Pay-As-You-Drive applications PRIVACY IMPLICATIONS AND POSSIBLE SOLUTIONS

Carmela Troncoso (KU Leuven-Cosic)
TSS Seminar – University Illinois at Urbana-Champaign – 3 Nov 2009

<u>Acknowledgements</u>: Josep Balasch (for some of the slides) and Fonds Wetenschappelijk Onderzoek Flanders (for funding my trip)

Outline

- Pay-as-you-drive: the concept
- Current implementations
 - Insurance
 - Road tolling
- Legal implications in the EU
- Possible solutions
- Conclusions

Pay-As-You-Drive: the concept

- ▶ Flat fees are not fair for everyone
- Users should pay depending on their use of the car and roads:
 - Long drives, high density roads, rush hours: higher fee
 - Sporadic use, second vehicle for weekends, young drivers with small salary: smaller fee
- Applicability:
 - Vehicle insurance
 - Road Charging (taxes)

Pay-As-You-Drive: pros

- Fair fees
 - For customer and companies
- Customer can "choose" his premium
 - Young drivers, second cars
- Social benefit
 - Less use of cars, responsible driving, less accidents, improve road mobility...
- Environmental benefit
- Business advantage position
 - Data mining
 - Additional services (LBS, targeted advertising,...)

Insurance: current implementations (I)

- ▶ **First Group** (Not privacy invasive):
 - data from odometer, recorded once/twice a year.

- Not viable
 - Costs of reading the car odometer high
 - Low benefits for client and companies

Insurance: current implementations (II)

- ▶ **Second Group** (medium privacy invasive):
 - data from geographically distributed points (gas stations, credit card payments,...)
 - change data for discounts
 - more information

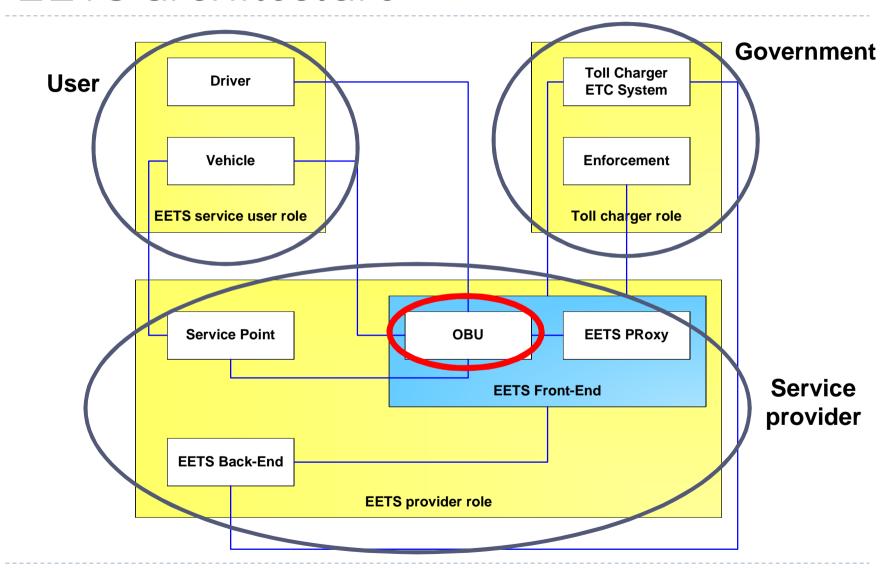
Insurance: current implementations (III)

▶ Third Group (very invasive):

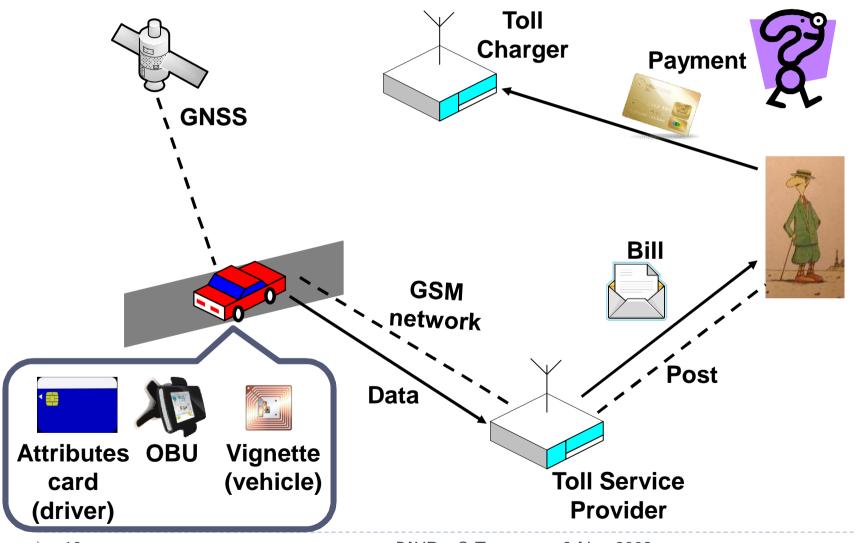
- continuous collection of data
- use GPS for location
- use GSM for transmission (continuously or not)
- more information
- third parties

Hasselt*

Bastogne,


LUXEMBOUR

Road Tolling: EU EETS Decision


- European Electronic Toll Service
 - ▶ 6 Oct 2009
 - Coordinates exchange of information between Member States, to ensure the correct declaration of tolls
 - Defines the actors involved: EETS architecture
 - Defines the interfaces and capabilities
 - ▶ GNSS: Global Navigation Satellite System
 - DSRC
 - GPRS/GSM network
- Within three years for vehicles above 3.5 tons, all other vehicles within five years.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:268:0011:0029:EN:PDF

EETS architecture

Basic idea for the implementation

EETS Decision: Security and Privacy

- Protection against fraud/abuse for
 - Toll chargers
 - EETS providers
 - Users
- Protection of data under Directive 95/46/EC (Data Protection Directive)
 - Storage
 - Processing
 - Transfer

Data Protection Directive 95/46/EC

- Protection with respect to the processing or movement of personal data
- Two main actors:
 - Data subject: individual to whom the personal data refers
 - ▶ Right to access, rectification and deletion of all data processed about him.
 - **Data controller:** determines purpose and means
- Three principles
 - ► **Transparency**: data subject has the right to be informed when his personal data are being processed
 - Consent, or contract, or legal obligation, public interests, safeguard subject interest, safeguard controller's interest
 - Legitimate purpose: purpose must be specified and data may not be processed further
 - Proportionality and minimization: collect and process only adequate for the purpose for which they are collected

PAYD involves personal data?

- Personal data: any information relating to an identified or identifiable natural person ("data subject")
- Work/home is enough for re-identification [Golle and Partridge 09]
 - ▶ Given home and workplace (can be deduced from a location trace [Krumm 07]), then median size of the individual's anonymity set in the U.S. working population is 1
 - ▶ Inferences about driver [Iqbal 07]: personal, government, businesses

Anonymization very difficult

- What is anonymity?
 - property of an individual of not being identifiable within an anonymity set
 - probabilistic concept
 - cryptographic protocols (identity management) anonymity achievable but...
- Traffic analysis -> anonymity extremely hard
 - Tracking techniques [Gruteser and Hoh 05][Haas et al 09]
 - Exploit spatio-temporal relations

Data protection does not "protect"

- Data security is hard to achieve:
 - ▶ Even if a system it Data Protection compliant...
 - Accidental leaks (Toyota, Norwich Union)
 - Insider attacks (Greek Mobile Phone Scandal)
 - Outsider attacks (10,000 Hotmail passwords released by hacker 6th Oct)
 - Today: medical data from 173 people found in Barcelona besides a container
 - ... and once data is leaked, there is no control over it
 - Harvard Student database on BitTorrent 2008 (name, Social Security number, date of birth, address, e-mail address, phone numbers, ...)
 - How long should data be kept?
 - Data retention
 - Liability
 - What if data is lost/tampered?
 - Need for certification

Mapping Data Protection to PAYD

- Data subject:
 - Car vs driver
 - Children vs parents
 - Employer vs employee
 - Insurance/Provider (box) vs user
- Data Controller:
 - Box vs Insurance company
 - Telecom provider
- Data minimization and proportionality:
 - GPS data reveal far too much information (e.g., speed, inferences)
- Secondary use of data (collides with legitimate purpose of the service)
 - Back to anonymization problem ...

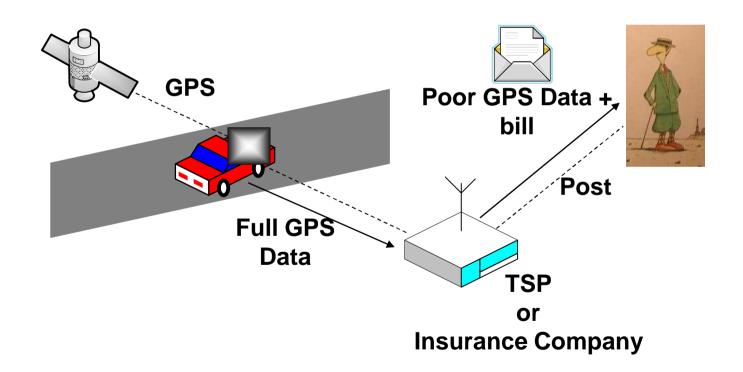
Third parties, covered by Data Protection?

- False sense of privacy
 - ▶ AVIVA in France, MAPFRE in Spain, ...

- Aggregation of data
 - Larger databases (Octo Telematics: 30 insurance companies / 858.775 users)

- Data security
 - More entities involved make securing data even more difficult
 - Data controller?

... and then Data Retention

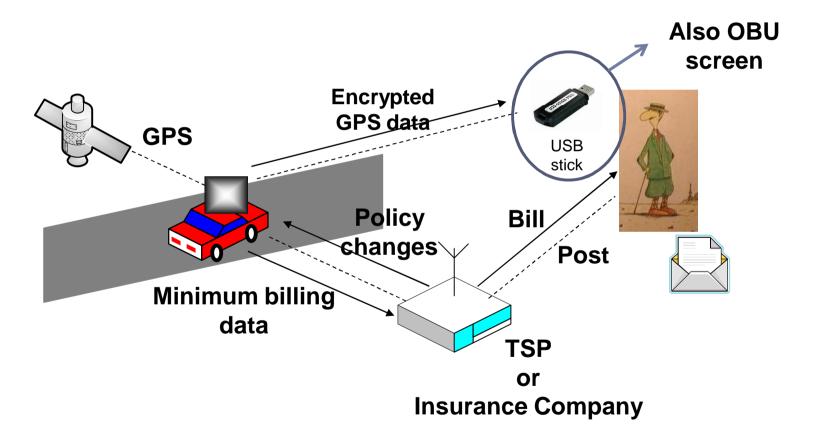

- Directive 2006/24/EC: retention of data generated or processed in electronic communications services or of public communications networks for enforcement
 - for a period of between 6 months and 2 years, necessary data:
 - source of a communication; destination of a communication; to identify the date, time and duration of a communication; to identify the type of communication; to identify the communication device; to identify the location of mobile communication equipment.
- GSM operator falls under Data Retention
 - And the insurance company or the Toll Service Provider?

Other legal issues

- Who is in charge of enforcement?
 - ▶ Toll Service Provider vs Toll Charger
 - Constraints on the collected data
- ▶ How will the tariffs be? Are dynamic fees legal?
 - Constraints on the implementation
- ▶ Is traffic congestion further processing of the data?
 - ▶ The data is collected for tolling...
- Other applications in the OBU?
 - eCall

Straightforward implementation

► OBU + GPS + (third party) + transmit

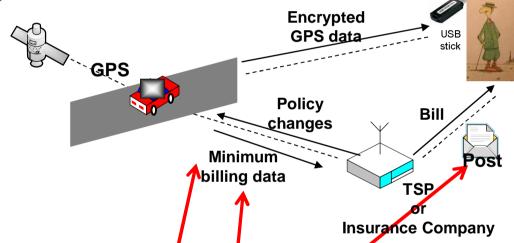


Straightforward implementation

- Flexible: any fee is possible
- Easy computation
- Easy updates
- Enforcement: use data mining
- Business advantage: data mining and new services
- Privacy invasive: tracking
- Upstream transmission of data
- Third parties (legal implications)

PriPAYD model [Troncoso et al 07]

▶ GPS + OBU (computation) + transmit billing

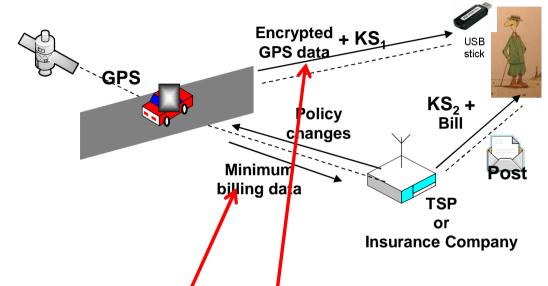


PriPAYD

- Privacy friendly
- Easy computation
- Small upstream transmission
- Third parties do not carry personal data
- Difficult to update
 - Large amount of vehicles
 - Driving into another country (in Europe is easy...)
 - Digital maps cannot be partially updated
- Less flexible
- Downstream transmission of data
- Difficult enforcement

The security of PriPAYD

- Two-level Bell-LaPadula
 - high: complete position (and others) records
 - low: billing information



- ▶ Authenticity: data comes from black box
 - Signature scheme (box should be tamper resistant)
- Confidentiality: only insurer and customer read billing data

Public Key Encryption

 Enc_{InsKey} (D=(TS, Data, ID_{policy} , ID_{code}), Sig_{BoxKey} (D))

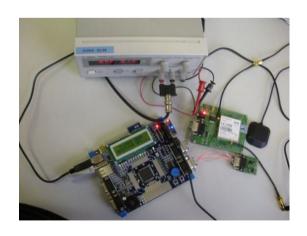
The security of PriPAYD

- Privacy:
 - only billing data transferred, avoid covert channels
 Signature schemes free or lim ted
 - logs only accessible to customer

Symmetric key between box and customer:

KS₁ and data from black box through USB stick

KS₂ relied through insurer

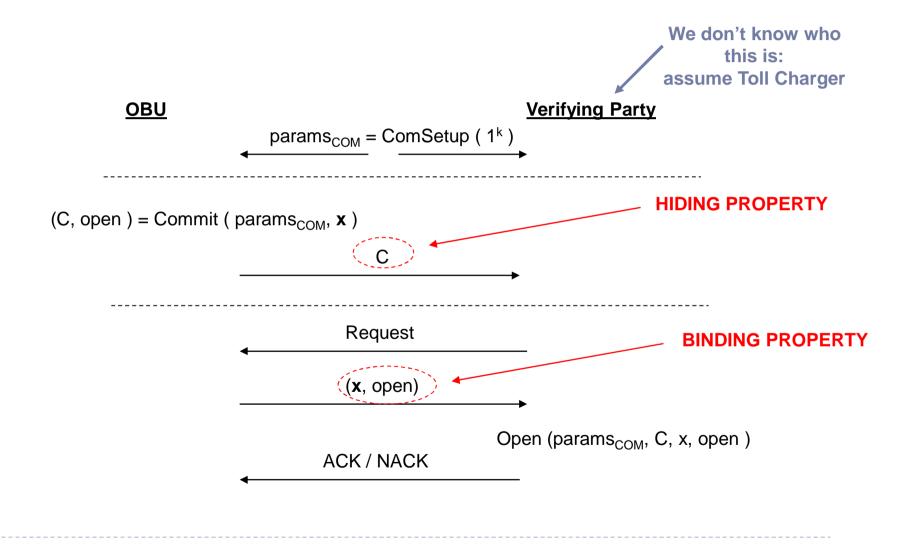

Possible change but loose contest ability

Cost: invasive vs friendly

- More computation in the black box:
 - commercial GPS,
 - tamper resistance is already in the straightforward implementation
- Cheaper communications:
 - aggregate billing data (even SMS)
- Minimum trust architecture:
 - no PKI (relationship user insurer/government)
- Same development cost:
 - off-the-shelf
 - more engineering
 - But... back-office simpler (no personal data)

Our prototype [Balasch and Verbauwhede08]

- Components
 - NXP LPC2388 processor (ARM7TDMI architecture)
 - Not the most powerful in the market
 - ▶ Telit GM862-GPS
 - External memory (SD Card) for the insurer's policy, digital road maps (OpenStreetMap), and encrypted GPS data
- Achieves real time computation
- Tested in 1h trip around Leuven
- ► Cost: ~500€
 - ▶ Production cost: ~50€
 - Less features needed
- Lots to do...



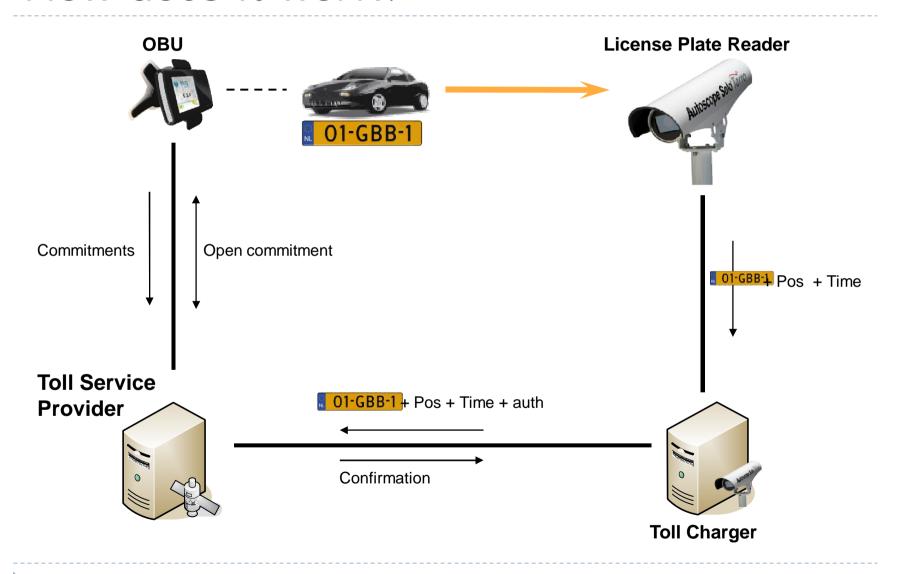
Enforcement

- Control mechanisms applied by the Toll Charger to detect misuse of the system
 - Law-enforcement
- ▶ Includes...
 - 1) Detect vehicles with inactive OBUs
 - 2) Detect vehicles reporting false location data
 - > 3) Detect vehicles using incorrect road prices
 - ▶ 4) Detect vehicles reporting false final fees
- ... in a privacy-friendly way
 - Minimize disclosure of location data

This can only be done by visual inspection or DSRC

Non-Interactive Commitment Schemes

Mode of Operation

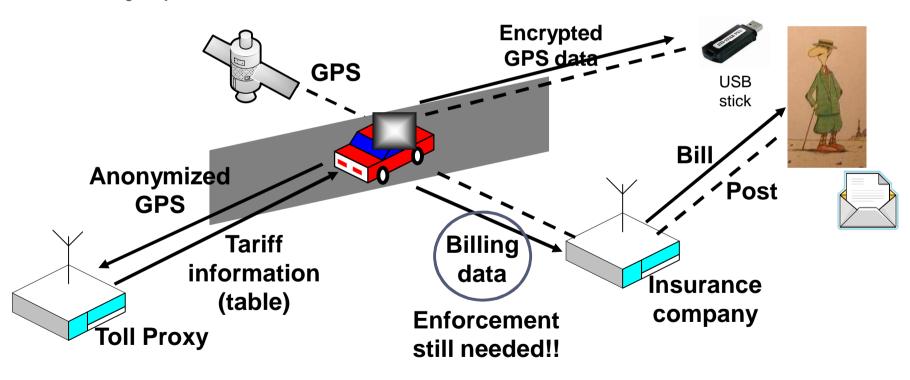

Assumptions

- Roads have assigned a price per Kilometer (or similar)
 - e.g. Road price = f (type road, time day)

	00u00 – 07u00	 22u00 – 00u00
Highway	p ₁	 p ₂
Primary	p_3	 p_4
Residential	P _{n-1}	 p _n

- OBU sends commitments based on distance
 - e.g. a commitment per Km (or similar)

How does it work?



What can we prove?

- OBU used correct prices
 - Prices in the table signed by Toll Service Provider
- OBU was at reported location
 - Compare photo location with committed location
- OBU made correct operations
 - Homomorphic commitments
- Ongoing work: theory and implementation
 - Similar to [Popa et al 09], more flexible

Meet-in-the-middle solution

- Use a proxy to compute fees
 - Flexible policies
 - Easy updates

Anonymization

- Divide trajectories in segments: convert map in grid
 - Remove time information
 - Send segments "mixed"
 - Space wise
 - Time wise
 - Synchronize vehicles
 - Remove (or change speed)

Anonymization

- Use GSM operator as anonymizer proxy
 - GSM NAT hides IP addresses
 - Encrypted data for the Toll Proxy

- Can trajectories be linked back?
 - What about "disclosure attack"?
- Optimal grid size?
 - Overhead
 - Privacy

Conclusions

- PAYD has many advantages but its implementation may have catastrophic privacy consequences
 - Issues
 - Sensitivity of location data (Difficult to anonymize, allows inferences)
 - Data security (Leakage can always happen)
 - Legal issues (actors difficult to distinguish)
 - Third parties (false sense of privacy)
 - Law-enforcement
- It is coming whether we like it or not....
- Privacy-friendly solutions
 - Computation in the box (PriPAYD [Troncoso et al 07])
 - ▶ Half-way solutions (working on it...)

Thanks for your attention!

QUESTIONS?

Carmela.Troncoso@esat.kuleuven.be http://homes.esat.kuleuven.be/~ctroncos/

- Further reading:
 - C. Troncoso, G. Danezis, E. Kosta, and B. Preneel, "PriPAYD: Privacy Friendly Pay-As-You-Drive Insurance," In Proceedings of the 6th ACM workshop on Privacy in the electronic society (WPES 2007), T. Yu (ed.), ACM, pp. 99-107, 2007
 - Extended version under submission
 - J. Balasch and I. Verbauwhede, "An Embedded Platform for Privacy-Friendly Road Charging Applications." Under Sumbission to Design, Automation and Test in Europe (DATE 2010), 2009.
 - Demo needs to be improved
 - ▶ Soon more ☺