

8th Privacy Enhancing Technologies Symposium PETS'08

Perfect Matching Disclosure Attacks

Carmela Troncoso Benedikt Gierlichs

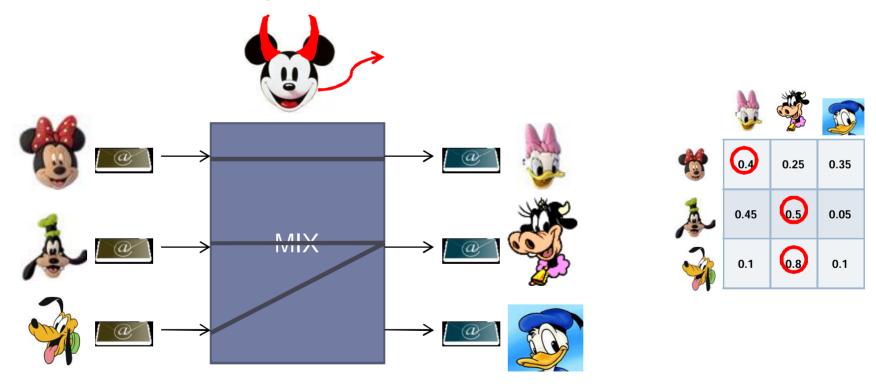
Bart Preneel

Ingrid Verbauwhede

KULeuven COSIC/ESAT (Belgium) 23rd July Leuven Belgium

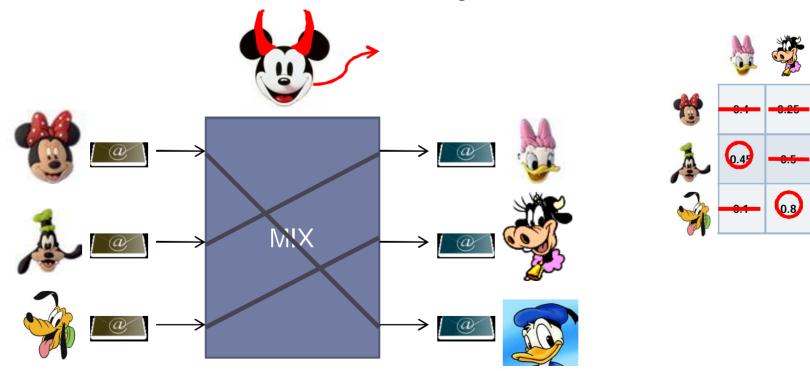
Anonymous Communications

- "Ell me who your friends are. ." =>Anonymous communications to hide communi cation partners
- ► High latency systems (e.g.ano nymous remailers) use mixes [Chaum 81]:hide input/o utput relationship


- Disclosure attacks:exploit pa tterns to uncover links
 - Global passive attacker
 - Simple model: restrictive ass umptions on user behavior
 - Exact solution [Kes03] = NP-problem
 - Statistical Disclosure Attacks (SDA) [Dan03]

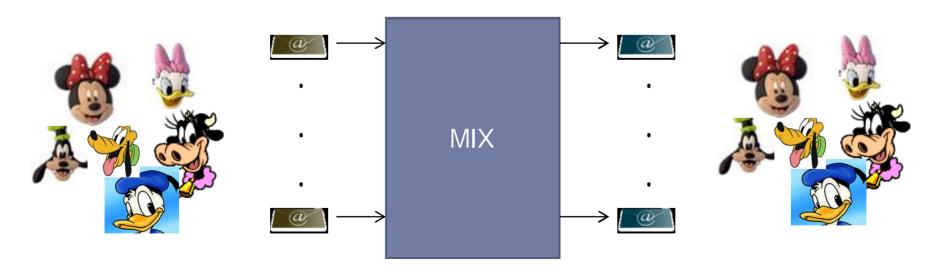
Intuition behind our attack

- Who communicates with whom?
- Previous work: users treated independently [Dan03,DDT07]
 - Take the most likely receiver for each of the users

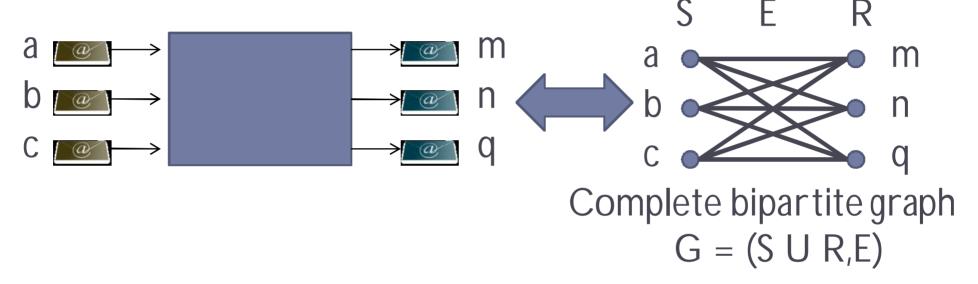


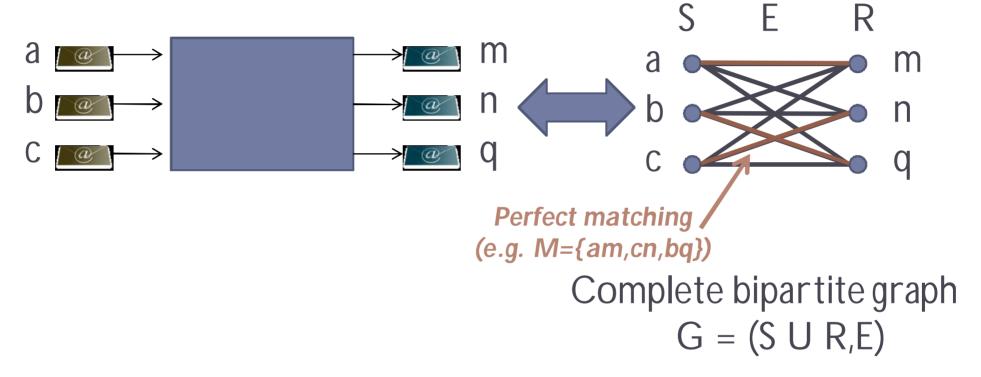
Intuition behind our attack

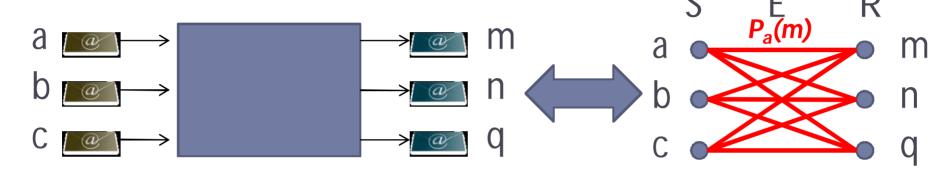
- Who communicates with whom?
- Previous work: users treated independently [Dan03,DDT07]
- Why don't we use all informati on available?
 - If Pluto sends to Clarabella, Goofy cannot send to Clarabella

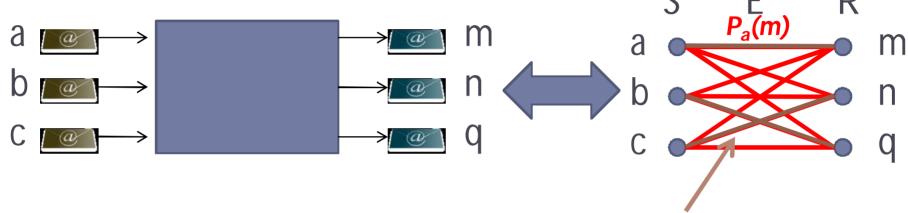


System model


- Threshold mix with threshold t
- Users send independently
- \triangleright P_x denotes the profile of user x
- Friendship: y is friend of x if x sends a message to y with non-zero probability $P_x(y)$ "

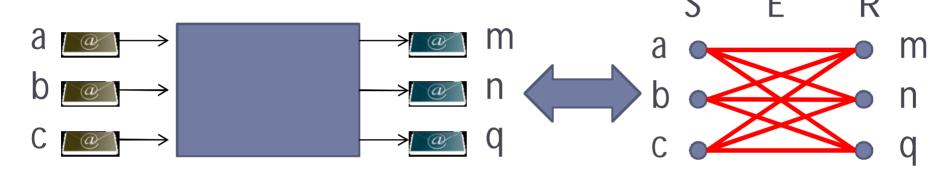

Graph theory


Graph theory


Graph theory

WeightedBipartite graph $G = (S \cup R, E, weights P_x(y))$

Graph theory



Weighted Perfect matching (e.g. M={am,cn,bq})

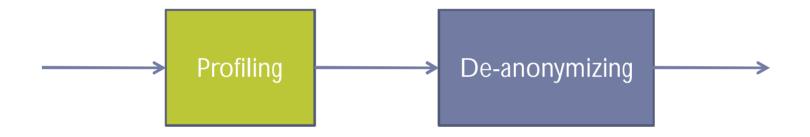
WeightedBipartite graph $G = (S \cup R, E, weights P_x(y))$

Graph theory

Weighted Bipartite graph $G = (S \cup R, E, weights P_x(y))$

Optimization problem

$$\max(p(M \mid S, R)) \Leftrightarrow \max(p(M))$$
 (from Bayes)


$$\max(p(M)) = \max(\prod_{xy \in M} p_x(y)) \iff \max(\sum_{yy \in M} \log(p_x(y)))$$

Maximum weighted perfect matching Efficient solution: linear assignment problem

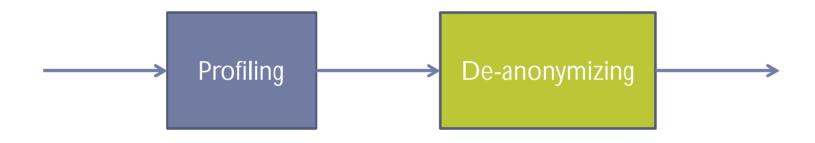
The Attack: profiling users

The Attack: profiling users

- Observe the system duringT ro unds collecting S and R in each of them
- Statistical DisclosureAttack (SDA) finds the likely set of friends of each user P_{x.SDA}

$$O = \frac{1}{t} P_{Alice} + \frac{1}{t} P_x + \dots + \frac{1}{t} P_w$$

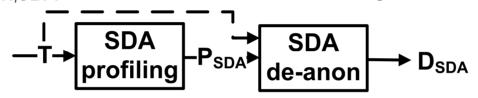
OnlyAlice has friends, the rest of users send uniformly

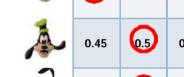

$$O = \frac{1}{t}P_{Alice} + \frac{t-1}{t}P_{x}$$

$$\widetilde{P}_{Alice} \approx \sum_{i=1}^{T} O_i - (t-1)P_x$$

COVIC

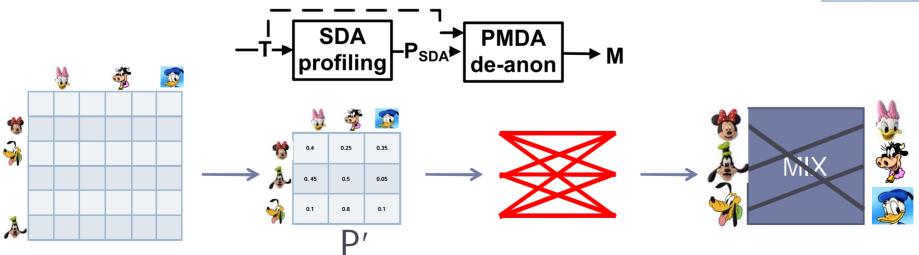
The Attack: de-anonymizing users





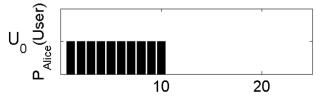
0.35

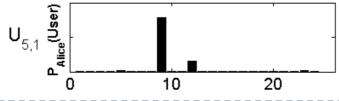
The Attack: de-anonymizing users

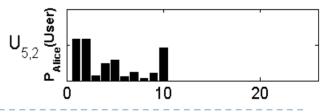

- Statistical DisclosureAttack (SDA)
 - ▶ Given P_{x,SDA} chooses the most likely receiver independently

0.1

- Perfect Matching DisclosureAt tack (PMDA)
 - Considers all the users in the round simultaneously \(\frac{\pi}{\pi}\)

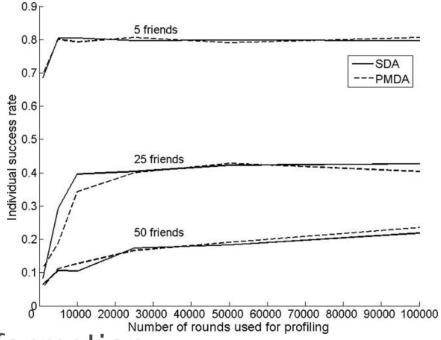



Evaluation - SDA vs PMDA

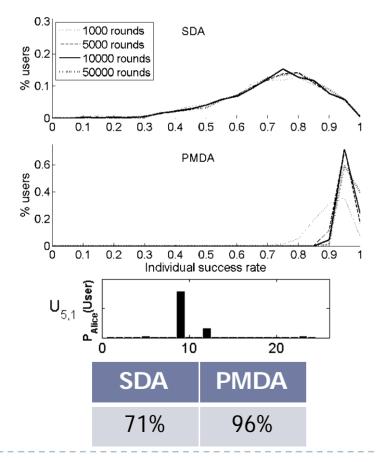

Size of population	1000
Sending rate	λ
Threshold	100
Rounds for profiling	1k,5k,10k,25k,50k,100k
Rounds de-anonymized	5k (~500 messages per user)

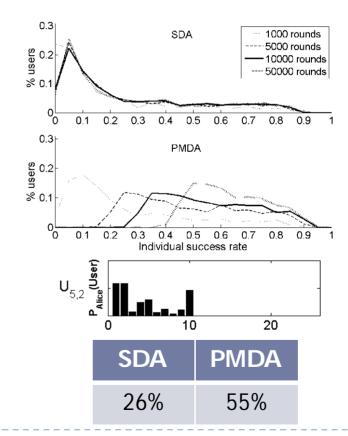
Two populations

- ▶ U₀:onlyAlice has a fixed number friends amongst which she chooses at random [almost Kes03,Dan03]
- ▶ U₅:every user has a random number of friends amongst which they choose with non-uniform probability



OnlyAlices results (5,25 an d 50 friends)

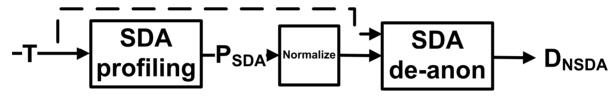



- No extra information
- Alice chooses uniformly (bette r small number of friends)
- More rounds,more accuracy

Individual success rate : accuracy in de -anonymizing messages from one sender

Scalability

▶ Timings de-anonymizing 5000 rounds with p rofiles constructed after 50000 rounds observed


Attack	t=100		t=500	t=1000
	Time	Success rate mean (min)	Time	Time
SDA profiling	3min	-	38.33min	66.16min
SDA de-anon	10min	25.6%(0.0%)	3.48h	12.9h
PMDA de-anon	10.2min	62.9%(38.8%)	12.9h	4.69days

- Regular PCs
- Non-optimized (high level interpre ted language)
- Linear assignment problem can be parallelized

Normalized SDA - Accuracy vs speed

- Normalized Statistical Disclos ureAttack (NSDA)
 - ▶ SDA profiling + construction o f P' + normalization + SDA de -anon

- Normalization: all rows and columns of P' add up to 1
 - iterative proportional fitting
 - spreads information of an element over the whole matrix
 - eliminates noise

$$P' = \begin{pmatrix} 0.40060.42080.1786 \\ 0.78100.14320.0757 \\ 0.09970.45800.4424 \end{pmatrix} \xrightarrow{normalize} \begin{pmatrix} 0.27760.43690.2856 \\ 0.66730.18340.1494 \\ 0.05520.37980.5651 \end{pmatrix}$$

Normalized SDA - Accuracy vs speed

- Normalized Statistical Disclos ureAttack (NSDA)
 - ▶ SDA profiling + construction o f P' + normalization + SDA de -anon

- Normalization: all rows and c olumns of P' add up to 1
 - iterative proportional fitting
 - > spreads information of an element over the whole matrix
 - eliminates noise

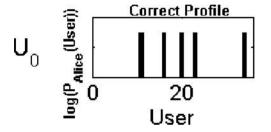
Attack	t=100		t=500	t=1000
	Time	Success rate	Time	Time
SDA de-anon	10min	25.6%(0.0%)	3.48h	12.9h
PMDA de -anon	10.2min	62.9(38.8%)	12.9h	4.69days
NSDA de-anon	13.33min	60.2(33.5%)	4.28h	15.3h

Enhanced profiling

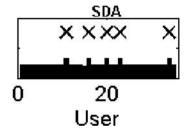
▶ SDA considers all receivers in a round as equally likely

$$O = \frac{1}{t} P_{Alice} + \frac{1}{t} P_x + \dots + \frac{1}{t} P_w$$

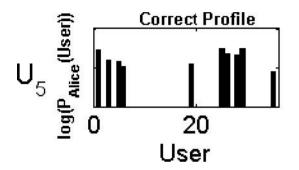
- We can use the matchings obtained from PMDA de-anonimization to improve this result yieldin g P_{PMDA}
 - Assign z to the receiver assigned by PMDA
 - Assign (1-z)/(t-1) to the rest
 - ightharpoonup z=(1-z)/(t-1) is the SDA and z<(1-z)/(t-1) hides actual relationships

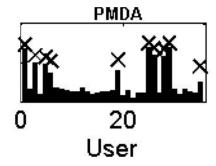

$$O = zP_{Alice} + \frac{1-z}{t-1}P_{x} + \dots + \frac{1-z}{t-1}P_{w}$$

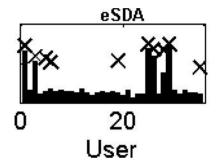
We can apply the same philosop by to SDA de -anonymization obtaining P_{eSDA}


Enhanced profiling

▶ U₀ population,5 friends


- All methods can distinguish friends (even if the number of friends is unknown)
- Enhanced methods increase cont rast





Enhanced profiling

▶ U₅ population

- ▶ SDA cannot distinguish friends
- eSDA only detects the 'best' f riends
- PMDA all friends have higher p robabilitybut threshold unclear

- ▶ U₅more generic user model
- Perfect Matching DisclosureAt tack
 - Considers all users in a round simultaneously
 - More accurate than previous methods without assumptions on the underlying user behaviour
- Normalized Statistical DisclosureAttack
 - Less accurate but faster
- ► Enhanced Profiling Methodologies

- ▶ Further generalization of the user behaviour
 - Sendingrate
 - Behaviour variance over time
- Extension to pool mixes
- ▶ Improve efficiency of PMDA
 - Parallelize attack
 - Parallelize Linear Assignment Problem solver

Carmela. Toncoso@esat.kuleuven .be