important to note that in general
there is no established minimal set of data since it strongly depends on the
system purpose, its context, etc.

Typically, designers aim at collecting as much data as possible in the service
domain driven by: i) the aforementioned feeling that all data should be acces-
sible by the entity providing the service, and ii) the pressure from marketing
and/or business units who also push for collecting as much data as possible.
We call this the “collect-all-data” approach. In general, there are some limits
on this collection imposed most often by regulations, and less often stemming
from social pressure. This limitation results in the collection of a smaller set of
data than initially intended, though a lot of personal and sensitive data can still
be collected provided that there is consent from the user, regardless of whether
it is necessary for the functionality or not. A slightly improved version of this
approach with respect to privacy is “select-before-collect” [9]. This approach,
inspired by Data Protection principles, encourages the designer to think about
the need for every piece of data that could be collected in the system, so that
pieces that are not necessary are removed from the set of collected data.

On the other hand experts, whose approach we call “only-collect-necessary-
data”, start by thinking about the minimum data necessary to fulfill a purpose.
Such thinking is very much influenced by their knowledge of the possibilities
offered by technology, and is one of the sources of the intertwine between the

4As mentioned in the introduction, this vision of “entities controlled by the user” hides an
assumption often made by experts: that the code running in the user devices is trustworthy,
i.e., that it will act as expected and will not operate in any way that may harm the privacy
of the user explicitly or in a stealthy manner.

10



Figure 3: Identification of necessary data: Typical vs. Experts approaches.

Activities described in this paper. This set of data, while sufficient to fulfill the
system’s functionality, may not be enough to guarantee service integrity and
hence experts are often forced to collect more data than in principle desired.
This extra information is limited to data required to ensure correct functioning
and most often than not, again thanks to the use of advanced technology, does
not include sensitive information in “clear form”. What we mean by information
not being available in the clear shall become clearer when reading the description
of Activity 4.

The way these two approaches work is illustrated in Fig. 3, where purple
is a representation of the data that initially seemed to be necessary to collect,
and blue represents the data that will finally be collected. The fundamen-
tal difference between the two approaches is apparent. While the “Collect all
data/Select before collect” approach is based on starting by a tentative set of
data and shrinking this set to find the final collected data; the experts “Only
collect necessary data” approach consists on starting by the minimal data to
fulfill the functionality and only increase this set when necessary for service in-
tegrity. Therefore, the experts’ approach is in general bound to end up requiring
less data, and in particular less sensitive data, than the typical approach.

3.2.3 Activity 3: Distribution of data in the architecture to achieve
the functionality

This activity consists of mapping the data in the information model to the
entities in the User and Service domains, guided by the identification of data
performed in Activity 2. This again highlights that activities are not indepen-
dent, and that they may need to be revisited during the design process. The
mapping of data in domains responds to the following reasoning (The relation
between the inputs and the outputs of domains is shown in Fig. 4.):

• Data necessary at the Service Domain: this is data that must flow
to the Service domain in order for the entities in this domain to be able
to carry out operations for achieving the functionality of the system.

11



Figure 4: Data flow in User and Service domains.

• Data necessary at the User Domain: this is data that needs to exist in
the User domain so that the entities in this domain can produce adequate
inputs to the Service domain for the fulfillment of the system functionality.

The grey box below shows the data placement in our running example.

Example: Electricity smart metering system

User Domain Service Domain
Personal data, Billing data Personal data, Billing data

Consumption data Consumption data, Transaction data

First of all we note that, regardless of whether the chosen design approach is
privacy invasive or privacy preserving, there is some data that will always exist
at the User domain since either it is generated there (e.g., the Consumption
data), it is inherent to the user (e.g., her Personal data), or it is at some point
forwarded to the user (e.g., the Billing data). This said, at first sight all data
seems to be necessary at the Service domain to fulfill the goal of “billing users
depending on how much electricity they consume at each billing rate”: Personal
data is necessary to identify the user; Consumption data is necessary to i)
compute the bill and ii) run checks to guarantee service integrity (e.g., detect
anomalies); Billing data is necessary to charge the user; and Transaction data is
necessary to comply with regulation authorities. This distribution is represented
in Fig. 5. According to Fig. 4, the output of the User Domain would consist
of the Personal and Consumption data that serve as input for the operations
carried out by entities in the Service domain.

However, the amount of data collected differs depending on which of the
approaches to identify necessary data is followed in Activity 2. Let us consider
two paradigmatic examples: personal data and consumption data.

Personal data: When following the “Collect all data” approach, typically
the designer will try to collect all types of data: name, postal address, phone,
email, gender, usage preferences, and any other data deemed relevant for mar-
keting purposes. Then, usually regulations kick in and some data cannot be
collected because it is considered excessive resulting, for instance, in usage pref-
erences not being collected. The “Select before collect” approach may result in
a reduced set of data, since while reflecting about the necessity is likely that

12



Figure 5: Electricity smart metering system – Data distribution in domains.

some data (e.g., gender) is deemed not necessary, although this will depend very
much on the designer’s discretion.

On the other hand, when following the “Only collect necessary data” ap-
proach, experts would solely require name (for billing purposes), address (to
identify the users’ meter), and depending on the means to communicate with
the user, her phone number or email.

Consumption data: When following the “Collect all data” approach, typ-
ically the designer will try to collect as fine grained information as possible,
regardless of the billing policies, e.g., a reading every minute. Then, usually
regulations kick in and some data cannot be collected because it is considered
excessive resulting. In the current case often regulation only allows to collect
one reading every 15 minutes. The “Select before collect” approach may re-
sult in a reduced set of data, since it may become apparent that for certain
billing policies (e.g., bill according to consumption per hour) less readings are
necessary.

On the other hand, when following the “Only collect necessary data” ap-
proach, experts would first study the billing policy, and then focus on collecting
the data necessary to compute the bill according to the policy. This results
in much less sensitive data being collected, since collection will be coarse and
limited in frequency.

3.2.4 Activity 4: Follow the strategies through the use of technology

It may be surprising that the above Activities have not dealt with the inclusion
of Privacy Enhancing Technologies in the system design. Rather, we have in-
troduced the reader to the preliminary exercises done by the experts to arrive
to the point where these technologies can play their role to increase the privacy
protection provided by the system.

Up to this point the previous Activities would have led the engineer to have
in mind an architecture where data is placed, and whose entities are divided
in two domains: the User domain, where experts consider that sensitive data
can be stored and processed since the entities in this domain are under the

13



control of the user and hence cannot harm her privacy; and the Service domain,
where sensitive data should not flow into since the entities in this domain are
not under the user’s control and hence could harm user privacy accidentally or
intentionally.

Therefore, the goal of the expert shall be to remove as much data as possible
from the Service domain, or in other words to keep as much data as possible
in the User domain with respect to the initial data distribution established in
Activity 3. In order to achieve this goal, experts pose the question: “Does this
data really need to flow to the Service domain or is there a technology that
would allow to keep this data in the User domain (i.e., under the control of
the user)?”. A non exhaustive list of approaches, in Hoepman’s words “privacy
design patterns” [9], in which technology helps keeping data under user control
are:

1. Not sending the data: perform any computation on sensitive data on
the entities in the User domain and only send to the Service domain the
result of these operations so that the service provider can fulfill system
functionality.

2. Encrypt the data: encrypt data locally and send the encrypted ver-
sion to the Service domain while keeping the key in the User domain.
Depending on the type of encryption used it may be impossible for the
entities in the Service Domain to operate with the data (e.g., using tra-
ditional encryption schemes such as AES, RSA, etc), or some operations
may be possible (e.g., using advanced cryptographic techniques such as
homomorphic encryption, a form of encryption that allows computations
to be carried out on ciphertext generating an encrypted result which, when
decrypted, matches the result of operations performed on the plaintext)

3. Use privacy-preserving cryptographic protocols: process data lo-
cally to obtain inputs to a protocol in which, by interacting with the
entities on the Service domain, the user can obtain or prove informa-
tion while limiting the information leaked to the Service domain entities.5

Examples of these protocols are Zero Knowledge proofs [12], that allows
to prove the value of an attribute without revealing the value of the at-
tribute; Attribute-Based Credentials [10], a particular use of Zero Knowl-
edge proofs that allows users to authenticate themselves based on the value
of an attribute (e.g., being older than 18years old); Private Information
Retrieval [4], that allows to perform a search on a database without reveal-
ing the query to the database holder; or Cryptographic commitments [7]
that allow to commit to a chosen value (or chosen statement) while keep-
ing it hidden to others, with the ability to reveal the committed value
later on. We must stress that this is a non exhaustive list and there exist
other protocols that allow many other operations in a privacy-preserving
manner.

5By “limiting the leaked information” we mean that the protocol itself guarantees that no
more information than intended can be inferred by the Service domain entities

14



4a Obfuscate the data: process the data locally to obtain a modified ver-
sion that is sent to the Service domain. This modified version, while
enabling the entities in the Service domain to provide the service, hinder
inferences about sensitive data from the user.

4b Anonymize the data: process the data locally to remove identifiable
information that is sent to the Service Domain through an anonymous
communication channel (e.g., Tor [6])

The above privacy design patterns, together with the “Only collect nec-
essary data” approach described in Activity 2 reflect the data minimization
strategies described in Section 2. As shown in Fig. 3, the experts approach to
identifying necessary data helps minimize collection. If the data that has to be
collected, then technological alternatives can be leveraged to limit the likelihood
of disclosure of data to the Service Domain and, by avoiding the flows towards
the Service Domain, also limit data replication. Since the goal is to keep as
much data as possible in the User domain, the above privacy design patterns
inherently limit centralization, since they avoid having an entity in the Service
domain that could be a single point of failure for protecting privacy of all users
in the system. All of these strategies combined implicitly reduce the amount of
trust the user needs to put in entities in the Service domain to safeguard her
privacy, and reduce the risk that a privacy breach happens. As mentioned in
Sect. 2, independently from following the mentioned strategies, it is desirable
that the designer minimize the retention of data and the flow of information.
This can be done using techniques orthogonal to the privacy design patterns
above, such as deleting data after a given period of time.

In our study of privacy experts’ engineering activities we could not identify
means to decide on the best technological option, nor the data minimization
strategy that should be prioritized, over others for a given scenario. However,
we have found that experts usually evaluate the approaches in the order ex-
pressed above. The rationale is that given that these experts’ background is
usually greatly influenced by security engineering, they consider first options
that give the strongest privacy guarantees (we refer the reader to Sect. 4 for a
discussion on the meaning of privacy guarantee). For instance, not sending the
data, or encrypting it provides stronger protection with respect to privacy than
obfuscation or anonymity. Note that we have considered anonymity and obfus-
cation to be in the same position of the list, since both privacy design patterns
offer less than perfect protection. We refer the reader to [8] for a discussion on
the difference between these two approaches: hide identity of data subject, or
keep identity but hide data.

While alternatives that provide stronger guarantees are in general preferred,
it is not always possible to select them. Factors such as the limited functionality
permitted by encryption schemes, performance of privacy-preserving cryptogra-
phy, or complexity of implementation and deployment of such technologies may
force experts to opt for alternatives from the bottom of the list even though
they are known to provide weaker privacy protection.

15



Going back to our running example, when studying the data and trying to
answer the question of whether it is possible to construct the system without
data flowing to the Service domain one arrives to a number of conclusions. First,
Personal and Billing data must flow to the Service domain so that the user can
be charged for her electricity usage (though the amount of Personal data that
flows can be substantially reduced, see Activities 2 and 3). Second, Transaction
data is generated at the Service domain, hence it cannot be removed. Finally,
with respect to Consumption data one would intuitively realize that given the
computation power of current embedded systems such as the Smart Meters in
the User domain it should be possible to perform the billing operations on the
consumption locally. This way Consumption data do not need to be sent to the
Service domain, where the Utility only needs to receive the amount to be billed
in order to charge the user.

While local computation of the electricity bill at the User domain seems
to be a nice privacy-preserving alternative, it introduces problems with respect
to the service integrity. Since the Utility does not receive consumption data, it
cannot run checks to ensure that the user has included all the records and has not
tampered with them. Hence, as announced in Activity 2, more data will need to
flow to the Service domain to ensure that users cannot cheat the utility provider.
An example of this extra data is to rely on cryptographic commitments [13].
The system could be built in such a way that, besides the bill, the output of
the User domain (i.e., the input to the Service domain) includes cryptographic
commitments to the user’s consumption. These commitments, while hiding the
consumption from the Utility, force the user to commit to a consumption record
which the Utility can request to open (i.e., reveal its content) when there is a
suspicion of fraud.

Since we decided that local computation is a suitable alternative enabled by
the use of commitments, then it is also possible to minimize the retention of
this data by deleting them once they are processed to obtain commitments and
the billing information. Ideally, from a privacy point of view this would be the
best option, but deleting all data would leave the users’ with no arguments to
refute the bill if they do not agree with the bill provided by the Utility provider.
Therefore, it is desirable to retain the data in the user domain so that the user
can contest the service provider actions if needed. This again shows that extra
data may have to be collected to guarantee service integrity, this time for the
user. The example also highlights that even though extra data may be needed
to guarantee correct and fair functioning for all parties, it is not necessary that
this extra data flows to the Service domain.

The leftmost image of Fig. 6 illustrates the change in terms of information
flow reflecting that the output of the User domain is not anymore the con-
sumption; while the rightmost image reflects the distribution of data in the
privacy-preserving design. Note how the inclusion of a PET in the system en-
ables the engineer to follow the strategies: less data is disclosed to the utility,
less data is replicated (Consumption data only appears in the user domain), the
system is not centralized anymore; and the need for trust entities to preserve
user’s privacy and the risk for privacy breaches have been reduced.

16



Figure 6: Electricity smart metering system: data flow modifications – reference
design, above; privacy-preserving design, below (left) and privacy-preserving
design (right).

4 Discussion

There are numerous points that came up as we wrote up the different activi-
ties. These discussions show that the definition of the privacy design strategies
needs revision, something we leave for a future version of this paper. Another
future project is to assess their differences and similarities to the privacy design
strategies defined in [9]. For now, we highlight some of the topics of discussion.

The information model of any system-to-be is a matter of imagina-
tion and negotiation: The exercise of writing down how security engineers
approach privacy engineering problems surfaces a conflict as to “where privacy
requirements come from”. When we first listed our assumptions in Section 3.1,
we said we assume that privacy concerns come from the stakeholders and pri-
vacy requirements are well defined. This suggests that which information flows
are permissible in the future system is defined a priori by the stakeholders.
However, when we wrote up the process, it was very clear that the experts have
a normative understanding of privacy, it is better if data resides in the user do-
main, which may not always coincide with what the stakeholders imagine when
they express their requirements. The experts presuppose that privacy is best
protected when sensitive user data remains under the control of the user. For
many reasons, the position that these experts take here may be dismissed. Some
may argue that privacy is not just about user control, others may argue that
information flows should reflect social norms and not that of the engineers, yet
others may raise the spectacle of the engineer whose reasoning lacks shades of
grey etc. Our discussions, however, led us to think that something else is going
on here.

Engineering a new system is inevitably about bringing about change into an
environment: it is about imagining a possible future through the introduction
of a new system. With this change in mind, a system is ideally shaped by
the requirements of different stakeholders of the system, interests of prospective

17



users, but also through the design decisions of engineers. Hence, engineering a
system is a moment of re-imagining and negotiating a new environment 6

We see the articulation of privacy concerns and their translation into system
requirements as part of this negotiation process. In this negotiation, what is
technically feasible either constrains or provides possibilities to expand what can
be done with state of the art technologies to protect privacy. As we develop new
technologies, there will be novel ways to enable and constrain information flows.
This means we can also have different ways of translating privacy concerns to
system requirements, and hence that we can build different systems that protect
privacy in unusual ways.

Thinking of privacy engineering as a one way road that starts with user and
legal requirements, which are then turned into system specifications cuts this
negotiation short and carves out the value of the engineering expertise from
the process. It also doesn’t make sense for non-experts to have to imagine how
a system can be designed to do justice to protecting their privacy. Moreover,
when imagining a new system, we tend to be limited by our mental models of
what we in this paper call reference systems. This is where experts can come
in and make a difference by showing other possible futures. This is also why we
went through the somewhat painful process of describing what PETs experts do,
so that we can come to understand other mental models and ways of thinking
about privacy engineering.

The experts hence surface possible architectures and designs, the virtues of
which should then be up for discussion and evaluation. The final word does not
lie with the engineers, although, we heard, the final design does :)

Data in the system, information flow and inference quality: In speak-
ing of putting constraints on information flow, we find we may benefit from
making a distinction between the quantity of flow from the user to the service
domain vs. the quality of that flow to enable inferences that can be considered
a privacy breach. For example, let us say that a design is based on encryp-
tion, meaning that the user uploads a 200 GB encrypted file to a cloud service
provider. In such a system a large amount of data, 200GB, flows from the User
to the Service domain, but the quality for inference is null since encryption
schemes do not leak information about the plaintext. Also, in this system the
data is replicated, but the information cannot be used to make inferences about
the user that may lead to a privacy breach.

In the case of privacy-preserving crypto protocols data remains mostly in
the user domain minimizing the flow quantity, but still allowing some inferences
to be performed in the Service domain. In the case of obfuscation, quantity
of data flow may be even increased with respect to the reference information
model (e.g., introducing noise) but, ideally, the inference quality is minimized.
This minimization, as pointed out by Shokri et al. for the case of location
privacy [14], can be multidimensional. In fact, it is the result of three vari-

6How the system actually performs when it is in use (or when it fails) in comparison to
what we intend with the design is another issue that we leave for later.

18



ables: accuracy, certainty, and correctness and depending on the value of these
variables, a user may have better or worse privacy protection.

If the distinction between quantity and quality of information flow matters,
then it might be reasonable to indicate this distinction in the definition of the
data minimization strategies. For example, the definition of disclosure may be
sharpened to indicate something about inference quality, whereas replication
may be better suited to indicate how much data is flowing. Whether quantity
and quality can actually be separated and how to best express this difference is
a topic of future discussion.

Risk and trust: The risks and trust models associated with each privacy
design pattern described in Activity 4 in the previous section may also differ.
Where data resides, regardless of its implications for privacy, is of importance
to the minimization of risks and to minimizing the need for trust in others. In
other words, while sending encrypted data flows to the Service domain minimizes
privacy risks, the risk of loosing that data due to breach of availability becomes
a concern. Our intuition is that greater attention needs to be given to the
changes in the risk and trust in general, vs gains made in protecting privacy.

Social computing and big data: The curious reader may ask whether the
data minimization strategies outlined in this paper are at odds with the era of
social computing and big data. It is valid to consider whether social applications,
which require a lot of data exchange for social signaling, may trump the data
minimization strategies we identify in this paper. Indeed, the mental model
introduced through Sect. 3 implicitly assumes that users are living in their data
islands, which may make it difficult to bend this model to social applications.

We note, however, that not all services are social and in fact most services
work with the same model as the Smart Energy example in Sect. 3, i.e., treating
users as individuals who hold stock of their data, e.g,, banks, e-commerce sites,
government sites. In these domains, it is clear that there is much to improve
using the data minimization strategies. Further, data minimization strategies
can also provide support to embed better privacy in social applications by, for
instance, putting other users either in the user or service domain, and constrain-
ing flows accordingly. However this is just conjecture, and whether this is as
simple as it sounds or other models may be more useful is also a topic of future
research.

Whether data minimization strategies are at odds with big data depends on
what data is of concern. PETs experts are very concerned about the current
status quo of “big personal data” with a keen interest in controlling and influ-
encing populations in the interest of those who hold the data. There is also a lot
of mythology about the need to have all the data to make on-demand changes
to systems. For example, in energy consumption, it may not be legal to change
the prices all the time. The consumers need to have some way of knowing ap-
proximately what they will pay at the end of the month. In a road toll system,
congestions due to disruptions, e.g. a traffic accident, should not end up as costs

19



for the drivers. Hence, the need to have data at such fine granularity is neither
reasonable nor is it always legal. If congestion services are offered, this can be
done without having to track everyone all the time. Using sensors and smart
environments to find ways to improve them using big data is interesting, but
should not come at the cost of people’s privacy. If anything, most PETs experts
demonstrate that big data and privacy is possible. Further social, economic and
political implications of the use of big data in these contexts is beyond the scope
of these experts.

5 Conclusion

In this paper, we summarized discussions we have had over the last three years
about data minimization and privacy engineering. We aligned some of this with
the terminology provided in [9] with a focus on what we call data minimization
strategies. We also made a first attempt to describe the way in which these
data minimization strategies are deployed in engineering activities when building
privacy preserving systems.

This is clearly work in progress. Neither the definitions of the data mini-
mization strategies nor the description of the process are complete. However, we
believe we have a good draft that will hopefully help kick off a lively discussion.
We identified some of these topics in Section 4. In the process, we assumed that
these would apply to all sorts of systems, e.g., an app, as well as when engineer-
ing large infrastructures, an assumption that will have to be more differentiated.
We also assumed that these design strategies will be applied in order to build
a system from scratch. Whether the same strategies can be used to evolve an
existing system is an open research question. Especially how these strategies
can be adapted to service architectures needs further sharpening. There are
surely many other topics that we didn’t address, including where these engi-
neering practices fit within the greater scheme of privacy by design and privacy
regulation. We see all of these as great topics of future research in the nascent
field of privacy engineering.

References

[1] Thibaud Antignac and Daniel Le Metayer. Privacy by design: From tech-
nologies to architectures. In Bart Preneel and Demosthenes Ikonomou,
editors, Privacy Technologies and Policy, volume 8450 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2014.

[2] Josep Balasch, Alfredo Rial, Carmela Troncoso, Bart Preneel, Ingrid Ver-
bauwhede, and Christophe Geuens. Pretp: Privacy-preserving electronic
toll pricing. In USENIX Security Symposium, pages 63–78. USENIX Asso-
ciation, 2010.

20



[3] Nikita Borisov, Ian Goldberg, and Eric A. Brewer. Off-the-record commu-
nication, or, why not to use PGP. In Vijay Atluri, Paul F. Syverson, and
Sabrina De Capitani di Vimercati, editors, Workshop on Privacy in the
Electronic Society (WPES 2004), pages 77–84. ACM, 2004.

[4] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. J. ACM, 45(6):965–981, 1998.

[5] Claudia Diaz, Eleni Kosta, Hannelore Dekeyser, Markulf Kohlweiss, and
Girma Nigusse. Privacy preserving electronic petitions. Identity in the
Information Society, 1(1):203–209, 2009.

[6] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
second-generation onion router. In Matt Blaze, editor, 13th USENIX Se-
curity Symposium, pages 303–320. USENIX, 2004.

[7] Oded Goldreich. Foundations of Cryptography: Volume 1. Cambridge
University Press, New York, NY, USA, 2006.

[8] Seda Gurses, Carmela Troncoso, and Claudia Diaz. Engineering Privacy
by Design. In Computers, Privacy & Data Protection, page 25, Brus-
sels,Belgium, 2011.

[9] Jaap-Henk Hoepman. Privacy design strategies. In Nora Cuppens-
Boulahia, Frdric Cuppens, Sushil Jajodia, Anas Abou El Kalam, and
Thierry Sans, editors, ICT Systems Security and Privacy Protection, vol-
ume 428 of IFIP Advances in Information and Communication Technology,
pages 446–459. Springer, 2014.

[10] Merel Koning, Paulan Korenhof, and Jaap-Henk Hoepman. The ABC of
ABCs – An analysis of attribute-based credentials in the light of data pro-
tection, privacy and identity.

[11] PRIPARE EU Project. D1.2 privacy and security-by-design methodology.,
2014.

[12] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater, Michaël
Quisquater, Louis C. Guillou, Marie Annick Guillou, Gäıd Guillou, Anna
Guillou, Gwenolé Guillou, Soazig Guillou, and Thomas A. Berson. How
to explain zero-knowledge protocols to your children. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, volume 435 of Lecture Notes
in Computer Science, pages 628–631. Springer, 1990.

[13] Alfredo Rial and George Danezis. Privacy-preserving smart metering. In
Yan Chen and Jaideep Vaidya, editors, 10th Workshop on Privacy in the
electronic (WPES 2011), pages 49–60. ACM, 2011.

[14] Reza Shokri, George Theodorakopoulos, Jean-Yves Le Boudec, and Jean-
Pierre Hubaux. Quantifying location privacy. In IEEE Symposium on
Security and Privacy (S&P 2011), pages 247–262. IEEE Computer Society,
2011.

21


