Computer Security

Carmela Troncoso, KU Leuven (COSIC)

Computer Security Course, University of Vigo 21st-July-2009

Acknowledgements: Dr. George Danezis

Outline

- Introduction
- Access control matrix
 - Access Control Lists
 - Capabilities
- Discretionary access
- Mandatory access: Security policies
 - Secrecy: Bell-LaPadula
 - Integrity: Biba
- Implementation is not trivial
- Certification
- Conclusions

 "Is the discipline that deals with the prevention and detection of unauthorised actions by users of a computer system"
D. Gollmann, Computer Security (1999)

History

- 50-60s: Mainframe computer
 - punch cards, paper tape, and/or magnetic tape
 - No interaction, batch processes

IBM650 (1954)

- 60-70s: terminals connected to the mainframe
 - Several users on one computer
 - One domain administrator
 - Security = no interferences
 - Permissions and access control

- ▶ 70-80s: PC
 - One user one computer
 - "No need" for security: user presence

Nowadays

Networked PCs

- and servers, databases, clouds,...
- Untrusted content
- Untrusted code running
- ...

- Back to one computer many users
 - No physical security

Network services

Back to security problems! and worse than before...

Key Concepts

- Main actors
 - Principals/users (subject)
 - Resources (object)
 - Operations (action: read, write, append, execute...)

 Only authorized principals should perform authorized operations on authorized resources

Not that easy...

- What/who are the principals?
 - User = physical person or process?
 - Accountability: are users responsible for their programs?
 - Intentionality: what if there is a bug?

Granularity of the resources:

- Hardware: actual processors
- Kernel: memory pages
- OS: files, sockets
- Application: DB records, user accounts

Where do we implement security?

Do not build a castle in the sand...

Not that easy...

- What should be protected?
 - Data/resource (number = integer)
 - Operations (open account only by bank clerks)
 - Users (who can access the data)

Access Control Matrix

	foo1.txt	foo2.txt	foo3.txt
Alice	write	read, execute	-
Bob	-	read,write	-
Charlie	execute	-	read,write,execute

Which is the best way to store it?

Capabilities

- Capabilities (by row): principal-oriented
 - Alice: foo1.txt \rightarrow write, foo2.txt \rightarrow read, execute
 - ▶ Bob: foo2.txt \rightarrow read, write
 - ► Charlie: foo1.txt → execute, foo3.txt→read,write,execute
 - Who has rights on *foo1.txt*? Which ones?
 - Runtime checking is fast
 - Delegation is easy
 - Delegated capabilities revokation is difficult

Access Control Lists

Access Control Lists (by column): object-oriented

- ▶ foo1.txt: Alice \rightarrow write, Charlie \rightarrow execute
- ▶ foo2.txt : Alice \rightarrow execute, Bob \rightarrow read, write
- ▶ foo3.txt : Charlie \rightarrow read, write, execute
- Revokation not trivial (e.g., a user leaves the system)

and there is more...

Privileges

- Principals can be temporarily granted rights
- Administration tasks

Groups

- Simplify access control policy
- Aggregates users with similar rights
- Permission to the whole group

Deletion, ownership,...

Who sets the Access Control Matrix?

Discretionary Access Control

- Users set permissions
- Ownership of resources (UNIX, Windows)
- Users in charge of their security

Mandatory Access Control

- Security policy set by "authority"
- Hard security constraints:
 - Medical environments (confidentiality, integrity)
 - Military (Confidentiality)
 - Banking (Integrity)

Discretionary Access: UNIX

Entities

- > All resources are files (files, devices, sockets,...)
- Files belong to a user and group
- read/write/execute granted to user/group/world ~ RBAC

Users set permissions

Stored in iNodes = Access Control Lists

Superuser root

UNIX security problems

- Who is the principal?
 - Executables run with the rights of the user executing them!

Shared resources?

- Example:sendmail
 - All received emails in the same file
 - Users only access their emails, cannot grant read to them
- Privileges: suid-bit
 - Executables run as their owner, not the executing user
 - sendmail reads file and selects users' emails
- Problem!

Mandatory access: Security policies

- The access control matrix implements a security policy
 - Sets which assets to protect and how high level
 - Complex, high level risk management
 - Appropriate strength of security mechanisms
 - Security policy is analogous to Law
- But given a set of constraints is undecidable if a matrix satisfies them...
- ... we can never decide if an access control system is safe! [Harrison-Ruzzo-Ullman]

Example

Who has access to the key of the room?

Easy: keys are only given to the professor that reserved the room but... he may want to send somebody else to reception: student temporarily granted "professor rights"... the student may make a copy...! or lose the key! also... emergency situations key is given without reservation and... what about the cleaning staff that has access to the full building?

What is a policy?

- A security policy is a statement that partitions the system into a set of authorised (secure) states and a set of unauthorised (nonsecure) states
 - User actions make the system transition from one state to another
- A secure system is a system that starts in an authorised state and cannot enter an unauthorised state.
- A breach of security occurs when a system enters an unauthorised state.
 - Need to define carefully (e.g, copying homework)

Types of policies

Confidentiality policy :

- Information leakage to anoutharized entities
- Leakage of rights
- Information flow without leakage of rights

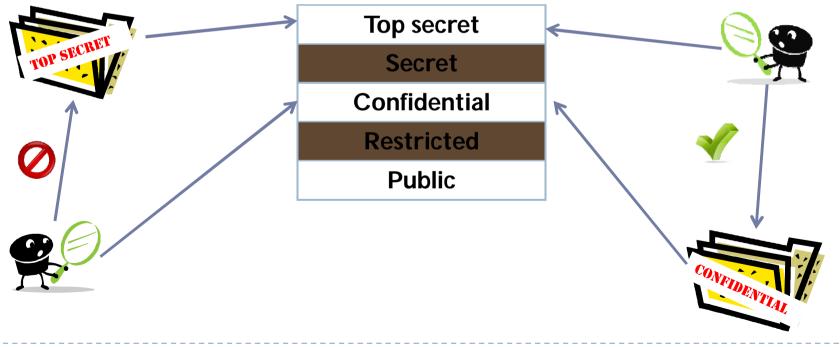
Integrity policy:

- > Which ways information may be altered.
- Which entities can alter it.

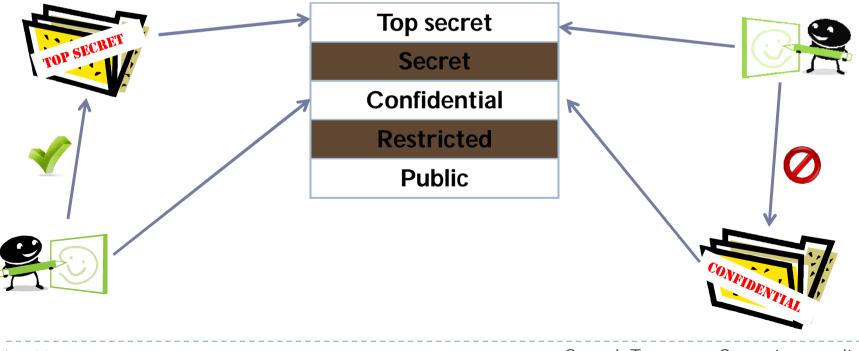
Access Control Policy Models

- Set patterns to ease the process: Security labels for objects (sensitivity), with security clearances for subjects (authorization).
- Formal representation proved to fulfill certain properties
 - Confidentiality,
 - Integrity,
 - Separation of duties, ...
- Not everything is solved...
 - Who manages the policy?
 - Policies need to be adapted
 - Only safe case

Bell-LaPadula model (BLP)


Ensures Confidentiality

- Developed as part of U.S. government funded research at the MITRE corporation on security models and the prevention of disclosure threats in multi-user operating systems.
- Basis of several standards, including DoD's Trusted Computer System Evaluation Criteria ("Orange Book").


BLP Rules: no-read-up (NRU)

- Simple security property (ss-property)
- Unauthorized subjects cannot see sensitive objects

BLP Rules: no-write-down (NWD)

- Star property (*-property)
- Trusted subjects cannot write unclassified objects

Limitations of BLP

- Static!
 - Tranquility property: users do not change labels in a way that the policy is violated
 - Not very useful... who changes the policy then?
- Existence of cover channels
 - Information flow not controlled by a security mechanism
 - Process at high signals process at low, denial of access
 - Exploitable by principals/malware (trojan horse scenario)
 - Shared resources leak information

Limitations of BLP

Polyinstantiation

- Different levels = different value
- Hide or lie?

Bloat at the top

- Information only goes up
- Need for declassification
 - Solves the bloat...
 - ...but introduces covert channels
 - Job of declassification often not trivial
 - $\hfill\square$ e.g., Microsoft word saves a lot of undo information

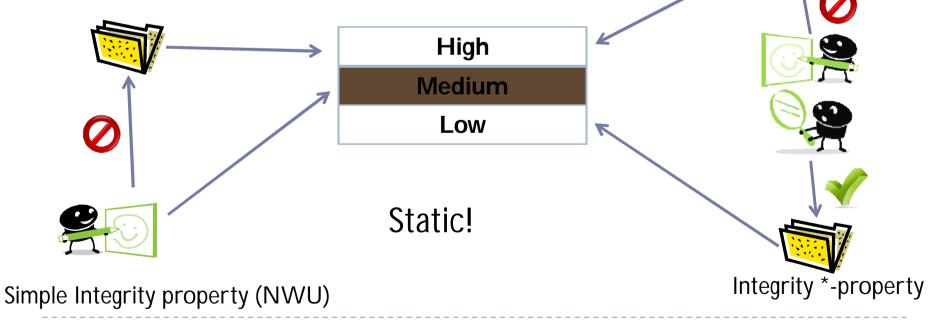
Implementations of BLP

Air-gap security

- Guards with guns & separate rooms for high and low
- No media can go from high to low

The NRL pump

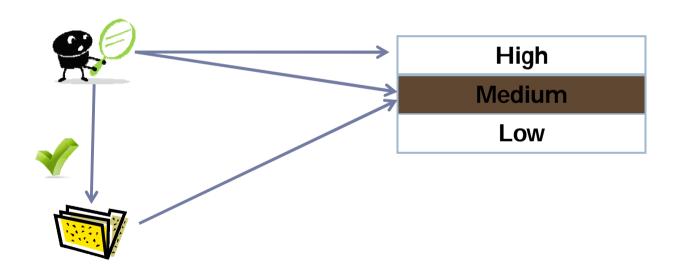
- One way network
- Not easy: without acks


Secure operating systems

- Can only limit covert channels to (1 bit / second)
- Ok for big secrets, not ok for keys (use hardware for those)

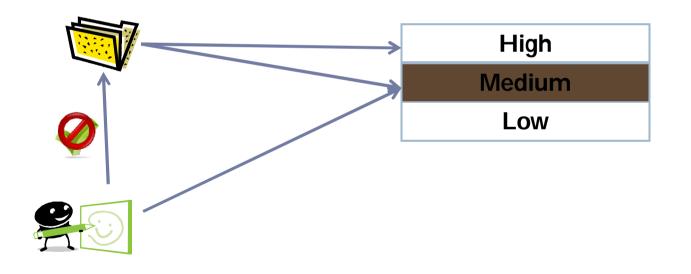
Biba model

Ensures Integrity


- NRU and NWD ensure confidentiality, but WU and RD introduce integrity problems
 - Never walk back home with dirty shoes
- Processing data coming from the Internet

Carmela Troncoso - Computer security

Biba Dynamic Integrity Levels


- Subject low watermark property
 - Allow a subject to read down, but first lower its integrity level to that of the object being read.

Biba Dynamic Integrity Levels

Object low watermark property

• Lower object level to that of subject doing the write.

Invocation policies

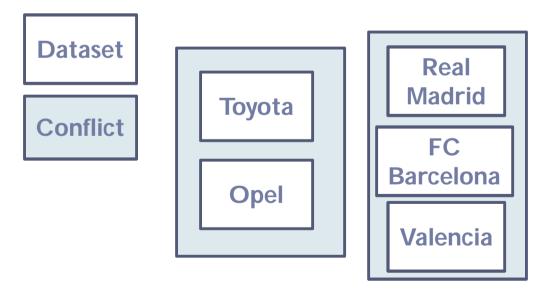
Now the bloat is at the bottom

Need for sanitization...

• ...or **Invocation**:

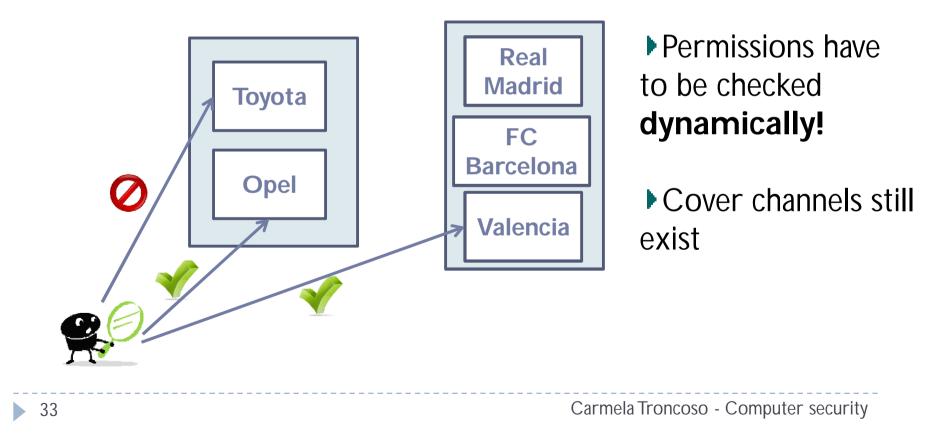
- Invocation subject can only invoke another subject at or below its own integrity level
- Controlled Invocation Low-level subjects should have access to high-level objects only through high-level tools
- Ring Property Subjects should not be allowed to use tools at integrity levels below their own

Biba model discussion


- Does not address data consistency
- Only prevention of modifications by unauthorized users
 - Authorized users can still make improper modifications
- Problem to assign appropriate integrity levels
 - What is integrity?
- Only implemented in few systems

Chinese-Wall model

- Commercially inspired: no conflicts of interest should arise (Consultancy environment).
- Informally, conflicts arise
 - because clients are direct competitors, or
 - because of the ownership of companies.
- There must not exist an information flow that creates a conflict of interest


Chinese-Wall model

- Objects contain information from a single company
 - Grouped in Company Datasets
- Subjects have access to objects (consultancy analyst)
- Conflicts of interest: set of companies that should not learn about one object.

Chinese-Wall model

A subject can access any information as long as it has never accessed information from a different company in the same conflict class.

Clark-Wilson model

Data integrity and consistency control

- Used by banks
- Objects must be always in a consistent state
- Emphasis on integrity
 - internal consistency
 - external consistency
- Instead of (Data-Level) move to (Data-Transaction)

Clark Wilson Mechanisms for Integrity

Well formed transactions

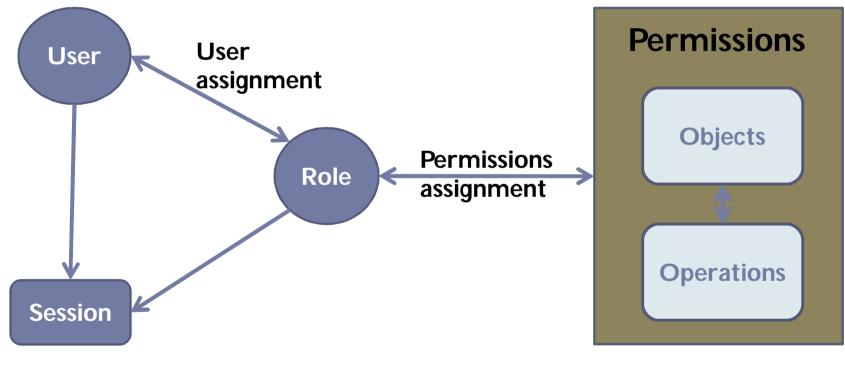
- Only process data using constrained transactions that ensure data integrity (consistent states)
 - e.g., use a write-only log to record all transactions
 - e.g., double-entry bookkeeping
- Security is reduced to integrity of transactions

Separation of duties

- Certifier: entity that certifies the correctness of a transaction
- Certifier and the implementer be different entities.

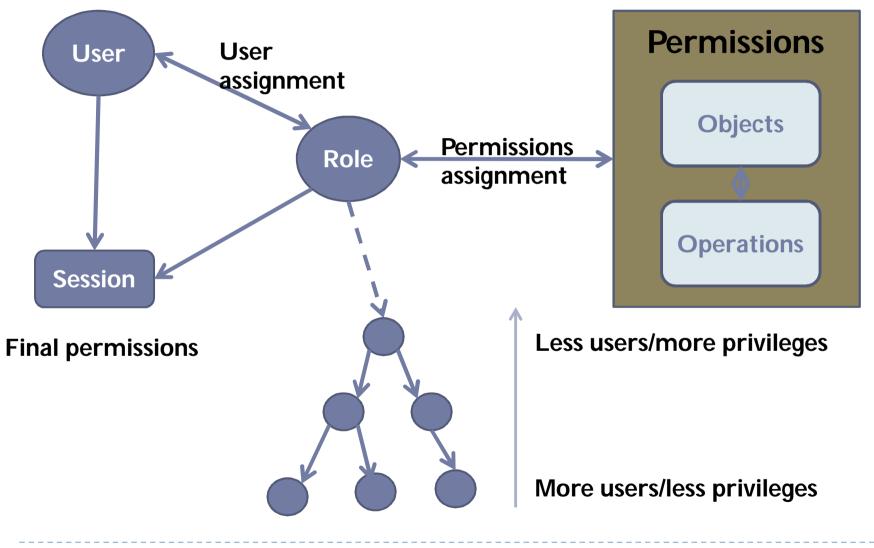
- Not only the direct flow through access operations modeled by BLP.
- Information-flow from an object x to an object y, if we may learn more about x by observing y.
 If x=0 then y=1
- Undecidable!

Role Based Acess Control (RBAC)


- A new level of indirection
 - Users associated to roles not to objects
 - Generalization of Clark-Wilson
- A Role is a set of procedures:
 - Concierge
 - Student
 - Professor
- Rights depend on the role being performed

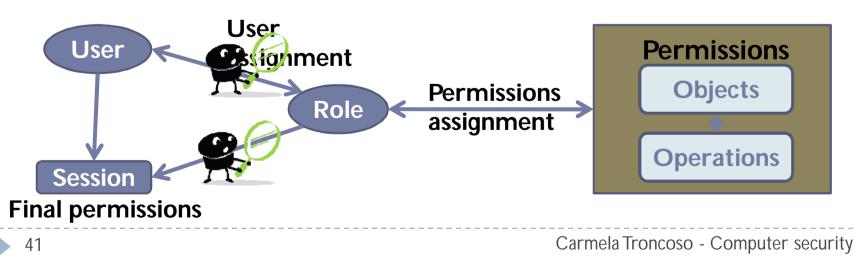
Role Based Acess Control

Least privilege principle


- Roles are allowed only the absolute necessary principles
- Memberships of users to roles do not change role privileges
- NIST reference models
 - Core RBAC
 - Hierarchical RBAC
 - Constraint RBAC
 - Consolidated RBAC (Hierarchical+Constrained)

Core RBAC

Final permissions


Hierarchical RBAC

Carmela Troncoso - Computer security

Constrained RBAC

- Conflicts of interest
 - User having conflicting roles
 - Inheritance breaking conflicts of interest
- Separation of duties
 - Static: clear conflicts on user assignment to roles
 - Dynamic: check conflicts during session
 - No two superusers active simultaneously

Policy vs. Mechanism

- Policy defines the safe state
 - Does not actually enforce it...
- Laws do not impede crime...
 - but chains, doors, barriers, police, ... do
- A mechanism is an entity or procedure that enforces some part of the security policy
 - Access controls
 - Output control

Implementation of a Policy model (or any other security policy)

- Physical security...
 - Air-gap implementation
- ... or Concept of a Trusted Computing Base (TCB)
 - Every element of hardware or software on which your security policy relies to be enforced.
 - Do not care about faults outside it
- Important principle: make it as small & simple as possible
 - Makes verification and certification easier
 - Code review, documentation, automated proofs

(Not that good) Example: UNIX

- In a Unix workstation, the TCB includes at least:
 - the operating system **kernel including all its device drivers**
 - all processes that run with root privileges
 - all program files owned by root with the set-user-ID-bit set
 - all libraries and development tools that were used to build the above
 - the CPU
 - the mass storage devices and their **firmware**
 - the file servers and the integrity of their network links
- A security vulnerability in any of these could be used to bypass the entire Unix access control!

The Fundamental Dilemma

"Security-unaware users have specific security requirements but usually no security expertise"

Need for security evaluation

- Check whether a product delivers the advertised security
- Rainbow series: orange, red, (light) pink,...
- Common Criteria

Risk Analysis

- Security vs. Performance
- Security vs. Cost

Evaluating system security

- A formal security evaluation requires
 - System's functional requirements
 - System's assurance requirements
 - A methodology to determine if the system meets these requirements
 - A measure of evaluation
 - Referred to as a level of trust
- A formal evaluation methodology
 - A technique to measure how the system meets the security requirements

Evaluation methods

- Products should be evaluated throught all their life cycle
- Obtain a certificate of trustworthiness
- Historical development
 - Many standards:
 - TESEC 1983-1999 (The Orange Book)
 - ITSEC 1991-2001
 - Federal criteria 1992
 - FIPS 140-1 of 1994 and FIPS-2 of 2001
 - The common criteria 1998- present
 - Other commercial efforts

Orange Book (1983)

U.S. DoD

- Trusted Computer System Evaluation Criteria (TCSEC)
- Basic requirements for assessing the effectiveness of computer security controls built into a computer system
- Individual accountability regardless of policy must be enforced (Auditability)
- Categories: describe the trust an individual or organization places on the evaluated system
 - D Minimal protection
 - C Discretionary protection
 - B Mandatory protection
 - ► A Verified protection

Criticisms of Orange Book

- Mixes various levels of abstraction in a single document
 - ► Documentation, testing,...
- Does not address integrity of data
 - Military based
- Combines functionality and assurance in a single linear rating scale

Common Criteria (1999)

- Common Criteria for Information Technology Security Evaluation (International standard ISO/IEC 15408)
- Framework in which
 - users can specify their security requirements,
 - vendors can then *implement* and/or make claims about the security attributes
 - testing laboratories can *evaluate* the products to determine if they actually meet the claims. In other words
- Assures that these processes have been conducted in a rigorous and standard manner

Common criteria elements

- Target of evaluation (TOE)
- Protection profile (PP): security requirements for devices
 - e.g., bank tokens
- Security target (ST): different PPs
 - Vendor targets capabilities
- Security functional requirements (SFR): individual functions
 - e.g., type of authentication, encryption scheme

Common Criteria Categories

- Evaluation Assurance Levels (EAL): depth of the evaluation
 - EAL1: tester reads documentation, performs some functionality tests
 - EAL2: developer provides test documentation and vulnerability analysis for review
 - EAL3: developer uses **RCS**, provides more test and design documentation
 - EAL4: low-level **design docs**, **some TCB source code**, secure delivery, independent vul. analysis (state of the art for commercial products)
 - EAL5: Formal security policy, semiformal high-level design, full TCB source code, independentTesting
 - EAL6: Well-structured source code, reference monitor for access control, intensive pen Testing
 - EAL7: Formal high-level design and correctness proof of implementation

Other evaluation guides

Light) Pink Book (1993)

Covert Channel Analysis of Trusted Systems

• Red Book (1987)

- Trusted Network Interpretation: extending the Orange Book to Networks
- Rest of the Rainbow Series...

Limitations

- Certification is a costly (money and time) process,
- Certification of documentation,
- Criteria are ambiguous,
- Re-evaluation of a certified product,
- Procedures are old,
- Certificates apply to an specific version and configuration, and at the end there is no security guarantee!!

Other topics

- Roles & role mining
- How to present policies?
- Digital rights management
 - Seen as a BLP confidentiality model
 - Standard problems!

Trusted computing

High integrity model

Shared environments

- Security policies for on-line games (integrity)
- Security policies for social networking sites (privacy)
- Security policies for Web Browsers (same origin, etc)

Distributed systems security: same but more complex!

Conclusions

- Ensure that "only authorized principals should perform authorized operations on authorized resources" is not easy
- Each system has its own requirements, that depend on the environment: there is no perfect recipe for security

Even if there was... translate into implementation is not trivial

What about networks?? (tomorrow)

Further reading

Books:

- Dieter Gollman, "Computer Security"
- Ross Anderson, "Security Engineering"
- Matt Bishop, "Computer Security (Art and Science)"

Articles:

Ross Anderson and Roger Needham, "Programming Satan's Computer"

Standards:

- ISO 27799 (How to manage security and make policies)
- The Rainbow series