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Privacy beyond encryption

}Common belief: “if I encrypt my data, then the data is
private”

P Encryption works and gets more and more efficient!

P But does not hide all data
P Origin and destination
}Timing
P Frequency
}Location

»..

P These data contain a lot of information
P WWII: The English recognized German Morse code operators

}Nowadays: Phonotactic Reconstruction of Encrypted VoIP
conversations: Hookt on fon-iks. A. White, A. Matthews, K.
Snow, and F. Monrose. IEEE Symposium on Security and
Privacy, May, 2011.
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Easy, let’s hide this information!

bDelay messages to change frequency and timing patters
Messages cannot be delayed for too long

}Add dummy events to confuse the adversary
}Pad packets to hide their length

Bandwith is in general limited

bReroute messages to hide origin and destination
’Delays messages
}Needs of collaboration or dedicated infrastructure

bObfuscate the location
’Obfuscation must not prevent usability

»
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Maybe is not that easy...

P Design decisions to: o
P Balance available resources and privagiprmation will leak!!
P Balance usability and privacy

~ A

(%9

»And do not forget there is an adversary
Ppnot only observes public input/outputs of the system...
» ... also knows the privacy-preserving mechanism operation

Ppe.g, ISP providers, system administrator, Data Retention, ...
How to quantify the information leaked?

»
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This is a problem we all have
Given an observation...

Anonymous communications e
- El" Tau s P f Primaires. | & . n?
H—j—PJ Which is the real locat10
H— 3 Om N W pme S iy
Who speaks with wh O el AT

\

Source identification

Image forensics
originated the

device
What image?

=
Was the image tampered? |
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Case study

Anonymous
communications
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Anonymous communications

P Hide who speaks to whom

Psender, receiver, type of service, network address, friendship
network, frequency, relationship status.

P Main building block for privacy-preserving
applications
P Desirable privacy (comms, surveys,...)
P Mandatory privacy (eVoting,)

P Subject to constraints (bandwidth, delay;,...)

P They must leak information!

»
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Traffic analysis of
Anonymous Communications

P Systems are evaluated against one attack at a time
P Network constraints
P Users knowledge
P Persistent communications

»...

P Based on heuristics and simplified models

P Exact calculation of probability distributions in complex
systems was considered as an intractable problem

»
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Mix networks as an example

»Mixes hide relations between inputs and outputs

P Mixes are combined in networks in order to
P Distribute trust (one good mix is enough)
P Load balancing (no mix is big enough)

B~ :
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The traffic analysis game

»Who speaks to whom?

Gradiant
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Routing constraints

P Max Length = 2 hops
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o 14 14 112

1/2 1/2 0

Non trivial given the observation!!

»
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Routing constraint

Really,
\ ~ non-trivial!

@

v
, (we could think about
user knowledge in the
L

same way)
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(Re)Defining Traffic analysis

P Find hidden state of mixes
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(Re)Defining Traffic analysis

P Find hidden state of mixes

. ﬂ 0,C]— Pr[O| HS,C]Pr[HS | C]

. PrlO| HS,C]
Gradiant ;



(Re)Defining Traffic analysis

P Find hidden state of mixes

@,

enumerate




Sampling to get probabilities

» Computing Pr[HS|O,C] infeasible: too many HS
» ... but we only care about marginal distributions
P Is Alice speaking to Bob?

»if we had many samples of HS according to Pr[HS|
O,C]

P we could simply count how many times Alice speaks to Bob

P Markov Chain Monte Carlo methods

»Sample from a distribution difficult to sample from directly

»
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Metropolis Hastings

P»PSimple
1. Given HS, (an internal configuration of the mixes)
2. Propose a new state HS;

3. Accept with probability min(1,«), reject otherwise

Pr[O| HS,, CH¢
o, PrLHS, |0,C1-Q(HS | HS,) o QUES,HS)
Pr[HS, |O,C]-Q(HS,| HS,) Pr[O |/Hzi) C}I(-Q(HSJ s,)

}PI‘[O|HS,C] is a generative model (in general simple)
The stationary

P»Q() is a proposal function distribution
Pe.g., swap two links in a mix corresponds to Pr[HS|
O,S]
" We can sample!
Gra di ant The bayesian traffic analysis of mix networks,C. Troncoso and G. Danezis,

16th on Computer and Communications Security (CCS 2009)



Why is this useful?

P Evaluation information theoretic metrics for anonymity
H =Y Pr[A— R |0,Cllog(Pr[A — R |O,C])
R;

P e.g., comparison of network topologies

P Estimating probability of arbitrary events
}Input message to output message?
PAlice speaking to Bob ever?
PTwo messages having the same sender?

}Accommodate new constraints
}Key to evaluate new mix network proposals

»

d . Impact of Network Topology on Anonymity and Overhead in Low-Latency Anonymity Networks,
Gra lant C. Diaz, S. J. Murdoch, and C. Troncoso 10th Privacy Enhancing Technologies Symposium(PETS

2010)



Persistent communications

T Alice\}{ ;/7 ° Perfect!
1 —— . ) _
Others—_g —_%)thers Anonymity s.et size = 6
— Entropy metric Hy, = log 6

»
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Persistent communications

Alice\> _
Tl I I—
Others—% —%Others
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» Rounds in which Alice
participates output a message
to her friends

» Her friends appear more
often

» We can infer set of friends!



Statistical Disclosure Attacks

» Statistically finds frequent m
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Statistical Disclosure Attacks

» Statistically finds frequent
receivers

» Count & Substract “noise”

» 20 users, 5 msgs/batch

» Alice’s friends [0,13,19]
15' 13

10_ 19
5_
O_

» Efficient
» Needs a lot of data for
reliability

» More complex models
lies, pool mixes)
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Co-inferring routing and

profiles
P A simple approach

Plterate profile and routing
Pintroduces systematic errors if done naively

P Actually we want to fin®r[M, ¥ |O,C]

bM is the routing, W are the profiles (multinomial distribution)
P Sounds familiar...

P Gibbs sampling
PMCMC to sample from a joint distributimpr[ XY | O,C]

}Iterate X « PF[X | Y, O, C] Ya&d Pr[Y | X, O, C]

»

Gradiant Perfect matching disclosure attacks,C. Troncoso, B. Gierlichs, B. Preneel, and I. Verbauwhede.
8th International Symposium on Privacy Enhancing Technologies (PETS 2008)



Gibbs sampling for anonymity
systems

From matching to profiles

Pr[¥ | M,0,C]

Observation
Vag= 1 Vypo= 3
VOB= 3V00= 17

Count messages and use the
multinomial prior

\Il — lelChlEt (VAB ’ VAO)

Gradlant Vida: How to use Bayesian inference to de-anonymize persistent communications. George
Danezis, and Carmela Troncoso, 9" Privacy Enhancing Technologies Symposium (PETS

laTaYaYe )Y



Gibbs sampling for anonymity
systems

Gradiant

From profiles to matchings
Pi[M | ¥,0,C]

¥, ={Pr[A— B],Pr[A— O]}
Y ={Pr[O - B],Pr{0 — O]}

Sadly not as simple...
1. If possible analytical
2. Use MCMC-MH

3. Other alternatives?



And if profiles are dynamic?

P Previous methods work for static behavior
P But this does not seem very realistic...

P The Bayesian approach: Particle filtering
P Sequential Monte Carlo

P Infer dynamic hidden variables when the state space is
intractable analytically

P The adversary observes volumes of communication and
wants to infer poisson rates that generates them

Pt[ Ay | Ay »O,C]
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Particle filtering

1 2 N
1. Start with some particles )‘ABt ) AABt 3o ey AAB

t

2. Evolve particles according to model

3. Compute their likelihood according to the current and previous

observation
L2, | a5, O1= p,
L[/liBt+1 |ﬂ,jBt,O] =p,
L[;@\[B ﬂvZBt ,0]= Py

t+1

4. Resample N pasticles according to pr pabilitigs: “best” particles
e.g. n}F AB 4 iAB1 ’ E/}fz AB %AB >" 2 AB, 2}5

5. Back to 2

»
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Particle filtering for anonymity
systems

Alj
¢ lce\i — Observation
Others——3 ——>Others Input and output volume
5 t: Va=2, Vo=4, V=1, Voo=5

t+]_ VA=]_, VO=51 VB=21
VOO=4
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Particle filtering for anonymity
systems

Gradiant

Start with some rates

1 2 3
A, Aap, s A,

Propose new rates

1 2 3
AABHI ) AABHI ) AABHI
Resample

Probability of generating
observation

Likelihood of evolution
Trained (loose) with real data

You cannot hide for long: De-anonymization of real-world dynamic behaviour,
G.Danezis and C. Troncoso, Under submission (ask me!)



Results

P Enron dataset (http://www.cs.cmu.edu/~enron/)

20
hort = long
N — Mip w8 Asep *ok o Agpy - Aspa
L 15
Q
2
o 19 -
(@)
(0]
u
(F)]
Q
&
,.-<
—D
P 1 | I |
I'I.;\AB {01} 0\/4\\ . . . ]
0 2 4 6} 8 10 12 14

Epoch (t in weeks)

Gradiant



Advantages

P Systematic

P Generative model tends to be easy

P Return probability distributions
P More informative than ML

P Allows for multiple inferences .
» What I did not say

» 1 have avoided all
P Confidence estimates the scary details

bKey in real analysis! » Getting tl}e model
correctly is non-

trivial

»
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Applications

P We have seen three Bayesian methods
P Metropolis Hastings sampling Pr[HS|O,C]
P Location privacy - tracking
P Differential privacy

»Gibbs sampling Pr[X,Y|O,C]
P Location privacy - de-anonymization
P Particle filtering Pr{A,|A.1,0,C]
PPrivacy-preserving video surveillance

P Lots to do

}Tor: website fingerprinting, flow correlation, flow watermarking,
routing,...

}Location privacy: dynamic behaviour T @

}-Cloud computing: side channels

’ tor.eff.org
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The message I wanted to
convey

P We are solving the same problem again and again
P Privacy and forensics are not that far

P Privacy research can be a source for inspiration

»And the other way around! Come apply your methods to our
systems!

P LSDA with Fernando Pérez-Gonzalez (UVigo)

P Bayesian inference as systematic approach
P Allows to tackle complex scenarios
P Sampling reduces computational requirements

»

Gradi ant Understanding Statistical Disclosure: A Least Squares approach F. Perez-Gonzalez and C.
Troncoso, 12th International Symposium on Privacy Enhancing Technologies (PETS 2012)



Thanks!

I hope I have awaken your curiosity 44

I’'ll be around, come talk to me!
Write to me at ctroncoso@gradiant.org

»
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