Drac: An architecture for Anonymous Low-Volume Communications

G. Danezis (Microsoft Research Cambridge),
C. Diaz, C. Troncoso (KU Leuven/COSIC),
B. Laurie (Google Inc)

Introduction

Traffic data of real time communications leaks information

- Timing (military actions), volume (strength of relationships), participants (medical status),....
- Few systems provide anonymity against global passive adversary for real time communications
 - Conceal patterns entails high cost (e.g., bandwidth peaks in web traffic)
- What if the application requires limited bandwidth or regular traffic (VoIP, IM)?
 - Padding to destroy traffic patterns becomes viable

Drac: architecture and goals

Friend-of-a-friend architecture

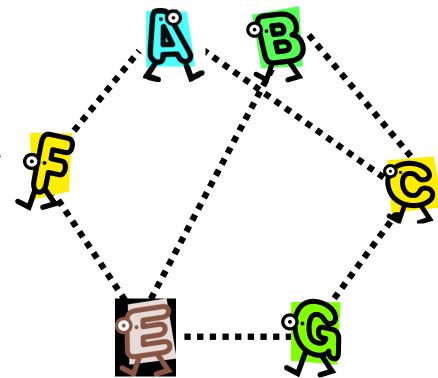
- Better scalability
- Sybil prevention
- Build incentives
- Stable anonymity sets

UNOBSERVABILITY of communication between friends

- The adversary cannot tell whether they speak at all
- ANONYMITY of other relationships
 - The adversary cannot find further contacts

Relationships in Drac

Friends

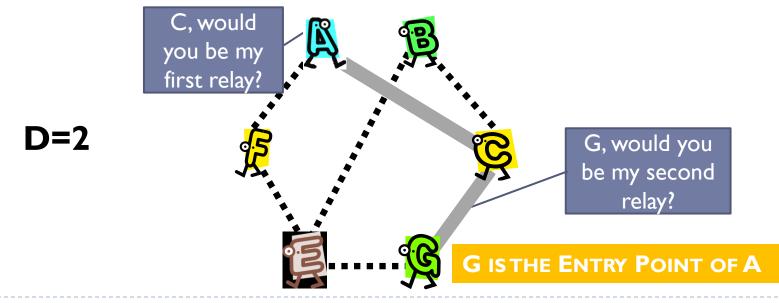

- Trusted
- Visible to the attacker
- Unobservable communications

Contacts

- Not trusted
- Not known to the adversary
- Relationship confidentiality
- Private Presence Server
 - "Rendez-vous" to find contacts

Heartbeat connections

- Between each pair of friends
- Signaling
 - presence to friends
 - establish communications
 - communicate with Presence Server
- Continuous traffic
 - very low bandwidth
 - bidirectional
- No additional info to the adversary, "public" information


Small remarks

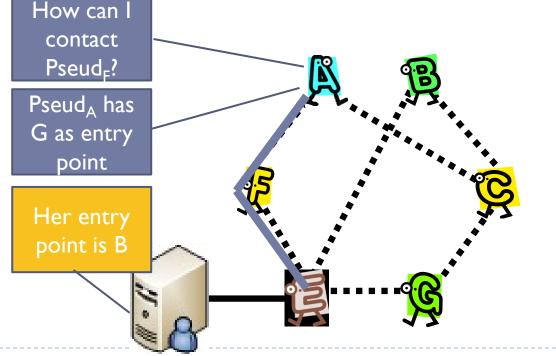
REMARK I In the rest of the talk I will ignore cryptographic aspects of the protocols as well as key management. Details in the paper

REMARK 2 In the rest of the talk I assume that all connections are padded, i.e., they carry constant traffic to counter traffic analysis

Entry points

- Direct communications reveals the identity of participants
- ENTRY POINT: proxy D hops away from user
 - Every user has an entry point
 - ...even if they don't want to start a conversation! (for other users to find them and to provide unobservability)

C.Troncoso - PETS 2010 - Berlin - July 22, 2010

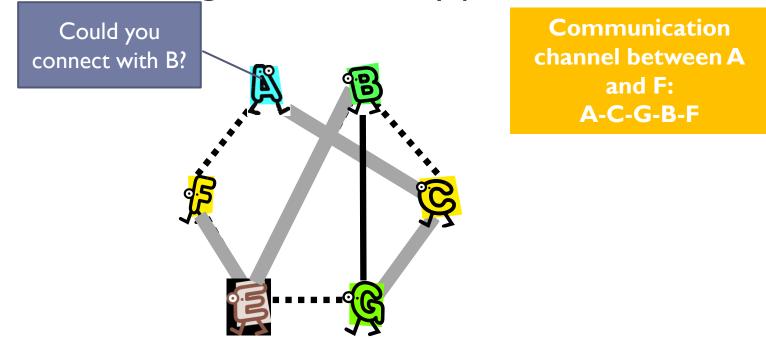

Finding contacts

If Alice wants to speak with her friends she knows where they are

Choose them as first hop in the circuit to entry point

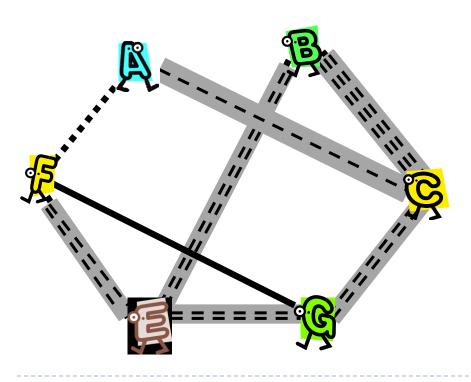
What about contacts?

<u>Use the Presence Server to find their entry points</u>



- Construct circuit to PS over heartbeat channels
- 2. Send entry point to PS under a pseudonym
 - PS does not learn who and where is A
- 3. Ask for entry point of conversation partner

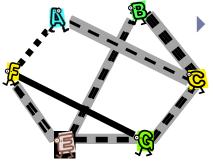
- Presence server cannot learn who issued the request!
- nor who is the conversation partner


Establishing communications with contacts

- From the example before...
 - A's entry point is G, and F's entry point is B
- Establish a bridge between entry points

Epochs in Drac

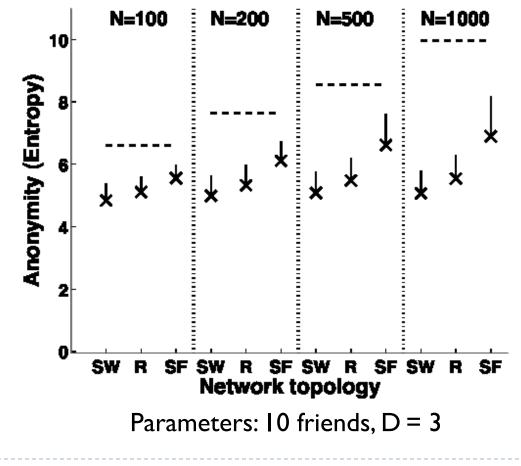
- Creating and tearing down circuits reveals information
 - Synchronous start and end of communications: EPOCHS
 - Epoch prepared in previous epoch


- Circuits:
 - A-C-G
 - ► B-C-B
 - C-G-E
 - G-E-F
 - E-B-C
 - F-E-B
- Conversations

A speaks to G (connect G and F)

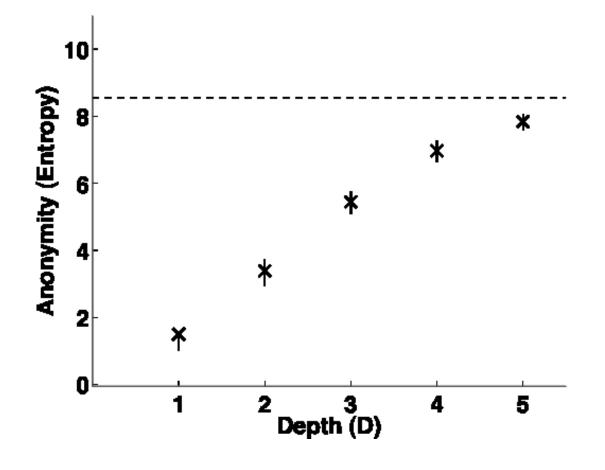
F speaks to B (no bridge!)

Contact communication anonymity


Assume all bridges and circuits per link are observable... what can the adversary do?

- Could have been...
 - ► A-C-G, B-C-B, C-G-E, G-E-F, E-B-C, F-E-B
 - A-C-G, B-C-G, C-B-C, G-E-F, E-B-E, F-E-G
- No certainty that A is communicating...
 - Usual anonymity metrics are not straight forward to compute
 - We evaluate anonymity of each half of circuit separately, starting from bridge (no end-to-end anonymity)
 - by checking all paths that lead to each of the initiators
- In the paper we also analyse anonymity towards the presence server

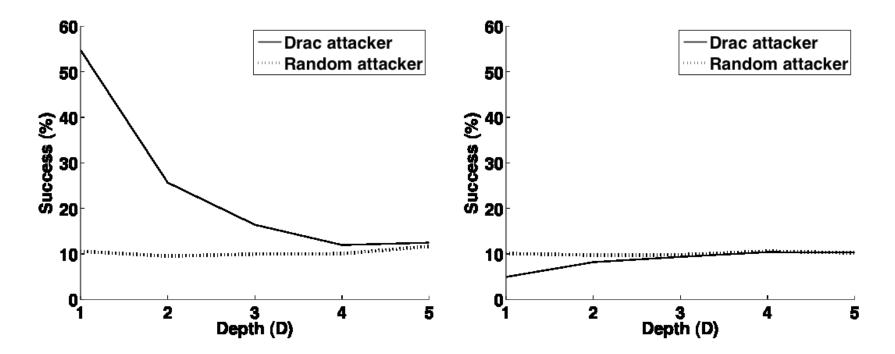
Results: topology


Three topologies: small-world, scale-free, random

C.Troncoso - PETS 2010 - Berlin - July 22, 2010

D

Results: circuit depth


Parameters: SW net, N = 500, 10 friends

C.Troncoso - PETS 2010 - Berlin - July 22, 2010

Unobservability

- Communications with friends: fully unobservable
- Communications with contacts: bridges observable
 - X : total nr of contact communications (assume known by adversary)
- Evaluation:
 - 1. Adversary constructs set S with top 2X users (highest probability of having created a bridge)
 - 2. Random adversary: constructs set R with 2X random users
 - 3. Select user u_A who *i*s communicating with a contact
 - Test adversaries success (u_A in S? and u_A in R?)
 - 4. Select user u_Z who *is not* communicating with a contact
 - Test adversaries success (u_Z in S? and u_Z in R?)

Results

Parameters: SW net, N = 500, 10 friends, C = 25

C.Troncoso - PETS 2010 - Berlin - July 22, 2010

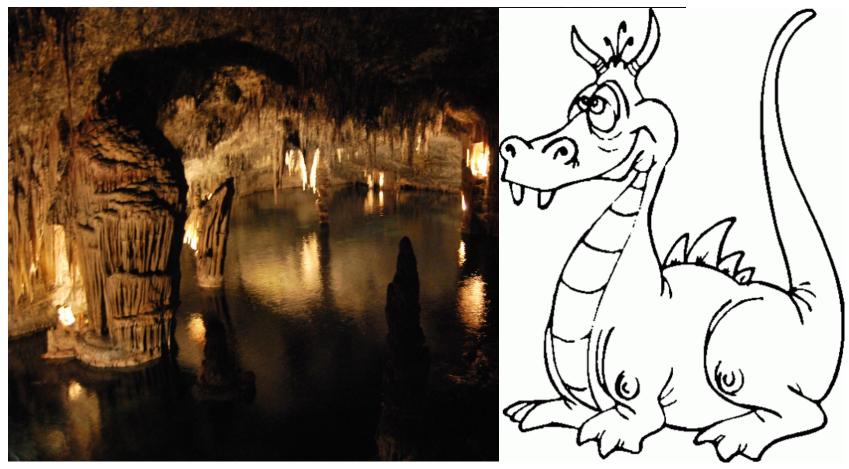
D

Conclusions

- Low bandwidth applications allow for connections padding to prevent traffic analysis
- Hiding friends is hopeless, leverage to achieve anonymity of further relationships
 - And provide unobservability of communications with friends

Friend of friend architecture

- Scalability, incentives, avoid sybil attacks, stable anonymitysets
- Depth of circuit is a security parameter
 - but anonymity also depends on the mixing properties of the social graph


Open questions

The design seems promising...

- We only analyzed one epoch
 - Intersection attacks
 - Optimal duration security vs usability
- We did not compute end to end anonymity
 - MCMC for proper computation of probability distributions
- Unobservability metrics,
- Deniability?
- Resistance to corrupted nodes
- Social network dynamics

I. What the *%&#" is Drac?

C.Troncoso - PETS 2010 - Berlin - July 22, 2010

Onion encryption

$$u_X \to u_Y \to u_Z \Longrightarrow u_U \to u_V \to u_W$$

$$u_X \to u_Y : E_{k_{XY}}(E_{k_{XZ}}(E_{k_{XW}}(M)))$$
$$u_Z \Longrightarrow u_U : E_{k_{XW}}(M)$$
$$u_V \to u_W : E_{k_{VW}}(E_{k_{UW}}(E_{k_{XW}}(M)))$$

C.Troncoso - PETS 2010 - Berlin - July 22, 2010

- Private Presence server: Honest but curious
- There could be several of them
- User u_A has long-term identifier ID_A (user may have several, one per circle of contacts, so they cannot find out they know the same user)
- Contacts A and B share a key K_{AB}

Presence

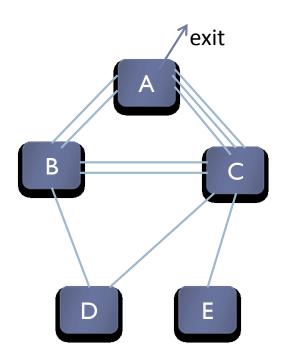
- unlinkability between time periods (epochs), avoid long-term pseudonymous profiling: "id du jour" IDJ
- T published by Presence server

 $IDJ_A = H(T, ID_A)$

- B sends this message to the PS:
- $E_{PK_{PS}}(IDJ_{A}, E_{K}(E_{B}, g^{r_{B}}))$ If A wants to talk to B, she sends $g^{r_{A}}$ to E_{B} (next epoch)
- session key: $k_{AB} = g^{r_A r_B}$
- update long term key: K'_{AB}=H(k_{AB},K_{AB})

Experimental setup

- Simulator implemented in python
- Topologies: small world, scale free, random
 - f friends on average (selected according to topology)
 - f randomly selected contacts
- Single epoch per experiment (no multiple epoch analysis)
 - heartbeat connections: between friends, and between end of presence circuit and presence server
 - communication circuits and bridges; adversary can see nr of circuits per link and distinguish bridges
 - I0% of users communicating with contacts (randomly selected)
- One sample per experiment:
 - contact communication anonymity
 - presence anonymity
 - contact communication unobservability

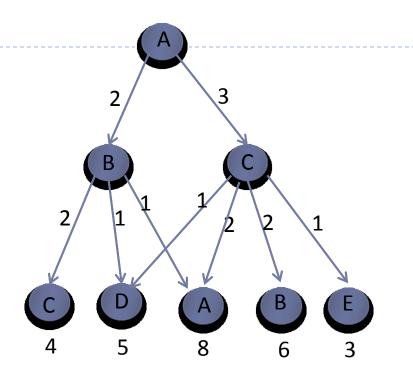

Anonymity towards the presence server

- start from connection to Presence Server (end of circuit)
- check all paths that lead to each of the initiators

$$\Pr_{i}[E_{PA}] = \frac{P_{i}}{\sum P_{j}}, 1 \le i \le N$$

$$H_A = -\sum_{i=1}^{N} [E_{PA}] \log_2 \Pr_i[E_{PA}]$$

Example

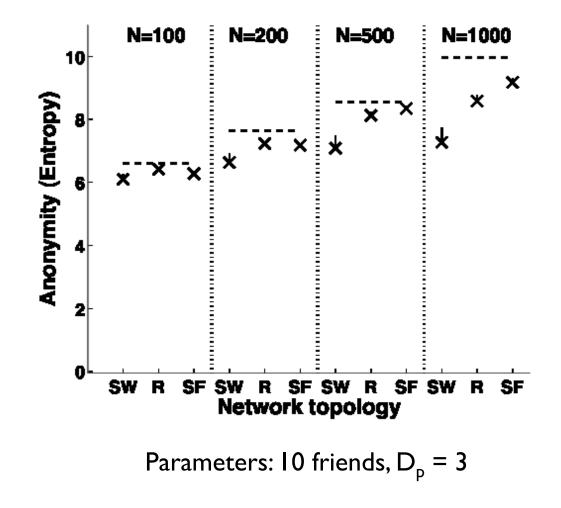


true paths:

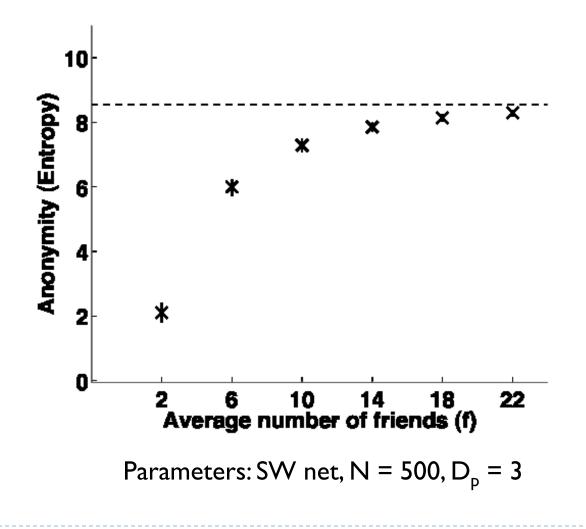
- A-C-B
- B-C-A
- C-A-B
- D-B-A

• E-C-D

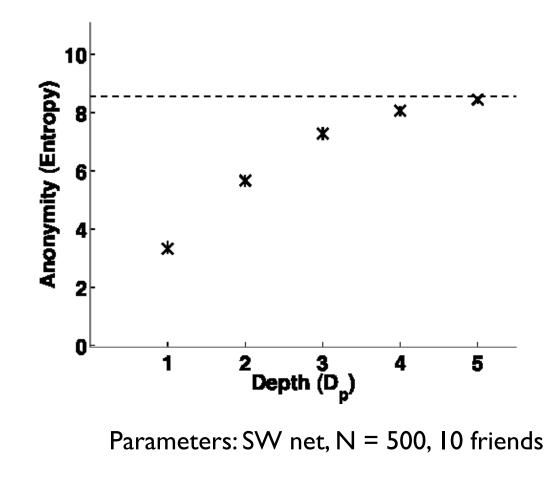
24


possible paths:

- C-B-A (x4)
- D-B-A (x2)
- A-B-A (x2)
- A-C-A (x6)
- B-C-A (x6)


- Prob (caller, exit A):
- Pr(A) = 8/26 = 0,3
- Pr(B) = 6/26 = 0.23
- Pr(C) = 4/26 = 0,15
- D-C-A (x3) Pr(D) = 5/26 = 0,19
 - Pr(E) = 3/26 = 0,12

C.Troncoso - PETS 200 A Extin - July 22, 2010


Results: Topology

C.Troncoso - PETS 2010 - Berlin - July 22, 2010

C.Troncoso - PETS 2010 - Berlin - July 22, 2010

C.Troncoso - PETS 2010 - Berlin - July 22, 2010