Design and analysis methods for privacy technologies PUBLIC DEFENSE

Carmela Troncoso

Advisors: Prof. Bart Preneel and Prof. Claudia Diaz

Jury members:	Prof. Ann Haegemans	Prof. Frank Piessens
	Prof. Adhemar Bultheel	Prof. Nikita Borisov
	Prof. Geert Deconinck	Dr. George Danezis

Privacy is a very valuable asset

New technologies make our life easier and more comfortable

and we would like to enjoy technological advances while maintaining similar privacy guarantees as in the offline world

> How can we ensure that systems actually protect privacy?

Design and analysis methods for privacy technologies

How can we build systems that integrate privacy protection?

"offline world" vs "online world"

letters in the post

Knowing who your friends are

Paying with cash

movements

Learning your shopping profile

Papers in physical archives

:0 :

Following your

3

"offline world" vs "online world"

4

Privacy-preserving solutions

Trust organizations to protect data

- Trust assumptions may not be realistic
 - accidental leakages or malicious insiders
 - malicious outsiders exploiting vulnerabilities
 - incentives to misuse information
- Weak enforcement, low penalties
- Design technology to provide assurances where possible
 - Privacy Enhancing Technologies

Privacy Enhancing Technologies

Anonymous credentials

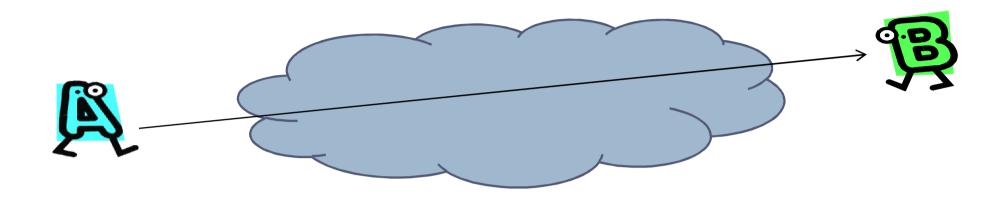
- Prove an attribute meets a given condition without revealing its value
- Private Information Retrieval
 - Access to a database without revealing which entry has been queried

Differential privacy

- Extract statistical information from a database without revealing data about individual entries
- Anonymous communications, location privacy mechanisms,...

6

The challenge


- How to design privacy systems
 - Compositionality of privacy technologies
 - Privacy-by-design methods
- How to analyze privacy systems
 - Current analysis techniques too ad-hoc
 - General analysis methods
- The lack of general methodologies hinders
 - The validation and comparison of systems
 - The development of robust PETs

Goal: provide tools and guiding principles for the analysis and design of privacy-preserving systems

- PART I: ANALYSIS OF PRIVACY-PRESERVING SYSTEMS
 - Chapter 2: Traffic analysis in anonymous communications
 - Chapter 3: Perfect matching disclosure attacks
 - Chapter 4: Bayesian inference to de-anonymize persistent communications
 - Chapter 5: A Bayesian framework for the analysis of anonymous communication systems
- PART II: DESIGN OF PRIVACY-PRESERVING SYSTEMS
 - Chapter 6: Location privacy: an overview
 - Chapter 7: Privacy-friendly pay-as-you-drive applications

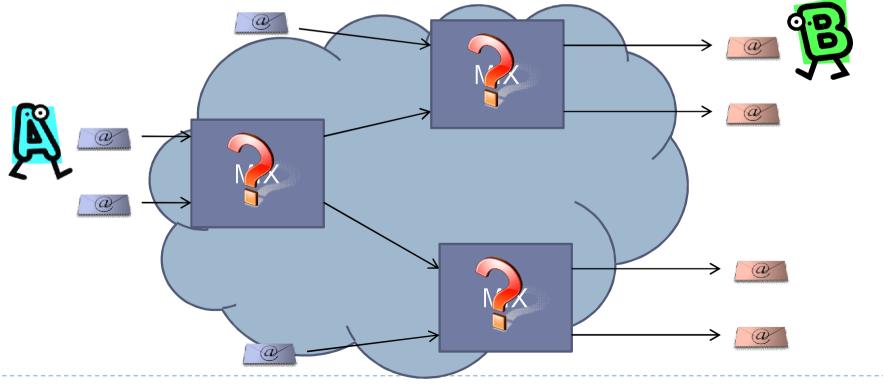
Part I: Analysis of privacy-preserving systems

Anonymous communications

Content protection is not enough, traffic data encodes information

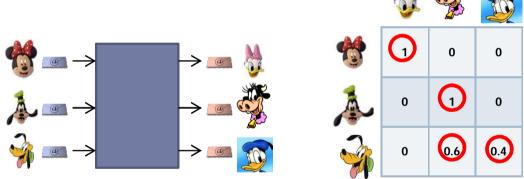
VS

Communication profiles


Anonymous Communications

Conceals who speaks with whom Modifies traffic data Traffic Analysis

Uncover who speak with whom Exploits traffic data


Mix networks

- Mixes hide relations between inputs and outputs
- Mixes are combined in networks in order to
 - Distribute trust (one good mix is enough)
 - Load balancing (no mix is big enough)

Perfect Matching Disclosure Attacks

- Persistent communication partners can be uncovered observing the system long enough (de-anonymization and profiling) [Dan03, DS04,AK03,...]
- Key observation:
 - Considering all senders and receivers simultaneously yields better results

Contributions

- PMDA: attack based on finding maximum weighted perfect matchings
- NSDA: attack based on normalizing matrixes to take into account interdependencies amongst sender profiles
- Enhanced profiling technique re-using information

Bayesian inference to de-anonymize persistent communications^[2]

- PMDA: two disadvantages
 - Computationally bounded
 - Straightforward reuse of information biases the result
- Key contributions
 - Vida model: General model to abstract any anonymity system
 - Bayesian techniques to co-estimate profiles and de-anonymize messages
 - Optimal reuse of information
 - Sampling to reduce computation requirements
- Redefining the traffic analysis problem: given an observation find "hidden state" of an anonymity system We know how to

compute this

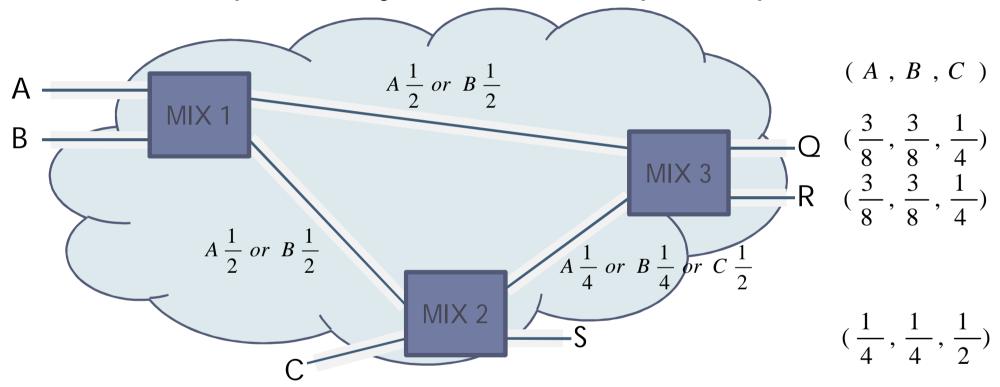
 $\Pr(O \mid HS, C) \cdot \Pr(HS \mid C)$ $Pr(HS \mid O, C)$ $\sum \Pr(HS, O \mid C)$ Too large to enumerate!! HS

 $HS_1, HS_2, HS_3, \dots \sim \Pr(HS \mid O, C)$

Markov Chain Monte Carlo Methods – Gibbs sampler

^[2] <u>Vida: How to use bayesian inference to de-anonymize persistent communications</u>, G. Danezis and C. Troncoso, 9th International Symposium on Privacy Enhancing Technologies (PETS 2009)

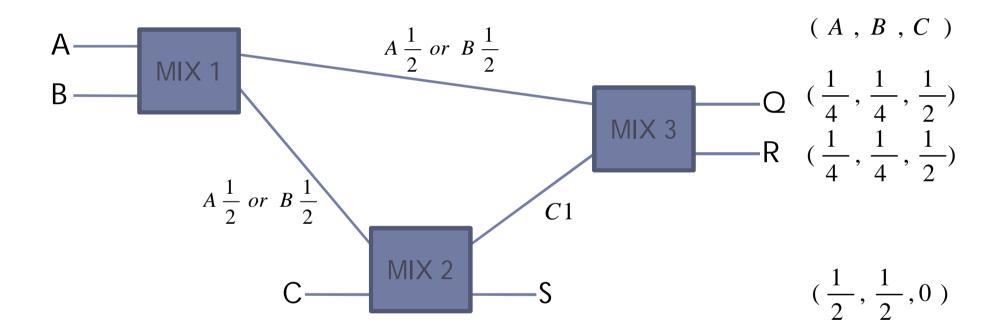
A Bayesian framework for the analysis of anonymous communication systems ^[3]

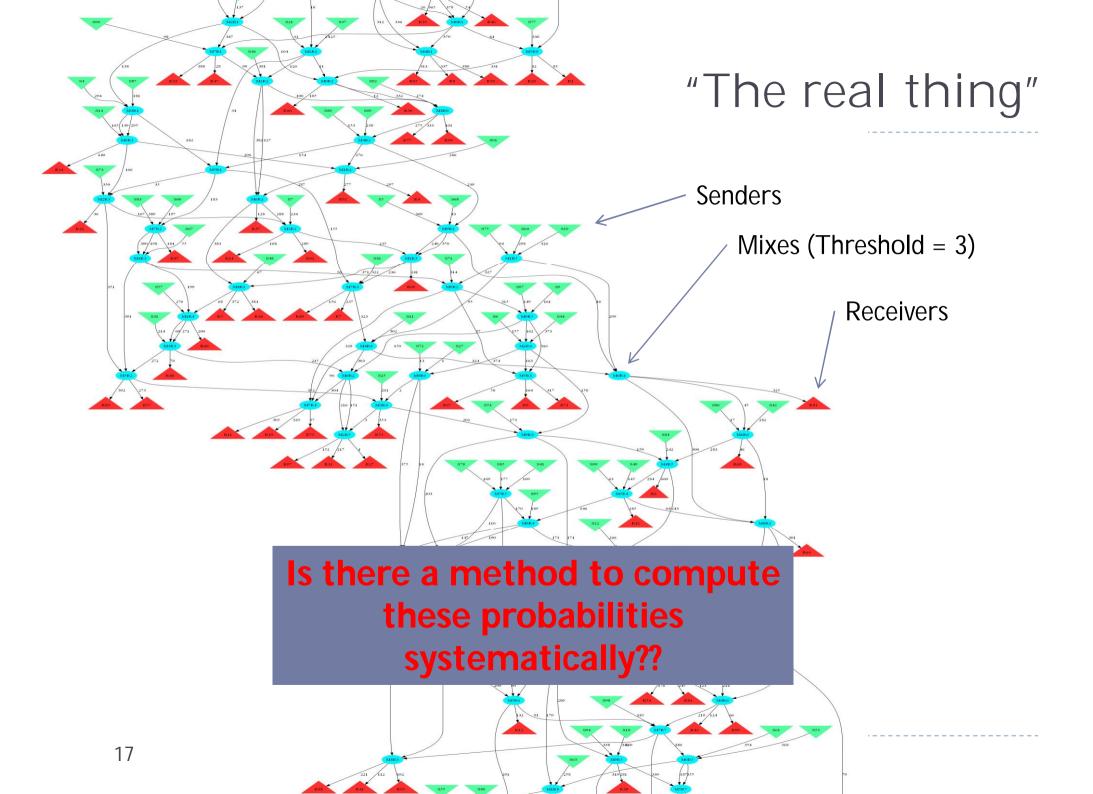

- In the past the analysis of anonymous communication systems
 - Based on heuristics and specific models, not generic
 - Systems are evaluated against one attack at a time
 - Network constraints [Dan03]
 - Users knowledge [DanSyv08]
 - Persistent communications [Dan03, DS04, AK03,...]

•

- Simplified models
 - Exact calculation of probability distributions in complex systems was considered as an intractable problem [Serjantov02]

Mix networks and traffic analysis

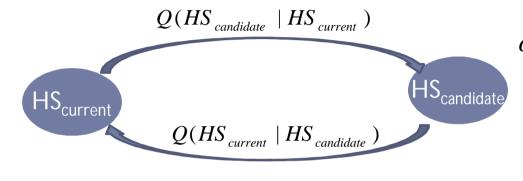

Determine probability distributions input-output


Threshold mix: collect t messages, and outputs them changing their appearance and in a random order

Mix networks and traffic analysis

Constraints, e.g. length=2

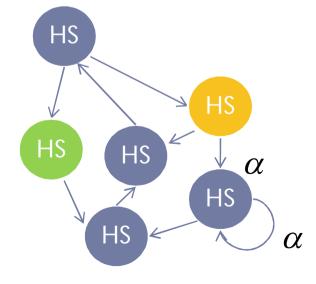
Non trivial given observation!!



Sampling to estimate probabilities

- Recall: we reduce the traffic analysis problem to computing $Pr(HS \mid O, C)$
 - infeasible to compute analytically because there are too many HS
- ▶ ... but we only care about marginal distributions
 - ▶ Is Alice speaking to Bob? $Pr(A \rightarrow B | O, C)$
- We can calculate those if we have many samples of HS according to Pr(HS | O, C)
 - We can simply count how many times Alice speaks to Bob
- Markov Chain Monte Carlo methods
 - Sample from a distribution difficult to sample from directly

Metropolis Hastings Algorithm


• Constructs a Markov Chain with stationary distribution Pr(HS | O, C)

$$\alpha = \frac{\Pr(HS_{candidate})Q(HS_{candidate} \mid HS_{current})}{\Pr(HS_{current})Q(HS_{current} \mid HS_{candidate})}$$

 $\alpha \ge 1$ Go!

 $\alpha < 1$ Go with probability α

- Our transition results in dependant states
- Repeat this basic step to get independent samples of HS

Applications

20

Evaluation information theoretic metrics for anonymity

$$H = -\sum_{R_i} P(A \to R_i \mid O, C) \cdot \log P(A \to R_i \mid O, C)$$

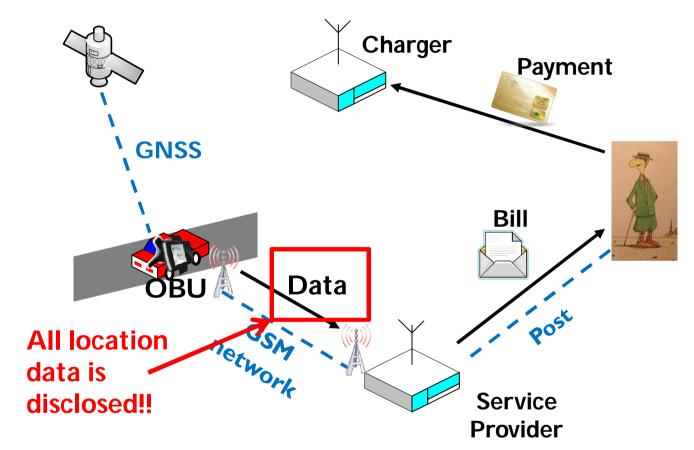
- ▶ e.g., comparison of network topologies ^[3]
- Estimating probability of arbitrary events
 - Input message to output message?
 - Alice speaking to Bob ever?
 - Two messages having the same sender?
- Accommodate new constraints
 - Key to evaluate new mix network proposals

^[3] Impact of Network Topology on Anonymity and Overhead in Low-Latency Anonymity Networks, C. Diaz, S. J. Murdoch, and C. Troncoso 10th Privacy Enhancing Technologies Symposium(PETS 2010)

Part II: Design of privacy-preserving systems

Pay-as-you-drive applications

Pay-As-You-Drive: the concept


• Concept:

- Users should pay depending on their use of the car and roads:
 - □ Long drives, high density roads, rush hours: higher fee
 - Sporadic use, second vehicle for weekends, young drivers with small salary: smaller fee

Applications

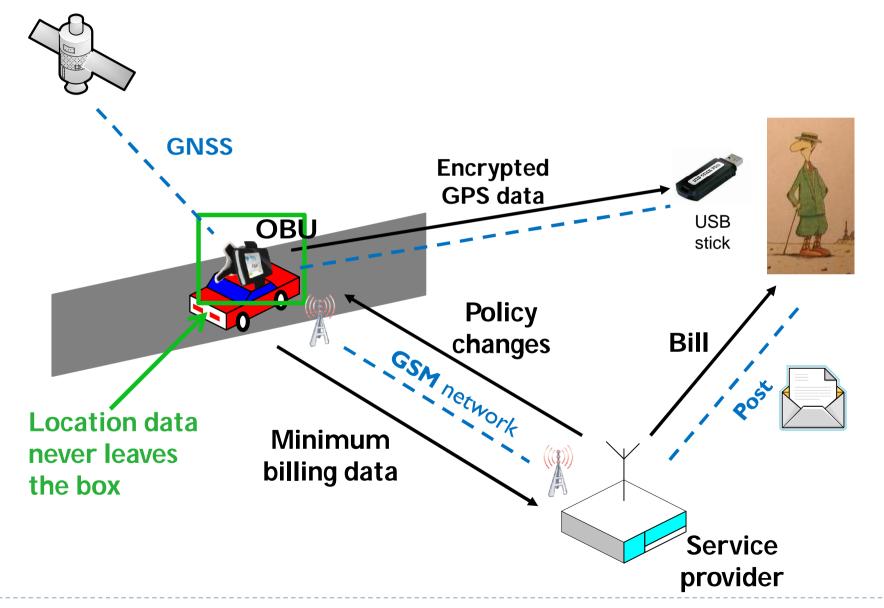
- Road pricing (ETP) Mandatory in the EU within 3 years
- Vehicle insurance (PAYD)

Straightforward implementations

- Location data is highly sensitive
- Trust organization for privacy protection
- Third parties involved

Our contribution

- Two architectures for PAYD systems that fulfill privacy and security requirements
 - PriPAYD^[4,5]
 - Key idea: processing of sensitive data local to the user
 - PrETP^[6]
 - Advanced cryptography to fulfill security requirements
 - Holistic analysis
 - Ready to deploy in the real world


Identification of design principles that lead to systems that offer strong privacy guarantees to their users

[4] <u>PriPAYD: Privacy Friendly Pay-As-You-Drive Insurance</u>, C. Troncoso, G. Danezis, E.Kosta and B. Preneel. WPES 2007
24 ^[5] <u>PriPAYD: Privacy Friendly Pay-As-You-Drive Insurance</u>, C. Troncoso, G. Danezis, E.Kosta, J. Balasch and B. Preneel. TDSC 2011
[6] <u>PrETP: Privacy-preserving Electronic Toll Pricing</u> J. Balasch, A. Rial, C. Troncoso, C. Geuens, B. Preneel, and I. Verbauwhede. Usenix Security 2010

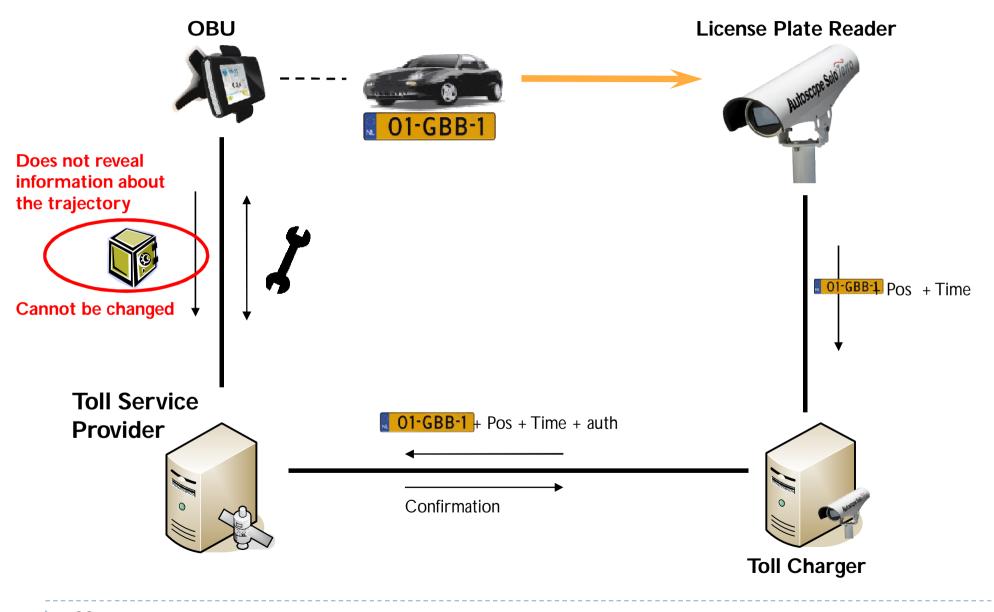
Privacy-preserving Pay-as-you-drive

- Privacy issues?
 - Pay as you drive
 - Fine grained GPS data allows for inferences
- What data is necessary?
 - Final fee that the user must pay to the provider/government
 - No need to collect everyone's detailed location data
- Legal / service integrity issues
 - Actors must not be able to cheat
 - Actors must be held liable when misusing the system

Local processing of location data

Service integrity

OBU in hands of the user


Incentives to lower the premium

Fraud-detection should include:

- vehicles with inactive OBUs
- vehicles reporting false location data
- vehicles using incorrect road prices
- vehicles reporting false final fees

Random spot checks to detect cheating

How does it work?

28

What can we prove?

- OBU was active
 - A commitment with the committed location must be available
- OBU used correct prices
 - Prices in the table signed by Toll Service Provider
 - Check correct pricing upon commitment opening
- OBU was at reported location
 - Compare photo location with committed location
- OBU made correct operations
 - Homomorphic commitments: prices in the "vaults" can be added to verify that they correspond to the reported final fee without being opened

Lessons learned

- In order to obtain strong privacy guarantees
 - ► The goal of the system must be well defined and feasible
 - Identify the minimal set of data needed for fulfilling this goal
 - Identify and model potential adversaries, multilateral security analysis

Implement a solution that fulfills the requirements while revealing the minimal amount of private data

Conclusions

"Part of what makes a society a good place in which to live is the extent to which it allows people freedom from the intrusiveness of others. A society without privacy protection would be suffocation." (Solove)

- Our actions and interactions are increasingly mediated by technology
- We leave digital traces everywhere

We need robust privacy-preserving technologies

Conclusions

- The analysis of privacy-preserving systems
 - Method to uncover relationships that takes into account all users simultaneously
 - Bayesian inference and Markov Chain Monte Carlo methods for traffic analysis
 - Systematic approach
 - Answers arbitrary questions about the entities in the system
 - Sampling reduces computational requirements
- The design of privacy-preserving systems
 - Two systems for privacy-preserving pay-as-you-drive applications
 - Local processing of sensitive data
 - Advanced privacy-preserving cryptographic primitives for security
 - Reduced risk and cost

Future work

- The analysis of privacy-preserving systems
 - Extend the Bayesian methods to other fields location privacy, social networks,...
 - Automate the modeling and analysis
- The design of privacy-preserving systems
 - More use cases to refine the principles
 - Full-fledged methodology

Publication list

22 publications

- 2 international journals
- 6 Privacy Enhancing Technologies Symposium
- ACM Workshop on Privacy in the Electronic Society
- 2 USENIX Security Symposium
- > 2 European Symposium on Research in Computer Security
- I ACM Conference on Computer and Communications Security
- 5 other international conferences and workshops

Publication list (ctd)

- P. Mittal, F. Olumofin, C. Troncoso, N. Borisov, and I. Goldberg, "PIR-Tor: Scalable Anonymous Communication Using Private Information Retrieval," Accepted at 20th USENIX Security Symposium
- C. Troncoso, E. Costa-Montenegro, C. Diaz, and S. Schiffner, "How the Vehicle Infrastructure Integration anonymous certificates enable the tracking and re-identification of vehicles," Accepted at the journal on Computer Networks Special Issue on Vehicle-2-x Communication, 26 pages.
 - S. F. Gürses, C. Troncoso, and C. Diaz, "Engineering Privacy by Design," In Computers, Privacy & Data Protection, 25 pages, 2011.
 - C. Troncoso, G. Danezis, E. Kosta, J. Balasch, and B. Preneel, "PriPAYD: Privacy Friendly Pay-As-You-Drive Insurance (Journal version)," Pre-print IEEE Transactions on Dependable and Secure Computing, 14 pages, 2011.
 - R. Shokri, C. Troncoso, C. Diaz, J. Freudiger, and J. Hubaux, "Unraveling an Old Cloak: k-anonymity for Location Privacy," In Proceedings of the 9th ACM workshop on Privacy in the electronic society (WPES 2010), K. Frikken (ed.), ACM, pp. 115-118, 2010.
 - J. Balasch, A. Rial, C. Troncoso, C. Geuens, B. Preneel, and I. Verbauwhede, "PrETP: Privacy-Preserving Electronic Toll Pricing," In 19th USENIX Security Symposium 2010, Usenix, pp. 63-78, 2010.
- P. Mittal, N. Borisov, A. Rial, and C. Troncoso, "Scalable Anonymous Communication with Provable Security," In 5th USENIX Workshop on Hot Topics in Security 2010, USENIX, 7 pages, 2010.
 - G. Danezis, C. Diaz, C. Troncoso, and B. Laurie, "Drac: An Architecture for Anonymous Low-Volume Communications," In 10th International Symposium, PETS 2010, LNCS 6205, M. J. Atallah, and N. J. Hopper (eds.), Springer-Verlag, pp. 202-219, 2010
 - C. Diaz, S. Murdoch, and C. Troncoso, "Impact of Network Topology on Anonymity and Overhead in Low-Latency Anonymity Networks," In 10th International Symposium, PETS 2010, LNCS 6205, M. J. Atallah, and N. J. Hopper (eds.), Springer-Verlag, pp. 184-201, 2010
 - G. Danezis, C. Diaz, E. Käsper, and C. Troncoso, "**The wisdom of Crowds: attacks and optimal constructions**," In 14th European Symposium on Research in Computer Security (ESORICS 2009), LNCS 5789, M. Backes, and P. Ning (eds.), Springer-Verlag, pp. 406-423, 2009
- C. Troncoso, and G. Danezis, "The Bayesian Analysis of Mix Networks," In Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS 2009), E. Al-Shaer, S. Jha, and A. D. Keromytis (eds.), ACM, pp. 369-379, 2009
- G. Danezis, and C. Troncoso, "Vida: How to use Bayesian inference to de-anonymize persistent communications," In Privacy Enhancing Technologies - 9th International Symposium, PETS 2009, LNCS 5672, M. J. Atallah, and I. Goldberg (eds.), Springer-Verlag, pp. 406-423, 2009

2009

2011

Publication list (ctd)

- B. Gierlichs, C. Troncoso, C. Diaz, B. Preneel, and I. Verbauwhede, "Revisiting A Combinatorial Approach Toward Measuring Anonymity," In Proceedings of the 7th ACM workshop on Privacy in the electronic society (WPES 2008), V. Atluri, and M. Winslett (eds.), ACM, pp. 111-116, 2008
- C. Diaz, C. Troncoso, and B. Preneel, "A Framework for the Analysis of Mix-Based Steganographic File Systems," In 13th European Symposium on Research in Computer Security (ESORICS 2008), LNCS 5283, S. Jajodia, and J. Lopez (eds.), Springer-Verlag, pp. 428-445, 2008
- C. Diaz, C. Troncoso, and A. Serjantov, "On the Impact of Social Network Profiling on Anonymity," In 8th International Symposium, PETS 2008, LNCS 5134, N. Borisov, and I. Goldberg (eds.), Springer-Verlag, pp. 44-62, 2008
 - C. Troncoso, B. Gierlichs, B. Preneel, and I. Verbauwhede, "Perfect Matching Disclosure Attacks," In Privacy Enhancing Technologies 8th International Symposium, PETS 2008, LNCS 5134, N. Borisov, and I. Goldberg (eds.), Springer-Verlag, pp. 2-23, 2008
 - C. Troncoso, D. De Cock, and B. Preneel, "Improving Secure Long-Term Archival of Digitally Signed Documents," In 4th International Workshop on Storage Security and Survivability (StorageSS 2008), Y. Kim, and B. Yurcik (eds.), pp. 27-36, 2008
 - C. Troncoso, G. Danezis, E. Kosta, and B. Preneel, "PriPAYD: Privacy Friendly Pay-As-You-Drive Insurance," In Proceedings of the 6th ACM workshop on Privacy in the electronic society (WPES 2007), T. Yu (ed.), ACM, pp. 99-107, 2007
 - G. Danezis, C. Diaz, S. Faust, E. Käsper, C. Troncoso, and B. Preneel, "Efficient Negative Databases from Cryptographic Hash Functions," In Information Security - 10th International Conference, ISC 2007, LNCS 4779, J. A. Garay, A. K. Lenstra, M. Mambo, and R. Peralta (eds.), Springer-Verlag, pp. 423-436, 2007
- G. Danezis, C. Diaz, and C. Troncoso, "Two-Sided Statistical Disclosure Attack," In Proceedings of Privacy Enhancing Technologies, 7th International Workshop, PET 2007
- C. Troncoso, C. Diaz, O. Dunkelman, and B. Preneel, "Traffic Analysis Attacks on a Continuously-Observable Steganographic File," In Information Hiding, 9th International Workshop, IH 2007, LNCS 4567, F. Cayre, G. J. Doërr, and T. Furon (eds.), Springer-Verlag, pp. 220-236, 2007
- C. Diaz, C. Troncoso, and G. Danezis, "Does additional information always reduce anonymity?," In Proceedings of the 6th ACM workshop on Privacy in the electronic society (WPES 2007), T. Yu (ed.), ACM, pp. 72-75, 2007

2008

2007

36