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ABSTRACT
Human mobility is highly predictable. Individuals tend to
only visit a few locations with high frequency, and to move
among them in a certain sequence reflecting their habits
and daily routine. This predictability has to be taken into
account in the design of location privacy preserving mecha-
nisms (LPPMs) in order to effectively protect users when
they expose their whereabouts to location-based services
(LBSs) continuously. In this paper, we describe a method for
creating LPPMs tailored to a user’s mobility profile taking
into her account privacy and quality of service requirements.
By construction, our LPPMs take into account the sequen-
tial correlation across the user’s exposed locations, provid-
ing the maximum possible trajectory privacy, i.e., privacy for
the user’s past, present location, and expected future loca-
tions. Moreover, our LPPMs are optimal against a strategic
adversary, i.e., an attacker that implements the strongest
inference attack knowing both the LPPM operation and the
user’s mobility profile. The optimality of the LPPMs in the
context of trajectory privacy is a novel contribution, and it
is achieved by formulating the LPPM design problem as a
Bayesian Stackelberg game between the user and the adver-
sary. An additional benefit of our formal approach is that
the design parameters of the LPPM are chosen by the opti-
mization algorithm.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; K.4.1 [Computers and Society]:
Public Policy Issues—Privacy
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1. INTRODUCTION
Location-Based Services (LBSs) provide users with valu-

able information about their surroundings such as traffic sta-
tus (e.g., Beat the Traffic, or INRIX Traffic Maps, Routes
& Alerts), nearby points of interest (e.g., Google Maps), or
friends’ activities (e.g., Foursquare or Google Latitude). De-
spite the potential benefits of location sharing, information
about our current, future, or frequently-visited locations is
highly sensitive, as it can be used to infer our habits, pref-
erences, political and religious affiliations, and even to en-
danger our physical security if it falls in the wrong hands.

Hence, the need arises to protect users’ location privacy,
while maintaining the usability and quality of LBSs. This
task must account for the three following considerations:

First and foremost, as Shannon’s maxim states, “One
ought to design systems under the assumption that the en-
emy will immediately gain full familiarity with them.” In
other words, the adversary will adapt his attack to the pro-
tection mechanism. This in turn shall lead to an updated
mechanism, then to a novel attack, and so on ad infinitum.
This is commonly known as the arms-race problem. To cut
the arms race short, in our approach the defender antici-
pates the adversary’s reaction, and so the initial design is
already robust against an informed adversary.

Second, in order to ease the deployment of a Location
Privacy Preserving Mechanism (LPPM) it must be user-
centric, i.e., users must be able to use it independently of
other users’ behavior, and without the permission or collab-
oration of a third party. Hence, decisions taken to protect
privacy (e.g., hiding, perturbing, or faking locations) need
to be made locally to the users. Our approach only requires
users to perform a local look-up in a pre-computed table,
and hence it can be easily integrated in mobile devices fre-
quently used to access LBSs.

Third, the protection of users current location is intri-
cately bound with protecting also past and future locations.
The privacy protection offered by an LPPM is severely im-
pacted by the frequency with which locations are revealed
to the LBS, since locations exposed in quick succession are
highly correlated. When correlated locations are exposed,
inferring the user’s current location provides the adversary
with tools to reduce the uncertainty on the user’s immediate
past or future whereabouts. Our LPPMs take location cor-
relation into account to effectively protect a user’s location
privacy along her trajectory.

We propose a framework to design user-centric LPPMs
that – given a user’s quality requirements, privacy require-
ments, and mobility profile – can (1) protect the privacy of



past locations (i.e., the current obfuscation is chosen to be
compatible with past ones), (2) protect the privacy of future
locations (i.e., the current obfuscation is chosen to be com-
patible with likely next locations), (3) protect the privacy of
transitions between locations (i.e., the current obfuscation is
chosen to hide sensitive movements between successive loca-
tions, even if individually they are not sensitive), (4) protect
locations that the user visits between two LBS accesses (i.e.,
the current obfuscation is chosen to protect locations that
the user visits without issuing an LBS queries). To the best
of our knowledge, this is the first work that addresses the
two latter objectives as separate targets in need of protec-
tion. The two former objectives have already been addressed
in the literature, but proposals do not consider informed ad-
versaries, or they do not operate in a user-centric manner.

Our LPPMs can find the optimal privacy protection mech-
anism in any given scenario, i.e., they achieve the best pro-
tection among all possible mechanisms against a strategic
adversary with knowledge of mobility profiles and LPPM al-
gorithm. In other words, LPPMs designed under our frame-
work provide privacy level that constitutes an upper bound
on the privacy that is achievable by any other defense. The
proposed framework can handle a wide range of correlation
levels without making any prior assumption on the user mo-
bility and LBS access patterns: From cases where there is
high correlation between exposed locations, e.g., LBSs that
require continuous requests to the provider (e.g., navigating
with Google maps), to cases in which there is complete in-
dependence among exposed locations, e.g., LBS that require
sporadic location updates (e.g., checking-in in Foursquare).

The key technique used in our solution is a Bayesian Stack-
elberg game between the privacy defender and adversary,
launched by the user every time she wishes to share her lo-
cation with the LBS. The two main benefits of this game
theory technique are the following. First, it can naturally
express the objective of optimizing privacy under the dou-
ble constraint of anticipating the adversary’s attack and re-
specting the user’s quality requirements. Second, it allows
us to efficiently search in an infinite space of potential so-
lutions, guaranteeing that the computed solution is optimal
without testing each and every single one of them (compu-
tationally impossible) and without limiting ourselves to the
heuristic (but undeniably creative) solutions that human in-
genuity can concoct. We provide a general design method
that can be instantiated for particular privacy objectives,
periods of observation, and patterns of exposure. For the
sake of illustration, we provide examples to specifically pro-
tect two plausible privacy objectives: protecting the most
recent locations (including the current one) and protecting
the current and future locations.

We run our solution on real users’ trajectories to obtain
optimal location obfuscation mechanisms that maximize pri-
vacy, defined as the adversary’s error in estimating the user’s
true location. Our results show that our method is more ef-
fective at protecting location privacy than mechanisms that
only consider the current exposed locations. We also show
that quality of service can be traded off for privacy, but
the maximum privacy achievable strongly depends on users’
behavior (i.e., on the predictability of their movements).

2. RELATED WORK
In this section we qualitatively compare our approach to

previous work on location privacy. The comparison focuses

on schemes that provide trajectory privacy [8] rather than
sporadic privacy [22, 9, 7], i.e., privacy of locations exposed
to the LBS independently of each other. A quantitative
comparison with the latter is provided in Section 5, where
we show that our trajectory-aware approach outperforms
sporadic privacy-preserving mechanisms.

A first class of trajectory-aware mechanisms in the liter-
ature aims at protecting user privacy when trajectories are
published in bulk. Protection is achieved by grouping differ-
ent users’ trajectories in a wide area such that the aggregate
trajectory can be ascribed to at least k users [1]; mixing the
trajectories of k users [16]; eliminating some events from the
published dataset [14, 23]; or replacing locations with larger
regions defined by a pre-defined grid [13]. Other algorithms
need access to the complete trajectory before protection can
be applied [26], or they delay the location exposure so as to
gather additional information about subsequent user loca-
tions [12, 3]. In contrast, our approach decides in real time
how to protect the location that the user is about to expose.

Other trajectory-aware mechanisms assume either the ex-
istence of a trusted third party (e.g., the cellular service
provider) [17, 11], or of nearby users that can be leveraged
to achieve joint privacy protection [4, 10, 15]. Both scenarios
violate the user-centricity design requirement in this paper.

In addition to addressing trajectory privacy in a user-
centric and real-time manner, our major qualitative differ-
ence from prior work is that we address the problem for-
mally. We formalize the privacy-preserving mechanism de-
sign problem as a Bayesian Stackelberg game, similarly to
Shokri et al. [22]. This has two main advantages. First,
it allows to provide optimal privacy against any adversary
describable by our model. Second, it allows to define fine-
grained knobs for expressing users’ privacy and quality re-
quirements. We would like to emphasize that our approach
is not an extension to Shokri et al., but uses the same
methodology to achieve a different goal, i.e., to protect tra-
jectory privacy instead of sporadically exposed locations.

Other formal approaches to the location privacy problem
extend the concept of differential privacy to location privacy,
defining a new privacy metric: geo-indistinguishability [2, 5,
6, 20]. The solutions in [2, 5, 20] focus on sporadic locations
and are not applied on trajectory privacy. Andrés et al. [2]
state that in the case of successive location disclosures, the
geo-indistinguishability that their mechanism provides de-
creases linearly in the number of disclosed locations. How-
ever, this solution is not optimal and can be outperformed by
[22] when the adversary has prior knowledge. In Section 5,
we show that our algorithm compares favorably against that
of Shokri et al. when protecting trajectory privacy, hence we
can conclude that our algorithm also offers better protection
than that of Andrés et al. The solution in [6] deals with mo-
bility traces, but is non optimal.

3. PROBLEM STATEMENT
User Mobility and LBS Access Pattern. Consider a
user moving within M discrete locations R = {r1, . . . , rM}.
The user’s movements are represented as a discrete-time tra-
jectory of locations at times T = {1, 2, . . .}. An event 〈r, t〉
denotes that the user is at location r ∈ R at time t ∈ T .
Slightly abusing notation, the time-subscripted variable rt
will denote the user’s location at time t. Typical values from
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Figure 1: A user moves from location (3, 4) at time t− 2, to
(4,3) at t− 1, to (4, 2) at current time t. The user wants to
protect locations at times t−1 and t, and these are denoted
by atrg (target events). At past times t − 2 and t − 1, the
LPPM exposed pseudolocations (3, 3) and (3, 2) (denoted
by opre), and to protect atrg the LPPM currently exposes
location (3, 1) (denoted by opost).

R are r, ri, rj , whereas typical time-subscripted locations are
rt, rt−1, rt+1.

User mobility is modeled probabilistically. Any model is
possible, as long as it allows to compute probabilities of the
user visiting various sequences of locations. In this paper,
we choose to model mobility as a first-order Markov chain
on R, but we must stress that our contribution is not tied
to this choice since our method can compute the optimal
protection for any other mobility model.

We assume an LBS access pattern in which the user ac-
cesses the LBS at each time instant t ∈ T , i.e., from each
location that she visits. We assume this for simplicity, and
at the end of this section we show that we can accommodate
sparser LBS-access patterns. After all, the most interesting
case is when LBS-access times are close enough to each other
so that successively exposed locations are correlated. If they
are not, the problem becomes equivalent to sporadic location
disclosure, studied in [22].

LPPM Functionality. The user wants to protect her pri-
vacy from an adversary who observes the locations exposed
to the LBS (so the adversary could be the LBS provider
itself, an eavesdropper, other LBS users, etc.). Hence, she
uses an LPPM that obfuscates her real locations before they
are sent to the LBS. We model obfuscation as a replacement
operation in which a fake location from a setR′ is sent to the
LBS instead of the real location. We take R′ to be the same
as R. We call these fake locations pseudolocations or obfus-
cated locations and denote them by r′. The corresponding
events 〈r′, t〉 are termed pseudoevents.

The problem we tackle is the design of an LPPM algorithm
f(·) that takes as input the real location (or locations) to
be protected and the pseudolocations previously sent to the
adversary, and then probabilistically selects the pseudoloca-

atrg f()

LPPM

h()

Attack

opost âtrg

P , opre f()

Figure 2: Information available to the LPPM and the adver-
sary: The LPPM wants to protect location(s) atrg by pro-
ducing appropriate pseudolocation(s) opost. The adversary
observes the output opost of the LPPM and, using his knowl-
edge of the LPPM function f , estimates atrg; the adversary’s
estimate is âtrg. The prior knowledge of the adversary and
of the LPPM consists of the transition matrix P and the
pseudolocations opre that have been produced in the past.

tion (or pseudolocations) to expose to the adversary. The
pseudolocation set is fixed, and it coincides with the location
set. The adversary knows the probabilistic model that de-
scribes user mobility, and also knows the LPPM algorithm
f(·). Notice here the self-reference: We design f(·) assuming
an adversary who knows the f(·) that will be designed and
can respond optimally to it.

We introduce the notation used in the paper with the
example shown in Figure 1. Assuming that the current time
is t, the elements of the framework are defined as follows:

• atrg denotes the target events that the user wants to
protect, or equivalently, the events that the adver-
sary wants to infer. In the example, the user wants
to protect her location at times t − 1 and t and thus
atrg = (rt−1, rt) = {〈(4, 3), t− 1〉, 〈(4, 2), t〉}.

• opre is a subset of the pseudoevents that the LPPM
created and sent to the LBS up to but before the cur-
rent time. These are the pseudoevents that matter
for the estimation of atrg: Typically, opre would be
a sequence of consecutive pseudoevents starting with
a recent time instant (as old ones do not matter for
estimating atrg) and leading up to the current time.
These are known both to the adversary and to the
LPPM. In the example, the relevant pseudolocations
are those exposed at times t − 1 and t − 2 and thus
opre = (r′t−2, r

′
t−1) = {〈(3, 3), t− 2〉, 〈(3, 2), t− 1〉}.

• opost is the pseudolocation (or set of pseudolocations)
that the LPPM produces to protect atrg and that will
be sent to the LBS at current time. In the example
the user exposes pseudolocation (3, 1) at time t, thus
opost = (r′t) = {〈(3, 1), t〉}.

• f(opost|atrg, opre) is the probability that the LPPM
produces opost, given its knowledge opre and the loca-
tions atrg it is trying to protect. This function encodes
the defensive mechanism. It can be viewed as a code-
book that prescribes, for each value of atrg and opre, a
randomization over the possible values of opost.

Notice that atrg need not be the same length as opost: In the
example, the LPPM exposes the current pseudoevent (only
time t), while the goal is to protect events at the current
and the previous time instants (t and t− 1).

Attacker Model and Privacy Metric. In short, privacy
is quantified as the adversary’s error in estimating the user’s



true location(s) atrg. Figure 2 illustrates the information
flow of events and pseudoevents to the LPPM and to the
adversary. The detailed notation is as follows:

• ψ(atrg|opre) is the adversary’s prior probability dis-
tribution on the inference target atrg, given his prior
knowledge opre. It encodes what the adversary can de-
duce about atrg before observing the LPPM’s current
output opost.

• âtrg denotes the adversary’s estimate of atrg. Similarly
to atrg, it can be seen as a time-indexed vector whose
elements belong to the set R of locations.

• h(âtrg|opre, opost) is the probability that the adversary
estimates âtrg to be the true value of atrg, given his
knowledge of prior pseudolocations opre and given the
pseudolocation(s) opost exposed at current time t. Note
that, by definition, h(.) can contain multiple observed
exposed pseudolocations that happen across any time
period (e.g., multiple days).

• dp(âtrg, atrg) ≥ 0 is the privacy gain when the adver-
sary’s estimate is âtrg and the true value of the infer-
ence target is atrg. It is zero only if âtrg = atrg. The
value of dp for each pair of locations reflects the sen-
sitivity of the user with respect to different location.
The user must assigns low values if she is sensitive to-
wards a particular location atrg. We treat dp as an
input to our framework.

The privacy that an LPPM f(·) achieves against an ad-
versary implementing attack h(.) is then the expected value
of dp(âtrg, atrg), given prior observations opre:

Privacy(ψ, f, h, dp; opre) = E{dp(âtrg, atrg)|opre} (1)

=
∑

atrg,âtrg

Pr{âtrg, atrg}dp(âtrg, atrg)

=
∑
atrg
opost
âtrg

ψ(atrg|opre)f(opost|atrg, opre)h(âtrg|opre, opost)

dp(âtrg, atrg).

This formula represents the adversary’s expected estima-
tion error. An alternative pessimistic quantification of pri-
vacy, we could take the minimum estimation error over all
possible values of atrg, which would be a worst-case scenario.

Regarding dp(âtrg, atrg), intuitively it can be seen as a
distance between âtrg and atrg that measures the similarity
between the inferred and real locations with respect to the
user’s privacy concerns. For instance, it can be the sum, the
minimum, or the maximum of the Euclidean distances be-
tween the corresponding locations of each vector, i.e., the to-
tal, minimum, or maximum error of the adversary over each
pair of corresponding locations in the two vectors. Contribu-
tions to dp(âtrg, atrg) can be weighted to encode the privacy
sensitivity of individual locations r ∈ atrg, e.g., if r is a very
sensitive location the contribution of estimating r̂ ∈ âtrg to
dp(âtrg, atrg) could be large even if r and r̂ differ by very
little. Alternatively, dp(âtrg, atrg) could be the Hamming
distance between the two vectors, i.e., the number of loca-
tions at which the estimate differs from the true value.

Furthermore, dp(âtrg, atrg) can encode the privacy sensi-
tivity of transitions between locations, rather than individ-
ual locations. For instance, visiting the bank and visiting
a government official may not be very sensitive if consid-
ered separately, but visiting the official immediately after
the bank may be much more sensitive, especially if the user
just made a large withdrawal from the bank and the official
is in charge of land development licensing. Moreover, tran-
sitions between regions reveal the direction of travel. For
instance, the adversary may learn whether the user enters
or exits a building, e.g., a hospital.

Appropriate dp(·) needs to be chosen depending on the
user’s privacy concerns, and whether she wants to protect
sensitive locations or sensitive transitions. We note that
some dp(·) definitions are more general than others: a dp(·)
that protects the transition between two successive locations
automatically protects the locations themselves, so it could
be used to protect both objectives simultaneously.

Quality Metric. Sending pseudoevents instead of true
events to the LBS may help with privacy, but it can degrade
the quality of the LBS’s response. We model the quality loss
stemming from exposing pseudolocations as follows:

• qtrg denotes the relevant events with respect to quality.
Similarly to atrg, qtrg is a time-indexed vector. How-
ever, its time indices are not necessarily the same as
those of atrg: The events that matter for quality may
be different from the ones that matter for privacy.

• dq(qtrg, opost, opre) represents the quality loss when qtrg
is the true value of the quality-relevant events, the
LPPM currently reports opost and it has reported opre
in the past. The function dq is an input to our frame-
work and it reflect the user’s requirements with respect
to quality of service, and is related to need for accurate
location information at the service provider to return
useful service to the user.

The expected quality loss caused by an LPPM f(·) is the
expected value of dq(qtrg, opost, opre) over all qtrg and opost,
for a given history opre:

Qloss(f, dq, opre) = E{dq(qtrg, opost, opre)|opre} (2)

=
∑

qtrg,opost

Pr{qtrg, opost|opre}dq(qtrg, opost, opre)

=
∑

qtrg,opost

Pr{qtrg|opre}Pr{opost|qtrg, opre}

dq(qtrg, opost, opre)

In the equation above, f(·) is hidden in Pr{opost|qtrg, opre},
which can be unwrapped as

Pr{opost|qtrg, opre} =
∑
atrg

Pr{opost, atrg|qtrg, opre} (3)

=
∑
atrg

Pr{opost|atrg, qtrg, opre}Pr{atrg|qtrg, opre}

=
∑
atrg

f(opost|atrg, opre)Pr{atrg|qtrg, opre}.

We assume that there is a maximum expected quality loss
Qmax
loss that users are willing to tolerate. Formally,

Qloss(f, dq, opre) ≤ Qmax
loss . (4)



The quality loss dq(qtrg, opost, opre) can be seen as a dis-
tance between two vectors: qtrg and the combination of
opost, opre. It will be zero if an accurate, noiseless, trajec-
tory is reported by the LPPM (i.e., if these two vectors are
identical), and positive otherwise. If the application needs
high location precision to function well, then dq(·) will be
large even for small differences between qtrg and opost, opre.

Moreover, dq(·) can encode variable sensitivity across lo-
cations. For example, in locations with many nearby restau-
rants, an application that finds the nearest restaurant can
tolerate a lot of noise, while isolated areas may require more
precision. The quality loss function could be instantiated,
among other possibilities, as a Euclidean or Hamming dis-
tance between real (qtrg) and reported locations (opost, opre).
The versatility of dq(·) extends to encoding quality loss for
applications that depend on the whole trajectory of locations,
rather than just on a single location, e.g., consider a car in-
surance company that monitors the driving behavior of a
customer: quantities such as speed and sudden acceleration
or deceleration cannot be evaluated on single locations.

3.1 Sparse LBS Access Pattern
So far we have assumed that users access the LBS at ev-

ery single time instant although in reality one cannot expect
that LBS accesses are uninterrupted (e.g., users may access
an online navigation system to travel around some parts
of a city, but not in others). In this scenario, an adversary
may be concerned about the user’s whereabouts between two
LBS accesses, i.e., at times when there are no corresponding
exposed pseudolocations. Therefore, these intermediate lo-
cations also need to be protected (recall objective (4) in the
introduction).

Our dense-LBS-access assumption can also express such
a privacy objective. We can accommodate these inference
targets by extending the definition of dp(âtrg, atrg) to incor-
porate the privacy sensitivity of any intermediate locations
that the adversary can infer from âtrg. For example, assume
that, from the estimates r̂t−1 and r̂t of locations rt−1 and rt,
the adversary can estimate two intermediate locations vis-
ited at t−1+ε and t−ε (e.g., the attacker can use Viterbi de-
coding [19] to infer the most likely trajectory, or the forward-
backward algorithm [19] to compute the probability distri-
bution of locations at some times between t − 1 and t).
In this case, dp((r̂t−1, r̂t), (rt−1, rt)) would be expressed as
dp((r̂t−1, r̂t−1+ε, . . . , r̂t−ε, r̂t), (rt−1, rt−1+ε, . . . , rt−ε, rt)).

We note that this approach to handle the estimation of
locations where the LBS is not accessed is not particular
to LPPMs designed under our framework, hence it can be
used to complement other privacy-preserving solutions in
the literature.

4. TRAJECTORY PRIVACY AS A STACK-
ELBERG GAME

4.1 General Privacy Scenario
As we have discussed in Section 3, our goal is to design an

LPPM that protects user privacy (by maximizing dp), while
preserving quality of service (by respecting the maximum
quality loss threshold Qmax

loss for dq). Designing an LPPM
reduces to choosing appropriate values for the probabilities
f(opost|atrg, opre). In addition, the design process must an-
ticipate that the adversary will know the values chosen for f ,
which means that she will choose the attack h accordingly.

· · ·f1

h1

P11

h2

P12

· · ·

· · ·

h∞

P1∞

f2

h1

P21

h2

P22

· · ·

· · ·

h∞

P2∞

Figure 3: The LPPM can choose among an infinite selec-
tion of probability functions f . For each one of the fi, the
adversary chooses one of his infinite selection of attacks hj
to minimize Pij ; for instance, h2 is the best response to f1,
resulting in Privacy P12, and h1 is the best response to f2,
resulting in Privacy P21. Call hmin(f) the minimizing h for a
given f . Anticipating the adversary’s choice for each f , the
LPPM chooses the f that maximizes Privacy(f, hmin(f));
for instance, if P12 > P21, the LPPM would choose f1
over f2. Call fmax the maximizing f . The resulting pair
fmax, hmin(fmax) is the Stackelberg equilibrium, and the pri-
vacy achieved is Privacy(fmax, hmin(fmax)).

Figure 3 details the reasoning involved in solving our task,
which is equivalent to solving a Stackelberg game. The dis-
tinguishing feature of this game is that there is a leader,
who commits to a choice, and a follower, who observes the
leader’s choice and then makes a choice of his own. In our
task, the leader is the user and her choice is the LPPM,
the follower is the adversary who chooses an attack given
the user’s choice. The Stackelberg equilibrium is a pair
of choices (f∗ for the LPPM and h∗ for the attack) such
that neither the user nor the adversary would gain anything
by changing their respective choices. In other words, h∗

is the choice that minimizes privacy against f∗, and f∗ is
the choice that maximizes privacy against an adversary who
will make her choice after observing f∗ while respecting the
quality constraint. Note that f∗ does not necessarily max-
imize privacy against h∗, i.e., if the user could be certain
that the adversary would choose h∗, then a better choice
than f∗ could exist. The LPPM design tries to limit the
worst possible privacy loss, knowing only that the adversary
will choose the most effective attack against whatever f the
LPPM implements.

Formally, the general LPPM design task is to choose f
and h that solve the Stackelberg game max-minimization

max
f

min
h
Privacy(ψ, f, h, dp; opre) (5)

subject to

Qloss(f, dq, opre) ≤ Qmax
loss . (6)

Other than f and h, all functions and parameters ψ, dp,
opre, dq, Q

max
loss are inputs to the problem: ψ – the user’s

mobility, and dp – the user’s location sensitivity, are specific
to the user we aim to protect; the last two dq, Q

max
loss are

specific to the LBS application and perhaps also depend
on the user’s tolerance to quality deterioration; the prior
observations opre depend on the particular time when the
user wants to protect her privacy.

We now give two specific examples of the general LPPM
design task for two plausible privacy objectives. The first



objective is to protect the k + 1 most recent locations (in-
cluding the current one at time t), having already exposed
pseudolocations for the k past time instants, by choosing an
appropriate pseudolocation to expose at time t. The sec-
ond objective is to protect the current and future locations,
assuming nothing has been exposed so far, by choosing a
pseudolocation for time t and for future time instants. We
emphasize that one can instantiate any number of objectives
by selecting the time period one wishes to protect (atrg),
the events that have been exposed already (opre), and the
time period for which the LPPM can expose pseudolocations
(opost).

4.2 Joint Protection of Past-Present Locations
Consider a user who, at time t, wants to publish her lo-

cation rt. She has already published her locations rτ at the
k previous time instants τ = {t− 1, t− 2, . . . , t− k}. These
locations have been sent by the LPPM to the LBS as pseu-
dolocations oτ . As explained in Section 3, locations exposed
prior to time t − k, i.e., from 1 to t − k − 1, are considered
to have no influence on the choice of the user at time t.

The simplest privacy objective (atrg) that the user could
have is to protect her current location only: atrg = rt. We
call this single location privacy. But as we have argued in
[24], the transition from the previous location rt−1 to the
current position may be sensitive, or, in general, the transi-
tion from the k-tuple rτ to rt may be sensitive. A different
objective, therefore, is to protect the whole vector rτ in addi-
tion to rt: atrg = (rt, rτ ). Observe that the latter objective
(transition privacy) is more general the previous one (single
location privacy): Choosing a function dp((r̂t, r̂τ ), (rt, rτ ))
that just ignores rτ and r̂τ makes the two cases equivalent.

The prior observations opre are the set of pseudolocations
oτ , and the pseudolocation opost that the LPPM produces
is just the one corresponding to the current time t: ot. The
quality loss dq is a function of past and present exposed
pseudolocations, (ot, oτ ), and of qtrg. As stated in Section 3
qtrg does not need to coincide with atrg, and can consist of
any subset of events from time 1 up to and including t. In
fact, it does not even need to overlap with (rt, rτ ).

Making the appropriate substitutions in (1), we derive the
privacy definition for the specific case of protecting past and
present locations as follows:

Privacy(ψ, f, h, dp; oτ ) =
∑

rt,rτ ,ot,r̂t,r̂τ

ψ(rt, rτ |oτ )

f(ot|rt, rτ , oτ )

h(r̂t, r̂τ |ot, oτ )

dp((r̂t, r̂τ ), (rt, rτ ))

(7)

The quality loss is also straightforward to define using (2):

Qloss(f, dq, opre) = E{dq(qtrg, ot, oτ )|oτ}

=
∑
qtrg,ot

Pr{qtrg, ot|oτ}dq(qtrg, ot, oτ )

=
∑
qtrg,ot

Pr{qtrg|oτ}Pr{ot|qtrg, oτ}

dq(qtrg, ot, oτ )

Notice that setting k = 0 eliminates opre (which would
mean that none of the previous pseudolocations exposed to
the adversary are assumed to correlate with the current lo-

cation), and the target events atrg reduce to the current time
t only. In total, only the current location matters for privacy
and for quality, and the design task reduces to the sporadic
case handled by Shokri et al.’s framework [21].

4.3 Joint Protection of Present-Future Loca-
tions

We now consider a user who, as before, wants to publish
her location rt at time t. However, in contrast with the
previous case, she is not concerned about the past locations
she has visited, but rather about future ones. This concern
can be motivated as follows:

Disclosing the current location might not be important
in and of itself, but it might make it much easier for the
adversary to infer the next location, which happens to be
very sensitive. For instance, the user might currently be on a
street that only leads to an abortion clinic. Hence, disclosing
her current location is almost equivalent to disclosing that
she will go to the clinic. Symmetrically, her current location
might be very sensitive, and her next (expected) location
can be linked easily to her current one. For instance, she
might about to leave the abortion clinic and enter a street
that is only used as the clinic’s exit. Furthermore, as argued
in [24], neither the current nor the next location might be
particularly sensitive separately, but the transition from one
to the other might be.

The conclusion in all these cases is that the current lo-
cation must be protected jointly with the (possible) next
one(s), where the user will be at time t + 1 and later. For
this reason, atrg includes time subscripts larger than t, and
so does opost, i.e., the LPPM should take into account at the
present time t what it is likely to output in future times, so
that the current choice of ot does not limit future choices.
The intuition is that the LPPM should choose the current
pseudolocation ot so that future paths that the user will
likely take can be protected with pseudolocations that are
compatible with ot.

For simplicity, we consider an example where the LPPM
anticipates only the next location, rather than several suc-
cessive future locations, therefore atrg is (rt+1, rt) and opost
is (ot+1, ot), and no prior locations matter for privacy, so
opre is omitted.

Substituting in (1), privacy in this example is defined as

Privacy(ψ, f, h, dp) =∑
rt+1,rt
ot+1,ot
r̂t+1,r̂t

ψ(rt+1, rt)f(ot+1, ot|rt+1, rt)

h(r̂t+1, r̂t|ot+1, ot)dp((r̂t+1, r̂t), (rt+1, rt)), (8)

and the quality loss, from (2), is defined for a general qtrg as

Qloss(f, dq) = E{dq(qtrg, ot, ot+1)}

=
∑

qtrg,ot,ot+1

Pr{qtrg, ot, ot+1}dq(qtrg, ot, ot+1).

4.4 Optimal Attacks and Defenses via Linear
Programming

Having reduced the LPPM design to a Stackelberg game
max-minimization, we now compute the equilibrium of the
game, which is equivalent to computing the optimal defense
f and attack h.



Note that there is an infinity of candidate fs and hs
(all possible probability distributions), so enumeration (as
shown in Figure 3) cannot be used directly as an algorithm
to find the equilibrium. To overcome this problem, we use
a standard technique for transforming the computation of a
game theoretic equilibrium to a linear program. This tech-
nique introduces auxiliary variables xopost , for each possi-
ble value of opost, which roughly correspond to the amount
of privacy gained when the LPPM reports each particular
value of opost. As previous research [22] has expanded on
this transformation technique, we merely present the key
features of the resulting linear program:

We want to maximize
∑
opost

xopost under the constraint

xopost ≤
∑
atrg

ψ(atrg|opre)f(opost|atrg, opre)dp(âtrg, atrg),

∀âtrg, opost, (9)

and under the constraint∑
qtrg
opost

Pr{qtrg|opre}Pr{opost|qtrg, opre}dq(qtrg, opost, opre)

≤ Qmax
loss . (10)

Equation (9) is equivalent to the min-maximization (5), and
equation (10) is just the quality constraint (6).

In this way, we can compute the optimal LPPM f∗. The
optimal attack h∗ can either be computed via (5), or by
solving another linear program called the dual. We do not
go into detail about the dual here and point the interested
reader to prior research [22] and to standard textbooks on
linear programming [25].

Having computed the optimal LPPM f∗ and the optimal
attack h∗, the resulting Privacy(f∗, h∗) is the level of pri-
vacy achieved by the user, and the resulting Qloss(f

∗) is the
application’s incurred quality loss.
Alternative quantifications of privacy. As we men-
tioned at the beginning of this section, the optimal LPPM
f∗ depends on all inputs ψ, dp, opre, dq, Q

max
loss , so if any of

these functions or variables changes, a new LPPM must be
computed to maximize privacy. Alternatively, it is possi-
ble to compute an LPPM that maximizes the average pri-
vacy across a range of different values, e.g., opre, or across
a range of different applications represented by different
functions dq. One could also be conservative and compute
instead an LPPM that maximizes the minimum privacy
across a range of values, e.g., opre. In this paper, we take
ψ, dp, opre, dq, Q

max
loss to be given inputs, but we note that it

is not difficult to adapt the framework to accommodate al-
ternatives.

5. EVALUATION
By formulating the LPPM design as an optimization prob-

lem, the LPPM algorithm f(·) is guaranteed to be optimal
among all possible algorithms that respect the same con-
straints. Hence, there is no point in evaluating our design
with simulations or any other heuristic evaluation method.
We nevertheless compare to a sporadic LPPM to stress the
importance of using a trajectory-aware LPPM. The spo-
radic LPPM that we use is the optimal one, as presented
in prior work [22]. Due to incompatible assumptions, we
cannot compare to the trajectory-aware LPPMs in the liter-
ature (see discussion of related work in Section 2). We also

show, for two illustrative scenarios, how our LPPM design
allows to trade off privacy and quality. Finally, we discuss
the run-time complexity of our design in Section 5.3.

For the comparison to the sporadic LPPM and for the
illustration of the privacy-quality tradeoff, we use a real
data set of location traces. These traces, which are one day
long, belong to 10 randomly chosen mobile users (vehicles)
in the San Francisco Bay area from the epfl/mobility dataset
at CRAWDAD [18]. These 10 examples serve to illustrate
the optimality of the LPPMs designed by our method, since
the technique is user-centric and does not need information
about other users.

We discretize both time and location: we divide the Bay
Area into 10×25 equal-size locations, and consider a day to
be composed by 288 time units, one per each 5 minutes. We
emphasize that the granularity of both time and locations
can be arbitrarily selected depending on the required accu-
racy in quantifying privacy and service quality.1 We consider
all the locations that are visited by each user, which on av-
erage is 23.4 locations per user. We also consider all the
transitions that each user has made between these locations
in our dataset.

For both the comparison to the sporadic LPPM and for
the privacy-quality tradeoff, we need to specify all the input
parameters/functions dp, dq, Q

max
loss , opre, ψ.

Without loss of generality, we select the privacy gain dp
and the quality loss dq functions to be the Hamming dis-
tance: dp(âtrg, atrg) = 1âtrg 6=atrg and dq(qtrg, opost, opre) =
1qtrg 6=(opost,opre). Using the Hamming distance means, tak-
ing the privacy gain as an example, that the only bad case
for privacy is when the attacker correctly estimates the ex-
act value of the target locations (i.e., when âtrg is exactly
equal to atrg). All other estimates are equally good for pri-
vacy, regardless, e.g., of the physical distance between the
attacker’s estimate and the true value of atrg. As our quan-
tification of privacy is the expected value of dp(âtrg, atrg) –
and the expected value of 1âtrg 6=atrg is just the probability of
âtrg 6= atrg – in effect we quantify privacy as the probability
that the adversary will make an erroneous estimate.

For the maximum tolerable quality loss Qmax
loss , we do not

specify a single value, but rather compute the achievable
privacy for multiple values, so as to observe the privacy-
quality tradeoff.

For the previously reported events opre, we do not specify
a single value. Instead, the privacy values that we compute
and present in the following figures are averaged over all
possible values of opre, because such an average is more rep-
resentative of the privacy that a user can expect to achieve:∑

opre

Pr{opre}Privacy(ψ, f, h, dp; opre).

We must stress that the actual values obtained in the evalu-
ation depend on context (e.g., user mobility). In this sense,
they amount to the “total” privacy of the user, not just the

1Note that locations need not necessarily form a grid. In
general, a higher number of locations corresponds to higher
granularity, and, as a result, to more precise and more accu-
rate quantification and protection of location privacy. The
only requirement is for time and locations to be discrete.
Of course, more locations and more time instants make the
computation of the LPPM more demanding in resources.
The run-time computation discussion in Section 5.3 elabo-
rates on the effect of the number of time instants and loca-
tions on the complexity of the problem.
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Figure 4: Users’ single-location privacy, using a sporadic
LPPM against two attacks: sporadic attack vs. correlation-
aware attack. For 10 different users (lines), and for various
values of the service quality threshold Qmax

loss (dots), we see
that the privacy against a correlation-aware attack (vertical
axis) is always less than the privacy against a sporadic attack
(horizontal axis).

privacy that is due to the LPPM alone. However, the evalu-
ation shows that, other context being the same, our LPPMs
achieve the highest “total” privacy value among all mecha-
nisms.

To compute the prior probability ψ(atrg) on the target
events, we use the aforementioned traces to build a first-
order Markov chain on the discretized set of locations. As
mentioned in Section 3, choosing a Markov chain over a
different mobility model is arbitrary, but our method can
handle other mobility models as well.

In relation to ψ, notice that, in general, we need to spec-
ify the conditional prior on the target events ψ(atrg|opre),
i.e., the prior given the previously reported events opre (see
Equation (1)). But from the traces we can only compute
the unconditional prior ψ(atrg). The connection between
opre and atrg will typically be given by whatever LPPM was
in use when opre was reported, in conjunction with the un-
conditional prior. In [24], we show how this connection can
be established, and how ψ(atrg|opre) can be computed, for
the joint protection of past and present privacy that we il-
lustrate in this section.

5.1 Comparison to Optimal Sporadic LPPM
A trajectory-oblivious (sporadic) LPPM is typically eval-

uated against an attack that is also sporadic, i.e., an attack
in which location correlation is not taken into account. To
provide quantitative justification for the inadequacy of such
LPPMs and their evaluation when the exposed locations are
correlated, we show in Figure 4 that a correlation-aware at-
tack can achieve much lower privacy than a sporadic attack.

Of course, a sporadic LPPM protects single locations only,
so to compare meaningfully, we pick as objective of the
correlation-aware attack the single-location privacy objec-
tive, i.e., atrg = rt (see Section 4.2). The difference between
the correlation-aware attack and the sporadic attack is that
the former uses the conditional prior probability on the tar-
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Figure 5: Privacy-quality tradeoff in the first scenario
(single-location privacy): Protecting the current location
(atrg = rt), when opre is the pseudolocation reported in the
previous time instant ot−1. Each curve corresponds to one
user.

get location ψ(rt|opre) (for opre = ot−1), whereas the latter
uses the unconditional prior ψ(rt).

Each attack is paired against the same sporadic LPPM
(the optimal one [22], as mentioned earlier), and the results
are plotted across the 10 mobile users and for various values
of the service quality threshold Qmax

loss . As all data points
are below the x = y diagonal, we conclude that privacy in
the correlation-aware attack (x-axis) is lower than privacy
in the sporadic attack (y-axis). The only cases where the
two attacks are equally (un-)successful are when the quality
loss threshold is so high that the sporadic LPPM can inject
enough noise to blur even the inference of a correlation-aware
attack.

5.2 Privacy-Quality Tradeoff
In this section, we illustrate the privacy-quality trade-

off of our LPPMs for two particular scenarios: Protecting
single-location privacy for the current location, taking into
account the immediately previous pseudolocation (atrg = rt
and opre = ot−1), shown in Figure 5; and protecting tran-
sition privacy for the current and future locations (atrg =
(rt, rt+1)), as described in Section 4.3, shown in Figure 6.

Under each of these two scenarios, we construct the op-
timal protection mechanism for each of the 10 users in our
traces (i.e., the mechanism that provides the maximum pri-
vacy for her). We plot this maximum privacy as a function
of the service quality threshold Qmax

loss . We see in both fig-
ures that the achievable privacy increases as Qmax

loss increases.
This is not surprising, as higher values ofQmax

loss let the LPPM
inject more and more noise.

However, in both scenarios we observe two effects: First,
a saturation effect takes place for most users as Qmax

loss in-
creases. Their privacy reaches a plateau beyond which any
further increase inQmax

loss does not contribute to a correspond-
ing increase in privacy. Second, the privacy plateau, as well
as the privacy level for any value of Qmax

loss , is not the same for
all users. This suggests that not all users can be protected
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Figure 6: Privacy-quality tradeoff in the second scenario
(transition privacy): Protecting the current and the next
location (atrg = (rt, rt+1)). Each curve corresponds to one
user.

equally well, but rather there is some inherent privacy limit
for each user that is connected to the user’s mobility. Users
with more predictable mobility cannot be protected as ef-
ficiently as less predictable ones, regardless of the amount
of noise that the LPPM injects. Looking at the figures,
more predictable users correspond to the lowest curves in
Figures 5 and 6, whereas users with more random mobility
correspond to the highest curves.

It is worth noting at this point that both these effects
are not artefacts of our LPPM. Our LPPMs provide the
best possible protection, so these effects are inherent in the
mobility patterns of the users.

5.3 Computational Considerations
Our mechanism is intended to be computed offline and

used online: The LPPM function f(opost|atrg, opre) is pre-
computed offline and then downloaded to the device. Then,
whenever the user attempts to expose a location, the LPPM
looks up and performs the appropriate randomization on
pseudolocations opost, based on the actual values of the tar-
get events to be protected atrg and the previously exposed
vector of pseudolocations opre. In this way, the only compu-
tational burden of the resource-constrained mobile device is
a look-up and a randomized selection of opost.

The offline computation of the LPPM function f requires
solving a separate linear program for each value of opre that
may arise in practice. But most of the theoretically possible
values of the vector opre are nonsensical sequences of loca-
tions, e.g., sequences where successive locations are too far
away from each other, so these need not be taken into ac-
count, which saves considerable time. Similarly, the number
of variables in each linear program is theoretically equal to
the total number of pairs of atrg and opost vectors, since a
value for f must be computed for each such combination.
This number is M length(atrg)+length(opost) (recall that M is
the total number of locations – see Section 3), but in practice
it is much smaller. The actual number of linear programs
and of variables is closer to the number of likely trajectories

of the corresponding length (the number of linear programs
is equal to the number of trajectories of length length(opre),
whereas the number of variables is equal to the number of
trajectories of length length(atrg) + length(opost)).

It is very important to notice also that the computation
of f needs to be done only once, so the associated cost only
needs to be incurred once. A recomputation of f is only
necessary if, for example, the user parameters or applica-
tion parameters dp, dq, Q

max
loss change, or if the user wants

to protect a different aspect of her privacy (e.g., previous,
present, and next location, instead of just present and next
location), which would translate to a change in atrg, or if
one wishes to take into account different prior knowledge of
previously reported pseudolocations opre (e.g., take into ac-
count the 3 previously reported pseudolocations instead of
just one).

6. CONCLUSIONS
Existing location privacy-preserving mechanisms either ig-

nore the information leaked by the exposure of correlated
locations, or ignore that the adversary will adapt his at-
tack to the protection mechanism. Hence, in practice, these
schemes do not provide the promised level of privacy. In
this paper, we have proposed a framework that simultane-
ously considers correlation and the background knowledge
of the adversary, namely the mobility profile of the user, the
previously exposed locations, and the internal algorithm im-
plemented by the protected mechanism; while at the same
time respecting the user’s service quality requirements.

Our framework allows users to design LPPMs that protect
not only her current location, but also her past and future
whereabouts. Furthermore, our solution is the first to deal
with protecting the privacy of transitions between locations,
and with preserving the privacy of locations from which the
user does not access the location based service. Two key
advantages of the framework are that it is not limited to
a particular scenario, but can be used to compute optimal
defenses for different privacy and quality user preferences;
and that it finds an optimal defense among a wide variety
of conceivable mechanisms, effectively any mechanism that
can be modeled as a probability distribution describing how
obfuscated locations are produced from real locations.

Using real mobility traces, we show that users can relax
their quality of service requirements in exchange for privacy,
but the predictability of their movements determines the
maximum protection they can obtain. The privacy level
achieved by the LPPMs computed using our framework can
be considered an upper bound on the privacy achievable by
any defense in presence of a strategic adversary who knows
the users’ mobility patterns. Hence, our solution is ideal to
be used as benchmark to measure the effectiveness of future
defenses.
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