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Abstract. We examine the problem of inferring invariants for parametrized sys-
tems. Parametrized systems are concurrent systems consisting of an a priori
unbounded number of process instances running the same program. Such sys-
tems are commonly encountered in many situations including device drivers,
distributed systems, and robotic swarms. In this paper we describe a technique
that enables leveraging off-the-shelf invariant generators designed for sequential
programs to infer invariants of parametrized systems. The central challenge in
invariant inference for parametrized systems is that naı̈vely exploding the tran-
sition system with all interleavings is not just impractical but impossible. In our
approach, the key enabler is the notion of a reflective abstraction that we prove
has an important correspondence with inductive invariants. This correspondence
naturally gives rise to an iterative invariant generation procedure that alternates
between computing candidate invariants and creating reflective abstractions.

1 Introduction

We study the problem of automatically inferring invariants for parametrized systems.
Parametrized systems are multi-threaded programs that may be executed by a finite but
unbounded number of thread instances executing in parallel. The individual thread in-
stances belonging to the same process type execute the same set of program instructions
involving local variables that are unique to each thread instance, as well as the global
shared variables. Parametrized programs are useful in many settings including device
drivers, distributed algorithms, concurrent data structures, robotic swarms, and biolog-
ical systems. The thread instances in a parametrized program communicate through
shared memory and synchronization mechanisms including locks, synchronous ren-
dezvous, and broadcast communication.

In this paper, we define an abstract-interpretation–based framework for inferring
indexed invariants of parametrized programs. A k-indexed invariant of a parametrized
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Fig. 1. A reflective abstraction to infer 2-indexed invariants of a parametrized system. We abstract
the system as two materialized processes and the mirror process.

system is an invariant over the local variables of an arbitrary k distinct thread instances
and the global shared variables. The main idea is to build what we call a reflective ab-
straction of the parametrized program that consists of a fixed number of materialized
processes composed with a mirror abstraction that summarizes the effect of the remain-
ing thread instances on the global variables. In Fig. 1, we hint at this construction for
deriving 2-indexed invariants (and discussed further in Sect. 2).

We show how invariants computed at various program locations of the materialized
processes can be transferred in a suitable way into guards of the mirror process. In this
way, the abstraction of other interfering threads via the mirror process varies during
the course of the analysis — much like how materialization in shape analysis enables
the heap abstraction to vary for better precision. Our approach can be viewed as an ab-
stract interpretation over the cartesian product of the abstract domain of state assertions
over program variables and the reflective abstractions of the environment. This allows
us to cast existing methods for invariant generation for parametrized systems [4,30] as
different iteration schemes for computing fixed points. Finally, we define new iteration
schemes and compare their effectiveness empirically. In summary, we arrive at a char-
acterization of invariants of the parametrized program as fixed points of a monotone
functional that (a) computes a (post-) fixed point on the reflective abstraction and (b)
transfers the fixed point to the guards of the mirror processes.

Overall, this paper contains the following contributions. We present the notion of
a reflective abstraction, which gives a means to summarize the effects of other threads
dynamically during the analysis (Sect. 3). We then formally prove a correspondence
between reflective abstractions and inductive invariants, which leads naturally to an
iterative invariant generation procedure that allows leveraging off-the-shelf invariant
generators for sequential programs (Sect. 4.1). We discuss how the reflective abstrac-
tion framework encompasses interference abstractions (Sect. 4.2), as well as practical
considerations for an implementation (Sect. 4.3). Finally, we present some initial expe-
rience on evaluating applications of our reflective abstraction framework (Sect. 5). In
particular, we study three variants of reflective abstraction and one variant of interfer-
ence abstraction and how they compare with respect to the invariants they obtain. We
find that surprisingly, widening appears to have a less predictable effect for parame-
trized systems than for sequential systems.
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global data: int array(len) where len > 0, next: int where next = 0;

thread P {

local c: int where c = 0, end: int where end = 0;

0 atomic if (next + 10 <= len) { c := next; next := end := next + 10; }

1 while (c < end) {

2 assert(0 <= c && c < len); data[c]:= . . . process data[c] . . .;
3 c := c + 1;

4 }

}

Fig. 2. WORKSTEAL: A parametrized array processing program. Each thread processes a
“chunk” with 10 elements.

2 Overview: Self-Reflection

In this section, we illustrate the basic idea behind reflective abstractions of parametrized
systems, and we give a sense of how such a construction enables inference of k-indexed
invariants. Consider the program WORKSTEAL in Fig. 2. Parametrized programs con-
sist of a fixed but unbounded number of thread instances T1, . . . ,TN where N ≥ 1. In the
rest of this paper, we use [N] to denote the set of indices {1, . . . ,N}. Each thread runs
the set of statements in P. In this program, there is a global array data of size len and
a global variable next that holds the current unprocessed index. Each instance Ti has
thread local variables c[i] and end[i] for i ∈ [N], that is, local variables are replicated for
and indexed by each thread instance. The local variable c[i] holds a current index of the
data element being processed by the thread instance Ti. The variable end[i] holds the
limiting index for thread Ti.

Our goal is to prove properties about the behavior of parametrized systems that must
hold regardless of the number of running thread instances N. The simplest properties
involve only global variables, such as ψ0 : (next mod 10 = 0). Other properties may
also involve local variables, as well as globals. In case local variables are involved, we
differentiate instances of local variables by indexing them. A 1-indexed property refers
to a local variable from a single thread instance. In our example, we wish to prove the
1-indexed property corresponding to the assertion at location 2:

ψ1 : (∀ i) 0≤ c[i]< len (i.e., access of array data is in bounds). (1)

An example of a 2-indexed property is where we wish to establish race-freedom for
distinct thread instances i1, i2 whenever one of the instances resides at location 2:

ψ2 : (∀ i1, i2) c[i1] 6= c[i2] (i.e., access of array data is race free). (2)

We will use i, i1, i2, . . . to refer to process instances ranging within the set of thread
indices [N]. We will assume implicitly that different symbols i j, ik involved in a given
assertion ψ are used to refer to different process instances (e.g., there is an implicit
pre-condition that i1 6= i2 in ψ2).

In this paper, we adapt existing invariant synthesis techniques to parametrized pro-
grams. Our technique allows us to generate invariants such as ψ0, ψ1, and ψ2 for the
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Fig. 3. Transition system models for a materialized thread and the MIRROR process. The guard
Inv@`0 for the MIRROR transition comes from the invariant computed at location `0 in a materi-
alized thread.

parametrized program in Fig. 2. Our approach, inspired by the idea of materialization
in shape analysis [33], is based on identifying a fixed number of materialized processes
and summarizing the remaining processes into a single, separate process that we will
call the MIRROR. We show this idea pictorially in Fig. 1 where a parametrized system
with N thread instances is modeled by three threads: 2 materialized thread instances
P[1],P[2] and the mirror process that summarizes the effects of the N − 2 remaining
thread instances on the shared global variables. The number of materialized processes
is fixed a priori based on the desired form of the invariants. For example, we need to
materialize at least 2 threads to infer 2-indexed invariants. The novel aspect of our re-
flective approach is that the MIRROR process is not fixed a priori but rather is derived
as part of the fixed point analysis.

Fig. 3 shows the basic setup for invariant synthesis for the WORKSTEAL program.
The composition of the materialized thread(s) and the MIRROR yields a regular sequen-
tial transition system that can be analyzed using a standard abstract interpretation en-
gine. The MIRROR process simulates the effect that the remaining (non-materialized)
threads in the system have on the shared variables next and len. In particular, the
MIRROR process has no local variables. The running example has a single transition
from location `0 to `1 that affects the shared variable next (highlighted), and variable
len is never updated anywhere. This transition is copied as a self-loop around a single
location in the MIRROR process, and the local variable updates are quantified away.
However, to maintain precision, it is preferable to restrict the scope of this transition
only to those states of the program that are actually reachable at location `0. We will
over-approximate these states by an assertion Inv@`0. The main question is then to
precisely determine what Inv@`0 is. A simple solution is to assume Inv@`0 : true to
yield a valid over-approximation of all states that are reachable whenever some process
resides at location `0, but true is very often a coarse over-approximation. Our key ob-
servation is that Inv@`0 and correspondingly the construction of the MIRROR process
need not be fixed a priori. Instead, we build a more precise abstraction by incremen-
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tally constructing MIRROR as follows. The first iteration sets Inv@`0 : false, in effect,
disabling the mirror. This iteration approximates only those states reachable by the ma-
terialized threads running in isolation. Subsequently, we run an abstract interpreter and
compute invariants of the composition of the current MIRROR process and the materi-
alized threads. The MIRROR process for the next iteration is updated with Inv@`0 set
to the candidate invariants computed at location `0 in the materialized threads with the
local variables projected out. This candidate invariant reflection allows the MIRROR to
run from a larger portion of the reachable state space. Convergence is achieved when-
ever the invariants obtained at some iteration are subsumed by those at the previous
iteration. At this point, the effect of the mirror and the materialized processes in the
invariants and the guards is stable. Upon convergence, we obtain k-indexed invariants
that relate the local variables of the k materialized threads to the global variables.

3 Reflective Abstractions and Inductive Invariants

In this section, we define the notion of a reflective abstraction of a parametrized system.
We first present the basic model of parametrized systems. The main result of this section
(Theorem 1) proves the soundness of reflective abstractions.

A parametrized system consists of a large, a priori unbounded set of processes that
(a) run the same sequence of instructions and (b) interact with each other through some
synchronization primitives. The model presented here is based on concurrent systems
communicating through shared memory. For convenience, we use the fair transition sys-
tem model [27]. To simplify the presentation further, all program variables are assumed
to be of integer type.

A parametrized transition system Π is described by 〈G,X ,Trs, `0,Θ〉 consisting
of a set of shared (global) variables g ∈ G, a set of local variables x ∈ X , a finite set
of locations ` ∈ Loc, a finite set of transitions τ ∈ Trs, an initial location `0, and an
initial condition Θ that denotes the set of possible initial values of the global and local
variables. A transition τ :

〈
`src, `tgt,ρ

〉
consists of a pre-location `src, a post-location

`tgt and a transition relation ρ that relates the values of the variables (global and local)
before the transition with the values after it. We use primed variables (e.g., g′ ∈ G′ and
x′ ∈ X ′) to refer to the values of the corresponding variables in the post-location.

Example 1 (Parametrized Transition System). Consider the WORKSTEAL program from
Fig. 2. Its corresponding parametrized transition system Π consists of globals G =
{len,next}, locals X = {c,end}, and locations Loc = {`0, `1, `2, `3, `4} with the ini-
tial location being `0. Ignoring the MIRROR process, Fig. 3 depicts the transition re-
lations Trs of the parametrized transition system (solid edges). Not modeling the ar-
ray data means the transition relation ρ between `2 and `3 is a no-op, that is, ρ =
preserve(G∪X). We define preserve(Z) def

= ∧z∈Z z′ = z for any set of variables Z, that is,
the transition relation where all variables in Z are preserved.

The semantics of a parametrized system is given with respect to a positive number N
of thread instances. The overall state of a parametrized system with N thread instances
is described by valuations of the shared (global) variables, the local variable instances,
and the location instances of each thread. That is, a local variable instance x[i] is the
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instance of local variable x ∈ X for thread instance i ∈ [N]. The set X [i] refers to the
local variable instances of thread instance i.

A state σ : 〈L,V 〉 is characterized by a map L : [N]⇀fin Loc that associates a loca-
tion L(i) for each thread instance i and a valuation map V that maps each shared (global)
variable and each local variable instance to its integer value. We write V (G) to denote
the valuations to all global variables and V (X [i]) to denote the valuations of locals of
thread i. We write V |= ϕ for a valuation V satisfying a formula ϕ . Where helpful for
clarity in presentation, we write ϕ[G,X ] to indicate the variables over which the for-
mula ϕ is defined. A run of a parametrized system instantiated with N thread instances
is a finite or infinite sequence of states such that (1) the initial state satisfies the initial
condition, and (2) a step between two successive states is obtained by executing one
transition in one thread instance. More detailed definitions of parametrized systems and
their runs are given in our companion TR [34].

Definition 1 (1-Indexed Invariant). A pair 〈`,ϕ〉 consisting of a location ` and asser-
tion ϕ[G,X ] is a 1-index invariant of a parametrized program Π iff for every reachable
state σ : (L,V ) with N > 0 thread instances, and for every i ∈ [N]

if L(i) = ` then (V (G),V (X [i])) |= ϕ .

In other words, the valuations of the local variables X [i] and global variables G for any
thread instance i reaching the location ` satisfies ϕ .

The notion of 1-indexed invariants generalizes to k-indexed invariants involving the
global variables and the local variables of some k > 0 threads. This generalization is
given explicitly in our companion TR [34].

Example 2 (k-Indexed Invariants). Property ψ1 (see (1) on page 3) is an example of a
1-indexed invariant for the parametrized system in Example 1 (i.e., 〈`2,0≤ c< len〉).
Property ψ2 (see (2) in page 3) corresponds to many 2-indexed invariants at different
pairs of locations. Each invariant is of the form 〈`2, ,c[1] 6= c[2]〉 or 〈 , `2,c[1] 6= c[2]〉
where refers to any location. These invariants say that one of the thread instances
resides at location `2 (and the other anywhere else) with the respective instances of the
local variable c holding different values.

Reflective Abstractions. In essence, a reflective abstraction is an over-approximation
of a parametrized transition system by a sequential one. What makes an abstraction
reflective is that the over-approximation is computed under an assertion map.

We skip the formal definition of sequential transition systems, noting that these
correspond to single thread instances of parametrized transition systems. To denote
specifically a sequentially transition system, we use the meta-variable Σ . Let Γ [X ] be
some fixed first-order language of assertions, such as the theory of integer arithmetic,
involving free variables X . We overload |= to denote the semantic entailment relation
between these formulae. An assertion map η : Loc ⇀fin Γ [X ] maps each location to an
assertion in Γ [X ]. An assertion map η is inductive whenever (1) the assertion at the
initial location subsumes the initial condition (i.e., initiation) and (2) the assertion map
respects the (strongest) post-condition transformer (i.e., consecution): for any transition
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τ between `src and `tgt, the post-condition transformer for τ applied to η(`src) entails
η(`tgt). Standard definitions for the post-condition transformer and inductive assertion
maps are given in our TR [34]. Inductive invariants are fundamental to the process
of verifying safety properties of programs. In order to prove an assertion ϕ over all
reachable states at a location `, we seek an inductive assertion map η over the entire
program such that η(`) |= ϕ . The map η is termed an inductive strengthening of ϕ .

We now formally define the notion of a reflective abstraction, which abstracts a
parametrized system by a system with a k > 0 materialized processes, and a MIRROR
process that models the “interference” of the remaining threads on the shared variables
G. Our key result is that an invariant of a reflective abstraction is that of a parametrized
system. To simplify the presentation, the rest of this section will describe reflective
abstractions with a single materialized thread (i.e., k = 1). Our definitions readily extend
to the case when k > 1.

Let η be an assertion map over the locations of a parametrized system Π . Our goal
is to define a sequential system REFLECTΠ (η). Such a system will contain transitions
to model one specific thread instance, termed the materialized thread, and the MIRROR
process, which models the influence of the other threads on the shared variables.

Definition 2 (Reflective Abstraction). The reflective abstraction of a parametrized
system Π : 〈G,X ,Loc,Trs, `0,Θ〉 with respect to an assertion map η is a sequential
transition system, written REFLECTΠ (η), over variables G∪X, with locations given by
Loc and transitions given by Trs ∪ { MIRROR(τ,η , `) | τ ∈ Trs and ` ∈ Loc } .
The original transitions Trs model the materialized thread, while the MIRROR transi-
tions model the visible effects of the remaining threads.

For transition τ : 〈`src, `tgt,ρ〉 and some location `∈Loc, the corresponding MIRROR
transition MIRROR(τ,η , `) is defined as follows:〈

`, `, preserve(X) ∧ (∃ Y,Y ′)
(
η(`src)[G,Y ] ∧ ρ[G,Y,G′,Y ′]

)〉
.

Finally, the initial location of the reflective abstraction is `0 and the initial condition
Θ (i.e., comes directly from the parametrized system).

Note that each MIRROR transition is a self-loop at location ` of the materialized thread,
or equivalently, MIRROR can be seen as a process with a single location and self-looping
transitions that is composed with the materialized thread. Note that each MIRROR tran-
sition preserves the local variables of the materialized thread. Also, observe that the
(underlined) guard of the MIRROR transition includes the invariant η(`src) of the inter-
fering thread at the pre-location, which can be seen as reflecting the invariant of the
materialized thread at `src on to the interfering thread. Finally, the local variables are
projected away from the transition relation using existential quantification to model the
effect of the materialized transition on the shared variables.

Example 3 (Reflective Abstraction). The following table shows a part of an assertion
map η for the program in Fig. 2, along with the corresponding mirror transitions com-
puted from it, that is, of REFLECTΠ (η). We write ρ(τ) for the transition relation of
transition τ (in the original parametrized system Π ) and ρ(m) for the transition relation
of a MIRROR transition in the reflective abstraction. Note that the assertion map η is not
necessarily inductive.
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Name Invariant/Relation

η(`0) next= 0 ∧ c= 0 ∧ end= 10
ρ(τ0 : 〈`0, `1,ρ0〉) next+10≤ len ∧ c′ = next ∧ next′ = end′ = next+10

∧ preserve({len})
ρ(m0 : MIRROR(τ0,η , )) next= 0 ∧ 10≤ len ∧ next′ = 10 ∧ preserve({len,c,end})
ρ(τ ′0 : 〈`0, `1,ρ

′
0〉) next+10 > len ∧ preserve({next, len,c,end})

ρ(m′0 : MIRROR(τ ′0,η , )) 10 > len ∧ preserve({next, len,c,end})

η(`3) next≥ 0 ∧ c≥ 0 ∧ c< end

ρ(τ3 : 〈`3, `1,ρ3〉) c′ = c+1 ∧ preserve({next, len,end})
ρ(m3 : MIRROR(τ3,η , )) next≥ 0 ∧ preserve({next, len,c,end})

η(`4) next≥ 0 ∧ c≥ 10

The transition relation of the MIRROR transition m0 is derived from the original transi-
tion τ0 by computing: preserve({c,end})∧ ((∃ c,end,c′,end′) η(`0)∧ρ0). Eliminating
the existential quantifier from

preserve({c,end}) ∧

(∃ c,end,c′,end′)

 next= 0 ∧ c = 0 ∧ end= 10 ∧
next+10≤ len ∧ c′ = next ∧ next′ = end′ = next+10 ∧

preserve({len})


yields the MIRROR transition relation of m0 shown above. We note that other MIRROR
transitions preserve the global variables next and len (e.g., m′0 or m3). Thus, these tran-
sitions may be omitted from the MIRROR process while preserving all behaviors. Mirror
transition m0 is the one illustrated in Fig. 3.

We now present the main result involving reflective abstractions: if η is an inductive
invariant of the reflective abstraction REFLECTΠ (η) for a parametrized program Π ,
then for every location `, the assertion η(`) is a 1-indexed invariant (Cf. Definition 1).

Theorem 1 (Reflection Soundness). Let η be an assertion map such that η is induc-
tive for the system REFLECTΠ (η). It follows that for each location ` of Π , η(`) is a
1-index invariant.

The proof proceeds by induction on the runs of the parametrized system Π . The
full proof is provided in our companion TR [34]. To summarize, if one discovers a map
η that is inductive for the system REFLECTΠ (η), then we may conclude that η(`) is
a 1-index invariant for location ` in Π . In spite of its circularity, this characterization
naturally suggests that the process of constructing a suitable η can be cast as a fixed
point and solved using abstract interpretation.

To generalize reflective abstraction to k > 1 materialized threads, we first construct
a transition system that is the product of k-copies of the parametrized program Π . This
transition system uses k-copies of the locals and a single instance of the globals from Π .
Then, given an assertion map η , we add MIRROR transitions to construct the reflective
abstraction following Definition 2 on this product system. Each transition τ is projected
onto the (global) shared variables guarded by the assertion given by η in the transition’s
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pre-location. An inductive assertion derived on the reflective abstraction of the product
system is a k-indexed invariant for the original parametrized system.

4 Reflective Abstract Interpretation

In this section, we present an iterative procedure to generate invariants of a parame-
trized system by applying abstract interpretation on reflective abstractions. We explain
a lazy and an eager approach to reflective abstract interpretation and contrast reflective
abstraction with interference abstraction, a commonly-used approach when analyzing
multi-thread programs (e.g., [30]).

First, we briefly recall the theory of abstract interpretation [13,14,5] for finding
inductive assertion maps as the fixed point of a monotone operator over an abstract
domain. Abstract interpretation is based on the observation that invariants of a program
are over-approximations of the concrete collecting semantics η∗, an assertion map that
associates each location ` with a first-order assertion η∗(`) characterizing all reach-
able states at the location `. Formally, we write η∗ = lfp FΣ (false). Here, FΣ (η) is
a “single-step” semantics—a monotone operator over the lattice of assertion maps that
collects all the states reachable in at most one step of the system Σ , and false maps every
location to false. For this presentation, we will rewrite slightly that familiar equation,
making the transition system Σ an explicit argument of F (rather than fixed):

η
∗ = lfp F (false,Σ) . (3)

We can also define a structural pre-order on sequential transition systems. We say
Σ structurally refines Σ ′, written Σ � Σ ′, as simply saying that Σ and Σ ′ have the
same structure—in terms of their variables, locations, and transitions—and where the
initial conditions and the corresponding transition relations are ordered by |=. It is clear
that if Σ � Σ ′, then the behaviors of Σ ′ over-approximate the behaviors of Σ . A more
detailed definition is given in our companion TR [34]. Now, we can see that the concrete
collecting semantics functional F (η ,Σ) is monotone over both arguments: (a) over
concrete assertion maps ordered by |= location-wise and (b) over sequential transition
systems using the structural pre-order.

The abstract interpretation framework allows one to approximate the collecting se-
mantics of programs in an abstract domain A : 〈A,v,⊥,>,t,u〉 defined by a lattice.
The abstract lattice is related to the concrete lattice of first-order assertions Γ [X ] through
a Galois connection described by an abstraction function α : Γ [X ]→ A that maps as-
sertions in the concrete domain to abstract objects and γ : A→ Γ [X ] that interprets
abstract objects as concrete assertions representing sets of states. In the abstract inter-
pretation framework, we lift the operator F defined over the concrete domain to the
corresponding monotone operator F̂ over the abstract domain A . Analogously, we
write η̂ : Loc ⇀fin A for an abstract assertion map. A fixed point computation in (3) is
then expressed in terms of the abstract domain A as follows: η̂∗ = lfp F̂ (⊥,Σ). Here,
⊥ is the abstract assertion map that maps every location to the bottom element of the
abstract domain ⊥. If A is an abstract domain, then it follows that γ ◦ η̂∗ yields an
inductive assertion map over the concrete domain.
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If the domain A is finite or has the ascending chain condition, the least-fixed point
lfp operator may be computed iteratively. On the other hand, many domains of interest
fail to satisfy these conditions. Herein, abstract interpretation provides us a framework
using the widening operator that can be repeatedly applied to guarantee convergence to
a post-fixed point that over-approximates the least-fixed point. Concretizing this post-
fixed point leads to a valid (but weaker) inductive assertion map.

4.1 Abstract Interpretation using Reflection

The overall idea behind our invariant generation technique is to alternate between con-
structing a (sequential) reflective abstraction of the given parametrized system Π and
applying abstract interpretation for sequential systems on the reflective abstraction. We
distinguish two abstract interpretation schemes: lazy and eager.
Lazy Reflective Abstract Interpretation. Lazy reflective abstract interpretation for
a parametrized system Π proceeds as follows: First, begin with an initial abstract can-
didate invariant map η̂0 that maps each location to the least abstract element ⊥. Then,
iterate the following steps until convergence: (a) compute the reflective abstraction Σ j
using η̂ j; (b) on the reflective abstraction Σ j, apply an abstract interpreter for sequen-
tial systems to obtain the next candidate invariant map η̂ j+1; (c) terminate the iteration
whenever η̂ j+1(`)v η̂ j(`) for all ` ∈ Loc. We now proceed formally to derive the lazy
abstract interpretation scheme above. Let ĜLAZY ,Π be the following operator defined
over the abstract lattice:

ĜLAZY ,Π (η̂)
def
= lfp F̂ (⊥,REFLECTΠ (γ ◦ η̂)) . (4)

Given a map η̂ associating locations with abstract objects, the operator ĜLAZY ,Π is
implemented by (a) concretizing η̂ to compute REFLECTΠ (γ ◦ η̂), the reflective ab-
straction; and (b) applying the least fixed point of F̂ over the reflection. We note that
the monotonicity of ĜLAZY holds where lfp is computable. In particular, we note that
REFLECTΠ (η) is a monotone operator. The overall scheme for inferring invariants of
the original system Π consists of computing the following:

η̂
∗ = lfp ĜLAZY ,Π (⊥) and let map ηinv

def
= γ ◦ η̂

∗. (5)

Soundness follows from the soundness of abstract interpretation and reflection sound-
ness (Theorem 1). In practice, we implement the operator ĜLAZY by constructing a re-
flective abstraction and calling an abstract interpreter as a black-box. Note that if the ab-
stract interpreter uses widening to enforce convergence, ĜLAZY is not necessarily mono-
tone since the post-fixed point computation cannot be guaranteed to be monotone. We
revisit these considerations in Sect. 4.3.
Eager Reflective Abstract Interpretation. In contrast with the lazy scheme, it is pos-
sible to construct an eager scheme that weaves the computation of a least-fixed point
and the reflective abstractions in a single iteration. This scheme can be thought of as ab-
stract interpretation on the Cartesian product of the abstract domain A and the space of
reflective abstractions REFLECTΠ (γ ◦ η̂) for η̂ ∈ (Loc ⇀fin A) ordered by the structural
pre-order relation �.
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The eager scheme consists of using an eager operator and an eager reflective abstract
interpretation as a least-fixed point computation with that operation starting at ⊥:

ĜEAGER ,Π (η̂)
def
= F̂ (η̂ ,REFLECTΠ (γ ◦ η̂)) and η̂

∗ = lfp ĜEAGER ,Π (⊥) . (6)

In other words, we apply a single step of the abstract operator F̂ starting from the map
η̂ over the reflective abstraction from γ ◦ η̂ .

4.2 Interference Abstraction versus Reflective Abstraction

We compare and contrast the eager and lazy reflective abstraction approaches with the
commonly used interference abstraction. The goal of interference abstraction (see for
example [30]) is to capture the effect of interfering transitions flow-insensitively much
like a reflective abstraction. The interference semantics can be expressed concisely in
the formalism developed in this section by the following operator:

η̂
∗ = lfp F̂ (⊥,Σ>) where Σ>

def
= REFLECTΠ (true) . (7)

Here > represents the abstract assertion map that associates each location with > ∈ A.
In particular, the mirror process is fixed to say that any transition in Π (i.e., of an
interfering thread) can fire at any point.

global g: int where g >= 0;

thread P {

local x: int where x = 0;

0 atomic { await(g > 0);

x := g; g := 0; }

1 x := x + 1;

2 atomic { g := x; }

3 }

As a concrete example, consider the parame-
trized system with a global variable g and a lo-
cal variable x shown on the right. At location 0,
a thread waits until the value of the global g is
positive and then saves that value into its local
variable x while setting g to 0. It then increments
that value saved locally and writes it back to the
global g signaling completion of its processing.
Our first goal is to establish that g≥ 0 everywhere.
Consider the transition from location `2 to `3. Following the framework described
in this paper, the ideal transition relation for the corresponding MIRROR transition is
((∃ x) η∗(`2)∧ g′ = x). The interference semantics over-approximates η∗(`2) with
true, so this interference transition is simply a non-deterministic update to g, which
causes a failure to derive g ≥ 0 anywhere. In contrast, the reflective abstraction ap-
proach described in this paper over-approximates η∗ incrementally starting from ⊥ in
the abstract domain. Doing so enables inferring invariants on x that can then be used
to derive g ≥ 0—in particular, using that x > 0 for any thread instance at location `2.
However, the reflective abstraction approach is not complete either. For instance, reflec-
tive abstractions cannot be used to establish the invariant g = 0 when all threads are at
location `1 or `2 without the use of additional auxiliary variables.

4.3 Theory versus Practice: The Effect of Widening

Thus far in this section, we have defined all iterations via least-fixed points of monotone
operators, implicitly assuming abstract domains for which the least-fixed point is com-
putable. However, in practice, abstract interpretation is used with abstract domains that
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do not enjoy this property. In particular, we want to be able to use abstract domains that
rely on widening to enforce convergence to a post-fixed point that over-approximates
the least-fixed point.

Applying abstract interpretation with widening instead of lfp in the previous defi-
nitions of this section raises a number of issues in an implementation. First, the lazy
reflective operator ĜLAZY defined in (4) on page 10 is not necessarily monotonic. To
remedy this in our implementation we enforce monotonicity by applying an “outer join”
that joins the assertion maps from the previous iteration with the one from the current
iteration. To enforce convergence of this iteration, we must apply an “outer widening”
should the abstract domain warrant it.

Another consequence is that the relative precision of the reflective abstract inter-
pretation schemes are unclear. Perhaps counter-intuitively, the interference abstraction
approach described in Sect. 4.2 is not necessarily less precise than the reflective ab-
stract interpretation with ĜEAGER as defined in (6). To see this possibility, let η̂∗EAGER

be the fixed point abstract assertion map computed by iterating ĜEAGER. While the fi-
nal reflective abstraction ΣEAGER : REFLECTΠ (γ ◦ η̂∗EAGER) using ĜEAGER is trivially no
less precise than the interference abstraction ΣINTERFERE : REFLECTΠ (true), the abstract
interpretation with widening is not guaranteed to be monotonic. Instead, this observa-
tion suggests another scheme, which we call eager+. The eager+ scheme runs ĜEAGER

to completion to get ΣEAGER and then applies standard abstract interpretation over this
sequential transition system. In other words, the eager+ scheme is defined as follows:

η̂
∗
EAGER = lfp ĜEAGER ,Π (⊥) η̂

∗
EAGER+ = lfp F̂ (⊥,REFLECTΠ (γ ◦ η̂

∗
EAGER)) . (8)

5 Empirical Evaluation: Studying Iteration Schemes

We present here an empirical evaluation of implementations of the eager, eager+, lazy,
and interference schemes. The main questions that we seek to answer are: (a) how
effective are each of these schemes at generating invariants of interest, and (b) how do
the invariants generated by each scheme compare with each other in terms of precision?
We also look at performance of the analyses secondarily.
Methodology. We consider a set of five benchmarks, including a simple barrier algo-
rithm [29], a centralized barrier [29], the work stealing algorithm presented in Fig. 2, a
generalized version of dinning philosophers with a bounded number of resources, and
a parametrized system model of autonomous swarming robots inside a m×n grid [12].
They range in size from 2–75 locations, 6–24 variables, and 4–49 transitions. For each
problem, we specify a set of target invariants, with the intention to check whether the
automatically generated invariants imply a given program’s safety specification. The
number of target invariants ranges from 4–16. Our study focuses on examining the
technique space rather than the benchmark space, so we do not discuss the details of the
benchmarks. Those details are available in our companion TR [34].

We have implemented the reflective and interference abstraction schemes in the
LEAP theorem proving framework for verifying functional correctness properties of pa-
rametrized programs, currently being developed at the IMDEA Software Institute. The
approaches proposed here extend LEAP by generating invariant assertions automati-
cally. After compiling a parametrized program written in an imperative language into
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Table 1. Timing and precision results for Lazy, Eager, Eager+ and Interference abstract interpre-
tations. Legend: ID: benchmark identifier, Dom: abstract domains, I: intervals, O: octagons, P:
polyhedra, Prps: total number of properties to be proven, Time: seconds, Prp: number of prop-
erties proved, TO: timed out (≥ 1.5 hours), Wid: number of widening iterations (*) for the lazy
scheme we report external widening applications.

ID Dom Prps Lazy Eager Eager+ Interf.

Time Wid* Prp Time Wid Prp Time Wid Prp Time Wid Prp

Tbar I 4 0.1 2 0 0.1 5 0 0.1 5 0 0.1 4 0
P 0.2 4 4 0.1 5 4 0.1 5 4 0.1 4 4
O 0.8 3 3 0.1 5 3 0.1 5 3 0.1 4 3

Wsteal I 5 0.3 6 2 0.1 5 1 0.1 5 1 0.1 4 0
P 2.4 6 1 0.1 7 1 0.2 7 3 0.1 7 5
O 8.2 6 4 7.5 6 4 0.2 6 4 6.2 5 4

Cbar I 9 0.9 3 4 0.1 7 0 0.1 8 0 0.1 7 0
P TO 0 1.7 11 4 2.7 12 5 1.1 10 6
O TO 0 7.5 9 6 11.3 9 6 6.2 8 4

Phil I 14 1.9 4 2 0.1 8 2 0.1 8 2 0.1 7 0
P 11.8 6 14 1.1 11 8 1.8 11 8 6.3 13 14
O TO 0 25 12 4 40 12 4 20 12 4

Rb(2,2) I 16 31.3 8 4 0.4 10 4 0.4 11 4 0.2 10 0
P TO 0 9.3 22 3 15 23 3 5.8 15 4
O TO 0 142 25 3 225 26 3 105 18 3

Rb(2,3) I 18 133 8 6 0.7 10 6 0.9 11 6 0.5 10 0
P TO 0 23 22 5 36.8 23 5 16 15 5
O TO 0 404 25 5 629 26 5 320 18 5

Rb(3,3) I 23 1141 8 9 1.6 10 9 2.1 11 9 0.9 10 0
P TO 0 68.2 22 8 111.5 23 8 52 15 8
O TO 0 1414 25 8 2139 26 8 1168 18 8

Rb(4,4) I 29 TO 0 6.7 11 16 9.4 11 16 3.2 11 0
P TO 0 49 23 15 396 23 15 303 15 15
O TO 0 TO 0 TO 0 TO 0

a transition system, we generate inductive assertions using the lazy, eager, and eager+
reflective abstraction schemes and the interference abstraction scheme. Our framework
directly uses the abstract domains implemented in the Apron library [23]. Narrowing is
used for the eager, eager+, and interference schemes but not the lazy scheme.

Results. Table 1 presents a comparison of timings and precision across the lazy, eager,
eager+, and interference schemes. The running time in seconds is given for each method
under the Time columns. While interference abstractions are the fastest, as expected, it
is perhaps surprising to note that the lazy scheme was markedly slower than the remain-
ing techniques considered. In fact, it times out on many instances. Likewise, we note
that eager and eager+ were only slower by a factor of 1.1–1.5 on most benchmarks when
compared to interference abstraction. Also surprisingly, the time for using polyhedra is
generally faster than octagons. According to the Apron authors, the execution time of
polyhedra can vary widely between good and bad cases, while the worst case and best
case execution time of octagons is the same, which may explain this observation.

The properties proved by each method are given under the Prp columns. Again, sur-
prisingly, the interference semantics fares noticeably better than the other schemes for
the polyhedral domain but noticeably worse on the interval domain. Also, the interval
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domain itself seems to fare surprisingly better than the polyhedral domain in terms of
properties proved. In many cases, however, the properties proved by these domains were
non-overlapping. Perhaps the simplest explanation for this result is that the properties
themselves mostly concern proving bounds on variables. It is not surprising that the
interval domain can establish this. Yet another factor is the use of polyhedral widening.
Since a widening needs to be carried out at every location in the program, the loss of
precision in the polyhedral domain can be considerable.

Table 2. Comparing the strength of
the inference. For a comparison A:B,
+ means A’s invariants are stronger
than B in at least one location and not
weaker elsewhere (conversely for −),
= means the same everywhere, and 6=
means incomparable somewhere.

ID Dom L:E L:E+ L:In E:In E+:In E:E+

Tbar I − − + + + =
P = = + + + =
O = = + + + =

Wsteal I + + + + + =
P + 6= 6= 6= 6= −
O = = + + + =

Cbar I 6= 6= + + + =
P TO TO TO 6= 6= −
O TO TO TO + + =

Phil I + + + + + =
P + + + − − =
O TO TO TO + + =

Rb(2,2) I + + + + + =
P TO TO TO 6= 6= −
O TO TO TO 6= + −

Rb(2,3) I + + + + + =
P TO TO TO 6= 6= −
O TO TO TO 6= + −

Rb(3,3) I + + + + + =
P TO TO TO 6= 6= −
O TO TO TO 6= + −

Rb(4,4) I TO TO TO + + =
P TO TO TO 6= 6= −
O TO TO TO TO TO TO

In Table 2, we compare each pair of methods
in terms of the relative strengths of the invariants
inferred. Some surprising patterns are revealed.
For one, lazy (L), eager (E), and eager+ (E+)
prove stronger invariants for the interval domain
when compared to the interference (In) scheme.
On the other hand, the trend is reversed for the
polyhedral domain. In many cases, the invariants
are either incomparable or invariants of one tech-
nique are stronger at some location and weaker
at others. Conjoining the invariants in these cases
can produce stronger invariants overall.
Interpretation of Results. In theory, all the
methods presented can be viewed as post-fixed
point computations in the product domain repre-
senting sets of states and reflective abstractions.
Our intuition with abstract interpretation suggests
that the interference scheme, which applies a sin-
gle iteration on the sequential system generated
from the > reflection, should fare worse than the
eager scheme which computes a least fixed point
using Kleene iteration. The comparison results
are quite surprising, however. We conclude that
widening and the associated non-monotonicity
play a significant role for parametrized systems.
This effect is much more so than for sequential
systems, wherein, our past experience suggests that non-monotonicity of widening
plays a more limited role. A future direction of research might focus on minimizing the
use of widenings or avoiding them altogether using constraint-based techniques [11] or
recent advances based on policy and strategy iterations [19,20].

6 Related Work

The problem of verifying parametrized systems has received a lot of attention in recent
years. This problem is, in general, undecidable [3]. However, numerous decidable sub-
classes have been identified [7,15,21,16,25,8,1,2,6]. Our approach here is an instance of
the general framework of thread-modular reasoning [18,22,26,9], wherein one reasons
about a thread in isolation given some assumptions about its environment (i.e., the other
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concurrently executing threads). Notably, the approach considered here builds up the
assumptions incrementally via self-reflection.

One of the main issues in verifying parametrized programs is the interaction be-
tween a given thread and its environment, consisting of the remaining threads. Abstract-
ing this interaction finitely has been considered by many, recently by Berdine et al. [4]
and Farzan et al. [17]. In particular, the approach of Berdine et al. is very closely related.
Similarities include the notion of transferring invariants from a materialized thread to
the abstraction of the remaining threads. However, Berdine et al. do not explicitly spec-
ify an iteration scheme, that is, how the inferred candidate invariants are transferred
to the environment abstraction. Furthermore, the effects of widening, including the po-
tential non-monotonicity in many domains, are not studied. As observed in this paper,
such considerations have a significant impact on the generated invariants. Another re-
cent contribution is that of Farzan et al. that explores the interleaving of control and
data-flow analyses to better model the thread interference in parametrized programs. In
our framework, their setup roughly corresponds to the lazy scheme. However, Farzan
et al. do not incrementally consider the transference of data properties, and instead they
focus on ruling out infeasible interferences due to control.

The idea of abstracting away the effects of interacting threads by projecting away
the local variables is quite standard. The recent work of Miné et al. [30] analyzes multi-
threaded embedded systems using this abstraction. Likewise, Kahlon et al. present a
framework for the abstract interpretation of multi-threaded programs with finitely-many
threads. Therein, a melding operator is used to model the effect of an interfering thread
on the abstract state of the current thread [24].

Our approach presented here does not explicitly handle synchronization constructs
such as locks and pairwise rendezvous. These constructs can be handled using the
framework of transaction delineation presented by Kahlon et al. [24]. Here, a single-
threaded sequential analysis pass is first carried out to identify sections of the program
which can be executed “atomically” while safely ignoring the interferences by the re-
maining threads. Exploring the use of the delineated transactions to construct the reflec-
tive abstraction in the framework of this paper is a promising future direction that will
enable us to analyze larger and more complex software systems.

Another class of approaches relies on finite model properties wherein invariants of
finite instantiations generalize to the parametrized system as a whole. One such ap-
proach is that of invisible invariants pioneered by Pnueli et al. [32,35]. This approach
finds inductive invariants by fixing the number of processes and computing invariants
of the instantiated system. These invariants are heuristically generalized to the param-
etrized system, which are then checked to be inductive. In [28], invisible invariants
are generalized in the abstract interpretation framework as fixed points. In specific in-
stances, a finite model property is used to justify the completeness of this technique. A
related method is that of splitting invariants [31,10] that ease the automation of invari-
ant generation but also assumes finite state processes and the existence of a cut-off [15].

7 Conclusion
We have described the reflective abstraction approach for inferring k-indexed invari-
ants of parametrized systems. This approach was inspired partly by the notions of
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materialization-summarization from shape analysis. The central idea was that infer-
ences made on materialized threads can be transferred or reflected on to the summarized
threads (i.e., the MIRROR process). This perspective not only suggests a new technique
but describes a space of possible invariant inference techniques, including previously-
defined interference abstractions. As such, we studied three variants of reflective ab-
straction that we defined and the interference abstraction to better understand their rela-
tive strength in inferring invariants. To our surprise, our study revealed what appears to
be a significant amount of unpredictability in invariant inference strength as the result
of widening. The effect of widening seems to be larger for reflective abstract interpre-
tation of parametrized systems than for standard abstract interpretation of sequential
systems. We hypothesize that the presence of loops at each program location (from the
composition with the MIRROR process) is the primary culprit behind this observation,
suggesting a direction for future inquiry. Another future direction is to examine how
additional structure can be imposed on the summarized threads.
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