Vida: Bayesian Inference to De-Anonymize communications

Carmela Troncoso, KU Leuven/COSIC (Intern at Microsoft Research Cambridge Sept-Nov 2008) George Danezis, Microsoft Research Cambridge

Anonymous communications

- Privacy, e-voting, protection of trade secrets, high security military appplications
- The Threshold Mix [Chaum81]

 \searrow

Anonymous communications

- Privacy, e-voting, protection of trade secrets, high security military appplications
- The Threshold Mix [Chaum81]

Carmela Troncoso - Privacy Enhancing Technologies Symposium 2009

Traffic analysis: Intersection attacks

Exploit persistent patterns for de-anonymization

- Disclosure Attack [Kesdogan et al 02]
 - Set theory
 - NP-Problem
- Statistical Disclosure Attack [Danezis 03]
 - Computationally feasible
 - Inaccurate
- Perfect Matching Disclosure Attack [Troncoso et al 08]
 - Perfect matching
 - Reuse for profiles

Ad-hoc studies, difficult to estimate errors

Bayesian inference to de-anonymize and profile systematically

Redefining the traffic analysis problem

Find "hidden state" of an anonymity system

 $Pr(HS \mid O, C)$

If we apply Bayes theorem...

$$Pr(HS \mid O, C) = \frac{Pr(O \mid HS, C) Pr(HS \mid C)}{\sum_{HS} Pr(HS, O \mid C)}$$
Too large to
enumerate!!
$$HS_1, HS_2, HS_3, \dots \sim Pr(HS \mid O, C)$$

Markov Chain Monte Carlo methods

The Vida Black-box model

Markov Chain Monte Carlo Methods

Sample from a distribution difficult to sample from directly

$$\Pr(M, \Phi, \Psi \mid O, A) = \frac{\Pr(M \mid \Psi) \cdot \Pr(\Phi \mid A)}{\Pr(O \mid A) \equiv Z}$$

- Constructs a Markov Chain with stationary distribution equal to the target distribution
- Gibbs sampling
 - Efficient for sampling joint distributions
 - Eliminate the need to compute Z

Gibbs sampling for Vida

$\Pr(M, \Phi, \Psi \mid O, A)$

Iteratively draw samples from the marginal distributions

 $\Phi_{j}, M_{j} \sim \Pr(\Phi, M | \Psi_{j-1}, O, A)$ $\Psi_{j} \sim \Pr(\Psi | \Phi_{j}, M_{j}, O, A)$

- Φ , M Find perfect matching (reject if not valid)
- Ψ -Use the dirichlet distribution (prior of multinomial)

 $\Psi_{A} \sim Dirichlet(Ct_{M}(A \rightarrow B) + 1, Ct_{M}(A \rightarrow C) + 1, ..., Ct_{M}(A \rightarrow Z) + 1)$

Simple Vida: Red-Blue Model

- Do we actually want to know to whom every user speaks?
 - Who sent a message to Bob?
 - Who is friends with receiver Bob?

- Profiles become binomial (Red or Blue)
- Blue receivers are equivalent when making assignments \mathcal{M}

Evaluation

Synthetic anonymized traces

Users	1000
Friends	5
Threshold	100

- Target sender in 20% of the rounds
 - Friend of Red receiver
 - Allow profiling of other users
- Use Gibbs sampler to guess receiver (200 samples)
 - Prior belief $Pr(\Psi | A)$ Beta(0.01,0.01)
 - Bayes optimal criterion

Success rate

90% confidence interval

Profile quality

Comparison with previous work

Carmela Troncoso - Privacy Enhancing Technologies Symposium 2009

Lots to do...

- Weighted incomplete Bipartite graph
 - Threshold mix is easy to compute
 - What about networks?
 - The Bayesian Traffic Analysis of Mix Networks. Carmela Troncoso and George Danezis. CCS 09
- Increase constraints on the profiling
 - Modeling more difficult but better results
- Social Networks inference
 - Prior information can be easily added to the model

Beyond communications

Location privacy, Database de-anonymization

Conclusions

- Vida Black-Box model
 - Generic
 - Accommodates any anonymity system
 - No need to know number of friends
- Vida Red-Blue model
 - Efficiently de-anonymizes targeted senders/receivers
- Markov Chain Monte Carlo as basis for traffic analysis
 - 3 Key advantages:
 - Requires generative model
 - Good estimation of errors
 - Systematic

Thanks for your attention!!

Carmela.Troncoso@esat.kuleuven.be

Carmela Troncoso - Privacy Enhancing Technologies Symposium 2009