Regular Linear Temporal Logic with Past

César Sanchez!2 and Martin Leucker®

! Madrid Institute for Advanced Studies (IMDEA Software), Spain
2 Spanish Council for Scientific Research (CSIC), Spain
3 Technische Universitat Miinchen, Germany

Abstract. This paper upgrades Regular Linear Temporal Logic (RLTL)
with past operators and complementation. RLTL is a temporal logic that
extends the expressive power of linear temporal logic (LTL) to all w-regular
languages. The syntax of RLTL consists of an algebraic signature from
which expressions are built. In particular, RLTL does not need or expose
fix-point binders (like linear time p-calculus), or automata to build and
instantiate operators (like ETL,).

Past operators are easily introduced in RLTL via a single previous-step
operator for basic state formulas. The satisfiability and model checking
problems for RLTL are PSPACE-complete, which is optimal for exten-
sions of LTL. This result is shown using a novel linear size translation of
RLTL expressions into 2-way alternating parity automata on words. Un-
like previous automata-theoretic approaches to LTL, this construction is
compositional (bottom-up). As alternating parity automata can easily be
complemented, the treatment of negation is simple and does not require
an upfront transformation of formulas into any normal form.

1 Introduction

In his seminal paper [23], Pnueli proposed Linear temporal logic (LTL) [20] as
a specification language for reactive systems. LTL is a modal logic over a linear
frame, whose formulas express properties of infinite traces using two future modal-
ities: nexttime and until. Although extending LTL with past operators (e.g., [12]),
does not increase its expressive power [8], it has been widely noticed that it caters
for specifications that are shorter, easier and more intuitive [19]. For example,[17]
shows that there is a family of LTL formulas with past operators whose equiva-
lent future only formulas are exponentially larger. Likewise, recalling the classical
example from [27], the specification that Fvery alarm is due to a fault can eas-
ily be expressed by O(alarm — & fault), where O means globally/always and &
means once in the past. An equivalent formulation using only future operators is
—(—fault U (alarm A —fault)), which is, however, less intuitive. The problems of
satisfiability and model checking are PSPACE-complete [17] for LTL with and
without past operators, so the past does not seem to harm in terms of complexity.

With regards to expressivity, Wolper [32] showed that LTL cannot express
all w-regular properties. In particular, it cannot express the property “p holds
only at even moments”. In spite of being a useful specification language, this
lack of expressivity seems to surface in practice [25]. To alleviate the expressivity

problem, Wolper suggested extended temporal logic (ETL) in which new operators
are defined using automata, and instantiated using language composition. ETL
was later extended [31,14] to different kinds of automata. The main drawback of
these logics is that, in order to obtain the full expressivity, an infinite number of
operators is needed. Among other consequences for its practical usage, this implies
that ETL is not algebraic. An alternative approach consists of adapting the modal
p-calculus [6,13] to the linear setting (vTL) [1]. Here, the full expressivity is
obtained by the use of fix point operators. In ¥TL one needs to specify recursive
equations to describe temporal properties, since the only modality is nezttime,
which tends to make typical specifications cumbersome.

At the same time, some studies [3] point out that regular expressions are very
convenient in addition to LTL in formal specifications, partly because practitioners
are familiar with regular expressions, partly because specifications are more nat-
ural. Even though every ground regular expression can be translated into a v¥TL
expression [15], the concatenation operator cannot be directly represented in v'TL.
No context of ¥TL can capture concatenation. Extending vTL with concatenation
leads to fiz point logic with chop (FLC) [22] that allows expressing non-regular
languages, but at the price of undecidable satisfiability and equivalence problems.

Some dynamic logics also try to merge regular expressions (for the program
part) with LTL (for the action part), for example, Regular Process Logic [9]. How-
ever, the satisfiability problem is non-elementary because one can combine arbi-
trarily negations and regular operators. Dynamic linear-temporal logic DLTL [10]
(see also [16]) keeps the satisfiability problem in PSPACE, but restricts the use
of regular expressions only as a generalization of the until operator. The until
operator pU* g in DLTL is equipped with a regular expression («) and establishes
that the until part (¢) must be fulfilled at some position in which o matches, while
the first argument p must hold at all positions in between. It is unclear then how
to extend DLTL with past operators. The approach of defining past operators us-
ing past regular expressions, presented in Section 2 for RLTL cannot be used for
DLTL since the notion of “in-between” is not clear anymore. Another extension
of LTL to regular expressions is the logic RELTL from [4]. However, this logic
does not include past operators or negation. Moreover, it requires a translation
into positive normal form for the LTL part that makes this translation not com-
positional. Also, the interaction of regular expressions and linear temporal logic
in RELTL is restricted to prefixes, while in RLTL we consider more sophisticated
combinations.

The popularity of regular expressions led also to their inclusion in the indus-
try standard specification language PSL [7]. While decision procedures and their
complexities for full PSL are still an area of active research, [16] shows that the
fragment of PSL that contains LTL and semi-extended regular expressions, even
though it allows more succinct specifications, leads to EXPSPACE-complete satis-
fiability and model checking problems, which may limit its practical applicability.

In this paper, we upgrade Regular Linear Temporal Logic (RLTL) [18] with
past operators. RLTL is a temporal logic that extends the expressive power of
LTL to all w-regular languages. It has an algebraic signature and fuses LTL and
regular expressions. To enrich RLTL by past operators, it suffices, as we show here,

to simply add basic past expressions, which allow the formulation of past regular
expressions. Intuitively, regular expressions with past expressions can define finite
segments of infinite strings in an arbitrary forward and backward manner. The
main contribution of RLTL comes perhaps from the simplicity of the novel power
operators, which allow the definition of most other temporal operators and, as we
show here, the treatment of past and negation while avoiding non-algebraic con-
structs like fix-points bindings or automata instantiations. The power operators
are the key to obtain compositionality without requiring an upfront translation
to positive normal forms.

To address satisfiability and model checking for RLTL, we follow the automata
theoretic approach, but need a more sophisticated translation than in [18] to cope
with the new operators. This novel linear size translation uses 2-way alternating
parity automata on words. Besides being useful for RLTL, this translation is
also interesting for plain LTL, as it is compositional (bottom-up) unlike previous
automata-theoretic approaches to LTL. As alternating parity automata can easily
be complemented, the treatment of negation is simple and does not require an
upfront transformation of formulas into positive or other normal form. A notable
exception is [26], which presents another compositional translation from LTL, but
this translation generates testers instead of automata.

Building on recent automata results [5], we show here that the satisfiability
and model checking problems for RLTL (with past) are PSPACE-complete, which
is optimal for extensions of LTL.

This paper is structured as follows. Section 2 introduces RLTL. Section 3
recalls the basic definitions of LTL with past, and presents the translation into
RLTL. Section 4 describes the translation from RLTL into automata. Finally, Sec-
tion 5 contains the conclusions. Due to space limitations some proofs are missing,
but they can be easily reconstructed.

2 Regular Linear Temporal Logic

We define regular linear temporal logic (RLTL) in two stages, similarly to PSL
or ForSpec. First, we present a variation of regular expressions enriched with a
simple past operator. Then we use these regular expressions to define regular linear
temporal logic as a language that describes sets of infinite words. The syntax of
each of these two formalisms consists of an algebraic signature containing a finite
collection of constructor symbols. The semantics is given by interpreting these
constructors. In particular, the language of RLTL contains no fix-point operators.

2.1 Regular Expressions with Past

We first introduce a variation of regular expressions with a past operator to de-
scribe finite segments of infinite words. The basic elements are basic expressions,
which are Boolean combinations of a finite set of elementary propositions, inter-
preted in a single state (or in a single action between two states). Each set of
propositions (or equivalently, each basic expression) can also be interpreted as a
symbol from a discrete alphabet X' that includes true (for all propositions) and
false for the empty set or propositions.

Syntax The language of regular expressions for finite words is given by the fol-
lowing grammar:

anl=o+ o a; o a* o | D | p

where p ranges over basic expressions. The intended interpretation of the operators
+, ; and * are the standard union, concatenation and binary Kleene-star. There is
one expression of the form ~p for each basic expression p. Informally, p indicates
that the next “action”, or input symbol, satisfies the basic expression p; similarly,
~p establishes that the previous action or symbol satisfies p. Expressions of the
form ~p are called basic past expressions. Regular expressions are defined using
an algebraic signature (symbols like p and ~p are constants, and 4+, ; and * are
binary symbols).

Semantics Our version of regular expressions describe segments of infinite words.
An infinite word w is a map from w into X' (i.e., an element of X*). A position
is a natural number. We use w[i] for the symbol at position ¢ in word w. If w]i]
satisfies the basic expression p, we write wi] F p, which is defined in the standard
manner. Given an infinite word w and two positions ¢ and j, the tuple (w,,j) is
called the segment of the word w between positions ¢ and j. It is not necessarily
the case that ¢ < j or even that ¢ < j. Note that a segment consists of the whole
word w with two tags, not just the sequence of symbols that occur between two
positions. A pointed word is a pair (w,4) formed by a word w and a position i.
The semantics of regular expressions is formally defined as a binary relation Fgg
between segments and regular expressions. This semantics is defined inductively
as follows. Given a basic expression p, regular expressions z, y and z, and a word

w,i,7) Freg p whenever w[i] satisfies p and j =i + 1.
w,i,7) Frg ¢ +y whenever either (w,1,j) Fge or (w,4,j) Fgrg y, or both.
i,j) Ere 5y whenever for some k, (w, i, k) Frg and (w, k, j) Frg y.
i) Erg @y whenever either (w,14,j) Fgg y, or for some
sequence (ig = i,41,...4m,) and all k € {0,..,m — 1}
(w, ik, ik+1) Fre © and (W, im, J) Fre y-
— (w,4,7) Fre "D whenever w[j] satisfies p and j =i — 1.

One interesting expression using past is:

notfirst ©f —¢rue ; true

which matches all segments of the form (w, i, 7) that are not initial prefixes (i.e., ¢ #
0). The semantics style used here is more conventional in logic than in automata
theory, where regular expressions define sets of finite words. If one omits the basic
past expressions, then a given regular expression x can be associated with a set of
words L(x) € X, by v € L(z) precisely when for some w € X¥, (vw, 0, |v]) Epp 2.
Following this alternative interpretation, our operators correspond to the classical
ones and regular expressions define precisely regular sets of non-empty words.
The following theorem shows that only a finite bounded amount of informa-
tion is needed to determine whether a segment satisfies a regular expression. All

modified words that preserve all symbols within these bounds will contain a cor-
responding matching segment.

Theorem 1 (Relevant segment). Let x be a regular expression and (w,i,7) a
segment of an infinite word for which (w,i,j) Ere x. There exists bounds A <
i,j < B such that for every word prefix v € X* and suffict u € X¥, the infinite
word w' = vw[A, Blu satisfies:

(w', Jo] + (i = A), [v| + (j = A)) Fre @
Here, w[A, B] is the finite word w[AJw[A + 1] ---w[B].

Expressions that do not include basic past expressions ~p are called future-only
regular expressions and satisfy strict bounds: A =i < j = B.

Past Ezxpressions In order to justify that basic past expressions allow to express
conditions on the input symbols previously seen we introduce a new operator for
regular expressions, by lifting basic past expressions into a past operator ()~

_1 def _ _1 def _ _

(™ ="p (z4+y) ™t a4y !

(p) "t Ep @iyt Eytiat
(wxy) ™ Ey Hy @ e

This definition is inductive, so every past expression can be transformed into an
equivalent expression without (-)~! (but perhaps with one or more ~p).

We now study some properties of past expressions, justifying that (-)~! is a
good definition for a past construct. First, (-)~! is its own self-inverse:
Lemma 1. Every regular expression x is semantically equivalent to (x=1)~1.

Semantic equivalence means that both expressions define precisely the same
set of segments. Intuitively, matching an expression x with a sequence of events
should correspond to matching the past expression ! with the reversed sequence
of events. Since input words are infinite only on one end, this intuition is not
justified simply by reversing the linear order of symbols in an infinite word. The
following theorem formalizes this intuition of reverse by providing an evidence of
a finite portion of input that can be chopped and reversed to match the inverse
expression.

Theorem 2 (Inverse and reverse). Let x be a regular expression and (w,1,)
a segment of an infinite word for which (w,i,j) Fre x. There exists bounds A <
i,j < B for which for all prefir v € X* and suffit u € X%, the infinite word
w' = vwl[A, B]™"u satisfies:

(wla [v| + (B = 7), [v] + (B —4)) Fre a!
Here, w[A, B]™ is the finite word w|BJw[B — 1] ---w[A], the reverse of w[A, B].

Finally, the following theorem justifies that if an expression z matches some
input, then the concatenation of x with its inverse z~! must match the segment
that goes back to the initial position.

Theorem 3 (Inverse and sequential). Let x be a reqular expression and (w, i, j)
a segment for which (w,i,7) Frg . Then (w,i,1) Fpp ;271

2.2 Regular Linear Temporal Logic over Infinite Words

Regular Linear Temporal Logic expressions denote languages over infinite words.
The key elements of RLTL are the two power operators that generalize many
constructs from different linear-time logics and calculi.

Syntax The syntax of RLTL expressions is defined by the following grammar:

=2 | oVe | o | ase | elade | ela)e

where a ranges over regular expressions. Informally, V stands for union of lan-
guages (disjunction in a logical interpretation), and — represents language com-
plement (or negation in a logical framework). The symbol ; stands for the conven-
tional concatenation of an expression over finite words followed by an expression
over infinite words. The operator & represents the empty language (or false in a
logical interpretation).

The operators gla))e and its weak version p|a)p are the power operators. The
power expressions z|z)y and x |z)y (read x at z until y, and, respectively, x at
z weak-until y) are built from three elements: y (the attempt), x (the obligation)
and z (the delay). Informally, for z|z)y to hold, either the attempt holds, or the
obligation is met and the whole expression evaluates successfully after the delay; in
particular, for a power expression to hold the obligation must be met after a finite
number of delays. On the contrary, x|z)y does not require the obligation to be met
after a finite number of delays. These two simple operators allow the construction
of many conventional recursive definitions. For example, the strong until operator
of LTL xU y can be seen as an attempt for y to hold, and otherwise an obligation
for x to be met and a delay of a single step. Similarly, the w-regular expression
z* can be interpreted as a weak power operator having no possible escape and a
trivially fulfilled obligation, with a delay indicated by z. Conventional w-regular
expressions can describe sophisticated delays with trivial obligations and escapes,
while conventional LTL constructs allow complex obligations and escapes, but
trivial one-step delays. Power operators can be seen as a generalization of both
types of constructs. The completeness of RLTL with respect to w-regular languages
is easily derived from the expressibility of w-regular expressions. In particular,
Wolper’s example is captured by p |true ; true)false.

Note that the signature of RLTL is, like that of RE, purely algebraic: the
constructors V and ; are binary, — is unary, the power operators are ternary, and
@ is a constant. Even though the symbol ; is overloaded we consider the signatures
of RE and RLTL to be disjoint (the disambiguation is clear from the context).
The size of an RLTL formula is defined as the total number of its symbols.

Semantics The semantics of RLTL expressions is introduced as a binary relation
F between expressions and pointed words, defined inductively. Given two RLTL
expressions x and y, a regular expression z, and a word w:

(w,i) E @ never holds.
(w,i) Fx Vy whenever either (w,i) F z or (w,) F y, or both.
— (w,3) E —x whenever (w,i) ¥ z, i.e., (w,4) F z does not hold.
(w,i) Ezsy whenever for some position k, (w, i, k) Fge 2z and (w, k) F y.
(w,i) Ez|z)y whenever (w,i) F y or for some sequence (ig = 4,41, ...%m)
(w, ik, ik+1) Ere 2 and (w,ix) E 2, and (w,im) Ey
— (w,i) Ex|z)y whenever one of:
(@) (w,i) Ey.
(49) for some sequence (ig = 4,91, . .%m)
(w, ik, ik+1) Fre 2z and (w, i) F 2z, and (w, i) Ey
(#4¢) for some infinite sequence (ig = i,11,...)
(w, ik, ik+1) Fre z and (w, i) E x

The semantics of |z))y establishes that either the obligation y is satisfied at
the point ¢ of the evaluation, or there is a sequence of delays—each determined
by z—after which y holds, and « holds after each individual delay. The semantics
of z |z)y also allow the case where y never holds, but = always holds after any
number of evaluations of z. As with regular expressions, languages can also be
associated with RLTL expressions in the standard form: a word w € X“ is in
the language of an expression z, denoted by w € L(z), whenever (w,0) F x. The
following lemma follows easily from the definitions:

Lemma 2. For every RLTL expressions x and y and RE expression z:
— x|2)y is semantically equivalent to y VvV (x A z; x|2))y).
— x |2)y is semantically equivalent to y V (x A z;x |2)y).

Again, semantic equivalence establishes that both expressions capture the same
set of pointed words. Although the semantics of the power operators is not defined
using fix point equations, it can be characterized by such equations, similar to the
until operator in LTL. A power expression z|z))y is then characterized to a least
fix point, while x | z)y is characterized by a greatest fix-point.

Remark 1. Tt should be noted that although RLTL includes complementation it
does not allow the use of complementation within regular expressions. It is well-
known [29] that emptiness of extended regular expressions (regular expressions
with complementation) is not elementary decidable, so this separation is crucial
to meet the desired complexity bounds. Similarly, adding intersection to regular
expressions—the so-called semi-extended regular expresions—makes the satisfia-
bility problem of similar logics EXPSPACE-complete [16].

The expression @ is needed in RLTL for technical purposes, as a basic case
of induction; all other RLTL constructs need some preexisting RLTL expression.
The expression = ; =& that appends sequentially the negation of empty (which
corresponds to all pointed words) to a finite expression = serves as a pump of
the finite models (segments) denoted by z to all infinite words that extend it.
Pumping was a primitive operator in [18], for a simpler logic without negation.
To ease the translation from LTL into RLTL presented in the next section we
introduce some RLTL syntactic sugar:

T 5 first d:Cfﬁ(notﬁrst ;i T)

3 LTL with Past

In this section we show how to translate LTL (past and future) into RLTL. Unlike
in [18], the translation presented here does not require a previous transformation of
LTL expressions into their negation normal form. The translation is purely linear:
every LTL operator corresponds to an RLTL context with the same number of
“holes”.

We consider the following minimal definition of LTL, with an interpretation
of atomic propositions as actions. Given a finite set of propositions Prop (with p
a representative) called basic action expressions, the language of LTL expressions
given by the following grammar:

pu=p | VY | | Op | YUY | Oy | ¢BY

Here, — and V are the conventional Boolean expressions. The operators O, and U
are the future operators. Finally, ® and B are called past operators.

Informal semantics LTL expressions define sets of pointed words. A pointed word
(w,) satisfies a basic action expression p if action p is taken from w[é]. Boolean
operators are interpreted in the conventional way. An expression Oz (read nezt z)
indicates that in order for a pointed word (w,) to satisfy Oz its sub-expression
x must hold when interpreted at the next position: (w, i+ 1). Similarly, ®x (read
previous x) holds at (w,) if holds at (w,i— 1) or i is the initial position (w, 0).
The operator xUy (read x until y) holds at (w, i) whenever y holds at some future
position and « holds in all positions in between. Similarly, By (read = back-to
y) states that x holds in all previous positions (including the present) starting at
the last position y held (or from the initial position 0 if y does not hold in any
past position).

Semantics The semantics of LTL expressions is defined inductively. Let p be a
basic expression, and = and y be arbitrary LTL expressions.

— (w,4) FroL p whenever w[i] satisfies p.

— (w,4) EyrL ¢ Vy whenever (w,4) Eyry, « or (w, i) Frrr y.

— (w,4) EyrL O whenever (w,i+ 1) Frrp, .

— (w,i) FyrL *Uy whenever for some j > i, (w,j) Frrr v, and

(w,k) FroL x forall i <k < J.
— (w, 1) FurL, O whenever either i = 0 or (w,i — 1) Frrp, 2.
— (w,4) Epr, « By whenever (w, j) Errr @ for all j <4, or
for some k < i, (w, k) Frrr vy and
for all [within k <1 <4, (w,l) Frry .

We now show how to translate LTL expressions into RLTL. First, we define
recursively a map between LTL expressions and RLTL expressions and then prove
that each LTL expression is equivalent to its image.

flp) =p f(Oz) =true; f(x)

flxvy)=f(z)V fly) fxUy) = f(z)|true) f(y)

f(=z) =-f() f(@x) = first Vv "true; f(x)
f(xBy) = f(z) | true)f(y)

The function f(-) is well-defined by construction. Since both LTL and RLTL
expressions define sets of pointed words equivalence = is simply equality between
two sets of pointed words.

Theorem 4. FEvery LTL expression is equivalent to its RLTL translation.

A practical specification language based on LTL offers more operators than the
minimal set presented above, including other Boolean connectives and additional
future operators like Jz (always x or henceforth), O (read eventually x), yRa
(y release), etc. Additional past operators include ©x (a strong version of @x),
Blx (has always been x), Sx (once x), x Sy (read x since y), etc. All these can
be defined in terms of the minimal set using the following LTL equivalences [20]:

Or=truellz xRy =—(—yU—x)
Oz == sWy=(xUy)Vdz
Hz = x B false Oxr =1

Sx =—H—x xrSy=(xBy) NSy

Proceeding with these equivalences, however, does not generate an LTL expres-
sion (and consequently a RLTL expression) of linear size. In particular W and S
duplicate one of their parameters. A formula with a stack of nested W or S sym-
bols will generate an exponentially larger formula. On the contrary, the following
direct translations into RLTL are linear:

flaWy) = f(z) [true) f(y) f(z Sy) = f(x)|"true) f(y)

The translation function f only involves a linear expansion in the size of the
original formula. Since checking satisfiability of linear temporal logic is PSPACE-
hard [28] this translation implies a lower bound on the complexity of RLTL.

Proposition 1. The problems of satisfiability and equivalence for regular linear
temporal logic are PSPACE-hard.

4 From RLTL to Automata

We now show how to translate an RLTL expression into a 2-way Alternating
Parity Automaton of linear size that accepts precisely the same set of pointed
words. As we justify below this implies that the problems of emptiness and model
checking for RLTL are in PSPACE.

Preliminaries Let us first present the necessary definitions of non-deterministic
automata on finite words and alternating automata on infinite words.

A 2-way nondeterministic finite automaton (2NFA) is a tuple A : (X, Q, qo, 0, F')
where X is the alphabet, @ a finite set of states, g9 € @Q the initial state,
§:Q x Y — 2@x{=101} the transition function, and F C Q is the set of final
states. Intuitively, the automaton works by reading an input tape. The transition
function indicates the legal moves from a given state and character in the tape.
A transition is a successor state and the direction of the head of the tape. Our

version of 2NFA operates on segments of infinite words. A run of A on a word
w € X%, starting at position iy and finishing at position i,, is a sequence of states
and positions i0qoi1q1i1 - - - ingn, Where g is the initial state of A, and for all
k € {1,...n} we have that (gx,ix — ix—1) € d(gk—1,w[ik—1]). The run is called
accepting if g, € F. A 2NFA accepts a segment (w, 4,j) whenever there is an ac-
cepting run starting at ¢ and finishing at j. There is an immediate correspondence
to regular expressions:

Lemma 3. Fach reqular expression can be translated into an equivalent 2NFA.

In the proof of Lemma 3 the translation from regular expressions into 2NFA
follows the standard bottom-up construction used for conventional regular expres-
sions into NFA [11] for the operators ;, * and +, and the basic expressions p. The
translation of basic past expression ~p is the automaton: (X, {qo, ¢1, 92}, qo, 9, {q2})
with

6(qo, true) = {(q1,—1)}, d(q1,p) = {(92,0)}, d(qo, true) = {},

depicted graphically: true.—1 p,0
(@) —(—

This translation clearly coincides with the semantics of ~p. The number of states
of the 2NFA obtained is linear in the size of the regular expression.

We define now alternating automata on infinite-words. For a finite set X of
variables, let B (X) be the set of positive Boolean formulas over X, i.e., the
smallest set such that X C BT(X), true,false € BT(X), and ¢, € BH(X)
implies ¢ A1) € BT(X) and p V1) € BT(X). We say that a set Y C X satisfies (or
is a model of) a formula ¢ € B*(X) iff ¢ evaluates to true when the variables in
Y are assigned to true and the members of X'\Y are assigned to false. A model
is called minimal if none of its proper subsets is a model. For example, {¢1,qs}
as well as {gz2, g3} are minimal models of the formula (g1 V ¢2) A g3. The dual of a
formula § € BT(X) is the formula § € B*(X) obtained by exchanging true and
false, and A and V.

A 2-way Alternating Parity Automaton on Words (2APW) is a tuple A :
(X,Q,q0,96, F) where X, @ are as for 2NFA. The transition function ¢ yields
a positive Boolean combination of successor states, together with a direction:
§:Qx X — BT (Q x {—1,0,1}). The acceptance condition F' that we use here is
the parity acceptance condition:

F:Q—{0...k}.

The set {0...k} is called the set of colors. A 2APW operates on infinite words: a
run over an infinite word w € X% is a directed graph (V| E) such that V C Q x N
satisfying the following properties:
1. (go,0) is in V, and it is called the initial vertex. It may have no predecessor.
2. every non-initial vertex has a predecessor. For every (¢,!) distinct from (go, 0)

{(@, 1) eV I l)—p (gD} #0

3. the successors of every node form a minimal model for 9, i.e., for every vertex
(g,1), the set {(¢',I' = 1) | (¢,1) =g (¢,1')} is a minimal model of é(q, w[l]).
The set of vertices that occurs infinitely often in an infinite path 7 is denoted
inf(m). A run (V, E) is accepting according to F' if every maximal finite path ends
in a vertex (q,!) with §(g, w[l]) = true and every infinite path 7 accepts the parity
condition:

max{i|i= F(q) for some ¢ in inf(m)} is even.

The language L£(A) of a 2APW A is determined by all strings for which an ac-
cepting run of A exists. We measure the size of a 2APW in terms of its number
of states and its number of colors.

4.1 Complementing 2APW

Every 2APW A can be easily complemented into another 2APW A of the same
size. Let n be the number of states of A. The key observation is that A4 can
be transformed into an equivalent automaton with a color set {0...k} satisfying
k <n+1, by only changing the acceptance condition.

Let F be the acceptance condition for A, and let F’ be another acceptance
condition such that,

Accl. for every two nodes p and g, if F(p) < F(q) then F'(p) < F'(q).
Acc2. for every node p, F(p) is even if and only if F'(p) is even.

Then, given a path m of a run of A, if ¢ is a node occurring infinitely often
with maximum color according to F, then ¢ is also maximum according to F”.
Moreover, F'(q) is even if and only if F'(q) is even. Therefore, every run of A is
accepting according to F' if and only if it is also accepting according to F”.
Consequently, the following gap reduction procedure can be applied. Assume
for some color i there is no node ¢ with F'(¢) = ¢, but for some j < i and for
some k > 4, there are such nodes F'(¢;) = j and F(qi) = k. Color i is called a gap
in F. The following F’ is equivalent to F' according to the conditions (Accl) and
(Acc2) described above:
Pl = {F(q) if Pg) < i
F(q)—2 ifF(q) >1
Similarly, if for no node ¢, F(¢) = 0 or F(q) = 1, then an equivalent F’ can be
defined as F’'(q) = F(q) — 2 for all ¢q. By applying these transformations until no
gap exists we ensure that all assigned colors are consecutive, and starting either at
0 or at 1. We use F'* to denote the accepting condition obtained after repeatedly

applying the gap reduction procedure. It follows that the maximum color assigned
by F* can be at most n + 1. This property ensures the following lemma.

Lemma 4. FEvery 2APW can be complemented into another 2APW of the same
number of states and with highest color at most n+ 1.

Proof (Sketch). Let A be a 2APW. The following 2APW accepts the complement
language:

A (2,Q.90.0.F)
where 3(q, a) is the dual of the transition 6(g, a) and F(q) = F(q)+ 1, with F~ be
the gap reduced version of . The maximum color in F'is guaranteed to be at
most n+ 1 (also at most 1 plus the number of colors in F™*). It is well-known [21]
that the dualization of the transition function and acceptance condition satisfies

that £L(A) = 2« \ L(A). 0

4.2 Translating from RLTL to 2APW
We are now ready to formulate the main theorem of this section:

Theorem 5. For every RLTL formula o, there is a 2APW with size linear in the
size of @ that accepts precisely the same set of w-words.

The proof proceeds according to the following translation from RLTL into
2APW. The procedure works bottom-up the parse tree of the RLTL expression
@, building the resulting automaton using the subexpressions’ automata as com-
ponents. Our translation does not require an upfront transformation into negation
normal form. On the contrary, it is truly compositional in a bottom-up fashion.
The automaton for an expression is built from the automata of its subexpressions
with all the structure preserved.

For RLTL expressions x, y and a regular expression z let A, : (¥, Q%, ¢%, 6%, F'*)
and A, : (X,QY,¢Y,8Y, F¥) be two 2APW automata equivalent to = and y, and
let A, : (X, Q% ¢Z,6%, F?) be a 2NFA for z. Without loss of generality, we assume
that their state spaces are disjoint, and that the coloring is minimal (F? = (F*)*
and FY = (FY)*) . We consider the different operators of RLTL:

— Empty: The automaton for @ is Ay : (X, {qo}, o, 0, F) with §(qo, a) = false
for every a, and F(qo) = 0 (any number works here). Clearly, the language of
Ag is empty.

— Disjunction: The automaton for x V y is:

-AmVy : <Ea Qz U anq075a F>
where qg is a fresh new state. The transition function is defined as
0%(q,a) if g€ Q”
g.a) = (DD
§¥(g,a) if g€ QY

For F, we consider the union of the characteristic graph of the function:

8(qo,a) = 6*(¢¥,a) V 6¥(qf, a).

F*(q) if ¢ is in Q°
F(q) = { F¥(q) if ¢ is in QY
min{F*(-), F¥(-)} if ¢ =qo
Thus, from the fresh initial state go, Azvy chooses non-deterministically one of

the successor states of A, ’s or A, ’s initial state. Clearly, the accepted language
is the union of the languages of and y.

— Complementation: The automaton for —z is:
A+ (2,Q%65,0,F7)

where § and F* is as defined in Lemma 4, which guarantees that the language
for A, is the complement of that of A.,.
— Concatenation: The automaton for z ; x is:

Az;w : <27Qz UQwqua&FI>

where § is defined, for ¢ € Q7 as:

5((] a) = \/{6'2(% a)} if 6Z(q7 a) NF?={
7 \/{62 (Q7 a)} V qS if 6% (q7 a) N F? ?é (Z)

and, for ¢ € Q@ as §(q,a) = §*(q,a). Recall that A, is a 2NFA automaton.
The accepting condition is F'(¢) = F*(q) for ¢ in Q*, and F(q) =1 for ¢ in
Q* ensuring that looping forever in z is not a satisfying path. Whenever A,
can non-deterministically choose a successor that is a final state, it can also
move to the initial state of A,. Thus, the accepted language is indeed the
concatenation.

— Power: The automaton for z|z)y is:

Az\z})y : <27QZUQIUQyU{q0}7q0757F>

where the initial state qg is a fresh state. The transition function ¢ is defined
as follows. The a successor of qq is:

(g0, @) = 8%(qg,a) vV (6*(q5,a) A V{6%(q5,a)})

The successor of Q% and QY are defined as in A, and A,, i.e., 6%(¢q,a) for
q € Q, 0Y(q,a) for g € Q¥. For g € Q.

5q,a) = V{6%(g,a)} if 6%(¢,a) N F* =10
’ V{67 (g,a)} Vqo if 6%(g,a) N F? #0)

The construction follows precisely the equivalence z|z)yy =y V (z A z; x|2))y)
established in Lemma 2 and the construction for disjunction, conjunction, and
concatenation. Finally, the looping in z is prevented by assigning F(q) = 1
whenever ¢ is in Q#, and otherwise F'(¢) = F*(q) or F(q) = FY(¢q) whenever
q is in Q% (resp. QY). Finally, F(qo) = 1 to ensure that an infinite path that
traverses only states from Q% and g¢g is not accepting.

— Weak power: The automaton for x |z)y is:

Aw\z}y : <27Q2UQIUQyU{qO}7QO357F>

where ¢g and 0 are like for Power. The states in QY and @ are mapped to the
same colors, as before. Now, F(qy) = 2, and F(q) =1 for all ¢ in Q*. Then, a
path that accepts z and visits ¢ infinitely often is accepting.

Complexity From Lemma 3 every regular expression can be translated into a
2NFA with only a linear blow-up in size. Each of the steps in the procedure for
translating RLTL expressions into a 2APW add at most one extra state. Therefore,
the number of states in the produced automaton is at most the number of symbols
in the original expression. For the colors, the only construct that increases the
number of colors is complementation. The rest of the constructs use constant
colors (1 and 2), or the union of sets of colors. Therefore, the highest color in a
generated automaton corresponds to the largest number of nested negations — in
the starting expression.

Second, the structure of the sub-automata is preserved in all stages. We do not
use automata constructions like product or subset constructions; instead only new
states and transitions are added. For the accepting condition, all operations pre-
serve the accepting condition of the automata corresponding to the sub-expression,
except for complementation. Observe also how the automaton for =—z is exactly
the same automaton as for z.

Given a 2APW with n states and & colors one can generate on-the-fly successor
states and final states of an equivalent 1-way nondeterministic Biichi automaton
on words (NBW) with 20(("k)*) gtates [5]. Since emptiness of NBW can be checked
in NLOGSPACE via reachability [30], it follows that emptiness of 2APW is in
PSPACE. Hence, the satisfiability, equivalence and model checking problems for
RLTL are in PSPACE. Together with Proposition 1:

Corollary 1. Checking satisfiability of an RLTL formula is PSPACE-complete.

Using clever manipulation of the automata during the bottom-up construction
one can show that only 3 colors are needed, leading to a better translation into
NBW than the one presented in this paper, using only 20(n*) gtates. The detailed
explanation of this advanced translation is out of the scope of this paper.

5 Conclusion and Future Work

Amir Pnueli postulated in [24]): “In order to perform compositional specification
and verification, it is convenient to use the past operators but necessary to have
the full power of ETL”. In this paper, we have introduced regular linear temporal
logic (RLTL) with past operators that exactly fulfills Pnueli’s requirements, while
at the same time keeping satisfiability and model checking in the same complex-
ity class as for LTL (PSPACE). RLTL (with past) has a finite set of temporal
operators giving it a temporal logic flavor and allows the integration of regular
expressions. Moreover, we have introduced a novel translation of RLTL formu-
las into corresponding automata, which may be of its own interest, as it is truly
compositional (bottom-up).

It should be stressed that a practically relevant specification language needs a
variety of different operators as well as macros to support engineers in the com-
plex job of specifying requirements. In fact, together with industrial partners, the
second author was involved in the development of the language SALT [2] which
acts as a high-level specification language offering a variety of different constructs

while at the same time allowing a translation to LTL. However, the lack of regular
expressions and past operators makes such a translation difficult, error prone, and
leads to automata that do not reflect the structure of the original formula and
might be larger than necessary. It is therefore essential to have a core logic that
is expressive and allows a simple, verifiable translation to automata and allows
a simple translation from high-level languages like SALT. We consider RLTL to
exactly meet this goal. As future work, it remains to build corresponding satisfi-
ability and model checking tools to push RLTL into industrial applications. Also,
some of the operators in PSL can already be mapped into RLTL. For example,
“whenever a is matched p must be true” can be expressed as —(« ;—p). The blow-
up in complexity in PSL (EXPSPACE) with respect to RLTL (PSPACE) can then
fully blamed to the availability of semi-extended regular expressions. Moreover,
the sequential connective in PSL that connects a temporal operator with a regu-
lar expression requiring the overlap of the last symbol can be easily expressed in
RLTL as (z ; true™! ;), which coincides with the PSL semantics, for future reg-
ular expressions. Future study include other PSL operators like bounded iteration
and abort.

Another interesting line of future research is to study symbolic model-checking
algorithms for RLTL.

Acknowledgements. We wish to thank the anonymous reviewers for their help-
ful comments and suggestions.

References

1. H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model and its
temporal logic. In POPL’86, 1986.

2. A. Bauer, M. Leucker, and J. Streit. SALT—structured assertion language for tem-
poral logic. In ICFEM’06, LNCS 4260, September 2006.

3. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The
temporal logic Sugar. In CAV’01. Springer, 2001.

4. Doron Bustan, Alon Flaisher, Orna Grumberg, Orna Kupferman, and Moshe Y.
Vardi. Regular vacuity. In Proc. of the 13th IFIP WG 10.5 Advanced Research
Working Conference (CHARME’05), LNCS 3725. Springer, 2005.

5. C. Dax and F. Klaedtke. Alternation elimination by complementation. In LPAR’08,
LNCS 5530. Springer, 2008.

6. A. Emerson and E. Clarke. Characterizing correctness properties of parallel pro-
grams using fixpoints. In ICALP’80. Springer, 1980.

7. D. Fisman, C. Eisner, and J. Havlicek. Formal syntax and Semantics of PSL: Ap-
pendiz B of Accellera Property Language Reference Manual, Version 1.1, 2004.

8. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal basis of fairness. In
POPL’80, 1980.

9. D. Harel and D. Peleg. Process logic with regular formulas. T'CS, 38:307-322, 1985.

10. J. Henriksen and P.S. Thiagarajan. Dynamic linear time temporal logic. Annals of
Pure and Applied Logic, 96(1-3):187-207, 1999.

11. J. Hopcroft and J. Ullman. Introduction to automata theory, languages and compu-
tation. Addison-Wesley, 1979.

12. H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, 1968.

13

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.
24.

25.

26.

27.

28.

29.

30.

31.

32

D. Kozen. Results on the propositional p-calculus. In ICALP’82. Springer, 1982.
O. Kupferman, N. Piterman, and M. Vardi. Extended temporal logic revisited. In
CONCUR’01, LNCS 215j. Springer, 2001.

M. Lange. Weak automata for the linear time p-calculus. In VMCAI’05, LNCS
8385. Springer, 2005.

M. Lange. Linear time logics around PSL: Complexity, expressiveness, and a little
bit of succinctness. In CONCUR’07, 2007.

F. Laroussinie, N. Markey, and Ph. Schnoebelen. Temporal logic with forgettable
past. In LICS’02, 2002.

M. Leucker and C. Sénchez. Regular linear temporal logic. In ICTAC’07, LNCS
4711. Springer, 2007.

O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logic of Programs,
1985.

Z. Manna and A. Pnueli. Temporal Verif. of Reactive Systems. Springer, 1995.

D. Muller and P. Schupp. Altenating automata on infinite trees. TCS, 54:267-276,
1987.

M. Miiller-Olm. A modal fixpoint logic with chop. In STACS’99, LNCS 1563, 1999.
A. Pnueli. The temporal logic of programs. In FOCS’77, 1977.

A. Pnueli. In transition from global to modular temporal reasoning about programs.
In Logics and models of concurrent systems, NATO ASI F-13. Springer, 1985.

A. Pnueli. Applications of temporal logic to the specification and verification of
reactive systems—a survey of current trends. In Current Trends in Concurrency,
LNCS 224, 1996.

Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification via
testers. In Proc. of 14th Int’l Symp. on Formal Methods (FM’2006), LNCS 4085.
Springer, 2006.

Ph. Schnoebelen. The complexity of temporal logic model checking. In AiML’02,
2002.

A. P. Sistla and E. Clarke. The complexity of propositional linear termporal logics.
JACM, 32(3):733-749, 1985.

L. Stockmeyer. The Computational Complezity of Word Problems. PhD thesis, MIT,
1974.

M. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for
Concurrency: Structure versus Automata, LNCS 1043. Springer, 1996.

M. Vardi and P. Wolper. Reasoning about infinite computations. Inf. Comp., 115:1—
37, 1994.

P. Wolper. Temporal logic can be more expressive. InfoéControl, 56:72-99, 1983.

