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ABSTRACT
This work casts the traffic analysis of anonymity systems,
and in particular mix networks, in the context of Bayesian
inference. A generative probabilistic model of mix network
architectures is presented, that incorporates a number of at-
tack techniques in the traffic analysis literature. We use the
model to build an Markov Chain Monte Carlo inference en-
gine, that calculates the probabilities of who is talking to
whom given an observation of network traces. We provide a
thorough evaluation of its correctness and performance, and
confirm that mix networks with realistic parameters are se-
cure. This approach enables us to apply established informa-
tion theoretic anonymity metrics on complex mix networks,
and extract information from anonymised traffic traces op-
timally.

Categories and Subject Descriptors: C.2.0 [Computer-
Communication Networks]: General – Security and protec-
tion;

General Terms: Security, Measurement, Theory.

Keywords: Anonymity, Traffic Analysis, Mix Networks,
Markov Chain Monte Carlo.

1. INTRODUCTION
Relay based anonymous communications were first pro-

posed by David Chaum [2], and have since been the subject
of considerable research [5] and deployment [7]. More re-
cently measures of anonymity based on information theory
and decision theory were proposed [3, 12, 15, 29, 32] to quan-
tify the security of such systems. Those metrics are based on
extracting probability distributions over possible receivers of
messages in an anonymity system, subject to constraints on
its functioning and the observations of an adversary. Al-
though very popular, these metrics are difficult to apply in
the presence of constraints that deployed systems impose,
since the exact calculation of the required distributions is
an intractable problem (as pointed out by Serjantov [28]).

Our key contribution is a framework to estimate, to an ar-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

bitrary accuracy, the distributions necessary for computing
a wide variety of anonymity metrics for relay based mix net-
works. We achieve this by casting the problem of extracting
these distributions as a probabilistic inference problem, and
solve it using established Bayesian inference frameworks,
concretely Markov Chain Monte Carlo (MCMC) sampling.

Our analysis of mix networks incorporates most aspects
and attacks previously presented in the literature: constraints
on paths length, node selection [29], bridging and finger-
printing attacks [10], social relations of users [16], and erratic
user behaviour. For the first time all these aspects on a sys-
tem are brought under a common framework allowing the
adversary to combine them all in the analysis of a system.
Further extensions to describe other aspects of mix-networks
can also be accommodated. This is the most comprehensive
and flexible model of a mix-based anonymity network so far.

The Bayesian traffic analysis techniques presented have
two key advantages. First, they allow optimal use of all
information when drawing conclusions about who is talk-
ing to whom. Second, they provide the analyst with an a-
posterior probability over all scenarios of interest, whereas
previous attacks only provided the most likely candidate so-
lution. The evaluation of our work focuses on establishing
the correctness of those distributions.

Our models of mix networks are far from arbitrary: the
parameters and architectures we use model closely the de-
ployed mixmaster and mixminion remailers [7]. The model
has also been applied to analyse path creation strategies for
low latency, traffic analysis resistant networks [13]. They can
be used to assign to messages a correct degree of anonymity,
using probabilistic measures [3, 12, 15, 29, 32], which was
not possible before. A full account of how to apply those
measures can be found in the full version of this paper [11].

The paper is organised as follows: we present a brief
overview of Bayesian inference and sampling techniques in
Sect. 2; Sect. 3 describes a generic probabilistic model of a
mix network, and Sect. 4 shows how to built an inference
engine to infer its hidden state; the correctness and accu-
racy of the inference engine is studied in Sect. 5; and Sect.6
explains how to use the output of the sampler to compute
anonymity. Finally we discuss some future directions and
conclusions in Sect. 7.

2. BAYESIAN INFERENCE AND
MONTE CARLO METHODS

Bayesian inference is a branch of statistics with applica-
tions to machine learning and estimation. Its key method-
ology consists of constructing a full probabilistic model of



all variables in a system under study. Given observations of
some of the variables, the model can be used to extract the
probability distributions over the remaining, hidden, vari-
ables.

To be more formal lets assume that an abstract system
consists of a set of hidden state variables HS and observa-
tions O. We assign to each possible set of these variables
a joint probability given a particular model C, Pr[HS,O|C].
By applying Bayes rule we can find the distribution of the
hidden state given the observations as:

Pr[HS|O, C] =
Pr[HS,O|C]∑
∀HS Pr[HS,O|C] =

Pr[HS,O|C]
Z

The joint probability Pr[HS,O|C] can be decomposed into
the equivalent Pr[O|HS, C] ·Pr[HS|C], describing the model
and the a-prior distribution over the hidden state. The
normalising factor Z is difficult to compute for large state
spaces, and Bayesian techniques do not require it.

There are key advantages in using a Bayesian approach to
inference that make it particularly suitable for traffic anal-
ysis applications:

• It provides a systematic approach to integrating all
information available to an attacker, simply by incor-
porating all aspects of a system within the probability
models [21].

• The problem of traffic analysis is reduced to building a
generative model of the system under analysis. Know-
ing how the system functions is sufficient to encode
and perform the attacks, and the inference details are,
in theory, easily derived. In practise, computational
limitations require carefully crafted models to be able
to handle large systems.

• It outputs probability distributions over all possible
hidden states, not only the most probable solution as
many current traffic analysis methods do.

The last point is an important one: the probability distri-
bution Pr[HS|O, C] over hidden states given an observation
encodes information about all possible states, and the an-
alyst can use it to calculate anonymity metrics [15, 29, 32,
3, 12]. When traffic analysis is used operationally the prob-
ability of error of a scenario can be calculated to inform
decision making. It is very different to assert that Alice
messages Bob, with certainty 99% versus with certainty 5%.
Extracting full probability distributions allows us to com-
pute such error estimates directly, without the need for an
ad-hoc analysis of false positives and false negatives.

Despite their power Bayesian techniques come at a con-
siderable computational cost. It is not possible to compute
directly the distribution Pr[HS|O, C] due to its complexities
and sampling methods have to be used to extract its char-
acteristics: a set of samples HS0, . . . ,HSl ∼ Pr[HS|O, C]
are drawn from the a-posterior distribution, and used to es-
timate marginal probability distributions of interest.

2.1 Metropolis-Hastings Algorithm
The Metropolis-Hastings (MH) algorithm [20] is a Markov

Chain Monte Carlo method that can be used to sample from
arbitrary distributions. It operates by performing a long
random walk on a state space representing the hidden infor-
mation, using specially crafted transition probabilities that

make the walk converge to the target stationary distribu-
tion, namely Pr[HS|O, C]. Its operation is often referred
to as simulation, but we must stress that it is unrelated to
simulating the operation of the system under attack.

The MH algorithm’s key state is a single instance of the
hidden state, called the current state and denoted HSj .
Given the current state a another candidate state HS ′ is se-
lected according to a probability distribution Q(HS ′|HSj).
A value α is defined as:

α =
Pr[HS ′|O, C] ·Q(HSj |HS ′)
Pr[HSj |O, C] ·Q(HS ′|HSj)

If α ≥ 1 then the candidate state is accepted as the cur-
rent state, otherwise it is only accepted with probability α.
This process is repeated multiple times, and after a certain
number of iterations the current state is output as a sample
HSj+1. More samples can be extracted by repeating this
process.

The algorithm is very generic, and can be used to sam-
ple from any distribution on any state space, using custom
transition probabilities Q. It is particularly interesting that
the distribution Q used to propose new candidates can be
arbitrary without affecting the correctness of the process, as
long as both Q(HS ′|HSj) > 0 and Q(HSj |HS ′) > 0, and
the Markov Chain it forms fully connects all hidden states
and it is ergodic. Despite the apparent freedom in choosing
the distribution Q, in practise it must be easy to compute
and sample, and be fast mixing to reduce the number of iter-
ations between independent samples. Since the probabilities
Pr[HS ′|O, C] and Pr[HSj |O, C] need only be known up to a
multiplicative constant to calculate α, we do not need to
know the normalising factor Z.

The other parameters of the MH algorithm, namely the
number of iterations necessary per sample, as well as the
number of samples are also of some importance.In this work
the number of iterations is chosen experimentally to ensure
the output samples are statistically independent. The num-
ber of MH samples on the other hand impacts on the ac-
curacy of the marginal distributions we estimate, which we
can increase by running the sampler longer.

The MH method can be run in parallel on multiple pro-
cessors, cores or a distributed cluster: all processes output
samples that can be aggregated and analysed centrally. Our
experiments made use of this property on a multicore two
processor machine.

3. THE MIX NETWORK MODEL
The first step to perform Bayesian inference is to define a

probabilistic model that describes all observations and hid-
den states of a system. In this section, we present such a
model for a set of users sending messages over a mix net-
work to a set of receivers. The model includes traditional
aspects of mix networks, e.g. path length constraints, and
further incorporates incomplete observations, erratic clients,
bridging attacks, and social network information.

We consider an anonymity system formed by Nmix thresh-
old mixes [2]. This type of mix achieves unlinkability by col-
lecting t (the threshold) input messages and then outputting
them in a random order after a cryptographic transforma-
tion. These two actions prevent timing attacks and bitwise
linkability respectively (in this work, we assume the cryp-
tography is perfect and leaks no information.) A population
of Nuser users send messages through these mixes. When



Figure 1: Observation of the network and Hidden
State

sending a message, a user selects a receiver amongst his set
of contacts and a path in the network to route the message.
The path is determined by the preferences of the user and a
set of constraints C imposed by the system (e.g., maximum
path length, restrictions on the choice of mixes, etc). We
denote the sender of an incoming message to the system ix
as Senx and the receiver of an outgoing message from the
system oy as Recy.

In order to carry out our analysis we observe the system
over a period of time between T0 and Tmax (assuming that all
mixes are empty at T0.) During this period, Nmsg messages
travelling through the system are monitored by a passive
adversary, generating an Observation (O.) This Observation
is formed by records of communications between the entities
(users and mixes) observed by the adversary.

Our goal is to determine the probability of a message en-
tering the network corresponding to each of the messages
leaving it given an observation O. This is equivalent to de-
termining the correspondence between inputs and outputs
in each of the mixes. We call the collection of the input-
output relationships of all mixes the Hidden State of the
system, and denote it as HS.

Figure 1 depicts an instance of a system where 3 users send
3 messages through a network formed by 3 threshold mixes
with threshold t = 2. In this setting a passive observer
can monitor the following events (α � β denotes entity α
sending a message to entity β) and construct an observation
O with them:

O = { Sen0 � mix1 , mix1 � mix3 , mix2 � Rec2 ,
Sen1 � mix1 , mix3 � mix2 , mix3 � Rec0 ,
Sen2 � mix2 , mix3 � mix2 , mix3 � Rec1 }

These events are represented with solid lines in Fig. 1. A
possible HS (correspondences between incoming and outgo-
ing messages at all mixes) for this instance is represented
with dashed lines.

Given an observation and a hidden state we define a path
Px for each of the messages ix entering the network, which
represents its trajectory through the system. A path con-
sists of a series of observed events that are linked by the re-
lations stated in the Hidden State. In the example, message
i1 follows the path P1 = {Sen1 � mix1,mix1 � mix3,mix3 �
Rec1}. We note that a set of paths P = {Px, x = 1, . . . , Nmsg}
defines uniquely an observation and a hidden state. Hence,
given a set of constraints C, their probability should be
strictly equal, i.e. Pr[P|C] = Pr[O,HS|C]. By applying
Bayes theorem we can relate the probability of a hidden
state (that we are trying to infer) to the observations and
the paths that it forms as Pr[HS|O, C] = Pr[P|C]/Z where
Z is a normalising constant.

Hence, we can say that sampling hidden states Pr[HS|O, C]
is equivalent to sampling paths Pr[P|C] using Bayesian in-

ference techniques. In the next sections we present a proba-
bility model of paths under different system-based and user-
based constraints. Ultimately, we use the Metropolis-Hastings
method to sample from that model.

3.1 Basic Constraints
First, we present our model for basic constraints concern-

ing the user’s choice of mixes to relay messages and the
length of the path.

We assume that the system allows the user to choose paths
of length Lx, Lx = Lmin, . . . , Lmax. We consider that the
user selects this length uniformly at random amongst the
possible values. There is nothing special about the uniform
distribution of path lengths, and an arbitrary distribution
can be used instead. The probability of path Px being of
length l is:

Pr[Lx = l|C] =
1

Lmax − Lmin + 1
.

Once the length is determined, the user has to choose the
mixes on the path. We consider any sequence of mixes of
the chosen length as equally likely, with the only condition
that mixes have to be distinct. The possible ways in which
the l mixes forming a path can be chosen is given by the
permutations of length l out of the Nmix mixes forming the
system. Thus, the probability of choosing a valid sequence
of mixes of length Lx is:

Pr[Mx|Lx = l, C] =
(Nmix − l)!
Nmix!

.

Assuming that the choice of the length of a path and the
choice of mixes belonging to it are independent, the proba-
bility of selecting a path Px is:

Pr[Px|C] = Pr[Lx = l|C] · Pr[Mx|Lx = l, C] · Iset(Px) , (1)

where the last element represents an indicator of the choice
of mixes being a set or a multiset. This indicator takes value
1 when all mixes in the path are different, 0 otherwise.

Since the observation is limited in time, it may be the
case that some messages enter the network but never leave
it. This happens when messages enter mixes that do not
receive enough inputs during the time of observation in order
to flush, and thus stay in those mixes at the end. For these
messages, it is not possible to derive the choices of the user
in terms of path length and mixes, as we can only observe
part of the path. Such an example is the observation shown
in Fig. 2, representing an instance of a network formed by
threshold mixes (t = 2) in which users can choose paths of
length Lx ∈ [2, 3]. The message sent by Sen2 arrives at mix4,
but is never forwarded to any other mix or to its recipient
since no more messages are received by this mix. At this
point, an adversary cannot assume Sen2 chose L2 = 2, and
must consider also the possibility that the choice was L2 = 3.

The probability of a path Px ending in an unflushed mix
is:

Pr[Px,unf|C] =

Lmax∑
l=Lunf

Pr[Lx = l|C] · Pr[Mx|Lx = l, C] ,

where Lunf = min(Lmin, Lobs), and Lobs is the observed
length of the path from the sender until the mix that has
not flushed.

As we have shown, the probability of a hidden state is
proportional to the joint probability of the paths chosen by



Figure 2: Example where some mixes do not flush

Figure 3: Black box abstraction of the system

the users. Assuming users decide independently about the
routing of their messages:

Pr[HS|O, C] ∝ Pr[P|C] =

Nmsg∏
x=1

Pr[Px|C] . (2)

Further, one can abstract the system as a black box such
that there exist a one-to-one relationship amongst incoming
and outgoing messages (Fig. 3 depicts an example of this
abstraction for the network in Fig 1.) In other words the
messages at the exit of the black box must be a permuta-
tion of the messages at the entrance [33]. The number of
permutations of Nmsg messages is Nmsg!. Without any a-
priori information, the probability of the real permutation
being any of them is: 1/Nmsg!. This information can be in-
tegrated in the computation of the probability of a set of
paths:

Pr[P|C] =

Nmsg∏
x=1

Pr[Px|C] ·
1

Nmsg!
. (3)

3.2 Advanced Constraints
In this section we present our modeling of advanced con-

straints which account for additional knowledge of the adver-
sary about the users’ behaviour. The constraints described
here can be selectively combined to refine the probabilistic
model of the system, resulting in more accurate attacks.

3.2.1 Bridging & mix preferences
Bridging attacks were proposed by Danezis and Syverson

in [10]. These attacks exploit the fact that users of a large
anonymity network might not know all the mixes present
in the system. In this case it is possible to “bridge” honest
mixes considering the knowledge (or ignorance) about subse-
quent mixes in a path that the originator of the communica-
tion has. For example, given a message sent through a hon-
est mix the path followed by this message can be “bridged”
either if (i) there is only one outgoing mix known by its
sender, or (ii) if there is only one outgoing mix that is not
known by all the senders of the other messages present in
the round.

Bridging attacks can be incorporated in our model through
the definition of a new indicator variable Ibridge(Px) associ-

ated with each path. This variable takes the value 1 if all
mixes in a given path Px are known to the initiator of the
path, and is set to 0 otherwise. We can easily integrate
bridging in Eq. 1:

Pr[Px|C] = Pr[Lx = l|C]·Pr[Mx|Lx = l, C]·Iset(Px)·Ibridge(Px) .

This probability can in turn be used in Eq. 3 to obtain the
probability of a set of paths P.

A probabilistic version of bridging can also be incorpo-
rated into the model, moving beyond the possibilistic bridg-
ing attacks described in [10]. Detailed knowledge of the at-
tacker as to which client knows which server, as well as their
probability of choosing it, can be used to build probability
distributions over the paths Pr[Px|Sender(Px), C]. Such dis-
tributions can represent the knowledge of each sender about
the mix network infrastructure, but also any preferences
they might have about the choice of mixes. The use of guard
nodes [34] in Tor [17] can be modelled in this manner.

3.2.2 Non-compliant Clients
Our model so far assumes that all clients make routing

decisions according to the standard parameters of the sys-
tem. This is overwhelmingly the case, since most users will
be downloading client software that builds paths for them in
a particular, and known fashion. We call those clients and
the paths they create compliant. For example, the Tor [17]
standard client will choose paths of length three as well as
distinct onion routers. Furthermore the first router will be
a “guard” [34] node. However, some users may modify the
configuration of their client to chose paths in a different
fashion.

Paths built by these non-compliant clients have different
probabilities from what our model has assumed so far. We
are very liberal with those paths, and make as few assump-
tions as possible about them. Non-compliant clients may
select shorter or longer path lengths than usual in the sys-
tem, i.e., Lcp = Lmincp , . . . , Lmaxcp with Lmincp 6= Lmin and
Lmaxcp 6= Lmax. Furthermore, they may use a multiset of
mixes to route their messages. The probability of their path
is:

Pr[Px|C] =
1

Lmaxcp − Lmincp + 1
· 1

N l
mix

For this probability, we have arbitrarily chosen a uniform
distribution for the length of the paths, but the model allows
to consider any other distribution instead. We indicate with
C that the path has been constructed by a non-compliant
user. Finally, note that the indicator variable Iset(Px) en-
forcing the need for selecting distinct nodes on the path has
disappeared from the equation with respect to Eq. 1.

If bridging information is available to the adversary, the
indicator Ibridge(Px) can still be used in the formula to ac-
count for user’s partial knowledge of the network and in-
crease the accuracy of the attack. This attack is still appli-
cable to non-compliant users, as the fact that they choose
routing paths based on their own criterion does not affect
the mixes they know.

In order to account for this type of clients, we assume that
individual users are non-compliant with probability pcp. If
non-compliant clients are present in the network, we calcu-
late the joint probability of all paths assuming that each
user is compliant or not independently, and then assigning a
probability to their path accordingly. We denote Pcp and Pcp



the set of paths originated by compliant and non-compliant
users respectively. We extend the probability model from
Sect. 3.1 and derive:

Pr[P|C] = Pr[πi] ·

 ∏
Pi∈Pcp

pcp Pr(Pi|C)


·

 ∏
Pj∈Pcp

(1− pcp) Pr(Pj |C)

 ,
3.2.3 Integrating Social Network Information

A number of attacks, starting by Kesdogan et al in [22, 1],
and further studied in [4, 6, 9, 23, 25, 33], show that adver-
saries can sometimes extract general profiles of the “friends”
of users. These social profiles can then be integrated in the
traffic analysis process to narrow down who the receiver of
each sent message is[11].

Let us assume that each sender Senx can be associated
with a sending profile, i.e., a probability distribution where
each element Pr[Senx � Recy] expresses the probability of
sender Senx choosing Recy as the recipient of a message. We
can include this“profile”on the path probability calculation.
In this case, Eq. 1 becomes:

Pr[Px|C] = Pr[Lx = l|C] · Pr[Mx|Lx = l, C]
· Iset(Px) · Pr[Senx � Recy] ,

Senx being the originator of the path Px and Recy the recipi-
ent of her message. This probability is in turn used in Eq. 2
to calculate the probability of a hidden state. Note that
Eq. 3 does not apply anymore as the permutation informa-
tion is now included in the computation of the probability
of a path. Of course, further restrictions as bridging infor-
mation or considering some senders as non-compliant can be
integrated in this probability computation.

4. A MARKOV CHAIN MONTE CARLO
SAMPLER FOR MIX NETWORKS

Given an observation O of some messages’ flow in an an-
onymity network and some knowledge about its functioning
and its users’ behaviour C, traffic analysis aims to uncover
the relation between senders and receivers, or equivalently
to find the links between incoming and outgoing messages.
This comes down to obtaining an a-posterior distribution
Pr[HS|O, C] of hidden states HS given an observation O
and a set of constraints C.

However, enumerating Pr[HS|O, C] for allHS is computa-
tionally unfeasible, due to the very large number of possible
hidden states. Instead we have shown in Sect. 3 that we can
sample states HS ∼ Pr[P|C]. These samples are then used
to infer the distributions that describe events of interest in
the system. For instance, it is easy to estimate the probabil-
ity Pr[ix � oy|O, C] of an incoming message ix corresponding
to any of the outgoing messages oy as:

Pr[ix � oy|O, C] ≈
∑

j∈NMH
Iix�ox(HSj)

NMH
,

where Iix→ox(HSj) is an indicator variable expressing if
messages ix and oy are linked in hidden state HSj , and
NMH is the number of samples HS ∼ Pr[P|C] available to
the adversary. The same process can be used to estimate
the sending profile Pr[Senx � Recx|O, C] of a given user by

Figure 4: Observation of a network where 10 mes-
sages are sent to 3 mixes of threshold t = 4

substituting the indicator variable in the previous equation
by ISenx�Recx(HSj).

We present a Metropolis-Hastings (MH) sampler for Pr[P|C]
following the probability mix network model described in
Sect. 3. For the sake of simplicity in the remainder of the sec-
tion we omit the conditioning to the observation O and the
constraints C in all probabilities (e.g., we write Pr[ix � oy]
when we refer to Pr[ix � oy|O, C]) unless stated differently.

4.1 Metropolis-Hastings Sampler
Let us consider an anonymity network where users behave

as described in Sect. 3. An instance of such a network where
10 messages are sent through 3 mixes of threshold t = 4 can
be seen in Fig. 4. In this figure, senders are represented as
triangles and labeled “Sn”, n being their identity. Likewise
for receivers, represented as triangles labelled “Rn”. The
triangle labelled as “U” represents Unknown, a fake receiver
necessary to model the messages that stay in mixes that have
not flushed at the end of the observation period. Finally,
mixes are represented as ovals, and labelled as “MmRr”,
where m expresses the identity of the mix and r the round
of flushing. (A non-toy example of a trace can also be seen
in Figure 9 in the appendix.)

Note that, although we consider that the network con-
sists of three mixes (M0, M1 and M2), messages seem to be
sent to 4 different mixes (M0R0, M1R0, M2R0 and M2R1.)
This reflects the fact that messages sent to the same mix in
separate rounds do not mix with each other. Let us call the
latter series of mixes “virtual mixes” and denote the set they
form as vmixes (in the example vmixes = {M0R0, M1R0,
M2R0, M2R1})

We define a hidden state as a set of internal connections
between inputs and outputs in the virtual mixes, such that
an input corresponds to one, and only one, output. The
aim of the sampler is to provide hidden state samples, ac-
cording to the actual probability distribution over all possi-
ble hidden states. We compute the probability of a hidden
state Pr[HS|O, C] ∝ Pr[P|C] following the model presented
in Sect. 3 with both basic and advanced constraints. For
simplicity, we denote this probability as Pr[HS] in the re-
mainder of the section.

We now explain how to ensure that the random walk per-
formed by the Metropolis-Hastings algorithm actually pro-
vides samples from the target distribution Pr[HS]. Let us
start by considering only basic constraints (see Sect. 3.1) on
the system. We select an arbitrary initial state and use dif-
ferent transitions Q to propose new candidate states for the
random walk. When only basic constraints are considered



Figure 5: Qswap transition operation on the second
and third links of a mix

we define two transitions:

• Qnone: this transition does not change the current
state (i.e., the current state is the candidate for next
state in the walk),

• Qswap: this transition swaps two internal connections
in a virtual mix (See Fig. 5.)

Given a state HSj and a transition Q that leads to the
candidate state HS ′, we decide whether HS ′ is a suitable
next state for the walk by computing α:

α =
Pr[HS ′] ·Q(HSj |HS ′)
Pr[HSj ] ·Q(HS ′|HSj)

.

The new state HS ′ is accepted with probability 1 if α ≥ 1
or with probability α otherwise, as the Metropolis-Hastings
algorithm dictates (Sect. 2.1.)
Q(HS ′|HSj) (and conversely Q(HSj |HS ′)) is the prob-

ability of selecting state HS ′ as candidate given that the
previous state was HSj . It depends on the transition Q se-
lected and the probability of selecting this transformation
(Pr[Qx], x = none, swap):

Q(HS ′|HSj) =

{
Pr[Qnone] if Qnone

Pr[Qswap] · 1
|vmixes| ·

1
t

1
t−1

if Qswap

When taking into account non-compliant clients, the hid-
den states are not anymore uniquely defined by the set of
internal connections in the virtual mixes “present” in the ob-
servation O. In this case a client Senx can be compliant or
non-compliant (Senx,cp or Senx,cp, respectively) resulting in
a different probability for the path Px it initiates, and hence
leading to different hidden state probabilities Pr[HS]. We
augment the hidden state to include the internal connec-
tions in the virtual mixes, as well as path labels indicating
whether the paths are compliant with the system or not.

In this augmented model the random walk Q must mod-
ulate the path’s labels as compliant or not. Thus, each time
a path is altered by a swap operation from the current state
HSj to create a candidate state HS ′, we consider whether
to change its sender’s label. At iteration j + 1, we change
sender Senx’s label depending on the label it had in the pre-
vious iteration j (i.e., in hidden state HSj) and on whether
the new path in the candidate state HS ′ complies with the
system standard parameters or not. We define the probabil-
ity of a label being changed as:

pflip(a, b) = Pr[Senx,b in HS ′|Senx,a in HSj ] , a, b = {cp, cp} .

Q(HS ′|HSj) =

{
Pr[Qnone] if Qnone

Pr[Qswap] · 1
vmixmax

· 1
t

1
t−1
·Qflip if Qswap

where Qflip is computed on the paths participating in the
swap as:

Qflip =
∏

Labx in HS′
6=Labx in HSj

pflip ·
∏

Labx in HS′
=Labx in HSj

(1− pflip) .

Some input messages have “deterministic paths”, meaning
that their paths are uniquely determined. This is the case,
for example, when a message immediately enters a mix that
is never flushed. As a result, the label of the path would
be never changed and some possible hidden states would
never be visited by the random walk. To avoid these cases
and ensure that the sampler explores the full state space we
define a third type of transition:

• Qdet: this transition modifies the compliant status
of the sender of one of the Ndet deterministic paths
present in the network. If no clients are deemed to
be non-compliant or no deterministic paths exist, this
transition is never applied (Pr[Qdet] = 0.)

Given all these transitions, we compute Q(HS ′|HSj) as:

Q(HS ′|HSj) =


Pr[Qnone] if Qnone

Pr[Qswap] · 1
vmixmax

· 1
t

1
t−1
·Qflip if Qswap

Pr[Qdet] · 1
Ndet

if Qdet

5. EVALUATION
The aim of our evaluation is to ensure that the infer-

ences drawn from the Metropolis-Hastings samples are “cor-
rect”. Correctness means that the a-posterior distributions
returned represent indeed the probabilities of paths, and cor-
respondences between senders and receivers, in the system.

We evaluate the inference engine with small (3 mixes) and
large (5 to 10 mixes) networks. For these networks, we cre-
ate different observations inserting Nmsg messages (Nmsg ∈
{10, 50, 100, 1000}) from users that choose paths of length
between Lmin = 1 and Lmax = 3 and select the mixes be-
longing to these paths uniformly at random. In some of the
experiments, we consider the users to be non-compliant with
probability pcp = 0.1.

5.1 Metropolis-Hastings parameters
The sampler parameters are important to ensure that the

samples returned are from the desired distribution Pr[HS].
The number of iterations ι between samples must guaran-

tee they are independent. There is no straightforward pro-
cedure to obtain the optimal value for this parameter and
we have to estimate it. We consider ι to be large enough
when the second order statistics of the marginal distribu-
tions Pr[ix � oy] (respectively Pr[Senx � Recy]) are the
same as the first order statistics. Informally we want to en-
sure that the probability that an input ix corresponds to an
output oy at sample j is independent of the output of ix at
sample j − 1. Formally, the property we are looking for is:

Pr[ix � oy in HSj |ix � oh in HSj−1] = Pr[ix � oy in HSj ] ,
(4)

for some h. We experimentally test different values of ι for
independence to determine it.

The higher the number of samples NMH extracted, the
better the estimate of the a-posterior distributions at the
cost of more computation. We chose the number of samples
for our problems based on the order of magnitude of the
a-posterior probabilities we expect to infer.

When adapting our experiments to consider non-compliant
clients, we need to chose a value for the parameters pcp and
pflip(a, b), the average percentage of non-compliant clients
in the network. We decided to assign pcp = 0.1 such that
the percentage of non-compliant clients using the network is



Parameter Value

Nmsg 10 50 100 1000
Network Nmix 3 3 10 10

parameters t 3 3 20 20
[Lmin, Lmax] [1,3]

pcp 0.1

Advanced
pflip(cp, cp) 0.9

constraints
pflip(cp, cp) 0.01
pflip(cp, cp) 0.02
pflip(cp, cp) 0.3

[Lmincp , Lmaxcp ] [1,32]

Sampler
ι 6011 6011 7011 7011

parameters
burn-in 8011
NMH 500 500 500 500

Table 1: Parameters of the Metropolis-Hastings
sampler implementation

small (as expected in a real network) but their presence in
the network is non-negligible to impact the analysis.

The probability pflip(a, b) is not crucial for the correctness
of the sampler, but is important to the speed of mixing. The
values we used in our experiments were chosen empirically to
ensure fast mixing. A study of optimal values for pflip(a, b)
given pcp

1 is left as subject of future research.
The values for the parameters used in our experiments are

summarised in Table 1. We chose the network parameters
to produce observations that are interesting. Had we always
considered a realistic mix network, with at least Nmix = 10
with threshold t = 10, and few messages (10 or 50), we
would run the risk of many mixes not flushing and therefore
not observing any flow of messages.

5.2 Evaluation methodology
For a given observation, we collect NMH samples from

Pr[HS] using the Metropolis-Hastings algorithm with the
transitions Q described. Using these samples we estimate
the marginal probability distributions Pr[ix � oy] and Pr[Senx �
Recy], linking input messages to output messages and senders
to receivers respectively (as demonstrated in [19] there can
be a substantial difference between them).

Let us call each of the samples obtained in the MH sim-
ulation HSj , j ∈ {1, . . . , NMH}. The result of our basic
experiment is a point estimate of Pr[ix � oy] (respectively,
Pr[Senx � Recy]) for each of the messages ix entering the
network:

Pr[ix � oy] =

∑
j∈NMH

Iix�oy (HSj)

NMH
, (5)

Pr[Senx � Recy] =

∑
j∈NMH

ISenx�Recy (HSj)

NMH
.

Our methodology aims to establish whether these probabil-
ities are correct.

Our test consists of running our basic experiment over
2 000 observations. In each of them we select a random
input message (ix) and a random output message (oy) as
targets and we store the tuple:

(Pr[ix � oy], Iix�oy (trace)) .

1Although in this work we assume pcp is known to the at-
tacker, it could be included in the Hidden State and inferred
together with the rest of hidden variables.

The first element of the tuple is the inferred probability
that ix corresponds to oy computed with Eq. 5 from the re-
sult of the MH simulation. The second element, Iix�oy (trace),
is an indicator variable that takes the value 1 if oy actually
corresponded to ix when the trace was generated, and 0 oth-
erwise. We note that the test could be also carried on using
senders and receivers as targets with the sole difference that
the tuples stored would be:

(Pr[Senx � Recy], ISenx�Recy (trace)) .

Once these tuples are collected, we make a histogram with
30 “bins” of equal size using the first element of the tuple
as distinguisher for the classification. We denote as bin(a, b)
the “bin” containing Pr[ix � oy] : a ≤ Pr[ix � oy] < b, and
Len(a, b) the number elements in that bin. For each of the
bins we compute:

• The value psampled(a, b), which corresponds to the mean
of the Pr[ix � oy] belonging to the tuples contained in
the bin:

psampled(a, b) =

∑
Pr[ix�oy ]∈bin(a,b) Pr[ix � oy]

Len(bin(a, b))
.

• pempirical(a, b), the 95% Bayesian confidence intervals
given how many tuples there are on a bin and the
amount of these tuples whose second element is Iix�oy (trace) =
1 using the Beta function:

α =
∑

Iix�oy∈bin(a,b)

Iix�oy (trace) + 1 ,

β = Len(bin(a, b))− α+ 2

pempirical(a, b) ∼ Beta(α, β) .

The value psampled(a, b) represents the expected probabil-
ity for an event given the MH simulation output (Eq. 5.)
The Bayesian confidence interval pempirical(a, b) represents
the “actual” probability with which the targeted events hap-
pened in the observations.

We expect the mean psampled(a, b) to fall within the inter-
val pempirical(a, b), i.e. the estimated probability being close
to the probability with which events happen in the genera-
tion of the traces. If this is the case we conclude that the
implementation of the Metropolis-Hastings sampler is cor-
rect. The size of the confidence interval is also meaningful:
Small intervals indicate that many samples have been used
thus, it accurately represents pempirical(a, b). On the other
hand, if few samples are used to compute the interval (if
a bin contains few events), we obtain a poor estimate of
pempirical(a, b) and the results based on it are rather mean-
ingless.

5.3 Evaluation Results
We conducted several experiments considering both the

basic constraints and the full model (including non-compliant
clients) in small and large networks.

Figure 6 shows the result of our evaluation using only
basic constraints to generate the trace and model it. The
lower graph is a histogram of the number of experiments
per bin, Len(bin(a, b)). The upper graph represents with
crosses the mean of the bins psampled(a, b), and the Bayesian
confidence intervals pempirical(a, b) with vertical lines. Most
crosses fall in the intervals, meaning that our algorithm is
providing samplesHSj according to the correct distribution.
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Figure 6: Results for the evaluation of an obser-
vation generated by 50 messages in a network with
Nmix = 3 and t = 3, when all clients behave in a
compliant way

(Only 95% are expected to fall within the intervals.) Most
messages fall in bins with psampled ∈ [0.07, 0.4], and their
confidence intervals are very small, indicating that we have
a high certainty our sampler works correctly in that region.

It is noticeable that some paths fall in the psampled = 1 bin.
This denotes total certainty about the correspondence be-
tween an input and an output, with no anonymity provided.
These are deterministic paths (explained in Sect. 4.1) where
the attacker is completely sure that the message ix corre-
sponds to the potential output message ox because it is the
only message inside a mix.

Experiments were also performed where some of the clients
behave in a non-compliant fashion. The result for Nmsg = 10
messages is shown in Fig. 7(a). We observe more events with
psampled = 1 that represent deterministic paths. This in-
crease is due to long non-complient paths (Lx,cp >> Lmax)
whose links cannot be swapped to form compliant paths.

A second difference, with respect to the compliant case, is
the appearance of a significant number of events with proba-
bility psampled ∈ [0.7, 1]. These are paths with no compliant
alternative, that now appear as non-compliant paths, with
the associated small probability. The probability of these
paths is diminished more (generating events with probabil-
ity psampled ≈ 0.7) or less (generating events with probability
psampled ≈ 0.95) depending on how likely the non-compliant
path is. These events happen rarely and the number of sam-
ples falling in these bins is small, resulting in large confidence
intervals.

Figure 7(b) shows our results when considering 50 mes-
sages. As one would expect, we can see in the histogram
at the bottom that when more messages travel through the
network, and the attacker is less certain about their desti-
nation. There are also fewer samples in the psampled = 1
bin, which reflects the increase in the anonymity that the
presence of more traffic in the network provides to its users.

Finally, we tested the effectiveness of our sampler for longer
observations (100 and 1000 messages in the network.) The
results of the experiments are shown in Fig. 8. In these cases,
we find that the mix network provides good anonymity for
all messages. An attacker cannot link incoming and outgo-
ing messages with a probability higher than psampled = 0.4
when 100 messages have been observed, and psampled = 0.1
if more messages are seen.
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(a) Nmsg = 10 messages
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(b) Nmsg = 50 messages

Figure 7: Results for the evaluation of an observa-
tion of a network with Nmix = 3 and t = 3, when
non-compliant clients are present

In all examples, we obtain the expected result: approx-
imately 95% of the samples fall into the confidence inter-
vals. We conclude that our implementation produces sam-
ples from the correct a-posterior probability distribution and
implements the optimal Bayesian inference an adversary can
perform.

5.4 Performance evaluation
Our Metropolis-Hastings sampler is composed by 1443

LOC of Python, including the code associated to the evalua-
tion. Our implementation is not optimised for size, memory
usage or running time, and an equivalent implementation in
C would outperform it.

The sampler implementation uses a “two-states” strategy
for the proposal and acceptance/rejection of candidatesHS ′.
This strategy stores two states HS0 and HS1 that are ini-
tialised to the same value (the initial state). In order to
propose a candidate we apply a transition Q on HS1, and
compute α (considering HSj = HS0 and HS ′ = HS1). If
the state is to be accepted, we apply the same transforma-
tion to HS0 (HS0 = HS1). If on the contrary there is a
rejection, we undo the modification on HS1 (HS1 = HS0).
Then we restart the process with a new transition Q. This
strategy apparently doubles the memory requirements, but
actually reduces the amount of extra information needed to
walk forward and backwards between states, resulting in a
smaller total overhead, and significant ease of implementa-
tion.
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(a) Nmsg = 100, Nmix = 10, t = 20
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Figure 8: Results for the evaluation of big networks

Table 2: Metropolis-Hastings RAM requirements
Nmix t Nmsg Samples RAM (Mb)

3 3 10 500 16
3 3 50 500 18
10 20 100 500 19
10 20 1 000 500 24
10 20 10 000 500 125

The memory requirements of the sampler are well within
the range of a commodity computer. Table 2 presents the
memory requirements for different sizes of the observation
given by the parameters Nmix, t, and Nmsg. More memory
is needed as observations O and consequently samples HS
grow. Furthermore, we keep the samples HSi in memory,
multiplying the overhead for the number of samples collected
(double in the case of having 1 000 or more messages with
respect to the case when only 50 or 10 messages are consid-
ered.)

Finally, we measured the computation time for processing
observations of distinct size. For each of the sizes we col-
lected 100 measurements of the analysis time and averaged
over them. These timings are shown in Table 3.

Computation time increases as the observations increase
for two reasons. First, more iterations ι are needed to pro-
duce independent samples. Second, our the timings include
the analysis of all messages in the system, that grow with
the observation. Although the time necessary to perform
the analysis is already practical, it can be reduced consid-
erably through paralelizing several MH simulations for the

Table 3: Metropolis-Hastings timings
Nmix t Nmsg ι Full analysis One sample

(min) (ms)

3 3 10 6011 4.24 509.12
3 3 50 6011 4.80 576.42
10 20 100 7011 5.34 641.28
10 20 1 000 7011 5.97 716.72

same observation to get samples HSj faster.

6. MEASURING ANONYMITY
A lot of research has been done regarding the evaluation

of anonymity system. Several tools have been proposed to
measure the anonymity provided by this systems [3, 12, 32,
18], amongst which the most popular are the metrics based
on Shannon entropy [15, 29]. These metrics are computed
over the probability distributions associated with random
variables representing user’s sending profiles, network level
profiles (incoming to outgoing messages correspondences),
etc. They give a measure of the uncertainty of the attacker
about the possible outcome of the random variable under
study.

It is important to realise that the methodology presented
in this work does not output a probability distribution, but
samples that allow us to approximate probabilities of certain
events: Pr[ix � oy], being ix an incoming message and oy

an outgoing message. However, only events that have been
sampled can be estimated, and we cannot assume that not-
sampled events have a null probability. After a finite MH
simulation there may be events with very small probability
which the random walk has not yet visited (or that have
been visited but not sampled) but this does not mean that
they are impossible to reach. The estimation of probabili-
ties using MH samples introduces an inherent error coming
from the normalisation over the sampled events, and not
all possible ones. Hence, it cannot be considered a proper
probability distribution and it is not possible to measure an-
onymity by directly applying previously proposed metrics.
In this section we explain how to use the MH samples to
obtain bounds on the anonymity provided by the system.

Let us consider we want to measure the anonymity pro-
vided by the system to a given message ix. We denote the
probability distribution of this message corresponding to any
of the possible N outgoing message as Ψx = {Pr[ix � oy],
y = 1, . . . , N}. Following the approach of Serjantov and
Danezis [29] we would measure the anonymity for ix as the
Shannon entropy of this probability distribution:

H(Ψx) = −
∑

y

Pr[ix � oy] · log Pr[ix � oy] ,

but as we said we do not have the full probability distribu-
tion, and only samples coming from it.

An approach to the estimation of H(Ψx) is to model Ψx

as a multinomial distribution that determines the probabil-
ity of outputs oy corresponding to an input ix, and resort
again to Bayesian Inference to estimate it from the samples.
For this purpose we also define an auxiliary function that
counts the number of times a message ix is assigned to a
message oy in the set of samples, and denote it as Ctix�oy .
We note that the Dirichlet distribution is a conjugate prior



for the multinomial distribution. A sample from this distri-
bution expresses the belief that the probability of the events
ix � oy is Pr[ix � oy] given that we have observed Ctix�oy

occurrences of each of them. Hence we can use the Dirichlet
distribution assuming poor prior knowledge over the actual
correspondence (Dirichlet(1,. . . ,1)) to obtain samples from
Ψx [24]. We compute the entropy H(Ψx) of n samples Ψx

from the posterior distribution:

H(Ψx) where Ψx ∼ Dirichlet(Ctix�o0 +1, . . . ,Ctix�oN +1) .

We note that, for the receivers oy that do not appear in the
samples, Ctix�oy = 0.

We order the samples H(Ψx) in decreasing order and
take as bounds for the anonymity offered by the system the
γ% confidence interval for this distribution, i.e., an interval
within the range [0, 1], encompassing γ% of the probability
mass of the a-posterior distribution.

7. CONCLUSIONS
Each proposed mix system is slightly different from others,

and our model has to still be extended to deal with different
mixing strategies [27, 30], dummy traffic [8, 14, 27] as well
as observations that start while the mix network is running.
The model of mix networks is flexible enough to be the basis
of such models, although performing efficient inference to
estimate the probability of their hidden state might require
some craftsmanship.

Beyond mix networks, the ‘Holy Grail’ of Bayesian traf-
fic analysis would be its application to the setting of low-
latency anonymity systems based on onion-routing [31], such
as Tor [17]. An adversary in such system is constrained
to observe only a fraction of the network, but the observa-
tions leak precise cell timing data that can be used to trace
streams. Murdoch and Zielinski [26] present a simplified
analytical Bayesian analysis in such a setting, under the as-
sumptions that traffic is Poisson distributed. Presenting a
general model of an onion routing system, and a practical
sampler to perform inference is the next significant step in
this line of work.

Our work has demonstrated that we can extract accurate
a-posterior distributions about who is talking to whom, from
a complex anonymity system, with a vast hidden state-space,
and a large observation. For the first time we are able to cal-
culate the distributions necessary to apply any information
theoretic or decision theoretic anonymity metrics[13, 11].

Our hope is that the traffic analysis methodology we have
employed, that defines a probabilistic model over the full
system, and performs Bayesian inference to measure the se-
curity of the system, becomes the standard by which can-
didate anonymity systems are proposed and evaluated. In
particular the ability to integrate all information in a traffic
analysis, as well as extracting probabilities of error, should
be seen as essential for proposing robust attacks.
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APPENDIX
A. A TYPICAL SMALL TRACE

Figure 9: Fraction of a typical non-toy observation


