#### You cannot hide for long: De-anonymization of real-world dynamic behaviour

George Danezis (University College London) Carmela Troncoso (Gradiant)



## Privacy beyond confidentiality

- Common belief: "if I encrypt my data, then the data is private"
  - Encryption works and gets more and more efficient!
  - But does not hide all data
    - Origin and destination
    - Timing
    - Frequency
    - Location







#### Anonymization

Decouple user identity from actions



- Enabler for privacy-preserving technologies
  - Anonymous credentials
  - eVoting
  - Privacy-preserving statistics computation



### Anonymity in reality

- Difficult to guarantee perfect anonymity due to constraints
  - Observations allow for inferences (e.g., behavioral profiles)



#### State of the art limitation: static behavior



### A model for dynamic behaviour



Centro Tecnolóxico de Telecomunicacións de Galicia

#### Sequential Monte Carlo aka. Particle Filters

- Inferring hidden parameters of sequential models
  - Our case: modeling  $\lambda_{\text{AB}}$  at t depends on  $\lambda_{\text{AB}}$  at t-1
- Core idea:
  - Particles representing sample hidden states ( $\lambda_{\text{AB}}$ ,  $\lambda_{\text{OB}}$ )
  - Distributed following posterior distribution given
     exidence (V) Allow for Statistic computation (mean, std, ...) of hidden variables



## Toy example





#### Weight particles: i. Likelihood ii. Evolution iii. Proposal

1. Propose new particles

2. Likelihood given Obs and previous state **3. Re-sample** Centro Tecnolóxico de Telecomunicacións de Galicia

 $\Pr[(\lambda_{AB}^t, \lambda_{OB}^t) | V_*]$ 



#### The likelihood funct $\lambda_*$ ( $\lambda_*$ )



$$\begin{array}{c} \textbf{Pois} & V_A \leftarrow \text{Pois} & (\lambda_{AB} + \lambda_{AO}) \\ V_O \leftarrow \text{Pois} & (\lambda_{OB} + \lambda_{OO}) \\ V_B \leftarrow \text{Pois} & (\lambda_{AB} + \lambda_{OB}) \\ V_{O'} \leftarrow \text{Pois} & (\lambda_{AO} + \lambda_{OO}) \end{array}$$

 How likely is an observation V<sub>\*</sub> given sending rates λ<sub>\*</sub>

$$L = \Pr[V_A^t; \lambda_{AB}^t + \lambda_{AO}^t] \cdot \Pr[V_O^t; \lambda_{OB}^t + \lambda_O^t] \prod_{n=1}^{N} L^n$$
Prob of each of the rounds
Prob of total volume in epoch given  $\lambda_*$  (just
Poisson)
$$L^n = \frac{\min(V_A^{(t,n)}, V_B^{(t,n)})}{\sum_{k=0}^{N} \Pr[k; V_A^{(t,n)}, p_{ab}^t]} \cdot \Pr_b[V_B^{(t,n)} - k; V_O, p_{ob}^t]$$

$$p_{ab} \text{ is just the probability A sent to B } p_{ab} = (\lambda_{AB}/\lambda_{AB} + \lambda_{OB})$$
Centro Tecnolóxico de Telecontunicacións de Calica

#### The profile evolution probability $\lambda_{AB}^{t-1}$ )

- Probability of  $\lambda_{AB}$  at t given  $\lambda_{AB}$  at t-1
- Two stages
  - 1) Probability transitions silent-communication
  - 2) Probability of given difference: mixture with heavy tails



#### **Evaluation**

- Three datasets:
  - eMail: Enron dataset ~0.5M emails, 150 users.
  - Mailing list: Indymedia ~300K posts from 28237 senders to 693 lists
  - Location: Gowala dataset ~6.5M checkins from ~200K users



- 1 day delay (anonymity vs delay trade-off given 1 week epochs)
- Thresholds: eMail/Mailing ~100 Location ~15K



### Evaluation - an example trace (Avg(Batch)= 244)

- State of the art: Statistical Disclosure Attack
  - Background traffic messages
  - Use background to estimate in the rounds
- Assumes static behaviour: short and long term



Centro Tecnolóxico de Telecomunicacións

#### Evaluation – estimation accuracy as Squared error MSE<sub>comm</sub> 13 20 84 3.7





t tia

# Evaluation – communication detection



#### Conclusions

- Structured model for traffic analysis based on known Bayesian inference techniques
  - easy to extend
  - allow assessment of inference quality
  - avoid base rate fallacy
- Attacks on real world traces
  - can be effective for rather low action rates
  - can be effective over a much shorter period of time than previously thought
  - can be effective for secure configurations of the anonymity system
- Rethink current evaluations and figures of merit



## Thanks!! ctroncoso@gradiant.org g.danezis@ucl.ac.uk

