

Bayesian inference to evaluate information leakage in complex scenarios

Carmela Troncoso Gradiant, Spain 17th July 2013

Privacy beyond encryption

- Common belief: "if I encrypt my data, then the data is private"
 - Encryption works and gets more and more efficient!
 - ▶But does not hide all data
 - Origin and destination
 - **▶**Timing
 - **▶**Frequency
 - Location
 - **...**
- These data contain a lot of information
 - WWII: The English recognized German Morse code operators
 - Nowadays: Phonotactic Reconstruction of Encrypted VoIP conversations: Hookt on fon-iks. A. White, A. Matthews, K. Snow, and F. Monrose. IEEE Symposium on Security and Privacy, May, 2011.

Easy, let's hide this information!

- Delay messages to change frequency and timing patters
 - Messages cannot be delayed for too long
- Add dummy events to confuse the adversary
- Pad packets to hide their length
 - ►Bandwith is in general limited
- Reroute messages to hide origin and destination
 - ▶ Delays messages
 - Needs of collaboration or dedicated infrastructure
- Obfuscate the location
 - Obfuscation must not prevent usability

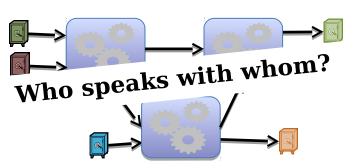
Maybe is not that easy...

- Design decisions to:
 - ▶Balance available resources and privacy Information will leak!!
 - ▶Balance usability and privacy

- ▶And do not forget there is an adversary
 - ▶not only observes public input/outputs of the system...
 - ▶... also **knows** the privacy-preserving mechanism operation
 - ▶e.g, ISP providers, system administrator, Data Retention, ... How to quantify the information leaked?

This is a problem we all have Given an observation...

Anonymous communications



Location privacy mechanisms

Image forensics

Source identification

Case study

Anonymous communications

Anonymous communications

- ▶Hide who speaks to whom
 - sender, receiver, type of service, network address, friendship network, frequency, relationship status.

- ► Main building block for privacy-preserving applications
 - ▶ Desirable privacy (comms, surveys,...)
 - ► Mandatory privacy (eVoting,)

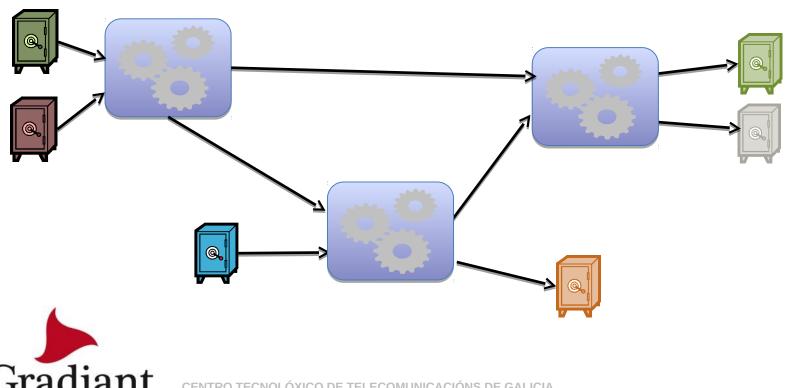
- Subject to constraints (bandwidth, delay,...)
 - They must leak information!

Traffic analysis of Anonymous Communications

- ▶ Systems are evaluated against one attack at a time
 - ► Network constraints
 - **▶**Users knowledge
 - ▶ Persistent communications
 - **...**
- ▶Based on heuristics and simplified models
 - Exact calculation of probability distributions in complex systems was considered as an intractable problem

Mix networks as an example

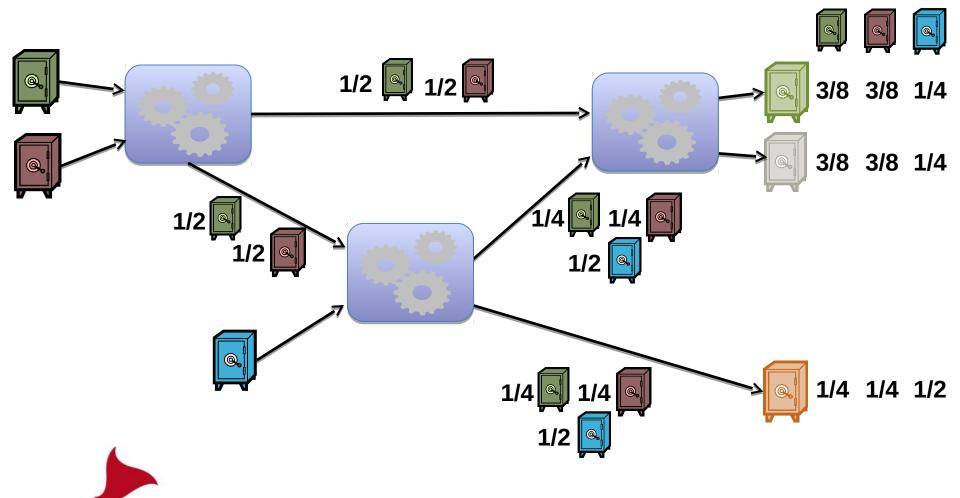
- ▶ Mixes hide relations between inputs and outputs
- Mixes are combined in networks in order to
 - Distribute trust (one good mix is enough)
 - Load balancing (no mix is big enough)



The traffic analysis game

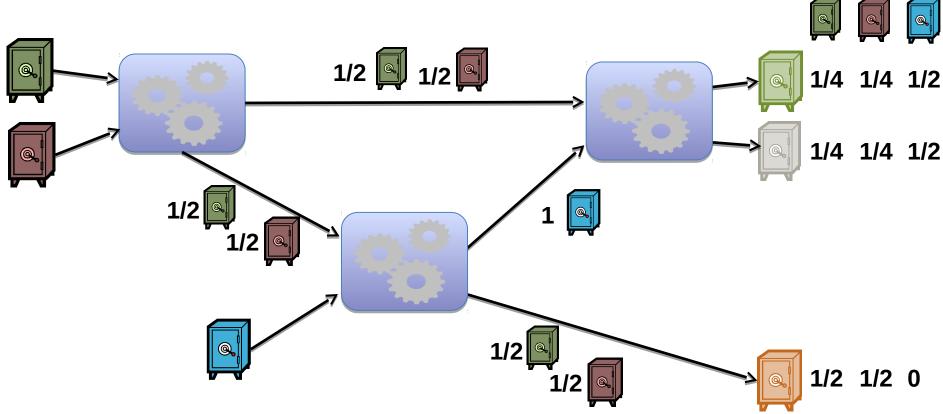
► Who speaks to whom?

Gradiant

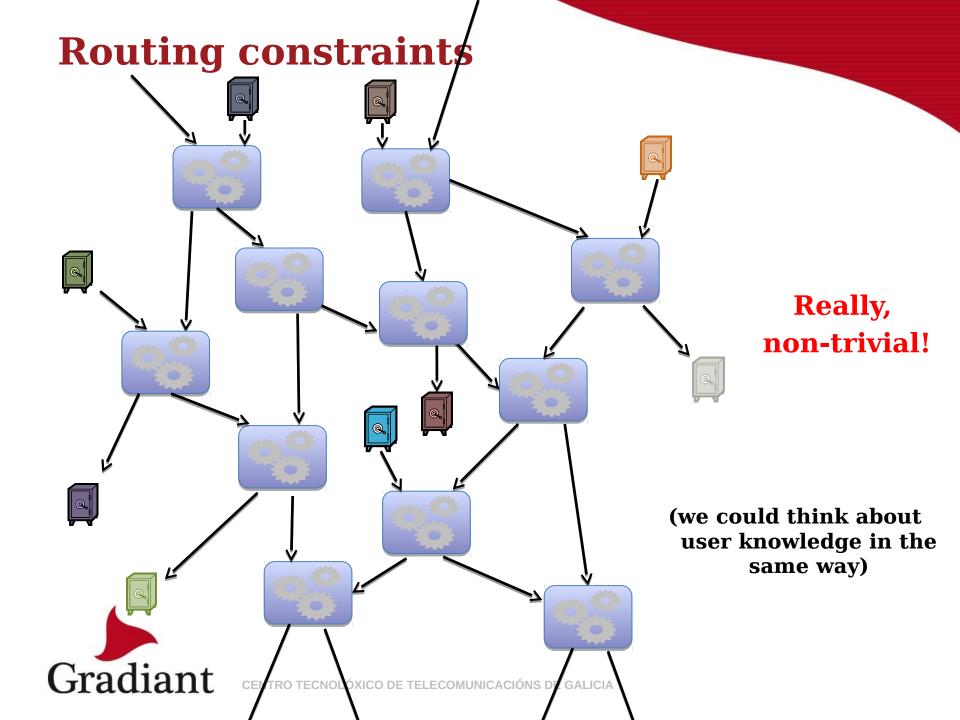


Routing constraints

 \blacktriangleright Max Length = 2 hops

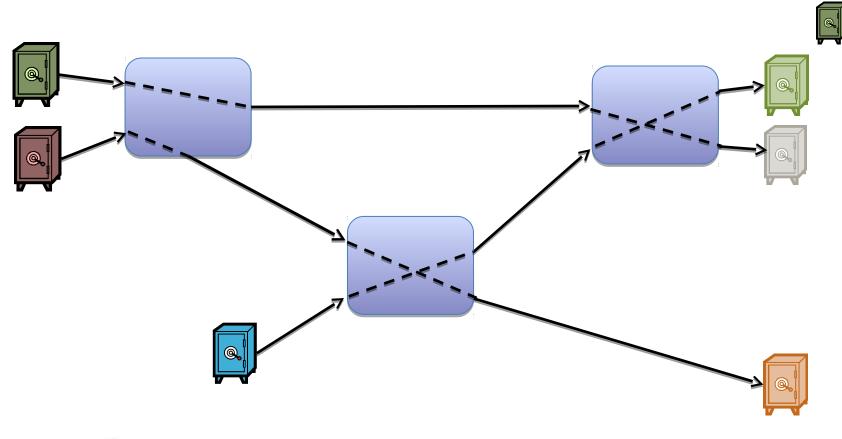


Non trivial given the observation!!



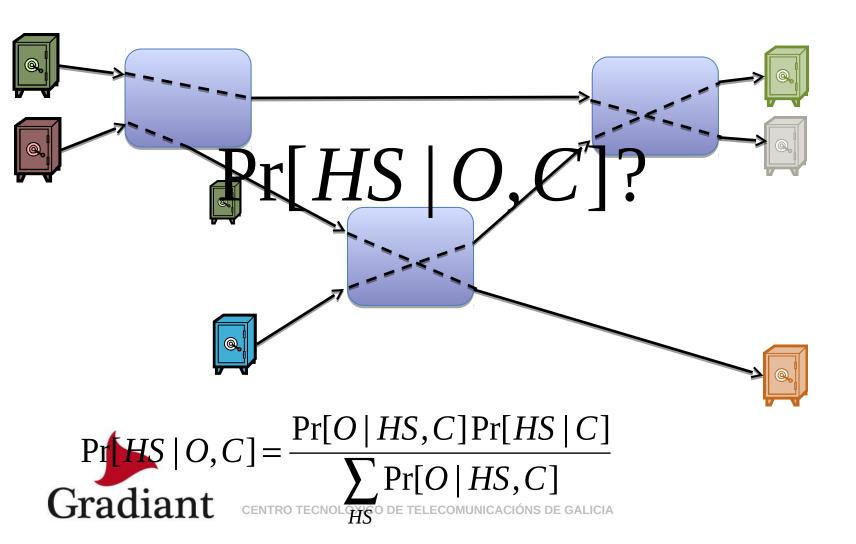
(Re)Defining Traffic analysis

Find hidden state of mixes



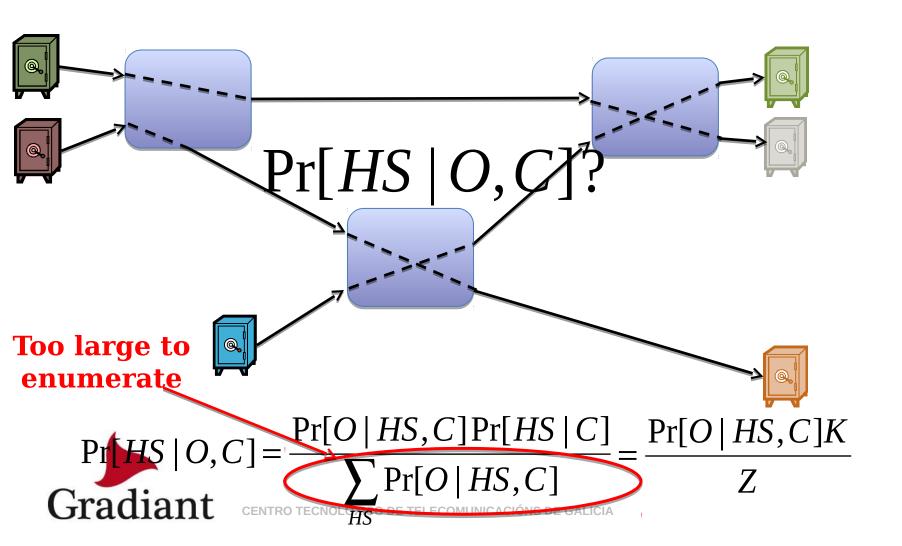
(Re)Defining Traffic analysis

Find hidden state of mixes



(Re)Defining Traffic analysis

Find hidden state of mixes



Sampling to get probabilities

- ► Computing Pr[HS|O,C] infeasible: too many HS
 - ▶... but we only care about marginal distributions
 - ▶Is Alice speaking to Bob?
- if we had many samples of HS according to Pr[HS] O,C]
 - we could simply count how many times Alice speaks to Bob
- ► Markov Chain Monte Carlo methods
 - ▶ Sample from a distribution difficult to sample from directly

Metropolis Hastings

Simple

- 1. Given HS₀ (an internal configuration of the mixes)
- 2. Propose a new state HS₁
- 3. Accept with probability $min(1,\alpha)$, reject otherwise

$$\alpha = \frac{\Pr[HS_{1} | O, C] \cdot Q(HS_{0} | HS_{1})}{\Pr[HS_{0} | O, C] \cdot Q(HS_{1} | HS_{0})} = \frac{\frac{\Pr[O | HS_{1}, C]K}{Z} \cdot Q(HS_{0} | HS_{1})}{\Pr[O | HS_{0}, C]K} \cdot Q(HS_{1} | HS_{0})}$$

▶Pr[O|HS,C] is a generative model (in general simple)

Q() is a proposal function e.g., swap two links in a mix The stationary distribution corresponds to Pr[HS| O,S]

We can sample!

The bayesian traffic analysis of mix networks, C. Troncoso and G. Danezis, 16th on Computer and Communications Security (CCS 2009)

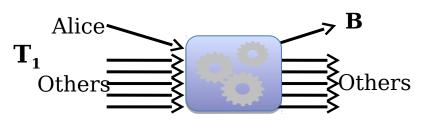
Why is this useful?

Evaluation information theoretic metrics for anonymity

$$H = \sum_{R_i} \Pr[A \to R_i \mid O, C] \log(\Pr[A \to R_i \mid O, C])$$

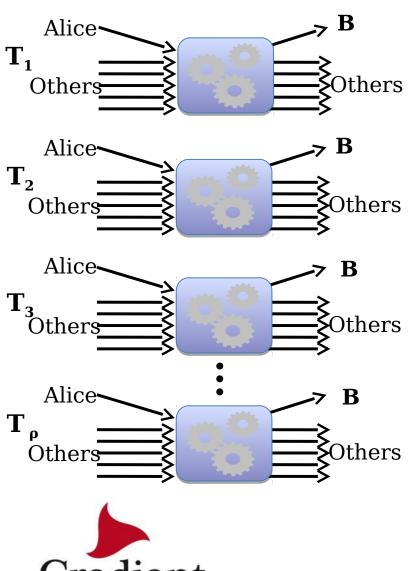
- e.g., comparison of network topologies
- Estimating probability of arbitrary events
 - Input message to output message?
 - Alice speaking to Bob ever?
 - Two messages having the same sender?
- Accommodate new constraints
 - ▶Key to evaluate new mix network proposals

Persistent communications



Perfect!
Anonymity set size = 6Entropy metric $H_A = log 6$

Persistent communications



- Rounds in which Alice participates output a message to her friends
 - ► Her friends appear more often
 - We can infer set of friends!

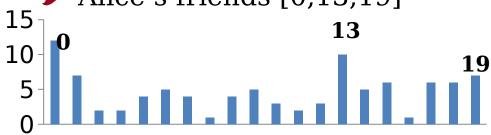
Statistical Disclosure Attacks

- Statistically finds frequent receivers
 - ► Count & Substract "noise"
 - ▶ 20 users, 5 msgs/batch
 - ▶ Alice's friends [0,13,19]

Round	Receivers	SDA
1	[15, 13, 14, 5, 9]	[13, 14, 15]
2	[19, 10, 17, 13, 8]	[13, 17, 19]
3	[0, 7, 0, 13, 5]	[0, 5, 13]
4	[16, 18, 6, 13, 10]	[5, 10, 13]
5	[1, 17, 1, 13, 6]	[10, 13, 17]
6	[18, 15, 17, 13, 17]	[13, 17, 18]
7	[0, 13, 11, 8, 4]	[0, 13, 17]
8	[15, 18, 0, 8, 12]	[0, 13, 17]
9	[15, 18, 15, 19, 14]	[13, 15, 18]
10	[0, 12, 4, 2, 8]	[0, 13, 15]
11	[9, 13, 14, 19, 15]	[0, 13, 15]
12	[13, 6, 2, 16, 0]	[0, 13, 15]
13	[1, 0, 3, 5, 1]	[0, 13, 15]
14	[17, 10, 14, 11, 19]	[0, 13, 15]
1 F	[12, 14, 17, 13,	[0 10 17]

Statistical Disclosure Attacks

- Statistically finds frequent receivers
 - ► Count & Substract "noise"
 - ▶ 20 users, 5 msgs/batch
 - ▶ Alice's friends [0,13,19]



- ▶ Efficient
- Needs a lot of data for reliability
- More complex models replies, pool mixes)

Gradiant

CENTRO TECNOLOXICO DE TELECOMUNICACIONS DE G

	Round	Receivers	SDA
	1	[15, 13, 14, 5, 9]	[13, 14, 15]
	2	[19, 10, 17, 13, 8]	[13, 17, 19]
	3	[0, 7, 0, 13, 5]	[0, 5, 13]
	4	[16, 18, 6, 13, 10]	[5, 10, 13]
	5	[1, 17, 1, 13, 6]	[10, 13, 17]
	6	[18, 15, 17, 13, 17]	[13, 17, 18]
	7	[0, 13, 11, 8, 4]	[0, 13, 17]
	8	[15, 18, 0, 8, 12]	[0, 13, 17]
	9	[15, 18, 15, 19, 14]	[13, 15, 18]
	10	[0, 12, 4, 2, 8]	[0, 13, 15]
	11	[9, 13, 19, 19, 15]	[0, 13, 15]
	12	[13, 6, 2, 16, 0]	[0, 13, 15]
	13	[1, 0, 3, 5, 1]	[0, 13, 15]
G <i>F</i>	14	[17, 10, 14, 11, 19]	[0, 13, 15]
	15	[12, 14, 17, 13,	[0 13 17]

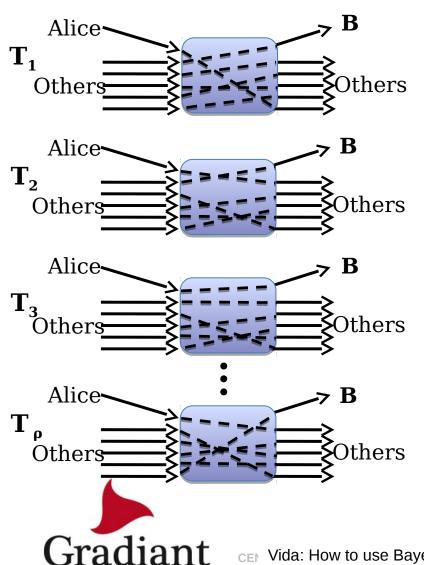
Co-inferring routing and profiles

- A simple approach
 - ▶ Iterate profile and routing
 - Introduces systematic errors if done naively

- Actually we want to fin $\Pr[M, \Psi | O, C]$
 - \blacktriangleright M is the routing, Ψ are the profiles (multinomial distribution)
 - Sounds familiar...
- Gibbs sampling

 - MCMC to sample from a joint distribution r[X,Y|O,C]Iterate $X \leftarrow \Pr[X|Y,O,C] \qquad Y \stackrel{\text{and}}{\leftarrow} \Pr[Y|X,O,C]$

Gibbs sampling for anonymity systems



From matching to profiles

 $Pr[\Psi | M, O, C]$

Observation

$$V_{AB} = 1 V_{AO} = 3$$

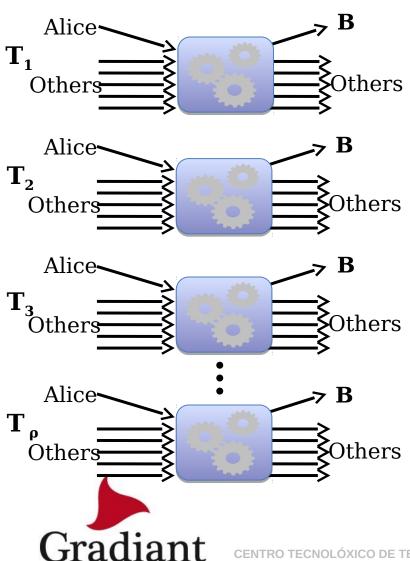
$$V_{OB} = 3 V_{OO} = 17$$

Count messages and use the multinomial prior

$$\Psi = \text{Dirichlet}(V_{AB}, V_{AO})$$

Vida: How to use Bayesian inference to de-anonymize persistent communications. George Danezis, and Carmela Troncoso, 9th Privacy Enhancing Technologies Symposium (PETS

Gibbs sampling for anonymity systems



From profiles to matchings

$$Pr[M | \Psi, O, C]$$

$$\Psi_{Alice} = \{ \Pr[A \to B], \Pr[A \to O] \}$$

$$\Psi_{Others} = \{ \Pr[O \to B], \Pr[O \to O] \}$$

Sadly not as simple...

- 1. If possible analytical
- 2. Use MCMC-MH
- 3. Other alternatives?

And if profiles are dynamic?

- ▶ Previous methods work for static behavior
 - ▶But this does not seem very realistic...
- The Bayesian approach: Particle filtering
 - Sequential Monte Carlo
 - ►Infer dynamic hidden variables when the state space is intractable analytically

The adversary observes volumes of communication and wants to infer poisson rates that generates them $\Pr[\lambda_{AB, \perp}, O, C]$

Particle filtering

- 1. Start with some particles $\lambda_{AB_t}^1, \lambda_{AB_t}^2, \dots, \lambda_{AB_t}^N$
- 2. Evolve particles according to model
- 3. Compute their likelihood according to the current and previous observation

$$L[\lambda_{AB_{t+1}}^1 \mid \lambda_{AB_t}^1, O] = p_1$$

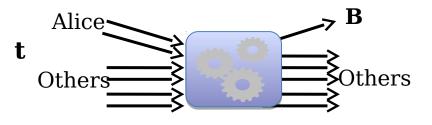
$$L[\lambda_{AB_{t+1}}^2 \mid \lambda_{AB_t}^2, O] = p_2$$

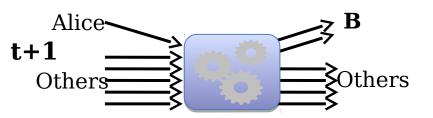
•

$$L[\lambda_{AB_{t+1}}^N \mid \lambda_{AB_t}^N, O] = p_N$$

- 4. Resample N particles according to probabilities: "best" particles e.g., $\lambda_{AB_{t+1}}^{l} = \lambda_{AB_1}^{l}$, $\lambda_{AB_{t+1}}^{l} = \lambda_{AB_t}^{l}$,..., $\lambda_{AB_{t+1}}^{l} = \lambda_{AB_t}^{l}$
- 5. Back to 2

Particle filtering for anonymity systems





Observation

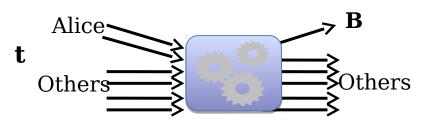
Input and output volume

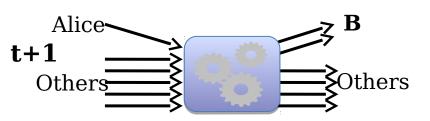
t:
$$V_A=2$$
, $V_O=4$, $V_B=1$, $V_{OO}=5$

$$t+1: V_A=1, V_O=5, V_B=2,$$

$$V_{00}=4$$

Particle filtering for anonymity systems





Start with some rates

$$\lambda_{AB_t}^1, \lambda_{AB_t}^2, \lambda_{AB_t}^3$$

Propose new rates

$$\lambda_{AB_{t+1}}^{1}, \lambda_{AB_{t+1}}^{2}, \lambda_{AB_{t+1}}^{3}$$

Resample

Probability of generating observation

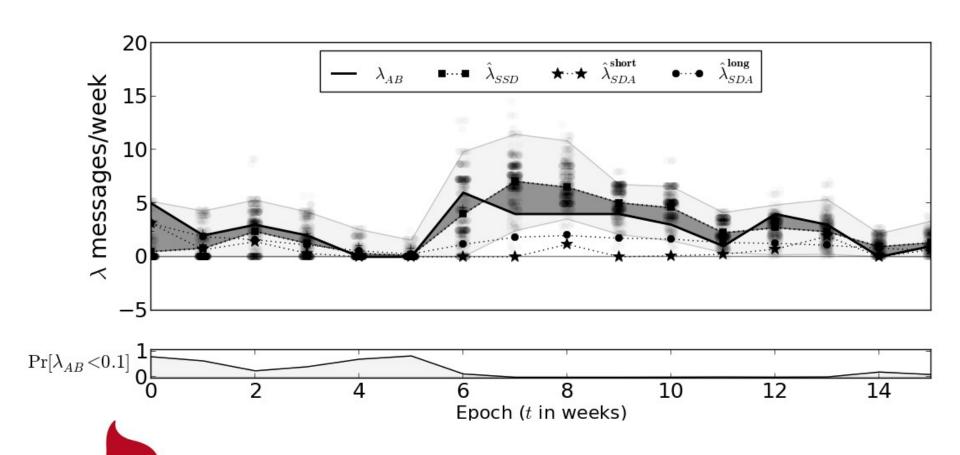
Likelihood of evolution

Trained (loose) with real data

Results

Gradiant

►Enron dataset (http://www.cs.cmu.edu/~enron/)



Advantages

- **▶**Systematic
 - ▶Generative model tends to be easy
- ▶ Return probability distributions
 - ► More informative than ML
 - ► Allows for multiple inferences
- **▶**Confidence estimates
 - Key in real analysis!

What I did not say

- ► I have avoided all the scary details
- ► Getting the model correctly is non-trivial

Applications

- ▶ We have seen three Bayesian methods
 - ▶ Metropolis Hastings sampling Pr[HS|O,C]
 - ▶Location privacy tracking
 - ▶ Differential privacy
 - ▶Gibbs sampling Pr[X,Y|O,C]
 - Location privacy de-anonymization
 - Particle filtering $Pr[\lambda_t | \lambda_{t+1}, O, C]$
 - ▶Privacy-preserving video surveillance
- Lots to do
 - Tor: website fingerprinting, flow correlation, flow watermarking, routing,...
 - Location privacy: dynamic behaviour
 - Cloud computing: side channels

The message I wanted to convey

- We are solving the same problem again and again
 - Privacy and forensics are not that far
 - ▶ Privacy research can be a source for inspiration
 - ►And the other way around! Come apply your methods to our systems!
 - LSDA with Fernando Pérez-Gonzalez (UVigo)
- ▶Bayesian inference as systematic approach
 - ▶Allows to tackle complex scenarios
 - Sampling reduces computational requirements

Thanks!

I hope I have awaken your curiosity ◀

I'll be around, come talk to me!
Write to me at **ctroncoso@gradiant.org**

