
On Efficient Deadlock Avoidance for

Distributive Recursive Processes

César Sánchez, Henny B. Sipma, and Zohar Manna

Computer Science Department
Stanford University, Stanford, CA 94305, USA

{cesar,sipma,zm}@CS.Stanford.EDU

Abstract. We study deadlock avoidance for resource allocation in dis-
tributed systems. While a general solution of distributed deadlock avoid-
ance is considered impractical, we propose an efficient solution of the
important particular case where the possible sequences of remote calls,
modeled as call graphs, are known a-priori. The algorithm presented here
generalizes to recursive processes our earlier work on deadlock avoidance
for non-recursive call-graphs.
An essential part of this generalization is that when a new process is
created, it announces the recursive depth corresponding to the number
of times a recursive call can be performed in any possible sequence of
remote invocations.

1 Introduction and Related Work

We study the problem of deadlock avoidance in distributed systems. In par-
ticular, we focus on distributed computations that can require invocations at
different sites; at each of them a local resource must be obtained to proceed.
Moreover, we assume that once a resource is obtained, it is locked at least until
the return of all subsequent remote calls. If the computation flow performs a
sequence of calls that arrives back at a site previously visited then a new re-
source is needed. This model arises, for example, in distributed real-time and
embedded (DRE) architectures, when the policy WaitOnConnection is used to
deal with nested up-calls (see, for example, [9, 8, 13]). In classical concurrency
terminology, we are dealing with (distributed) counting semaphores with nested
allocation/deallocation patterns.

We assume that all resources are finite and fixed a-priori, so deadlocks can be
reached unless some mechanism controls the assignment of resources to processes.
There are two classes of algorithms that implement deadlock-free assignment:
deadlock prevention and deadlock avoidance. Deadlock detection is a third mech-
anism, very common in data-bases, but it is not relevant in this context because
we do not assume that processes must guarantee any transactional semantics,
or that their actions can be rolled back.

With deadlock prevention the possibility of a deadlock is broken by elim-
inating one of the necessary causes of the circular contention, at the price of
decreasing the concurrency. One simple deadlock prevention method, known as

2

“monotone locking” and widely used in practice (see [1]), first determines an
arbitrary total order on the set of resources. At run-time, processes acquire the
resources in increasing order. Some concurrency is lost, since some resources
may have to be acquired—and therefore locked—before they are needed, but all
allocation decisions can be taken locally. Therefore, no extra communication is
required. A drawback of this approach is that programming discipline must be
enforced, and its synthesis or verification is not easily automatizable.

Deadlock avoidance methods, on the other hand, make decisions about re-
source allocations based on whether granting a resource is safe, that is, whether
the controller has an implementable strategy to enforce that all continuations of
the concurrent executions are deadlock-free. To make this check feasible, these
methods use extra information that processes publish when they are created.
For example, in the classical (centralized) deadlock avoidance algorithm (the
Banker’s algorithm and sequels, see [3–5, 12, 10]) a process advertises the max-
imum number of resources of each type that it can request. A general solution
of distributed deadlock avoidance, however, is considered impractical (see [11]).
The reason is that—in some situations—different sites must agree to determine
whether an allocation is safe, which requires the run of some distributed agree-
ment algorithm. The communication cost involved usually outweighs the benefit
gained by using deadlock avoidance as opposed to a simple and locally imple-
mentable deadlock prevention mechanism.

In this paper we present a distributed deadlock avoidance scheme that uses
only tests over local data. Such a solution is possible with the extra assumption
that the set of all possible sequences of remote invocations that processes can
follow is known a priory. This is the case in many distributed scenarios, like DREs
or flexible manufacturing systems (FMS). In DREs, for example, we envision a
development cycle where all the information about call dependencies is extracted
from components. This is then used during configuration to tailor the deadlock
avoidance algorithm into efficient, and provably correct (i.e., deadlock-free) code
that controls the resource allocations. Note that the nature of the computations,
or the values they compute is not relevant here. Only the pattern of remote calls,
that determines the resource allocations, and the fact that all local computations
terminate is used.

Similarly, in [2], a resource allocation controller that provides deadlock avoid-
ance is generated directly from the components’ code, using game theoretic tech-
niques. The possible allocation/deallocation patterns are richer than the ones
covered here. However, they assume that the controller is centralized, so it is
not directly applicable to distributed systems without the use of a consensus
algorithm.

The rest of this document is structured as follows. Sections 2 and 3 sum-
marize the computational model and the necessary notation. Section 4 shows
how to generate minimal annotations for recursive call graphs. Section 5 stud-
ies the relation between node annotations at different recursive heights. Finally,
Section 6 presents an open problem and Section 7 contains the conclusions.

3

2 Model of Computation

A distributed system is modeled as a pair S : 〈R,G〉 consisting of a set of sites
and a call graph specification. Sites R : {r1, . . . , r|R|} model distributed devices
that perform computations and manage a necessary and scarce local resource, for
example a finite pool of threads or execution contexts. A call graph specification
G : (V,→) is a graph that models the possible flows of computations. A call graph
node describes both the computation to be performed at a site and the resource
needed. Each node has a unique name (for example, the method name) and a
site associated with it. If n = (f, r), we say that node n executes computation
f and resides in site r. An edge n → m denotes a possible remote invocation;
in order to complete the computation modeled by n the result of a call to m

may be needed. If this call is performed, the resource associated with n will be
locked at least until the invocation of m returns. If the computation name is
unimportant we use n :r instead of n = (f :r) to represent that node n resides
in site r. We use r, s, r1, r2, . . . to refer to sites and n, m, n1, m1, . . . to refer to
call graph nodes. We use n ≡R m to indicate that nodes n and m reside in the
same site.

The execution of a system consists of processes, which can be created dy-
namically, executing computations that only perform remote calls according to
the call graph specification. When a new process is spawned it announces its ini-
tial node. Incoming invocations require a new resource to run, while call returns
perform a release.

Deadlocks can be reached if all requests are immediately granted, since re-
sources are finite in each site and we impose no restriction on the topology of
the call graph specification or the number of process instances.

Example 1. The following diagram represents a system with reachable deadlocks
if no controller is used. The set of sites is R = {r, s}, the set of nodes is V =
{n1, n2, m1, m2}, and the call graph edges are:

n1 r n2 s

m1 s m2 r

Let sites s and r have available exactly one unit of resource. If two processes are
spawned, one instance of n1 and one instance of m1, all resources in the system
will be locked after each process starts executing its root node:

n1 r
•

n2 s n1 r
•

n2 s n1 r
•

n2 s n1 r n2 s
◦

m1 s
•

m2 r m1 s
•

m2 r m1 s
•

m2 r m1 s m2 r
◦

Consequently, the allocation attempts for n2 and m2 nodes will be blocked in-
definitely, so none of the two processes can progress. ut

4

n ::

2

6

6

6

6

6

6

6

6

6

6

4

`0 :

)

entry

`1 : f()

ff

invocation

`2 :

)

exit

`3 :

3

7

7

7

7

7

7

7

7

7

7

5

n ::

2

6

6

6

6

6

6

6

6

4

`0 :

»

when α(n) ≤ tr do

tr--

–

`1 : f()

`2 : tr++

`3 :

3

7

7

7

7

7

7

7

7

5

(a) Protocol Schema. (b) The protocol Basic-P.

Fig. 1. Protocol Schema and protocol Basic-P for node n = (f :r).

A deadlock avoidance algorithm is a mechanism that controls the allocation of
resources guaranteeing that no deadlock can be reached. Our deadlock avoidance
algorithm consists of two parts:
1. a computation of annotations of the call graph nodes. This calculation is

carried out statically. The annotation functions we consider are maps from
nodes to positive numbers α : V 7→ N

+.
2. a protocol : a piece of code that ensures, at runtime, that allocations and

deallocations are safe. It consists of two stages: one that runs when a re-
source is requested, and another that executes when it is released. We want
protocols that only inspect and modify local variables.
A schematic view of a protocol is shown in Fig. 1(a). We assume that the

actions of the entry and exit sections of a protocol cancel each other, and that
the successful execution of an entry section cannot help a waiting process to gain
its desired resources.

3 Non-recursive Call Graphs

In [7] we present a deadlock avoidance algorithm for systems with only non-
recursive call graphs. As background for the algorithm that covers recursive
processes, we summarize the results in [7]. The call graph specification G for
non-recursive processes can be described as a finite family of trees1 Gi : (Vi,→i),
with node sets pairwise disjoint. The specification is then composed as G : (V,→),
with V = ∪iVi and →= ∪i →i.

The simplest deadlock-avoidance protocol is Basic-P, shown in Fig. 1(b).
The annotation of node n is denoted by α(n). The variable tr, local to site r,
controls the counting semaphore. It maintains the number of available units of
resource available at site r, and it is initialized with the maximum amount of
the resource Tr. If the annotation function α satisfies some properties, Basic-P

prevents all deadlocks. To capture these properties we define the notion of an
annotated graph.

Given a system S : 〈R,G〉 and an annotation α, the annotated graph Gα :
(V,→, 99K) is the graph formed by taking G and adding an edge n 99K m for

1 all results can be extended to arbitrary DAGs.

5

every two nodes n and m that reside in the same site and satisfy α(n) ≥ α(m).
If Basic-P is used, n 99K m captures whether a process executing m can make a
process trying to gain access to n wait. Cycles in the graph that contain at least
an → edge are called dependency cycles. The Annotation Theorem establishes
when a protocol like Basic-P prevents deadlocks.

Theorem 1 (Annotation Theorem [7]). If there is no dependency cycle in
the annotated graph, and Basic-P is used to control allocations, then all runs
are deadlock-free.

The absence of dependency cycles in the previous theorem is called the “Annota-
tion Condition.” To maximize the concurrency, annotations must be minimized,
but creating cycles compromises deadlock-freedom. One possible annotation that
satisfies the Annotation Condition is the height of a node in its call tree. How-
ever, in general, this annotation is far from optimal. In [6] we showed how min-
imal annotations can be computed. An annotation is minimal if no value can
be decreased without violating the Annotation Condition. One algorithm that
computes minimal annotations is:

Algorithm 1 (Minimal Annotations for Non-Recursive Graphs).

1: {Order N with <, a reverse topological order}
2: {Let Below(S) = {m | n→+ m for some n in S}}
3: {Let Reach(S) = {m | α(n) ≥ α(m) and m < n, for some n in S}}
4: for n = n1 to n|N | do
5: S ← Below(n)
6: repeat
7: S ← S ∪ Below(Reach(S))
8: until fix-point
9: α(n)← 1 + max{α(m) | m ∈ S and m ≡R n}

10: end for

This algorithm orders the nodes in some reverse topological order (descendants
are always visited before ancestors), and calculates the annotations following
that order. Each value is the minimum that creates no dependency cycle with
previously calculated nodes. The algorithm first computes the set of nodes reach-
able following paths containing at least one edge in → (lines 6 to 8). Then, to
prevent any of these paths from forming a cycle, it picks the minimum value
that is sufficiently large (line 9).

Example 2. Consider the the system of Example 1 and total order n2 < m2 <

n1 < m1. The annotations generated are shown on the left, and the annotated
call graph on the right:

n1 r
1

n2 s
1

m1 s
2

m2 r
1

n1 r
1

n2 s
1

m1 s
2

m2 r
1

Basic-P with acyclic annotations guarantees deadlock-freedom, since the an-
notation α(m1) = 2 reserves the last thread in s for node n2. If there is some
process running in n1 it can terminate and break the potential circular wait. ut

6

n ::

2

6

6

6

6

6

6

6

6

4

`0 :

»

when α(n, k) ≤ tr do

tr--

–

`1 : f()

`2 : tr++

`3 :

3

7

7

7

7

7

7

7

7

5

Fig. 2. The protocol BasicRec-P for instance (n, k) of node n = (f :r) at level k, with
annotation α(n, k)

4 Recursive Call Graphs

In this section we extend our deadlock avoidance schema to systems with re-
cursive calls, that is, systems with call graphs that have cycles. The approach
is similar to that presented in the previous section: the protocol only refers to
local data and to static information about the call graphs provided a-priori. The
only difference is that in addition the protocol refers to the recursion height of a
function call. The new protocol, BasicRec-P, is shown in Fig. 2, where α(n, k)
is the annotation of n, the node representing the function call, and k, the recur-
sion height of the function call. We assume that each process at each function
call can provide the protocol with its recursion height.

For the non-recursive call graphs presented before α(n) was precomputed
for all nodes in the call graph specification and stored as part of the protocol.
Execution of the protocol only involved looking up the annotation as function
calls arrived. Given a maximum recursion height, kmax, we can, in principle,
follow the same approach for recursive call graphs, that is, precompute the values
of α for all nodes n for all k up to kmax and store them as part of the protocol.
This is clearly not practical for large values of kmax. The alternative is to compute
α(n, k) on the fly when needed. In DRE systems this is practical, however, only
if α can be computed efficiently.

Below we will first show, given a call graph specification G, how a minimal
α(n, k) can be computed a-priori for any node n and recursion height k. This
algorithm, however, is not suitable for on on-the-fly computation. Then, in Sec-
tion 5 we propose some more alternatives for computing α(n, k) efficiently at
run-time.

Call graph specifications are again a family of call trees Gi : (Vi,→i), equipped
with an additional set of edges �. The set V = ∪iVi is the set of nodes, and
→= ∪i →i is the set of descending edges. Edges in � are called recursive edges
and can connect any two nodes. We use 7→ to denote edges in either → or �.
Call graph trees are composed into a call graph specification G : (V,→,�). To
distinguish between occurrences of a node n at different recursive heights we de-
fine an instance of n at recursive height k as the pair (n, k). When the recursive
height and the node are not relevant we use a, a1, b1,. . . to denote instances.

7

Definition 1 (Instance Call Graph). Given a recursive call graph specifica-

tion G : (V,→′,�′) an instance call graph Ĝ : (I,→,�) is a graph where
1. I = V × N is the set of instances,
2. (n, k)→ (m, k) exists precisely when n→′ m occurs in G, and
3. (n, k)� (m, k − 1) exists precisely when n�′ m occurs in G.

We also use 7→ for → ∪� on instances.

Example 3. The following diagram, on the left, shows a recursive specification
containing nodes {n1, n2, n3, n4, n5}. On the right we depict the graph with only
the descending edges:

n2 s n3 r

n1 t

n4 r n5 s

n2 s n3 r

n1 t

n4 r n5 s

The portion of the instance call graph up-to recursive height 3 is:

(n2, 3) (n3, 3) (n2, 2) (n3, 2) (n2, 1) (n3, 1) (n2, 0) (n3, 0)

(n1, 3) (n1, 2) (n1, 1) (n1, 0)

(n4, 3) (n5, 3) (n4, 2) (n5, 2) (n4, 1) (n5, 1) (n4, 0) (n5, 0)

The algorithm to compute minimal annotations requires a specific order on
the nodes.

Definition 2 (admissible order). A total order < on the set of instances I

is admissible whenever
1. it is well-founded (it has no infinite descending chains), and
2. it respects the reverse topological order (if a 7→ b then b < a).

The two conditions ensure that for every instance a the set of smaller instances
is finite and it contains all a’s descendants. An example of an admissible order
is a lexicographic order that first compares the recursion height, and then uses a
reverse topological total order on the (finite) set of nodes. For a given admissible
order the annotation for an instance a can be computed with:

Algorithm 2 (Minimal Annotations for Recursive Graphs).

1: {Let Below(S) = {b | a 7→+ b for some a in S}}
2: {Let Reach(S) = {b | α(a) ≥ α(b) and b < a for some a in S}}
3: for i in a1 < a2 < · · · < a do
4: S ← Below(i)
5: repeat
6: S ← S ∪ Below(Reach(S))
7: until fix-point
8: α(i)← 1 + max{α(b) | b ∈ S and b ≡R i}
9: end for

8

Given an instance call graph Ĝ : 〈I,→,�〉 and an annotation α on I , the anno-

tated recursive graph Ĝα : (I,→,�, 99K) is defined by adding an edge a 99K b

whenever α(a) ≥ α(b) and a ≡R b. We use as → ∪� ∪ 99K. The following is
a version of the Annotation Theorem for recursive call graphs:

Theorem 2 (Annotation Theorem for Recursive Call Graphs). If there
is no dependency cycle in the annotated recursive graph, and BasicRec-P is
used to control allocations, then all runs are deadlock free.

Proof. Let us proceed by contradiction. Let Ĝα be an annotated recursive graph
that does not contain dependency cycles but allows runs with deadlocks. Con-
sider one such run and let a be the highest instance occurring in any process
involved in the execution. We build a non-recursive specification G ′ : (V ′,→′) as
follows:
– V ′ is the set of instances smaller than a, V ′ = {b | b ≤ a}.
– There is an edge a →′ b in G′, whenever a 7→ b in the original recursive

specification G.
Note how the finite set of instances V ′ that are involved in the execution becomes
the set of nodes of G′. Now, let the annotation α′ be the restriction of α to V ′.
The (non-recursive) annotated call graph G ′α′ does not contain any dependency
cycle, so the system described by G ′ is deadlock free according to Theorem 1.
However, a deadlock can be reached in G ′ following the same execution steps
that led to a deadlock in G, which is a contradiction. ut

Clearly, Algorithm 2 is not suitable to compute values of α(n, k) on the fly.
The example below suggests an alternative way of computing the annotations.

Example 4. Consider the specification call graph in Example 3. Let < be the
lexicographic order on instances that first compares the recursive height and
then the nodes according to n5, n4, n3, n2, n1. This is clearly a well-founded re-
verse topological order, so it is admissible for Algorithm 2. The annotations
corresponding to the first 3 recursive heights are:

(n2, 3)
8

(n3, 3)
4

(n2, 2)
6

(n3, 2)
3

(n2, 1)
4

(n3, 1)
2

(n2, 0)
2

(n3, 0)
1

(n1, 3)
4

(n1, 2)
3

(n1, 1)
2

(n1, 0)
1

(n4, 3)
4

(n5, 3)
7

(n4, 2)
3

(n5, 2)
5

(n4, 1)
2

(n5, 1)
3

(n4, 0)
1

(n5, 0)
1

It is easy to see that the recurrences that define the values are:

α(n1, k) = α(n1, k − 1) +1 α(n1, 0) = 1
α(n2, k) = α(n5, k) +1
α(n3, k) = α(n3, k − 1) +1 α(n3, 0) = 1
α(n4, k) = α(n4, k − 1) +1 α(n4, 0) = 1
α(n5, k) = α(n2, k − 1) +1 α(n5, 0) = 1

These recurrences have a simple solution, given by periodic affine functions
shown on the left.

9

(n2, k)
2k+2

(n3, k)
k+1

(n1, k) k+1

(n4, k)
k+1

(n5, k)
2k+1

(* pseudo code for n_2=(f,s) *)

k := me.recursive_height;

alpha := 2 * k + 2;

cond_wait(less_eq_than(alpha,t_s),

t_s_counting_semaphore);

f();

unlock(t_s_counting_semaphore);

In cases where there is a simple solution like this, the value of α(n, k) for any
given k could be computed very efficiently at run-time, using the corresponding
periodic function. For example, the pseudocode for the protocol BasicRec-P

at node n2 is shown above on the right. ut

In the rest of the paper we show how to synthesize and verify, for each node n,
a function fn that computes the annotation α(n, k) efficiently, once the recursive
height k is given.

The following lemma is used widely in our subsequent developments. All
missing proofs appear in the appendix.

Lemma 1. Given an acyclic and minimal annotation, for every node n, the
annotations of its instances are monotonically non-decreasing on the recursion
height, i.e., for all all positives λ, α(n, k + λ) ≥ α(n, k).

5 Verifying Annotations

Ideally, minimal annotations would be computed by the protocol on the fly by
means of a simple function, given an admissible order on the nodes of the call
graph specification. Unfortunately, no such functions exist in general, for arbi-
trary admissible orders, as shown in the next section. We conjecture, however,
that for simple orders, such as the lexicographic order used in the previous sec-
tion, such functions do exist, but a method for generating them automatically
is still an open problem. In this section we solve the easier problem of verifying
that a given set of functions corresponds to an acyclic and minimal annotation
of instances.

Below, we first establish necessary and sufficient conditions for such functions
and then show that these conditions can be effectively checked for a particular
class of functions, namely monotonically non-decreasing periodic functions.

5.1 Necessary and Sufficient Conditions

A reachability function fn
r : N 7→ N∪{∞} for a node n and site r (not necessarily

the site where n resides) maps a recursive height k into the maximum annotation
of an instance residing in r that (n, k) can reach. In particular if n resides in r,
fn

r (k) corresponds to the annotation of (n, k), that is, α(n, k) = fn
r (k).

10

Example 5. The need for ∞ is exemplified by the following call graph specifica-
tion:

n r m s

Since α(n, k) = 1 for all k, then (n, k) (n, 1) and (n, 1) (n, k). Also,
α(m, k) = k + 1. Consequently, the associated reachability functions are:

fn
r (k) = 1 fn

s (k) =∞ fm
r (k) = 0 fm

s (k) = k + 1.

Therefore, since the set of annotations of nodes reachable by (n, k) has no upper
bound, the first infinite ordinal ∞ is the best upper-bound. ut

Given an annotation α, its associated reachability functions is defined as

fn
r (k)

def
= max{α(b) | site(b) = r and (n, k) ∗ b}.

Conversely, given a set of reachability functions {fn
r } containing one function

for each node n and site r, we can construct its associated annotation by taking:

α(n, k)
def
= fn

r (k) for r = site(n).

Decision Problem. Given a set of reachability functions {fn
r } decide whether

its associated annotation α is acyclic and minimal.

To establish a necessary and sufficient set of conditions for acyclicity and
minimality we first define the following notions. Let the class of an instance a

[a]
def
= {b | a ≡R b and α(a) ≥ α(b)}

stand for the set of instances that reside in the same site as a and have a lower
or equal annotation. Let

Mn
r (k)

def
= max

(
{fm

r (k) | n→ m}
{fm

r (k − 1) | n� m}

)

stand for the maximum of the values of the reachability functions of all successors
of node n. The desired conditions are stated as follows. For all sites r, and
instances (n, k) and (m, l):

C1. If (n, k) (m, l) then fn
r (k) ≥ fm

r (l).
C2. If n resides in r, then fn

r (k) = Mn
r (k) + 1.

C3. If n does not reside in r, then fn
r (k) = max{Mm

r (l) | (m, l) ∈ [(n, k)]}.

The conditions C1–C3 are necessary, as established by the following theorem.

Theorem 3. Given an acyclic and minimal annotation, its associated reacha-
bility functions satisfy C1–C3.

The conditions C1-C3 are also sufficient, as stated by Theorem 4. The proof of
the theorem relies on the following Lemma.

11

Lemma 2. Let {fn
r } be a set of reachability functions satisfying C1–C3 and α

its associated annotations. Then, every instance (n, k) can reach all instances in
r with annotations smaller or equal fn

r (k).

Theorem 4. If a set of reachability functions {fn
r } satisfies conditions C1–C3

then its associated annotation is acyclic and minimal.

Proof. For acyclicity we reason by contradiction. Assume that the annotation α

is not acyclic and let

(n, k) (n1, k1) . . . (nl, kl) (n, k)

be a cycle. Condition C1 ensures that if (n, k) ∗ (m, l) then fn
r (k) ≥ fm

r (l).
Since every instance in the cycle can reach any other instance, all of them have
the same values of the reachability functions for all sites. To be a dependency
cycle at least one edge must be of the form (ni, ki) 7→ (ni+1, ki+1). Then, by con-
dition C2, fni

r (ki) ≥ f
ni+1

r (ki+1) + 1 for the site r where (ni, ki) resides. More-
over, fni

r (ki) <∞ since it is an annotation. Consequently, fni

r (ki) > f
ni+1

r (ki+1),
which is a contradiction.

For minimality, by Lemma 2, some descendant of (n, k) : s can reach some
instance that resides in site s and has annotation fn

s (k)− 1 . If the annotation
of (n, k) were decreased, then a dependency cycle could be created. ut

5.2 Periodic Reachability Functions

We solve the decision problem for a simple class of functions, namely monoton-
ically non-decreasing periodic functions, that we simply call periodic functions:

Definition 3 (Periodic functions). A periodic function f is described by pos-
itive parameters A, D and 〈B0, . . . ,BD−1〉 and is denoted as:

f : A
k

D
+ 〈B0 . . . , BD−1〉

The parameters must satisfy Bi ≤ Bj when i ≤ j, and BD−1 ≤ (A + B0). The
value of function f on input k is

f(k) = A
k

D
+ B[i] for i = (k mod D).

For example, the first ten values of the periodic function f(k) = 3 k
2 + 〈1, 2〉 are:

k 0 1 2 3 4 5 6 7 8 9
f(k) 1 2 4 5 7 8 10 11 13 14

Periodic functions arise as solutions of recurrences of the form:
{

f(k + D) = A + f(k)
f(i) = B[i] for i = 0 . . .D − 1

12

The restrictions Bi ≤ Bj when i ≤ j, and BD−1 ≤ (A + B0), ensure that the
function is monotonically non-decreasing, as enforced by Lemma 1 for annota-
tions.

To solve the decision problem for this class of functions we must show that
conditions C1–C3 can be effectively checked. We describe an algorithm that
decides whether these conditions hold, based on basic properties of periodic
functions.

Checking C1 : Condition C1 can be decomposed into:

C1.a If (n, k)→ (m, k) then fn
r (k) ≥ fm

r (k).
C1.b If (n, k)� (m, k − 1) then fn

r (k) ≥ fm
r (k − 1).

C1.c If (n, k) 99K (m, l) then fn
r (k) ≥ fm

r (l).

C1.a and C1.b correspond to tests of the form

fn
r (k)

?
≥ fm

r (l)

for two periodic functions, which can be checked. For C1.c, let n and m reside in s,
and let τnm give, for every k, the maximum value for which fn

s (k) ≥ fm
s (τnm(k)).

This map, called a translation function, is periodic and can be generated from
the given functions. Finally, the test for C1.c is:

fn
r (k)

?
≥ fm

r (τnm(k)).

Again, the composition of two periodic functions can be generated and is peri-
odic, so this check is decidable.

Checking C2 : First, consider the shift transformation that translates a peri-
odic function one unit:

(δfn
r)(k)

def
= fn

r (k − 1).

Then, the maximum of the descendants of a node, Mn
r , can be defined by com-

puting the maximum, component-wise, of the functions fm
r for all the direct de-

scendants, and the functions (δfp
r) for all recursive descendants. The maximum

of periodic functions is an eventually periodic function, and can be effectively
computed. C2 holds for n, which resides in s if:

fn
s (k)

?
= Mn

s (k) + 1.

Checking C3 : The check for C3 starts by calculating the maximum value
of descendants Mn

r (k) as previously, except that now the calculation is carried
out for all other sites r different than where n resides. This function is then
refined with the maximum for all other nodes m residing in the same site as n,
considering the translation of m with respect to n. The check is then:

fn
r (k)

?
= max{Mm

r (τnm(k)) | for all m ≡R n}.

13

Example 6. Consider the specification

n1 r n2 s

m1 r m2 s m3 r m4 s m5 r

And the reachability functions:

fn1
r (k) = 3(k

2) + 〈2, 3〉 fn1
s (k) = k + 1

fn2
r (k) = 3(k

2) + 〈1, 2〉 fn2
s (k) = k + 1

fm1
r (k) = 3k + 3 fm1

s (k) = 2k + 2

fm2
r (k) = 3k + 2 fm2

s (k) = 2k + 2

fm3
r (k) = 3k + 2 fm3

s (k) = 2k + 1

fm4
r (k) = 3k + 1 fm4

s (k) = 2k + 1

fm5
r (k) = 3k + 1 fm5

s (k) = 2k

We sketch how the decision procedure shows that the associated annotation is
acyclic and minimal, illustrating the checks for node n1. C2.b holds vacuously,
and C1.a holds since:

fn1

r (k) ≥ fn2

r (k) because 3(k
2) + 〈2, 3〉 ≥ 3(k

2) + 〈1, 2〉

fn1

s (k) ≥ fn2

s (k) because k + 1 ≥ k + 1

For C1.c, we show the check for node m5 (for m1 and m3 is analogous). Node
m5 results in a translation of τn1m5

= k
2 , and then:

fn1

r (k) ≥ fm5

r (k
2) because 3(k

2) + 〈2, 3〉 ≥ 3(k
2) + 〈1, 1〉

fn1

s (k) ≥ fm5

s (k
2) because k + 1 ≥ 2(k

2)

For C2, observe that Mn1
r (k) = fn2

r (k) and then:

fn1

r (k) = Mn2

r (k) + 1 because 3(k
2) + 〈2, 3〉 = 3(k

2) + 〈1, 2〉+ 1

Finally, for C3, observe that τn1m1
= k−1

2 − 1 and τn1m3
= k

2 . Therefore:

fn1
s (k)

?
= max{Mn1

s (k), Mm1
s (k−1

2 − 1), Mm3
s (k

2), Mm5
s (k

2)}

= max{k + 1, 2 k−1
2 − 1 + 2, 2k

2 + 1, 2k
2}

= k + 1

holds. Similar checks hold for the other nodes. Therefore, the associated anno-
tation is acyclic and minimal. ut

14

6 A Negative Result and an Open Problem

The method described in Section 5 allows us to automatically check whether a set
of periodic functions generate an acyclic and minimal annotation. By running a
number of case studies, we have found that for a simple (lexicographic or at least
periodic) order the annotations are periodic. The method can be automated by
running Algorithm 2 for several iterations, extracting the candidate reachability
functions, and then checking these functions with the decision procedure. It is
not true however that, given an arbitrary admissible order < on instances, the
annotations generated are simple (for example periodic) functions for all nodes.

Example 7. Consider the recursive call graph specification of Example 3 and the
following two total orders on the nodes, <1 and <2:

<1 : n5 , n4 , n3 , n2 , n1

<2 : n3 , n2 , n5 , n4 , n1

Let the admissible order < be defined as follows. Two instances are ordered
(n, k) < (m, l) whenever

1. k < l, or
2. k = l, and k is not a power of 2 and n <1 m, or
3. k = l, and k is a power of 2 and n <2 m.

The annotations for the first four levels are depicted:

(n2, 3)
5

(n3, 3)
6

(n2, 2)
4

(n3, 2)
5

(n2, 1)
2

(n3, 1)
3

(n2, 0)
1

(n3, 0)
1

(n1, 3)
4

<1 (n1, 2)
3

<2 (n1, 1)
2

<1 (n1, 0)
1

<1

(n4, 3)
7

(n5, 3)
5

(n4, 2)
5

(n5, 2)
3

(n4, 1)
4

(n5, 1)
2

(n4, 0)
2

(n5, 0)
1

It is easy to see that α(n5, k) = α(n2, k − 1) + 1 and

α(n2, k) =

{
α(n2, k − 1) + 1 if <1 is used in level k

α(n5, k) + 1 if <2 is used in level k

Since α(n5, k)+1 = α(n2, k− 1)+1, the solution of the recurrence is α(n2, k) =
2o2 + o1, where o1 stands for the number of times <1 was used up to level k,
and o2 for the number of times <2 was used. Therefore α(n5, k) = k + blog kc
which cannot be expressed as a periodic function on k. ut

Even though this example shows that not all annotations grow according to
periodic functions, we conjecture that if the order is simple, then the annotations
will also be simple.

Open Problem. If the order < is simple (expressible as a periodic function,
which includes lexicographic orders) then the annotations calculated by Algo-
rithm 2 have associated periodic functions.

15

7 Conclusions

We have presented an efficient deadlock avoidance schema for distributed systems
with recursive processes. The essential feature that makes an efficient algorithm
possible is that processes announce: (1) the call-graph that describes the possi-
ble sequences of calls that they can perform, and (2) the maximum number of
recursive calls. The deadlock avoidance solution is implemented by a protocol
executed at runtime. The protocol is a simple extension of the guard sections of
counting semaphores, and perform only tests and operations over local data.

The protocol is parameterized by an annotation of the call-graph nodes,
computed statically. We have presented an algorithm that generates these anno-
tations. Even though it is still an open problem whether the algorithm always
generates annotations that follow some simple growth functions, we have shown
how to prove that a candidate function corresponds to minimal annotations.
These candidates can be extracted automatically from the call graph by running
the annotation calculation algorithm for several levels.

References

1. Andrew D. Birrell. An introduction to programming with threads. Research Re-
port 35, Digital Equipment Corporation Systems Research Center, 1989.

2. Luca de Alfaro, Vsihwanath Raman, Marco Faella, and Rupak Majumdar. Code
aware resource management. In Proc. of EMSOFT’05, pages 191–202, 2005.

3. Edsger W. Dijkstra. Cooperating sequential processes. Technical Report EWD-
123, Technological University, Eindhoven, the Netherlands, 1965.

4. Arie N. Habermann. Prevention of system deadlocks. CACM, 12:373–377, 1969.
5. James W. Havender. Avoiding deadlock in multi-tasking systems. IBM Systems

Journal, 2:74–84, 1968.
6. César Sánchez, Henny B. Sipma, Zohar Manna, Venkita Subramonian, and Christo-

pher Gill. On efficient distributed deadlock avoidance for distributed real-time and
embedded systems. In Proc. of IPDPS’06, 2006.

7. César Sánchez, Henny B. Sipma, Venkita Subramonian, Christopher Gill, and Zo-
har Manna. Thread allocation protocols for distributed real-time and embedded
systems. In Proc. of FORTE’05, pages 159–173, 2005.

8. Douglas C. Schmidt. Evaluating Architectures for Multi-threaded CORBA Object
Request Brokers. Comm. of the ACM Special Issue on CORBA, 41(10), 1998.

9. Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-

Oriented Software Architecture: Patterns for Concurrent and Networked Objects,

Volume 2. Wiley & Sons, New York, 2000.
10. Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Con-

cepts. John Wiley & Sons, Inc., Sixth edition, 2003.
11. Mukesh Singhal and Niranjan G. Shivaratri. Advanced Concepts in Operating

Systems: Distributed, Database, and Multiprocessor Operating Systems. McGraw-
Hill, Inc., 1994.

12. William Stallings. Operating Systems: Internals and Design Principles. Prentice
Hall, Third edition, 1998.

13. Venkita Subramonian, Guoliang Xing, Christopher D. Gill, Chenyang Lu, and Ron
Cytron. Middleware specialization for memory-constrained networked embedded
systems. In Proc. of RTAS’04, 2004.

16

A Proofs

The following lemma establishes a fact about minimal annotations that is used
in subsequent proofs.

Lemma 3. Given an acyclic and minimal annotation α, for every (n, k) with
α(n, k) > 1 there is a path of the form

(n, k) 7→ (n1, k1) · · · (m, l)

for some n ≡R m with α(n, k) = α(m, l) + 1.

Proof. Since the annotation is minimal, if α(n, k) is decremented there would be
a cycle that would not exist otherwise. Let

(n, k) (n1, k1) · · · (m, l) (n, k)

be one such cycle. The incoming and outgoing edges to (n, k) cannot be both
99K or both 7→ since otherwise, a cycle would exist in α without decrementing,
contradicting acyclicity. If the outgoing edge is 99K then the cycle is still a path
in α without decrementing, again a contradiction. Therefore, (m, l) 99K (n, k) 7→
(n1, k1), and

(n, k) 7→ (n1, k1) · · · (m, l)

is the desired path. ut

Lemma 1. Given an acyclic and minimal annotation, for every node n, the
annotations of its instances are monotonically non-decreasing on the recursion
height, i.e., for all all positives λ, α(n, k + λ) ≥ α(n, k).

Proof. Let < be an arbitrary admissible order. We reason by complete induction
on <. Let us assume that the result holds for all (n′, k′) < (n, k). If α(n, k) = 1,
then since all annotations are at least 1, the result follows immediately. Other-
wise, by Lemma 3 consider a semi-cycle:

(n, k) 7→ (n1, k1) · · · (nm, km)

witnessing that α(n, k) = α(nm, km) + 1. By the graph structure, since (n, k) 7→
(n1, k1), then also (n, k + λ) 7→ (n1, k1 + λ). Also, by inductive hypothesis,
α(n1, k1 + λ) ≥ α(n1, k1), or in other words (n1, k1 + λ) 99K (n1, k1). Then we
can build the semi-cycle

(n, k + λ) 7→ (n1, k1 + λ) 99K (n1, k1) · · · (nm, km),

which implies that α(n, k + λ) ≥ α(nm, km) + 1 = α(n, k) as desired. ut

Theorem 3. Given an acyclic and minimal annotation, its associated reacha-
bility functions satisfy C1–C3.

17

Proof. Let {fn
r } be reachability functions associated to annotation α. We proof

the conditions separately:

1. Let (n, k) (m, l), and b be the instance with maximum annotation that
resides in r and (m, l) can reach. Then fm

r (l) = α(b). Since (m, l) ∗ b, then
(n, k) ∗ b as well. Therefore fn

r (k) ≥ α(b) = fm
r (k).

2. First, fn
r (k) ≥ µ

(n,k)
r +1 since otherwise there would be a dependency cycle.

If fn
r (k) = 1 the result follows vacuously since µ

(n,k)
r ≥ 0. If fn

r (k) = 1, by
Lemma 3, there is a path

(n, k) 7→ (n1, k1)
∗ (nl, kl)

with n ≡R nl and α(n, k) = α(nl, kl) + 1 Therefore µ
(n,k)
r ≥ fn1

r (k1) ≥
α(nl, kl), and then fn

r (k) ≤ µn
r (k) + 1.

3. First, fn
r (k) ≥ µ

[(n,k)]
r since every path from a successor of [(n, k)] can be

extended to a path from (n, k). We must show that fn
r (k) ≤ µ

[(n,k)]
r . Let

b be the maximum instance that resides in r and is reachable from some
node in the class [(n, k)]. If there is no such a b, then either no instance is

reachable, so fn
r (k) = 0 = µ

[(n,k)]
r , or the set of reachable instances is not

upper-bounded, but then fn
r (k) =∞ = µ

[(n,k)]
r . Consider a path from (n, k)

to b

(n, k) · · · b

and let (m, l) be the first node in the path that does not belong to [(n, k)].

Then, fm
r (l) ≥ α(b) and consequently µ

[(n,k)]
r ≥ α(b) = fn

r (k).
ut

Lemma 2. Let {fn
r } be a set of reachability functions satisfying C1–C3 and α

its associated annotations. Then, every instance (n, k) can reach all instances in
r with annotations smaller or equal fn

r (k).

Proof. By induction on w(n, k) =
∑

r fn
r (k), called the weight of (n, k). Note

that if a 7→ b then w(a) > w(b), by C1 and C2. Let r be an arbitrary site and b

an instance with annotation α(b) ≤ fn
r (k). We consider two cases:

1. (n, k) resides in r. If α(b) = fn
r (k) the result holds trivially, since (n, k) ∗

b. If α(b) < fn
r (k), then let (m, l) be the direct descendant of (n, k) for

which fn
r (k) = fm

r (l)+1, whose existence is guaranteed by C2. By inductive
hypothesis (m, l) ∗ b, and then (n, k) can also reach b.

2. (n, k) does not reside in r. Let (m, l) be an instance with (n′k′) 7→ (m, l) for
some (n′, k′) ∈ [(n, k)], and fn

r (k) = fm
r (l). This is guaranteed by C3. The

weight of (m, l) must be strictly smaller than that of (n, k), since all elements
in the class of (n, k) have at most same weight as (n, k), and following an
edge 7→ the weight decreases. Therefore, the inductive hypothesis ensures
that (m, l) can reach b, so (n, k) (n′, k′) 7→ (m, l) ∗ b can also reach b.

ut

