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Abstract—Disclosure attacks aim at revealing communication
patterns in anonymous communication systems, such as conversa-
tion partners or frequency. In this paper, we propose a framework
to compare between the members of the statistical disclosure
attack family. We compare different variants of the Statistical
Disclosure Attack (SDA) in the literature, together with two new
methods; as well as show their relation with the Least Squares
Disclosure Attack (LSDA).

We empirically explore the performance of the attacks with re-
spect to the different parameters of the system. Our experiments
show that i) our proposals considerably improve the state-of-the-
art SDA and ii) confirm that LSDA outperforms the SDA family
when the adversary has enough observations of the system.

Index Terms—anonymity, mixes, disclosure attacks

I. INTRODUCTION

Mixes constitute the basic building block of high-latency

anonymous communication systems [1]. They act as a channel

that hides the correspondence between incoming and outgoing

messages, thus preventing a potential adversary from unveiling

users’ communication patterns (e.g. friendships, frequency).

A wide variety of attacks that compromise the anonymity

mixes provide has emerged. In this paper, we revisit a particu-

lar efficient family of attacks which is based on the Statistical

Disclosure Attack (SDA) [2]. We propose a framework that

allows us to easily compare the attacks in a particular type of

mixes, the threshold mixes, and helps us understand how an

adversary can trade precision for computation when attacking

mixes. We revisit Mathewson and Dingledine generalization of

the SDA and propose two new variants, improving the state-

of-the-art version of the SDA in threshold mixes, and show the

relations between the SDA and the Least Squares Disclosure

Attack (LSDA).

Additionally, we improve the theoretical analysis of the

LSDA in [3] and extend this analysis to one of the proposed

variants of the SDA, which allows us to understand the trade-

offs in performance versus complexity between this family of

statistical disclosure attacks.

The rest of the paper is organized as follows: we start with

a brief overview of the current attacks on threshold mixes in

Sect. II. In Sect. III, we introduce our system model and nota-

tion and then proceed with our revision of statistical disclosure

attacks in Sect. IV. We perform a theoretical analysis of the

attacks in Sect. V and validate our results in Sect. VI. Finally,

we conclude in Sect. VII.

II. PREVIOUS WORK

The Disclosure Attack [4] relies on Graph Theory to reveal

the exact set of friends of a user (Alice), seeking for mutually

disjoint sets of receivers. This attack is known to be NP-

complete and other implementations speed up the search [5].

Danezis proposed the Statistical Disclosure Attack (SDA)

[2] as a faster alternative to the Disclosure Attack, which is

based on the idea that, after observing a large amount of sets

of receivers when Alice sends a message, it is possible to

isolate Alice’s sending behavior. The original SDA is limited

to a specific scenario and was extended later to a more general

user model and more complex mixing algorithms [6].

The Least Squares Disclosure Attack (LSDA) [3] models

profiling as a least squares problem, minimizing the error

between the actual number of output messages and a prediction

based on the input messages.

In this work, we present an analysis of the family of

statistical disclosure attacks [2], [6] and the LSDA [3], which

share the goal of estimating the sending behavior of the users

by combining in an appropriate way the system observations.

Other approaches that we leave out of our work are the Two-

Sided SDA (TS-SDA) [7] and the Reversed SDA (RSDA)

[8], which assume that users reply to messages; the Perfect

Matching Disclosure Attack (PMDA) and the Normalized

Statistical Disclosure Attack (NSDA) [9], which exploit that

the relationship between sent and received messages is one-

to-one; and the Bayesian inference-based approach, Vida [10].

III. SYSTEM MODEL AND NOTATION

Throughout the text, we will represent vectors using bold-

face lowercase characters and matrices using boldface capital

letters. We will also use 1N to refer to the column vector

whose N elements are equal to 1, and 1N×M to the all-ones

matrix of size N × M . The superscript T will denote the

transposing operation.

a) System Model: Our system consists of a population

of N users, designated by index i ∈ {1, 2, ...N}, which

communicate using a threshold mix. The system works as

follows: every time a user i in our population wants to send a

message to another user j, she encrypts the message and sends

it to the mix. The mix receives and stores the messages until

it has gathered t of them. Then, it transforms the messages

cryptographically to change their appearance and outputs them

in a random order; hence hiding the correspondence between

incoming and outgoing messages. We call this process a round

of mixing, and t is the threshold of the mix.

We denote the number of messages user i sends in round

r by ur
i . We define the column vector containing all the

messages sent by user i up to round ρ as ui = [u1
i , u

2
i , ..., u

ρ
i ]

T ,

and the matrix of all observed inputs to the mix as U =



(u1,u2, ...,uN ). Likewise, we denote the number of mes-

sages user j receives in round r by yrj and define yj =
[y1j , y

2
j , ..., y

ρ
j ]

T and Y = (y1,y2, ...,yN ). Additionally, we
define ũr

i as a binary representation of ur
i , denoting whether

there is at least one message sent by user i in round r (ũr
i = 1)

or not (ũr
i = 0). We also define, ũi = [ũ1

i , ũ
2
i , ..., ũ

ρ
i ]

T .

User i sends messages to their recipients according to her

sender profile and her sender frequency. We define the sender

profile of user i as qi = [p1,i, p2,i, ..., pN,i]
T , where pj,i

models the probability that user i sends a message to user j.
The sender frequency fi models the probability that a message

arriving to the mix comes from user i. We also define the

vector pj = [pj,1, pj,2, ..., pj,N ]T which shall come in handy

later. We make no assumptions on the distribution of each

sender profile, other than pj,i ≥ 0 for i, j = 1, 2, ..., N and
∑N

j=1 pj,i = 1 for i = 1, 2, ..., N . Also, note that fi ≥ 0 for

i = 1, 2, ..., N and
∑N

i=1 fi = 1.

We define the uniformity of the sender profile of user i as
µi = 1 −

∑N

j=1 p
2
j,i. The uniformity µi ranges from 0, when

user i always sends messages to the same contact (i.e. pk,i = 1,
pj,i = 0 for k ∈ {1, ..., N} and j 6= k, j = 1, ..., N ), to N−1

N
,

when she sends messages to all the other users equiprobably.

Finally, we define the background of a user i as an aggregate
of all users but i. This way, vector ub contains the messages

sent by this background, ub =
∑N

k=1
k 6=i

uk = 1ρ · t − ui. The

background profile is qb = [p1,b, p2,b, ..., pN,b]
T where pj,b =

∑N
k=1
k 6=i

fk
1−fi

· pj,k and the uniformity of this sender profile is

denoted by µb. In all cases, user i will be clear from the

context.

b) Adversary Model: We consider a global passive adver-

sary that observes the system during ρ rounds. The adversary

observes the identity of the users communicating through the

mix and knows all the parameters of the system. We also

assume that the adversary is not able to link any messages

by their content, i.e. the cryptographic transformations do not

leak information.

The goal of the adversary is to infer the sending behavior of

the users in the system from the observations, i.e. to obtain an

estimator p̂j,i of pj,i given the input and output observations

U and Y .

IV. REVISITING THE FAMILY OF DISCLOSURE ATTACKS

A. The Original Statistical Disclosure Attack

Danezis introduced the original Statistical Disclosure Attack

(SDAd) in [2], which provides an estimator of pj,i under the

assumptions that the user i does not send more than one

message each round and the background traffic for that user

is uniform, i.e. pj,b =
1
N

for j = 1, 2, ..., N .

Danezis claims that, by using the Law of Large Numbers,

the mean of the observations yrj in the rounds where i has sent
at least one message can be written as

ũT
i yj

ũT
i 1ρ

≈ pj,i + (t− 1) · pj,b , (1)

and therefore the estimator for pj,i is

p̂SDAdj,i =
ũT
i yj

ũT
i 1ρ

− (t− 1) · p̂j,b , with p̂j,b =
1

N
. (2)

In order to compare SDAd with its variants, note that we can

write (1) as

ũT
i yj ≈ ũT

i 1ρ · pj,i + ũT
i (1ρ · t− 1ρ) · pj,b . (3)

B. Generalized Statistical Disclosure Attack

Mathewson and Dingledine extended Danezis’ attack in [6],

allowing user i to send multiple messages in a round and

estimating the background from the observations.

Using this extension, (3) becomes

ũT
i yj ≈ ũT

i ui · pj,i + ũT
i ub · pj,b , (4)

where we have just replaced the 1ρs which referred to the

number of messages sent by user i in each round in (3) with the
actual number of messages sent by i, ui, and 1ρ · t−ui = ub.

The background profile is estimated by computing the

average number of messages received by j in the rounds where
i does not participate and dividing by the total number of

messages exiting the mix each round (t),

p̂j,b =
1

t
·
(1ρ − ũi)

T
yj

(1ρ − ũi)
T
1ρ

. (5)

We denote this attack by SDA0, whose estimator is

p̂SDA0j,i =
ũT
i yj

ũT
i ui

−
ũT
i ub

ũT
i ui

· p̂j,b . (6)

C. Improvements in the Generalized SDA

SDA0 performs an average of the outputs in those rounds

where user i sends at least one message in order to compute

p̂SDA0j,i , giving the same value to those outputs regardless of the

actual participation of user i. We propose a new estimator,

which we denote SDA1, that counts the outputs once for every

message sent by user i, therefore giving more weight to those

rounds where the number of messages sent by i is larger.
Using this approach, (4) becomes

uT
i yj ≈ uT

i ui · pj,i + uT
i ub · pj,b , (7)

where we have replaced the vector we used to select the rounds

we were taking into account, ũi, by the vector with the actual

number of messages sent by i in each round, ui.

From (7), we get the following estimator,

p̂SDA1j,i =
uT
i yj

uT
i ui

−
uT
i ub

uT
i ui

· p̂j,b , (8)

where p̂j,b is estimated as in (5).

Note that the idea behind this estimator appears in [6]

applied to other mixing algorithms. The analysis of SDA in [6]

also features the idea of exploiting observations from rounds

where user i appears as a sender in order to compute p̂j,b.



The latter idea inspires our second variant, denoted SDA2,

which uses the observations from all rounds to get the back-

ground estimation. Following (7), we can write
{

uT
i yj = uT

i ui · p̂j,i + uT
i ub · p̂j,b

uT
b yj = uT

b ui · p̂j,i + uT
b ub · p̂j,b .

(9)

If we define the ρ × 2 matrix Ui,b = (ui,ub), the new

estimator p̂SDA2j,i can be obtained by solving
(

p̂SDA2j,i

p̂j,b

)

=
(

Ui,b
TUi,b

)−1

Ui,b
Tyj . (10)

D. The Least Squares Disclosure Attack

The estimator in (10) uses the information from all outputs

when estimating both pj,i and pj,b. However, users’ profiles
are solved independently, compressing information in matrices

Ui,b. We can extend the idea in (9) considering that, when

computing the sender profile of i, the background is formed

by all the users but i. In that case, we would have N equations

with N unknowns, which are

uT
i yj = uT

i

N
∑

k=1

(uk · p̂j,k) , for i = 1, ..., N . (11)

Presenting this system in matricial form, we have

UTyj = UTUp̂j . (12)

Therefore, if UTU is not singular, we obtain the Least

Squares Disclosure Attack (LSDA) estimator in [3],

p̂LSDA

j =
(

UTU
)−1

UTyj . (13)

V. PERFORMANCE ANALYSIS

In this section, we aim at deriving a theoretical expression

for the Mean Squared Error of sender profile i, which we

define as MSEi =
∑N

j=1 (pj,i − p̂j,i)
2
, for the described

estimators. Due to space limitations, we reduce our analysis

to SDA2 and LSDA.

We start by deriving an expression of MSEi in LSDA. In

order to do so, we first show, by using the law of total

expectation together with E
{

yj |U
}

= U · pj , that this

estimator is unbiased, since

E{p̂j} = E {E {p̂j |U}} = E
{

(

UTU
)−1

UTE
{

yj |U
}

}

= pj

(14)

Using this fact, along with the law of total variance, we can

write the covariance matrix of pj as

Σpj
= E

{

Σpj|U

}

= E
{

(

UTU
)−1

UTΣy
j
|UU

(

UTU
)−1

}

(15)

We model {ur
1, ..., u

r
N} together as a multinomial distri-

bution with t trials and probabilities {f1, ..., fN}. In or-

der to compute (15), we first assume that the number of

observations is large enough, so that we can approximate

UTU ≈ E{UTU} = Ru ·ρ, where Ru is the autocorrelation

matrix of the input process,

Ru = t [F+ (t− 1)F1N×NF] (16)

where F = diag{f1, ..., fN}.
Applying the matrix inversion lemma, we can write the

inverse of this autocorrelation matrix as

R−1
u =

1

t

[

F−1 −

(

1−
1

t

)

1N×N

]

. (17)

Now that, using UTU ≈ Ru · ρ, the only term remaining

inside E{·} in (15) is E{UTΣy
j
|UU}. We model yrj |U as the

sum of N binomial processes with ur
i trials and probabilities

pj,i, for i = 1, 2, ..., N . Let sj,k = pj,k · (1 − pj,k) and Sj =
diag{sj,1, ..., sj,N}. Then, Σy

j
|U is a diagonal matrix whose

(r, r)-th element is
(

Σy
j
|U

)

r,r
=

∑N

k=1 u
r
ksj,k. Operating,

E{UTΣy
j
|UU} =

ρ
{

F
(

ηjt
(3)1N×N + Sj1N×N t(2) + 1N×NSjt

(2)
)

F
}

+ ρ
{(

ηjt
(2)IN×N + tSj

)

F
}

(18)

where ηj =
∑N

k=1 fksj,k and t(n) = t · (t−1) · ... · (t−n+1).
Plugging (17) and (18) into (15) we get an approximation

of Σpj
. Now, taking each of the diagonal elements of this

matrix, which are Var{p̂j,i} for i = 1, ..., N and adding them

along j to obtain MSEi =
∑N

j=1 Var{p̂j,i}, we finally get

MSELSDA

i ≈
1

ρ

{

(

f−1
i − 1

)

(

1−
1

t

)

µ̄LSDA +
f−1
i

t
· µi

}

(19)

where µ̄LSDA =
∑N

k=1 fkµk is the average uniformity of the

sender profiles.

Following a similar approach, it can be shown for SDA2

that, when the number of observed rounds is large enough,

MSESDA2

i ≈
1

ρ

{

(

f−1
i − 1

)

(

1−
1

t

)

µ̄SDA2 +
f−1
i

t
· µi

}

(20)

where µ̄SDA2 = fiµi + (1 − fi)µb is the average uniformity

considering that there are only two users in the system: the

user i and her background.

Note that the only approximations made to derive (19) and

(20) were UTU ≈ E{UTU} = Ru · ρ and its equivalent

with matrix Ui,b. Therefore, these MSE estimators are more

accurate as the number of observed rounds is large.

Given the definition of the background sending profile in

Sect. III, it is easy to see that µ̄SDA2 ≥ µ̄LSDA, and therefore

MSESDA2

i ≥ MSELSDA

i , where the equality holds only when all

users have the same sending profile. This proves that LSDA

will eventually outperform SDA2 in terms of MSE when the

attacker observes the system indefinitely.

VI. EVALUATION

We evaluate the performance of the attacks in Sect. IV in

terms of MSEi, simulating a threshold mix system as described

in Sect. III.1 We exclude SDAd from this evaluation and use

its generalization SDA0 instead.

We vary the number of users in the population N , the

threshold t, the sending frequencies fi, the number of rounds

1The simulator, written in Matlab, will be available upon request.
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Fig. 1. Average MSE for the different attacks, as a function of the number
of friends nf of each user (ρ = 20000, N = 100, fi = 1/N , t = 10).

observed by the attacker ρ and the uniformity of the sending

profiles µi.

A. Performance with respect to the uniformity µi

As we have shown in Sect. V, the uniformity of the

sender profiles is a key parameter to show the difference

in performance between SDA2 and LSDA. For simplicity, we

assume that each user i has nf friends to whom she sends

messages uniformly, which are users mod (i+ k,N) for k =
0, ..., nf−1. This allows us to vary the uniformity of the sender

profile of each user with a single parameter: µi =
1−nf

nf
. We

choose the number of friends nf from {10, 25, 50, 100} and,

for each value, perform 100 repetitions of the experiment.

Figure 1 shows a box-and-whiskers plot of the average MSE

per sender profile, MSEi. On the boxes, the central mark is

the mean and the edges are the 25th and 75th percentiles.

The black circles • represent the theoretical asymptotic values

of the MSEi, from (19) and (20). Since ρ is finite, MSEi

does not coincide exactly with its theoretical value, although

(19) and (20) reliably describe the accuracy of the attacks. As

expected, when the uniformity of the sender profiles is low and

the background uniformity µb is large, LSDA outperforms the

other estimators, but as the uniformity of each user increases

and therefore becomes closer to the background uniformity,

the advantage of LSDA decreases. Also, note that the proposed

estimators SDA1 and SDA2 outperform SDA0.

B. Performance with respect to the other parameters

Due to space limitations, we are not able to plot the

results obtained when varying all the other parameters. We

summarize the basic results next and refer to [3] for further

information about LSDA. First, the MSEi decreases with

1/ρ in each of these attacks, as in (19) and (20). Also, in

every attack, the MSEi is approximately proportional to the

inverse of the sending frequency f−1
i , due to the increasing

difficulty of estimating the sender profile of a user when she

rarely participates in the system. The threshold t has little

influence on the MSEi of SDA2 and LSDA but does, however,

decrease the number of rounds that can be used to estimate the

background (5) in SDA0 and SDA1, thus increasing the MSEi

in these estimators. Finally, we note that increasing N adds

an extra error in LSDA which is not predicted by (19) and that

stems from the matrix inversion in (13). This error can be

reduced by increasing the number of rounds observed. This is

shown in Fig. 1, where the mean values of MSEi obtained for

LSDA are slightly above their asymptotic value.

The improvements in performance achieved by the more

sophisticated versions of statistical disclosure come at the price

of an increase in the computational cost. While SDA0 adds the

observations where the user whose profile is being estimated

has participated, SDA1 needs to perform an additional mul-

tiplication for each of these rounds. SDA2 has an increased

computational cost since it requires solving a system of two

equations for each user, and LSDA requires solving a linear

system of N equations with N unknowns.

VII. CONCLUSIONS

In this work, we have introduced a framework to formulate

the different attacks of the statistical disclosure family, show-

ing how better results can be achieved when performing more

complex operations with the observations from the system. We

have formalized two new variants of the SDA, which we called

SDA1 and SDA2, and showed that they significantly improve the

state-of-the-art SDA in threshold mixes, SDA0. Furthermore,

we have shown that the LSDA, introduced in [3], can be seen

as an upgraded version of statistical disclosure that solves the

problem jointly for all users.

We have also improved the previous theoretical analysis

on LSDA and derived for the first time an expression which

accurately approximates the error of SDA2. Our experiments

confirm these theoretical results.
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