
Received 4 July 2023, accepted 14 July 2023, date of publication 24 July 2023, date of current version 14 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3298329

Decentralized Stream Runtime Verification for
Timed Asynchronous Networks
LUIS MIGUEL DANIELSSON 1,2 AND CÉSAR SÁNCHEZ 2, (Senior Member, IEEE)
1DLSIIS Departamento de Lenguajes y Sistemas Informaticos e Ingenieria del Software, Universidad Politécnica de Madrid, 28040 Madrid, Spain
2IMDEA Software Institute, 28223 Madrid, Spain

Corresponding author: Luis Miguel Danielsson (lm.danielsson@imdea.org)

This work was supported in part by FPU18/04362 Grant, in part by PRODIGY Project under Grant TED2021-132464B-I00 and Grant
MCIN/AEI/10.13039/501100011033, in part by the European Union NextGenerationEU/PRTR, and in part by the Research grant from
Nomadic Labs and the Tezos Foundation.

ABSTRACT Problem: We study the problem of monitoring distributed systems such as smart buildings,
ambient living, wide area networks and other distributed systems that get monitored periodically in human
scale times. In these systems computers communicate using message passing and share an almost syn-
chronized clock. This is a realistic scenario for networks where the speed of the monitoring is sufficiently
slow (like seconds or tens of seconds) to permit efficient clock synchronization, where clock deviations are
small compared to the time precision and frequency required by the monitoring. Solution:More concretely,
we propose a solution to monitor decentralized systems where monitors are expressed as stream runtime
verification specifications. We solve the problem for ‘‘timed asynchronous networks’’, where computational
nodes where the monitors run have a synchronized clock with a small bounded maximum drift. These
nodes communicate using a network, where messages can take arbitrarily long but cannot be duplicated or
lost. This setting is common in many cyber-physical systems like smart buildings and ambient living. This
assumption generalizes the synchronous monitoring case. Previous approaches to decentralized monitoring
were limited to synchronous networks, which are not easily implemented in practice because of network
failures. Even when network failures are unusual, they can require several monitoring cycles to be repaired.
Methodology:We describe formally the monitoring problem for timed-asynchronous networks, we describe
a decentralized algorithm and provide proofs of its correctness. Afterwards, we formally analyze the
complexity of our solutions and provide two analysis techniques to approximate the memory requirements.
Finally, we implement the algorithm and perform an empirical evaluation with real data extracted from
four different datasets. Contributions: We propose a solution to the timed asynchronous decentralized
monitoring problem. We study the specifications and conditions on the network behavior that allow the
monitoring to take place with bounded resources, independently of the trace length. Finally, we report
the results of an empirical evaluation of an implementation and verify the theoretical results in terms of
effectiveness and efficiency.

INDEX TERMS Decentralized monitoring, distributed, runtime verification, stream runtime verification,
time asynchronous networks.

I. INTRODUCTION
In many scenarios, the data collected for a given task is intrin-
sically geographically distributed. In turn, the distribution of
data sensed leads to the use of distributed systems.

Examples include smart buildings and ambient living sys-
tems that use wide-area networks to capture and perform

The associate editor coordinating the review of this manuscript and

approving it for publication was Asad Waqar Malik .

computations over the data. Furthermore, in order to preserve
privacy and improve reliability and fault tolerance, it is often
preferable to perform the computations as close to the data
collection locations as possible. This is the concept of edge
computing, as opposed to centralized computing (including
cloud solutions) where all data collected is sent to a central
server for computation.

In this paper we propose a solution to observe a large
class of distributed systems based on runtime verification,

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 84091

https://orcid.org/0000-0002-4429-4966
https://orcid.org/0000-0003-3927-4773
https://orcid.org/0000-0003-3804-997X

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

a lightweight formalmethod approach. Sometimes the system
under analysis requires a decentralized or distributed moni-
toring process for various reasons: geographical distribution
of data, performance, privacy or fault-tolerance among oth-
ers. In this case a network of interconnected monitors will
cooperate to achieve the monitoring task by consuming a
trace of input observations collected at geographically dis-
tributed locations, computing partial results and combining
them to get to the final verdict by exchanging messages.
In decentralized monitoring a specification is decomposed
into a network of monitors that communicate by exchanging
messages and share a global clock that allow to synchronize
the computation. This synchronization is feasible when the
clock skews are small compared to the duration of the cycles,
like when the monitoring cycle is in human scale in seconds
or tens of seconds and the clock skew is, at most, in the
order of milliseconds. Decentralized solutions typically also
assume that the network guarantees that all messages arrive in
a bounded time (for example one monitoring cycle). In con-
trast, in distributedmonitoring processes do not share a global
clock and the network is purely asynchronous.

The solution that we propose in this paper is based on
runtime verification, a lightweight formal method approach
that originates from static formal verification. Static Veri-
fication is concerned with ensuring before deployment that
all executions of a software artifact has certain desirable
properties formally specified (termination, lack of runtime
errors, liveness, privacy, efficiency, etc). One difficulty of
static verification is scalability as all traces of the system have
to be considered. Static verification is even more difficult
for reactive systems such as cyber-physical systems where
both software and hardware interact with the environment.
Verifying reactive systems is even harder when the environ-
ment is not of a computational nature, as human-in-the-loop
systems, systems that depend on the physical environment
(like drones), and distributed systems. In these systems it
is very difficult to model precisely the environment. For
this reason, static verification techniques are often limited or
even not practically viable at all for these kinds of systems
in practice. Runtime verification attempts to alleviate these
issues by (1) avoiding modelling the environment, and (2)
avoiding scalability problems by observing one trace and not
all traces of the system. Runtime verification studies how
to generate a monitor from a formal specification, and how
a monitor will process a trace at runtime to check whether
the trace satisfies or violates the specification (this process is
called monitoring).

Early approaches to RV specification languages were
based on temporal logics [8], [18], [31], regular expres-
sions [46], timed regular expressions [2], rules [3], or rewri-
ting [42]. Another approach to monitor specifications
is Stream Runtime Verification (SRV)—pioneered by
Lola [16]—which defines monitors by declaring equations
that describe the dependencies between output streams of
results and input streams of observations. SRV is a richer

formalism than most RV solutions that goes beyond Boolean
verdicts (like in logical techniques) by allowing specifi-
cations that compute richer verdicts as output. Examples
include counting events and other statistics, computation of
robustness values or generating explanations of the errors.
See [16], [17], [23], [29], and [30] for examples illustrat-
ing the expressivity of SRV languages. In this work we
study and present a solution to the problem of decentral-
ized runtime verification using stream runtime verification
(SRV) specifications under the timed asynchronous model of
computation.

Another important aspect of runtime verification is the
operational execution of monitors: how to collect informa-
tion and how to perform the monitoring task. We focus
in this paper in online monitoring where the monitoring
happens incrementally as the input trace is being observed.
In [9], [17], and [19] the authors consider a centralized spec-
ification which gets deployed as network of distributed mon-
itors connected via a synchronous network, where the global
synchronous clock is used both for communication and peri-
odic sampling. Monitors exchange messages and cooperate
to perform the global monitoring task. This problem is called
decentralized monitoring (see [25]). This synchronous execu-
tionmodel is realistic in many scenarios, for example in smart
buildings or smart cities—where clocks can be synchronized
using a time network protocol—that is sufficiently precise
for round cycles of tens of seconds. A degenerated case
of this setting is a centralized solution: nodes with mapped
observations send their sensed values to a fixed central node
that is responsible of computing the whole specification.
Consider for example an if-then-else specification with a slow
computation needed to obtain the value of both the then and
the else parts. Consider a decentralized deployment with three
monitors connected as a tree: the leaf monitors compute the
then and the else parts, while the root monitor computes the
specification using a Boolean input stream for if part. Assume
that the condition is true 90% of the time, so most of the time
the then value is used and the else value is discarded. Now,
also consider that the network link between the root monitor
and the leaf monitor that computes the else part is slow, the
throughput of the root of the specification remains unaffected
for that 90% of times and the result can be produced without
waiting for the long computation and the network delay of the
link that affect the else part.

We study time asynchronous networks [14], where nodes
share a global clock (built upon bounding the network syn-
chronicity delays and hardware clock drifts) but monitoring
messages can take arbitrarily long. Time asynchronous net-
works [14] ‘‘. . . allow practically needed services such as
clock synchronization, membership, consensus, election, and
atomic broadcast to be implemented’’. Synchronous net-
works are a special case where, additionally, messages take
a known bounded time to arrive. We study here the timed
asynchronous networks of communication together with peri-
odic sampling of inputs, that is a synchronous computation

84092 VOLUME 11, 2023

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

over an asynchronous network. Our solution subsumes our
previously available SRV solution for synchronous computa-
tion and a synchronous reliable network [17].

We call the more general problem studied in this paper
the timed asynchronous decentralized monitoring problem.
Our goal is to generate local monitors at each node that
collaborate to monitor the specification, distributing the com-
putational load while minimizing the network bandwidth and
the latency of the computation of verdicts. Apart from more
efficient evaluation, decentralized monitoring can provide
fault-tolerance as the processes can partially evaluate a spec-
ification using the information provided by the part of the
network that does not fail. In the same spirit, if part of the
network of cooperatingmonitors is clogged—in the sense that
it is working slower for some reason—the other part can keep
its normal throughput.

Also, we consider inputs to always be available so that
the input traces are complete and we have a value for each
time instant. In this paper we provide a solution to the decen-
tralized monitoring problem for Lola [16] specifications for
arbitrary network topologies and placement of the local mon-
itors. We also assume in this paper a reliable system: nodes
do not crash, and messages are not lost or duplicated. The
only possible fault that we consider is network delays. These
assumptions are realistic in a practical distributed setting
using the following standard techniques. For the reliability of
nodes we could use persistent memory in the sense that at the
end of each computing round all the internal memory of each
node is dumped to persistent storage. For the message loss
and duplication we could employ a standard technique: either
TCP/IP protocol or sliding windows. Both of them guarantee
that messages are delivered in order to the destination.

Our assumptions on nodes not crashing, and messages not
getting lost or duplicated are common in the decentralized
RV community [1], [9], [17], [19], [20], [21], [22], [43], [47]
and in classical distributed algorithms [35]. Most previous
works are centralized and of those that are decentralized the
majority are based on synchronous systems where messages
take a fixed amount of time to arrive, or even a single time
unit.

Other typical solutions to attack this problemmay be to use
a cloud solution or a centralized server that would collect all
data and process it. Some limitations of this approach are a
single point of failure, extra latency compared to processing
near the data gathering locations, loss of privacy: since all
data must be sent to a central node that gets to observe all
information. Consequently, a core idea of decentralized RV
is to be able to monitor in the same infrastructure as the
observed system and, ideally, consume near to zero resources
per node in order to avoid affecting the observed system
performance. To this end, decentralizing the monitoring task
is the most straightforward way of reducing the impact of the
monitoring task(by distributing it) on all nodes of the system.
In the RV community decentralized monitoring is desirable
in order to improve on the privacy, latency and fault-tolerance

of the system [1], [9], [17], [19], [20], [21], [22], [43], [47].
We build upon this tradition and extend it in our work.

A. OUR SOLUTION
We use the fact that a global clock is available to use a model
of computation for monitoring that proceeds in rounds, where
each round consists on input readings and process incoming
messages, followed by an update the internal state of the
local monitors and finally producing output messages. These
messages may take arbitrarily long to arrive. In our solution,
different parts of the specification are deployed into different
network nodes as a local monitors. Each monitor models
a different part of the specification modeled as a streams,
including input readings. Local monitors will communicate
with other monitors when necessary to resolve the streams
assigned to them, trying to minimize the communication
overhead.

Intuitively, data will be read from sensors, and then each
layer of intermediate monitors will compute sub-expressions
and communicate partial results to remote monitors in charge
of super-expressions, ultimately computing the stream of
values of the root expression. The SRV language that we
consider to write the specifications is Lola [16], [45]. We will
identify those specifications and conditions on the network
behavior that allow themonitoring to take place with bounded
resources, independently of the trace length.

B. MOTIVATING EXAMPLE
Example 1: We use as a running example a smart building

with rooms equippedwith sensors and a central node. The aim
is to generate alarms when there is a fire risk. There are two
ways of generating the alarm, either by manual activation or
when the increment in a certain room in both temperature and
CO2 is higher than a threshold. The following specification
captures this risk by obtaining the increment in temperature
and CO2 in a given room. We place the computations needed
to obtain the increment of the inputs to those nodes where
the sensor readings take place. In this way, the central node
only needs to compute which rooms present an increment
higher than the threshold in both temperature and CO2 while
considering if there is a manual activation of the alarm.
We omit the fact that there would be several rooms that
are identical, and the only difference in the building mon-
itor is that it should consider all the increments of all the
rooms.

@Room{
input num t
input num co2
define num tinc = (t - t[-1|1]) / t[-1|1]
define num co2inc = (co2 - co2[-1|1]) / co2[-1|1]

}
@Building{
input bool manual
output bool fire_risk =
manual_alarm or (tinc > 0.3~and co2inc > 0.3)

}

VOLUME 11, 2023 84093

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

C. CONTRIBUTIONS
The main contribution of this paper is a solution to the timed
asynchronous decentralized stream runtime verification prob-
lem. We provide a proof of correctness of the algorithms
and show that our solution subsumes a synchronous decen-
tralized problem without overhead. A second contribution
is the description of those specifications and conditions on
the network behavior that allow the monitoring to be car-
ried out with bounded resources, independently of the trace
length. Bounding resources is of uttermost importance in
cyber-physical systems where memory, bandwidth and com-
putational power are limited, and still the system must react
properly and timely to the changing environment. If a monitor
is trace-length independent it can run for indefinitely long
even if the resources are physically constrained. A third
contribution is a prototype implementation and an empirical
evaluation. A fourth contribution is a modified algorithm
that allows nodes to save bandwidth by only communicating
stream values when requested.

D. STRUCTURE
Section IV contains the solution to to the timed asynchronous
decentralized stream runtime verification problem as well as
its proofs and the algorithm. Section V contains the anal-
ysis of resource usage based on the different conditions
that affect it. The empirical evaluation is in Section VI.
In Section VII, the modified version of the algorithm is
presented. Section II contains the related work and Section III
contains the preliminaries. Section VIII concludes.

II. RELATED WORK
The term decentralized monitoring is used in the survey [25]
to distinguish the term from distributed monitoring where
processes do not share a global clock. In distributed moni-
toring a complete asynchronous network is assumed, while
typically decentralized monitoring assumes a completely
synchronous network where all samples and communication
occur in lockstep. In this paper we explore the middle ground:
network nodes share a sufficiently synchronized global clock
(like in synchronous distributed systems) but communication
can take arbitrarily long (like in asynchronous distributed sys-
tems). Also, in [25] they present other concepts such as policy
checking that are called decentralized monitoring that do not
correspond to the monitoring presented in this paper, because
they are concerned only about global safety properties that
can be used for asynchronous networks with asynchronous
computations.

In [27] they also study timed asynchronous networks of
cooperating monitors but use an SMT-solver for simplifying
LTL formulas. In [28] they use MTL for time asynchronous
networks (bounded-skew clocks) to monitor blockchain exe-
cutions using a formula rewriting scheme based on an
SMT-solver.

Distributed stream processing has been largely studied.
In [41] they use the concept of streams in Complex Event

Processing, where events may be structured datatypes and
where computation may be complex in the sense that several
operations are needed for each event, for example in sliding
window operations to make aggregate calculations on the
arriving events. The aim of [41] is merging privacy and
approximation techniques obtaining zero-knowledge privacy
and low-latency and efficient analytics. In [11] Apache Flink
is introduced where stream dataflows processing is used to
handle continuous streams and batch processing.

Distributed and decentralized monitoring has been studied
in the context of runtime verification. The work in [25]
uses slices to support node crashes and message errors
when monitoring distributed message passing systems with a
global clock. Bauer et al. [7] introduce a first-order temporal
logic and trace-length independent spawning automaton, and
in [9] show a decentralized solution to monitor synchronous
systems using formula rewriting. The language used is a
three-valued variant of LTL with a central value that captures
when an expression has an unknown value so far and we need
to process more of the input trace to determine its truth value.

This is improved in [19], and [20] using a datastructure that
stores the partially evaluated expressions by different mon-
itors with their partial information that allow decentralized
monitors to infer the state in which the monitoring automaton
is in. In [21] the authors extend this data structure with dis-
tributed and multi-threaded support along with guaranteeing
the determinism of the data structure by construction. Then
they analyze the compatibility and monitorability of decen-
tralized specifications in this setting. However, the verdicts
and data are still Boolean and the network is assumed to
be full synchronous. In [22] the authors use the same datas-
tructure for a case study on the orange4Home dataset where
they exploit hierarchies andmodularity in decentralized spec-
ifications to reduce computation and bandwidth. In [32]
global choreographies (as a kind of master-based protocol)
are synthesized (including control flows, synchronization,
notification, acknowledgment, computations embedding) to
distributed systems. Also, they provide a transformation to
Promela which allows to verify the implementation using
LTL specifications. Some schemes that they showcase are a
variant producer-consumer or two-phase commit and apply
it to building micro-services such as a buying system. This
work focuses on synthesizing the flow of monitors, but again
(unlike in our solution) the observations and verdicts are
Boolean. In [43] authors define a decentralized RV technique
in an asynchronous computation model, based on timed reg-
ular expressions as the specification language. They consider
only Boolean inputs and verdicts and a wandering specifi-
cation gets updated as it travels through the monitors with
the new information from inputs that the monitors store in
memory. In [1] they use probabilistic traces to monitor in
distributed systems where the input trace may lack some
information, and obtain a probability that the monitor reaches
certain states, because they cannot compute it precisely,
though they need clock synchronization for informing of the
presence of a lack of information. Monitors need to output

84094 VOLUME 11, 2023

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

without waiting for other monitors in order to avoid blocking
the system.

In [34] a synchronous network of LTL-monitors cooperate
to achieve a verdict on the system under test while they
may suffer crashes. In this scenario an SMT-based algorithm
for synthesizing the automata for the LTL-monitors is pre-
sented that achieves fault tolerance providing soundness even
though crashed monitors never recover. Even though this
work considers failures (which is out of the scope of our
paper) they assume synchronous communication. In [10]
decentralized monitoring in an asynchronous environment
(network and computation) with crash-resilient monitors that
may crash but then they do not recover for the duration of
the execution. Sen et al. [47] introduced a variant of LTL
logic for monitoring distributed systems, but they consider
a complete asynchronous distributed system and they are
limited to Boolean verdicts. In [12] totally asynchronous and
fault-tolerant network and computing is considered for the
problem of runtime verifying the linearization of wait-free
concurrent algorithm implementations. In [36] monitoring
signal temporal logic in a timed asynchronous network they
encode the specification as an SMT problem using a central
monitor for Boolean inputs. The tool Monpoly is introduced
in [6] which implements a centralized monitoring algorithm
for verifying policies expressed in metric first-order tem-
poral logic. In [4] monitoring the Internet Computer with
Monpoly they construct a log using a pre-processor that
enables them to verify policies of this giant distributed sys-
tems using a centralized monitor. In [26] a benchmark to
compare decentralized enforcement algorithms is presented.
It implements different strategies (globally optimal, locally
optimal) and effectively compares them by measuring band-
width and computation used. In [44] runtime enforcement
of message sequences is introduced, where nodes have a
monitor that prevents sending messages that might produce
unwanted message sequences. This is a limitation compared
to asynchronous networks, where there is no possible way of
ordering messages. Again, all these approaches consider only
Boolean verdicts. In comparison, SRV can generate verdicts
from arbitrary data domains.

All previous SRV efforts, from Lola [16], Lola2.0 [23],
Copilot [38], [39], [40] and extensions to timed event streams,
like TeSSLa [13], RTLola [24] or Striver [30] assume a cen-
tralized monitoring setting. In [29] the relationship between
time-based (soft real time) and event-based models of com-
putation and their effects on SRV are explored, but again in
the centralized setting. The work in [5] shows how to monitor
Metric Temporal Logic (MITL) specifications of distributed
systems (including failures and message reordering) where
the nodes communicate in a tree fashion and the root emits the
final verdict. We extend our previous work in [17] to timed
asynchronous networks.

The table in Fig. 1 classifies the related work according to
whether the specifications emit Boolean verdicts (Logics vs
Streams), according the whether the system is centralized or
decentralized and the assumption on the network.

FIGURE 1. RV works by specification language and computation-network
model of the monitor(s).

III. PRELIMINARIES
We recall now SRV briefly. For a more detailed description
see [16] and the tutorial [45]. The fundamental idea of SRV,
pioneered by Lola [16] is to describe monitors declaratively
via a set of equations that describe the dependencies between
output streams of values and input streams of values. Differ-
ent monitors can be generated to perform online monitoring
(where the observations are events received incrementally) or
offline (where there is a log produced during a past execution
that can be traversed back and forth). We focus here on online
monitoring.

A monitor is generated from a specification, which at
runtime computes a sequence of values for the output streams
as soon as possible after observing each value from input
streams. Input values are typically extracted from some sen-
sor or read from a log file.

A Lola specification declares output streams in relation
to the input streams, including both future and past tempo-
ral dependencies. The Lola language cleanly separates the
temporal dependencies from the individual operations to be
performed at each step to compute the internal and output
values of the monitors. For example, integers and Booleans
verdicts require different operations but the temporal depen-
dencies may be the same. This leads to a generalization of
monitoring algorithms from temporal logics to the compu-
tation of richer values such as numbers, strings or richer
data-types.

A. LOLA SYNTAX
A Lola specification consist of declaring the relation between
output streams and input streams of events. Stream expres-
sions are terms built using a collection of (interpreted) con-
structor symbols. Symbols are interpreted in the sense that
each constructor is not only used to build terms, but it is also
associated with an evaluation function, that given values of
arguments produces a value of the return type. For example+
and ∨ are constructor symbols to build integer and Boolean
expressions (resp.) and the interpretation is the usual: addition
and disjunction.

Given a set Z of typed stream variables the set of stream
expressions consists of (1) variables from Z , (2) offsets
v[k, d] where v is a stream variable of type D, k is a natural
number and d a value from D, and (3) terms f (t1, . . . , tn)
using constructor symbols f from the theories to previously

VOLUME 11, 2023 84095

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

defined terms. Stream variables represent sequences of values
(streams) in the specification.

The intended meaning of an offset expression v[−1, false]
is the value of stream v in the previous position of the trace
(or false if there is no such previous position, that is, at the
beginning). We use TermD(Z) for the set of stream expres-
sions of type D constructed from variables from Z (and drop
Z if clear from the context). Given a term t , sub(t) represents
the set of sub-terms of t .
Definition 1 (Specification): A Lola specification ϕ(I ,O)

consists of a set I = {r1, . . . , rm} of input stream variables,
a set O = {s1, . . . , sn} of output stream variables, and a set
of defining equations, si = ei(r1, . . . , rm, s1, . . . , sn) one per
output variable si ∈ O. The term ei is from TermD(I ∪ O),
where D is the type of si.
We will use r, ri, . . . to refer to input stream variables,;

s, si, . . . to refer to output stream variables; and u, v, . . . for
an arbitrary input or output stream variable. Given ϕ(I ,O)
we use appears(u) for the set of output streams si such that
u appears in the defining equation of si, that is appears(u) =
{si | u[−k, d] ∈ sub(ei) or u ∈ sub(ei)}. Also, ground(t)
indicates whether expression t is a ground expression (con-
tains no variables or offsets) and therefore can be evaluated
into a value using the interpretations of constants and function
symbols.
Example 2: The property ‘‘sum the previous values in

input stream y, but if the reset stream is true, reset the
count’’, can be expressed as follows, where stream variable
root uses the accumulator acc and the input reset to
compute the desired sum. The stream acc is defined with
the keyword define to emphasize that it is an intermediate
stream.

input bool reset
input num y
define int acc = y + root[-1|0]
output int root = if reset then 0~else acc

B. LOLA SEMANTICS
We introduce now the formal semantics of Lola, that guar-
antees that there is a unique correct output stream for each
input stream. This semantics is denotational and allows to
prove that a monitoring algorithm is correct by showing
that the algorithm produces the desired output. At runtime,
input stream variables are associated incrementally with input
streams of values.

Given an input streams σI (one sequence per input stream
variable) and given an output candidate σO (one sequence
per output stream) the formal semantics captures whether
the pair (σI , σO) matches the specification, which we write
(σI , σO) |H ϕ. We use σr for the stream in σI corresponding
to input variable r and σr (k) for the value of stream σr at
position k . For (σI , σO) |H ϕ to hold, all streams must be
sequences of the same length.

A valuation of a specification ϕ is a pair σ : (σI , σO) that
contains one stream (of values of the appropriate type) and of
the same length for each input and output stream variable in ϕ.

Given a term t , the evaluation JtKσ is a sequence of values of
the type of t defined as follows:
• If t is a stream variable u, then JuKσ (j) = σu(j).
• If f = f (t1, . . . , tk) then

Jf (t1, . . . , tk)Kσ (j) = f (Jt1Kσ (j), . . . , JtkKσ (j)).

• Finally, if t = v[i, c] is an offset then
− Jv[i, c]Kσ (j) = JvKσ (j+ i) if 0 ≤ j+ i, and
− Jv[i, c]Kσ (j) = c otherwise.

A valuation (σI , σO) satisfies a Lola specification ϕ when-
ever for every output variable si, JsiK(σI ,σO) = JeiK(σI ,σO).
In this case we say that σ is an evaluation model of ϕ and
write (σI , σO) |H ϕ.
The intention of a specification ϕ is to describe a unique

output from a given input, which is guaranteed if ϕ has no
cycles in the following sense. A dependency graph Dϕ of a
specification ϕ(I∪O) is a weightedmulti-graph (V ,E) whose
vertices are the stream variables V = I ∪ O, and where E
contains a directed weighted edge u

w
−→ v whenever v[w, d]

is a sub-term in the defining equation of u. A specification ϕ

is well-formed if Dϕ contains no zero-weight cycles, which
guarantees that no stream depends on itself at the current
position.

FIGURE 2. Dependency graph for Example 1.

Considering Example 1 its dependency graph is shown
in Fig. 2. Given a stream variable u and position i ≥ 0 an
instant stream variable (or simply instant variable) is defined
as the pair u⟨i⟩, which is a fresh variable of the same type
as u. Instant variable u⟨i⟩ represents the value of the stream
associated with u at time i. Note there is one different instant
variable u⟨i⟩ for each instant i. The evaluation graph EG is the
unrolling expansion of the dependency graph for all instants.
Given ϕ(I ,O) and a trace length M (or M = ω for infinite
traces) the evaluation graph Gϕ,M has as vertices the set of
instant variables {u⟨k⟩} for u ∈ I ∪ O and 0 ≤ k < M , and
has edges u⟨k⟩ → v⟨k ′⟩ if the dependency graph contains an

edge u
j
−→ v and k + j = k ′

Consider again Example 1. The corresponding evalua-
tion graph for trace length M = 3 is shown in Fig. 3.
Note that tinc⟨2⟩ points to t⟨1⟩ in all evaluation graphs

84096 VOLUME 11, 2023

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

FIGURE 3. Evaluation graph for Example 1.

with M ≥ 2. We denote by es⟨k⟩ the term (whose leafs
are instant variables) that results from es at k , by replacing
the offset terms with the corresponding instant variables cor-
rected with the appropriated shift. Consider again Example 1.
The instant stream expression etinc for tinc at instant 2 is
tinc⟨2⟩ = (t⟨2⟩ − t⟨1⟩)/t⟨1⟩.
Nodes of the dependency graph form a DAG of Maximal

Strongly Connected Components (MSCCs). Specifications
whose dependency graph has no positive cycles are called
efficiently monitorable specifications [16]. There are no
cycles in the evaluation graph of an efficiently monitorable
specification, which enables us to reason by induction on
evaluation graphs, as we will do later. Note that these spec-
ifications can have positive edges (corresponding to future
dependencies) as long as they do not form a positive cycle.
As it can be shown [45] these specifications can be evaluated
online (incrementally) with finite memory with a central
monitor.
Example 3: The following code snippet shows a non-

efficiently monitorable, an efficiently monitorable specifica-
tion and a very efficiently monitorable. The first snippet is a
non-efficiently monitorable specification because the stream
b depends on itself in the future, in the Evaluation Graph (EG)
all instant variables will depend on the next instant unbound-
edly to the future. This will make all instant streams b to never
be resolved in an infinite trace.

input int a
output int b = b[1|0]

Next specification is an efficiently monitorable specification
because there are only bounded references to the future: each
instant variable b⟨k⟩ only depends on the instant variable a
two positions ahead, so every instant variable b⟨k⟩ it will be
resolved at time k + 2.

input int a
output int b = a[2|0] + b[-1|0]

The following is a very efficiently monitorable specification
because there are no reference to the future, all offsets are
either negative or zero.

input int a
output int b = a + b[-1|0]

C. DECENTRALIZED SYNCHRONOUS ONLINE
MONITORING
An online decentralized algorithm to monitor Lola specifica-
tions in a synchronous network is presented in [17]. The main

idea is to use a network of cooperating nodes to monitor
a Lola specification. The specification is sliced according
to its syntax tree and each subexpression, including inputs,
is mapped to a node (fixed at deployment time). Monitors
share to other monitors their partial results (values of the
instant variables of the subexpressions they control) via mes-
sages. At each time instant each monitor will read inputs,
update its internal expressions and communicate results with
the appropriate nodes so that the specification ends being
computed by means of those partial results.

Therefore, given a well-formed Lola specification, the
decentralized online algorithm presented in [17] incremen-
tally computes the value for each output instant variable
assuming a synchronous network where messages are not
lost or duplicated. The algorithms presented here extend this
solution to the more general setting of timed asynchronous
networks.

IV. DECENTRALIZED STREAM RUNTIME VERIFICATION
FOR TIMED ASYNCHRONOUS NETWORKS
In this section we describe our solution to decentralized
monitoring of stream runtime verification for Timed Asyn-
chronous Networks. Our algorithm computes the unique
values of the output instant variables based on the values of
the input readings. We prove the termination of the algorithm
in Theorem 1 and its correctness in Theorem 2, verifying that
the operational semantics are equivalent to the denotational
semantics from Section III.
We start from a well-formed Lola specification and a static

mapping between streams and the network nodes where they
are computed. Each network node will host a local monitor
that is responsible for computing some of the streams of the
specification. We denote µ(s) for stream variable s is the net-
work node whose local monitor is responsible for resolving
the values of stream s. Local monitors exchange messages
containing partial results whenever needed in order to com-
pute the global monitoring task (the stream of values of the
root stream of the specification) Our decentralized algorithm
may compute some output values at different time instants
than a centralized version, due to the different location of the
inputs and the communication delays.

We study this effect both theoretically in Section V, and
empirically in Section VI. A centralized monitor corresponds
with the operational semantics in [16], and [45] which is
equivalent with a network mapping that assigns all input
and output streams to a single node and therefore avoids
communication.

A. PROBLEM DESCRIPTION
1) NETWORK
We model the network by a set of nodes N that can commu-
nicate with each other sending messages. We assume reliable
unicast communication (no message loss or duplication) over
a timed asynchronous network, so a given message can take
an arbitrary amount of time to arrive. Since network nodes

VOLUME 11, 2023 84097

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

share a global clock, the computation proceeds in cycles.
In every cycle, all nodes in the network execute—in parallel
and to completion—the following actions: (1) read input
messages, (2) perform a terminating local computation, (3)
generate output messages. We use the following type of mes-
sage: (s⟨k⟩, c, ns, nd) where s⟨k⟩ is an instant variable, c is
a value of the type of s, ns is the source node and nd is the
destination node. The interpretation of this message is that
node ns informs node nd that the value of s⟨k⟩ is c. We use
the following abbreviations msg.src = ns, msg.dst = nd ,
msg.stream = s⟨k⟩ and msg.val = c.

2) STREAM ASSIGNMENT AND COMMUNICATION STRATEGY
Given a specification ϕ(I ,O) and a network with nodes N ,
a stream assignment is a map µ : I ∪ O→ N that assigns a
network node to each stream variable. The node µ(r) for an
input stream variable r is the location in the network where r
is sensed in every clock tick. At runtime, the value of r⟨k⟩
is read at node µ(r) at instant k . On the other hand, the
node µ(s) for an output stream variable s is the network node
responsible for resolving the values of s.
An instant value v⟨k⟩ is automatically communicated to

all potentially interested nodes whenever the value of v⟨k⟩
is resolved. Let v and u be two stream variables such that v
appears in the equation of u and let nv = µ(v) and nu = µ(u).
Then, nv informs nu of every value v⟨k⟩ = c that nv resolves
by sending a message (v⟨k⟩, c, nv, nu). We are finally ready
to define the decentralized SRV problem.
Definition 2: A decentralized SRV problem ⟨ϕ,N , µ⟩ is

characterized by a specification ϕ, a network with notes N
and a stream assignment µ for every stream variable.
We use DSRV to refer to the decentralized SRV problem.

Solving a DSRV instance consists of computing the values
of the instant variables corresponding to the output streams
(based on the values of the instant variables of the input
streams).

B. MODEL OF COMMUNICATION
We now describe in detail the timed asynchronous model of
computation. Every message inserted in the network arrive at
its destination according to the following conditions:

• Always later : every message m inserted at t will arrive
at t ′ with t ′ > t;

• Arbitrary delay: there is no a-priori bound on the amount
of time that any message will take to arrive.

• FIFO between each pair of nodes: let m1 and m2 be two
messages with the same origin and destination,m1.src =
m2.src and m1.dst = m2.dst . Let m1 is inserted at t1 and
arrive at t ′1 and let m2 be inserted at t2 and arrive at t ′2.
If t1 < t1, then t ′1 ≤ t ′2. That is, m1 cannot arrive later
than m2.

The synchronous model is a particular case of the timed
asynchronous model in which all messages inserted in the
network will always take the same amount of time between
each pair of network nodes. In this case the delay will always

be a constant. Formally, to analyze the behavior of our algo-
rithms we model the message delays as a family of functions
arru→v (one for each pair of nodes u and v, which provides
at every moment t the instant t ′ at which a message sent at t
from u will arrive at v.

C. DSRV FOR TIMED ASYNCHRONOUS NETWORKS:
MONITOR AND ALGORITHM
Our solution consists of a collection of local monitors, one
for each network node n. A local monitor ⟨Qn,Un,Rn⟩ for n
maintains an input queue Qn and two storages:
• Resolved storage Rn, where n stores resolved instant
variables (v⟨k⟩, c).

• Unresolved storageUn, where n stores unresolved equa-
tions v⟨k⟩ = e where e is not a value, but an expression
that contains other instant variables.

When n receives a message from a remote node, the infor-
mation is added to Rn, so future local requests for the
information can be resolved locally and immediately. At the
beginning of the cycle of computation at instant k , node n
reads the values for input streams assigned to using local
sensors and instantiates for k all output stream variables that
n is responsible for. After that, the equations obtained are
simplified using the knowledge acquired so far by n, which is
stored inRn. Finally, newmessages are generated and inserted
in the queues of the corresponding neighbors.
More concretely, every node n will execute the procedure

Monitor shown in Algorithm 1, which invokes Step in every
clock tick. The procedure Finalize is used to resolve the
pending values at the end of the trace to their default. Note
that this procedure is never invoked if the monitor trace never
terminates (the monitor will be continuously observing and
producing outputs). The procedure Step executes the follow-
ing steps:

1) Process Messages: Lines 7 invokes ProcessMessages
procedure in lines 23-25 that deals with the processing
of incoming messages, adding them to Rn

2) Read Inputs and Instantiate Outputs: Line 8 reads
new inputs for current time k , and line 9 instantiates the
equation of every output stream that n is responsible for.

3) Evaluate: Line 10 invokes the procedure Evaluate,
in lines 14 − 22 which evaluates the unresolved equa-
tions.

4) Send Responses: Line 12 invokes SendResponses,
in lines 26-28, sending messages for all newly resolved
variables.

5) Prune: Line 29-31 prunes the set R from information
that is no longer needed. See section V-A5.

D. FORMAL CORRECTNESS
We now show that our solution is correct by proving that the
output computed is the same as in the denotational semantics,
and that every output is eventually computed.
Theorem 1: All of the following hold for every instant

variable u⟨k⟩:

84098 VOLUME 11, 2023

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

Algorithm 1 Local monitor at node n with ⟨Qn,Un,Rn⟩
1: procedureMonitor
2: Qn← ∅; Un← ∅; Rn← ∅; k ← Now()
3: while not END do Step(k)
4: M ← k; Finalize(M)
5: procedure Step(k)
6: Rold ← MSn.Rn
7: ProcessMessages(MSn)
8: Rn.add({r⟨k⟩ 7→read(r, k) | r ∈ insn})
9: Un.add({s⟨k⟩ 7→es⟨k⟩ | s ∈ outsn})

10: Evaluate(MSn)
11: Rnew← MS.Rn \ Rold
12: SendResponses(MSn)
13: Prune(MSn)
14: procedure Evaluate(MSn)
15: done← false
16: while not done do
17: done← true
18: for all s⟨k⟩ 7→e ∈ Un do
19: e′← Subst(e,Rn)
20: if ground(e′) then done← false
21: Un.del(s⟨k⟩ 7→e);Rn.add(s⟨k⟩ 7→e′)
22: else Un.del(s⟨k⟩ 7→e);Un.add(s⟨k⟩ 7→e′)
23: procedure ProcessMessages(MSn)
24: for all msg = ⟨resp, s⟨k⟩, c⟩ ← Qn.pop() do
25: Rn.add(s⟨k⟩ 7→c)
26: procedure SendResponses(MSn,Rnew)
27: for all u⟨k⟩ 7→c ∈ Rnew do
28: send(resp, s⟨k⟩, c, n, nr)
29: procedure Prune(MSn,Rnew)
30: for all u⟨j⟩ 7→c s.t. now ≥ MTR(u⟨j⟩) do
31: Rn.del(u⟨ji⟩ 7→ci)} ▷ Remove

(1) The value of u⟨k⟩ is eventually resolved.
(2) The value of u⟨k⟩ is c if and only if (u⟨k⟩, c) ∈ R at some

instant.
(3) A response message for u⟨k⟩ is eventually sent to all

interested network nodes (all nodes responsible for
streams v where u ∈ appears(v)).

Proof: The proof proceeds by induction on the evalu-
ation graph, showing simultaneously in the induction step
(1)-(3) as these depend on each other in the previous inductive
steps. Let M be a length of a computation (which can be
infinite, that is M = ω) and σI be an input of length M .
Note that (1) to (3) above are all statements about instant
variables u⟨k⟩, which are the nodes of the evaluation graph
Gϕ,M . We proceed by induction on Gϕ,M (which is acyclic
because Dϕ is well-formed, by assumption).

• Base case: The base case are vertices of the evaluation
graph that have no outgoing edges, which are either
– instant variables that correspond to inputs read from
local sensors

– defined variables whose instant equation does not
contain other instant variables; This is the case when
either the equation is a constant or the time instant
is such that the resulting offset falls off the trace; the
default value is used.

Statement (1) follows immediately for inputs because at
instant k , u⟨k⟩ is read at node µ(u). For output equations
that do not have variables, or whose variables have
offsets that once instantiated become negative or greater
thanM , the value of its leafs is determined either imme-
diately or at M when the offset is calculated. At this
point, the value computed is inserted in R, so (2) also
holds at µ(u). Note that (2) also holds for other nodes
because the response message contains u⟨k⟩ = c if
and only if (u⟨k⟩, c) ∈ Rn, where µ(u) = n. Then the
response message is inserted exactly at the point it is
resolved, so (1) implies (3).

• Inductive case: Consider an arbitrary u⟨k⟩ in the evalua-
tion graph Gϕ,M and let u1⟨k1⟩, . . . , ul⟨kl⟩ be the instant
variables that u⟨k⟩ depends on. These are nodes inGϕ,M
that are lower than u⟨k⟩ so the inductive hypothesis
applies, and (1)-(3) hold for these. Let n = µ(u).
At instant k , u⟨k⟩ is instantiated and inserted in Un. The
values of instant variables are calculated and sent as well
(by (1) and (3)). At the latest time of arrival, the equation
for u⟨k⟩ has no more variables and it is evaluated to
a value, so (1) holds and (2) holds at n. At this point,
the response message is sent (so (1) holds for u⟨k⟩) and
so (1) also holds.

This finishes the proof.
Theorem 1 implies that every value of every instant is

eventually resolved by our network of cooperating monitors.
Therefore, given input streams σI , the algorithm computes
(by (2)) the unique output streams σi one for each si. The ele-
ment σi(k) is the value resolved for si⟨k⟩ by the local monitor
for µ(si). The following theorem captures that Algorithm 1
computes the right values (according to the denotational
semantics of Lola), Theorem 1 that all values are eventually
computed.

We use out(σI) as the function from input streams to output
streams that the cooperating monitors compute. We use [s]
for the stream of values corresponding to stream variable s in
out(σI). We now show that the sequence of values computed
corresponds to the semantics of the specification.
Theorem 2: Let ϕ be a specification, S = ⟨ϕ, T , µ⟩ be a

decentralized SRV problem, and σI an input stream of values.
Then (σI , out(σI)) |H ϕ.

Proof: Let σO be the unique evaluation model such that
(σI , σO) |H ϕ (we use σO(s) for the output stream for stream
variable s and σO(s)(k) for its value in the k-th position).
We need to show that for every s and k , [s](k) = σO(s)(k).
We again proceed by induction on the evaluation graphGϕ,M .

• Base case: For inputs the value follows immediately.
The other basic case corresponds to output variables s
at instants at which these that do not depend on other

VOLUME 11, 2023 84099

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

variables (because all occurrences of offsets, if any, fall
off the trace). The evaluation of the value is performed
by network node µ(s), and it satisfies the equation es
of s, not depending on any value of any other stream.
Therefore, it satisfies that [s](k) = Jes[k]K = σO(s)(k),
as desired

• Inductive case: Let s be an arbitrary stream variable and
k an arbitrary instant within 0 and M − 1 and assume
that all instant variables u⟨k ′⟩ that s⟨k⟩ can reach in the
evaluation graph satisfy the inductive hypothesis. Let n
be the node in charge of computing s. By Theorem 1,
all the values are eventually received by n and in Rn, and
by IH, these values are the same as in the denotational
semantics, that is [u](k ′) = σO(u)(k ′). The evaluation
of s⟨k⟩ corresponds to computing JesK, which uses the
semantics of the expression (according to Section III).
A simple structural induction on the expression es shows
that the result of the evaluation, that is the value assigned
to s⟨k⟩, is JesKσ (k) = σO(s)(k), as desired.

This finishes the proof.

E. SIMPLIFIERS
The evaluation of expressions in Algorithm 1 assumes that
all instant variables in an expression e are known (i.e., e is
ground), so the interpreted functions in the data theory can
evaluate e. Sometimes, expressions can be partially evaluated
(or even the value fully determined) knowing only some but
not all of the instant variables involved in the expression.
As simplifier is a function f : TermD → TermD such that
(1) the variables in f (t) are a subset of the variables in t , and
(2) every substitution of values for the variables of t produces
the same value as the substitution of f (t). For example, the
following are typical simplifiers:

if true then t1 else t2 7→ t1
if false then t1 else t2 7→ t2
true ∨ x 7→ true

true ∧ x 7→ x

0 · x 7→ 0

In practice, simplifiers can dramatically affect the perfor-
mance in terms of the instant at which an instant variable
is resolved and, in the case of decentralized monitoring,
the delays and number of messages exchanged. Essentially,
a simplifier is a function from terms to terms such that, for
every possible valuation of the variables in the original term
it does not change the final value obtained. It is easy to see that
for every term t obtained by instantiating a defining equation
and for every simplifier f , JtKσI ,σO = Jf (t)K(σI ,σO), because
the values of the variables in t and in f (t) are filled with the
same values (taken from σI and σO).

Consider arbitrary simplifiers simp used in line 19 of
Algorithm 1 to simplify expressions. Let Un be the unre-
solved storage for node n and let u⟨k⟩ be an instant variable
with µ(u) = n. By Algorithm 1 the sequence of terms
(u⟨k⟩, t0), (u⟨k⟩, t1), . . . (u⟨k⟩, tk) that Un will store are such

that each ti will have the simplifier applied. It follows that
the value computed using simplifiers is the same as without
simplifiers. It is also easy to show that the algorithm using
simplifiers obtains the value of every instant variable no later
than the algorithm that uses no simplifier. This is because in
the worst case every instant variable is resolved when all the
instant variables it depends on are known, and all response
messages are sent at the moment they are resolved.

V. COMPLEXITY ANALYSIS
In this section we analyze the resource complexity of our
algorithm and define conditions under which local monitors
only need bounded resources to compute every output value.
We first analyze memory complexity and find that it affects
computational time complexity. Thus, the bounds on memory
complexity(under certain conditions) allow time complex-
ity to be also bounded. Finally, we also analyze message
complexity.

The first thing to consider is that the specification must be
decentralized efficiently monitorable [17], which essentially
states that every strongly connected component in Gϕ must
be mapped to the same network node. That is, if u appears,
transitively, in the declaration of v and v appears in the
declaration of u (with some offsets), then µ(u) = µ(v).

A. MEMORY COMPLEXITY ANALYSIS
In order to guarantee that a given storage in a local monitor
for node n is bounded, we must provide an upper-bound for
how long it takes to resolve an instant variable for a stream
that is assigned to n. We use Time to Resolve (TTR) to refer to
the amount of time that a given instant variable u⟨k⟩ takes to
get resolved. This is the number of time instants between the
instantiation of the instant variable at time k and the instant at
which u⟨k⟩ gets resolved, leaving Un and being stored in Rn.
This happens in line 21 in Algorithm 1.

1) GENERAL EQUATIONS FOR THE TIME TO RESOLVE
We introduce now a general definition of recursive equations
that capture when an instant variable s⟨k⟩ is resolved. In order
to bound the memory used by the monitor at network node n,
we need to bound storages Un and Rn:

• Bound on Rn: Resolved values that are needed remotely
are sent immediately to the remote nodes, so Rn only
contains resolved values that are needed in the future
locally at n. Since efficiently monitorable specifications
only contain (future) bounded paths there is a maximum
future reference b used in the specification. This upper-
bound limits for how long a resolved value v⟨k⟩ can
remain in Rn, because after at most b steps the instant
variables u⟨k ′⟩ that need the value of v⟨k⟩ stored in Rn
will be instantiated (note that k ′ − k ≤ b).
That is u⟨k⟩ is not needed after t = max(k + b, k +
TTR(u⟨k⟩)). At t , the value of u⟨k⟩ can be removed
from Rn. This guarantees that the size of Rn is always
upped-bounded by a constant in every node n.

84100 VOLUME 11, 2023

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

• Bound on Un: The size of the memory required for
storage Un at the node n responsible to resolve s (that is
n = µ(s)) is proportional to the number of instantiated
but unresolved instant variables. Therefore, to boundUn
we need to compute the bound on the time it takes to
resolve instant variables of streams assigned to n.

The general equations that we present below depend on the
delay of messages in the network. We will later instantiate
these general equations for the following particular cases of
network behavior:
• a synchronous network;
• a timed-asynchronous network with an upper-bound on
message delays during the whole trace (we call this the
aeternal case);

• timed-asynchronous network with an upper-bound for
message delays in a given time-horizon (we call this the
temporary case).

Note that the correctness of the algorithm (Theorem 2) estab-
lishes that the output streams σO only depend on the input
streams σI but does not state bounds on the time at which
each element of σO is resolved or on the delays of messages.
In this section we study how the delay of messages affects

the time at which instant variables are resolved, which in turn
affects the memory usage at the computations nodes. We use
d(t, a, b) for the time it takes for a message sent from a to b
at time t to arrive. In other words arra→b(t) = t + d(t, a, b).
Recall that we assume that messages are causal and queues
are FIFO as we described in IV-B. Causality means that
messages arrive after they are sent (that is, for every n, m
and t , arra→b(t) > t) and FIFO that for every n and m,
if t < t ′ then arra→b(t) ≤ arra→b(t ′).

We now capture theMoment to Resolve for a given instant
variable s⟨t⟩, represented as MTR(s⟨t⟩), which captures the
instant of time at which s⟨t⟩ is guaranteed to be resolved by
the monitor at network node µ(n) responsible to compute s.
Our definition considers two components, the delay in resolv-
ing all local instant variables that s⟨t⟩ may depend on and
the resolution of remote instant variables, which also involve
message delays. We use the concept of remote moment to
resolve, denoted MTRrem(s⟨t⟩), as the instant at which all
remote values that s⟨t⟩ directly require have arrived (which
is t if all values arrive before t).

MTR(s⟨t⟩) def
= max(

MTRrem(s⟨t⟩), {MTR(r⟨t + w⟩) | s
w
−→
loc

r})

MTRrem(s⟨t⟩)
def
= max(t,

{arrr→s(MTR(r⟨t + w⟩)) | s
w
−−→
rem

r and t + w ≥ 0})

Note that this is well-defined for every well-formed spec-
ification because the evaluation graph is acyclic, and the
equation for s⟨t⟩ only depends on those variables lower in
the evaluation graph, which is acyclic.
Example 4: Consider Example 2 with streams i and acc

at network node 1 and streams reset and root computed at

network node 2. Then, we can substitute in the equations to
obtain theMTR(root⟨1⟩).

MTR(root⟨1⟩)

= max(MTR(reset⟨1⟩),MTRrem(acc⟨1⟩))

= max(1,max(1, arracc→root (MTR(acc⟨1⟩))))

= max(1, arracc→root (max(1,

MTR(i⟨1⟩),MTRrem(root⟨0⟩))))

= max(1, arracc→root (max(1,

max(MTR(reset⟨0⟩)MTRrem(acc⟨0⟩)))))

= max(1, arracc→root (max(1,max(0,

max(0, arracc→root (MTR(acc⟨0⟩)))))))

= max(1, arracc→root (max(1, arracc→root (max(0,

MTR(i⟨0⟩),MTRrem(root⟨−1⟩))))))

= max(1, arracc→root (max(1, arracc→root (0))))

The instant variable root⟨1⟩ is guaranteed to be resolved
when the response from the instant variable acc⟨1⟩ arrives—
that is, the max(1, arracc→root (. . .)) part. And this response
can only be produced when the response for acc⟨0⟩ arrives,
which is the innermost part: · · ·max(1, arracc→root (0)) Note
that we do not need to account forMTRrem(root⟨−1⟩) since it
is resolved instantaneously to its default value. Likewise, the
inputs are also resolved instantaneously and do not add any
delay when obtaining the value of theMTR.
For MTRrem(s⟨t⟩), we only consider those remote instant

variables for which t + w ≥ 0 because otherwise the
default value will be used at the moment of instantiating s⟨t⟩.
In the equation for MTR(s⟨t⟩) we assume the base case
MTR(s⟨t⟩) = 0 when t < 0, because again, the default value
in the offset expression is used instead, which is known imme-
diately. It is easy to see that the first equation is equivalent to:

MTR(s⟨t⟩) def
= max({MTRrem(r⟨t + w⟩) | s

w
−→
loc

∗

r})

We are now ready to prove that these definitions indeed
capture the time at which s⟨t⟩ is resolved.
Theorem 3: Let ϕ be a specification and µ a network

placement, let σI be the input trace and arr a network behav-
ior. Every s⟨t⟩ is resolved atMTR(s⟨t⟩) or before.

Proof: The proof proceeds by induction on the evalua-
tion graph Gϕ,M induced by ϕ and the length of σI .
• Base case: inputs and instant variables s⟨t⟩ that do not
depend on any other instant variables. These are the
nodes of EG that do not have any outgoing edge. Since
s⟨t⟩ is instantiated at t , then the value is resolved exactly
at t either by reading a sensor or instancing to a default
value. Also,MTR(s⟨t⟩) = MTRrem(s⟨t⟩) = t .

• General case. Let s⟨t⟩ be an arbitrary instant variable
and assume, by inductive hypothesis, that the theorem
holds for all instant variables lower in the EG than
s⟨t⟩. At timeMTRrem(s⟨t⟩) all instant variables r⟨t +w⟩
from remote nodes that s⟨t⟩ depends on have arrived
because r⟨t + w⟩ will be resolved at MTR(r⟨t⟩) by

VOLUME 11, 2023 84101

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

induction hypothesis. Similarly, all local elements that
s⟨t⟩ depends on are also below in the dependency graph,
so the induction hypothesis also applies. Therefore,
at time

max(MTRrem(s⟨t⟩), {MTR(r⟨t + w⟩) | s
w
−→
loc

r}}

or before all elements that s⟨t⟩ depends on will be known
and s⟨t⟩ will be resolved.

This finishes the proof.
The following corollary follows from the fact, after an

instant variable has been resolved, nothing can affect the
value computed. Therefore, the value and time at which s⟨t⟩
is computed does not depend on the future afterMTR(s⟨t⟩).
Corollary 1: For all s⟨t⟩ there is a t ′ such that s⟨t⟩ only

depends on σI and arr up to t ′.
The MTR for an instant variable depends on the delay of

messages arru→v between the network nodes that cooperate
in order to compute that instant variable. Therefore we cannot
guarantee a bound on MTR if those delays can be arbitrarily
long, so we cannot bound the memory usage. Consequently,
monitoring is not trace-length independent in a general Time
Asynchronous Network.

Next, we study how different conditions on the network
behavior (concerning the delays between links) affect the
MTR establishing memory bounds and regain trace-length
independent monitoring under those conditions.

2) INSTANTIATION TO SYNCHRONOUS TIME
In this sub-section we assume the synchronousmodel of com-
putation, which is a particular case of the timed-asynchronous
model where all message delays between two monitors take
exactly the same amount of time throughout the trace. We use
the predicate distr_s to represent the delay that every mes-
sage will take from µ(r) to µ(s), independently of the time
instant at which the message is sent. Therefore arrr→s(t) =
t + distr_s. This delay allows us to simplify MTRrem for
synchronous networks as follows:

MTRsyncrem (s⟨t⟩) def
= max(t,M (s⟨t⟩))

where

M (s⟨t⟩)

= {MTRsync(r⟨t + w⟩)+ distr_s | s
w
−−→
rem

r, t + w ≥ 0})

Recall that the time to resolve is the time interval between the
moment at which a variable is instantiated and the instant at
which it is resolved (that is TTR(s⟨t⟩) = MTR(s⟨t⟩) − t) In
the synchronous case we obtain:

TTRsync(s⟨t⟩)

= MTRsync(s⟨t⟩)−t

= {MTRsyncrem (r⟨t + w⟩) | s
w
−→
loc

r} − t =

= max(t,M (s⟨t⟩)−t

= max(0, {TTRsync(r⟨t + w⟩)+ distr_s | s
w
−−→
rem

r})

Note that the value that determines the result is the
TTRsync(s⟨t⟩) of the slowest remote dependency, which
includes both the resolve time and the time the message
needs to traverse through the network. Additionally, we can
easily show by induction on the dependency graph that
for every stream variable s there is a constant k such that
TTRsync(s⟨t⟩) ≤ k , that is, s always takes less than k instants to
be resolved. It follows that all decentralized efficiently mon-
itorable specifications can be monitored in constant space in
every local monitor, that is, synchronous decentralized moni-
toring of decentralized efficient monitorable specifications is
trace length independent.

3) TIMED ASYNCHRONOUS WITH AETERNALLY
BOUNDED DELAYS
We now assume that there is a global upper bound on the
delay time for every message, which we call aeternally
bounded delays. Formally, this assumption states that if there
is a d such that for every pair of streams r, s and for every
time t , arrr→s(t) ≤ t + d . Substituting the upper-bound
value d in the equations for MTR, we obtain an constant
upper-bound on theMTR:

MTRgrem(s⟨t⟩) ≤ max(t,M (s⟨t⟩))

where

M (s⟨t⟩) = MTRg(r⟨t + w⟩)+ d | s
w
−−→
rem

r, t + w ≥ 0}

Note that in some cases s⟨t⟩ can be resolved before
MTRg(s⟨t⟩) because d is an upper bound. In this case we can
also bound the memory necessary to store in every node to
perform the monitoring process, but most of the time less
memory will be necessary. We can see an example of a
aeternal bound in Figure 4.

4) TIMED ASYNCHRONOUS WITH TEMPORARILY
BOUNDED DELAYS
We now take a closer look at the equations to obtain a better
bound on the time to resolve a given instant variable s⟨t⟩,
without assuming an upper-bound of all messages in the
history of the computation, but only the necessary messages
that can influence s⟨t⟩. The main idea to bound MTR(s⟨t⟩) is
to consider the time interval at which the messages that are
relevant to compute s⟨t⟩ are sent. We first define an auxiliary
notion. We say that a stream variable r is a direct remote
influence on swith delayw, and we write s

w
−−→
drem

r , whenever

there is a path s
w1
−→
loc

s1
w2
−→
loc

s2 . . .
wk
−→
loc

sk
wk+1
−−−→
rem

r such that:

• no two nodes si and sj are repeated (if i ̸= j then si ̸= sj),
and

• w = w1 + . . .+ wk + wk+1.
Note that s

w
−−→
drem

r means that s⟨t⟩ may be influenced by

remote variable r⟨t + w⟩. We define the window of interest

84102 VOLUME 11, 2023

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

FIGURE 4. TTA, aeternal and temporary bounds for a normalPeak
network behavior.

for s⟨t⟩ as:

win(s⟨t⟩) = [min S,max S] where S is defined as

S = {t,MTRrem(r⟨t + w⟩) | s
w
−−→
drem

r and t + w > 0}

Note that S is the set of instants at which remote instant
variables that influence s⟨t⟩ are sent.
Example 5: Considering the specification in Example 2.

Taking a look at the evaluation graph in Figure 3 we observe
that the window of interest of all instant variables at any
time includes those of its dependencies in the evaluation
graph. Therefore, their window of interest will include the
minimum time for the earliest dependency to be resolved and
the maximum time for the last dependency to be resolved.
In this example, the window for root⟨1⟩ will include the
windows for acc⟨1⟩, root⟨0⟩ and acc⟨0⟩ and the time required
for the responsemessages to travel from source to destination.
Note that inputs do not affect theMTR.
Therefore win(s⟨t⟩) contains those instants at which the
remote information relevant to s⟨t⟩ is sent. This window
always ends at most at MTR(s⟨t⟩). We then define the worst

message sent to s for the computation of s⟨t⟩ as:

dworst (s⟨t⟩) = max{t ′ − t |

t ′ = arrr→s(t) for s
w
−−→
drem

r and t ∈ win(s⟨t⟩)}.

Note that dworst is still an over-approximation of the messages
sent in order to compute s⟨t⟩ but in this case the bound
considers all those messages and only looks at a bounded
interval of time. Since all the values that influence s⟨t⟩ are
sent within win(s⟨t⟩) we can boundMTR(s⟨t⟩) as follows:

MTRtemprem (s⟨t⟩) ≤ max(t,M (s⟨t⟩))

where

M (s⟨t⟩) = {MTR(r⟨t + w⟩)+ dworst (win(s⟨t⟩)) | s
w
−−→
drem

r}.

We have finally arrived at the desired outcome: a finite
window of time that contains the sending and receiving of
the relevant messages for the computation of a given instant
variable. This implies that only a finite number of network
delays affect the resolution of any instant variable s⟨t⟩. As we
can always find the maximum delay in the window, we can
upper bound the time that it will take for any instant variable
to be resolved, and we are able to know how much time these
instant variables are stored inUn andRn. In turn, this allows to
determine when certain instant variables are no longer needed
and when they can be pruned releasing the used memory.
Fig. 4 shows the required time to resolve the stream

(in Fig. 4(b)) and for the bounds(in Fig. 4(c)) to adapt to
the network behavior (in Fig. 4(a)) that sets a baseline. This
is extracted from Example 1 execution over a normalPeak
network behavior. In detail:
• (a) the normalPeak network behavior defined as follows:
message delays follow a normal distribution until time
instant 250, where a failure of 100 time units happen,
we see this as the peak in TTR at 250. Then, as the FIFO
network condition states, all messages will be delayed
until this one is delivered, so theMTR of the subsequent
messages will be at the same time point (350) so all
messages sent from 250 to 350 will arrive at 350. This
is the reason that we see the TTR dropping linearly from
250 to 350, when the failure in the network has been
corrected and the delays get back to follow the normal
distribution.

• (b) the TTR of the stream adapts accordingly but can
resolve faster when a simplifier can be used, this is when
themanual alarm is used. As this stream is an input in the
buildingmonitor, it does not need to wait for the network
communication and thus can resolve the fire_risk stream
instantly. These are the cases when the curve drops to 0.
In those cases the network is not needed and the stream
can be resolved without any delay.

• (c) We can observe the difference between the tempo-
rary and aeternal bounds, where the aeternal bound
is high and constant throughout the execution and the
temporary is tighter to the actual TTR giving a much
better approximation.

VOLUME 11, 2023 84103

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

5) PRUNING THE RESOLVED STORAGE Rn

We are finally ready to prune Rn because we know now when
every instant variable will be resolved.
Corollary 2: Every unresolved instant variable s⟨t⟩ in Un

is resolved at most atMTR(s⟨t⟩).
As soon as MTR(s⟨t⟩ is reached (or before), the value of s⟨t⟩
will be known in the local monitor of µ(s) and its value will
be sent to those remote monitors where it is needed. After this
moment s⟨t⟩ can be pruned from Un. With this mechanism,
we can assure that every instant variable will be in memory
(Un or Rn) for a bounded amount of time.
Corollary 2 implies that decentralized efficiently moni-

torable specifications in timed asynchronous networks can
be monitored with bounded resources when there is a certain
bound on the network behavior, be it synchronous, aeternal
or a temporary bound. This memory bound depends only lin-
early on the size of the specification and the delays between
the nodes of the network. This results can be interpreted from
the opposite perspective: given a fixed amount of memory
available, we could calculate the maximum delays in the
network that would allow the monitoring to be performed
correctly.

B. TIME COMPLEXITY ANALYSIS
The Time complexity is dependent on the memory complex-
ity, namely on the size of U.

In Algorithm 1, we observe that all procedures in the
algorithm perform actions based on the number of elements
in U , and we know that it is bounded. In procedure Evaluate,
the worst case is when only one instant variable is resolved at
each iteration of the inner loop, resulting in another loop in
the while. This results in a linear complexity of O(|U |). The
rest of the procedures present a single loop over a bounded
datastructure, we observe that in the worst case they perform
in constant time O(1).

C. MESSAGE COMPLEXITY ANALYSIS
Here we analyze the total number of messages amortized.
For each newly resolved instant variable, we will have a new
message traversing the network.
Proposition 1: Let ϕ be a specification with s streams and

N be the trace length, then there will be at most s∗N messages
during the monitoring.

Proof:As we have s streams and a tracelength ofN , then
we have s ∗ N instant variables by instancing the streams at
each time point. By procedure SendResponses in line 12 of
Algorithm 1 we observe that line 28 will be invoked once per
instant variable. Also, the worst case(when most messages
are needed) arises when each stream is mapped to a different
node. In that case we have up to s ∗ N messages.

VI. EMPIRICAL EVALUATION
We have implemented our solution using the Go pro-
gramming language in a concurrent prototype tool tadLola

(available at http://github.com/imdea-software/dLola). We
describe now:
• (1) an empirical study of the capabilities of tadLola in
different scenarios with real data extracted from four
different realistic public datasets.

• (2) the effect of the network behavior—in terms of
delays–into memory and time to resolve outputs.

Our experimental setup intends to empirically determine the
behavior of the asynchronous network and how failures affect
the time to resolve of the streams.

A. DATASETS AND NETWORK FAILURES
It is common in the RV community to have theoretical works
(without empirical evaluation) [5], [7], [9], [10], [12] or to
use synthetic data and specifications for the empirical evalu-
ation of solutions [1], [17], [19], [20], [21], [30], [43], [44].
In contrast, there are some that use realistic data [4], [6],
[16], [22]. In our case, we have used four different datasets
of real recorded data for this empirical evaluation, namely:
SmartPolitech [37], Tomsk Heating [48], Orange4Home [15]
and Context [33]. All datasets are related to smart buildings
except for Context that is about Industry 4.0.

The first two datasets are concerned about building cli-
mate control and use sensors in different rooms or buildings
respectively. The Orange4Home dataset focuses on activity
recognition where a tenant can move freely in an apartment,
and the goal is to infer the activity performed. Lastly, Context
is a dataset in a smart factory where a new class of failures,
namely contextual failures arise when there is no specific
sensor or data collected that signals directly the error but
the presence of the error and its underlying cause need to be
inferred from contextual knowledge.

For each dataset we created a synthetic specification
that could showcase the functionality of our tool. We also
injected synthetic delays to model network congestion and
failures.

• constant behavior is modeled as a global constant delay
between each pair of monitors, so every message takes
exactly a fixed amount of time to reach the destination
network node. This corresponds to the network behavior
assumed in synchronous monitoring.

• constantPeak consists of a constant delay, but perturbed
with a single high delay, modeling a network failure
and recovery. Hence, all messages get delayed until the
network disruption is solved, and then the network starts
to recover gradually until normal operation is reached
again.

• Normal behavior follows a normal distribution of the
delays given an average delay.

• normalPeak is similar to the constantPeak but with a
baseline of the normal behavior.

Note that all these behaviors are both aeternal and tem-
porary bounded since for all of them we can find an upper
bound for the whole trace as well as a bound by window of
interest of each instant variable.

84104 VOLUME 11, 2023

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

FIGURE 5. TTR analysis of Tadlola for different network behaviors.

Figure 5 shows the minimum, median and maximum TTR
to resolve streams under these network behaviors.

We can observe an example of the delays observed under
these behaviors in Figure 6.

FIGURE 6. Examples of network behaviors.

The system under observation is sampled periodically,
obtaining the input traces for each of the variables measured.
Thus, having the length of the trace and the sampling period
we can obtain the system time that gets monitored throughout
the experiment. For example, a trace of length 200k with a
sample period of 30 seconds, corresponds to monitoring a
system during approximately 2.31 months.

For some of the experiments the traces of real data avail-
able in the datasets were not sufficiently long, so we extended
those traces by repeating the samples as much as needed to
reach the desired trace length. Also, some of those traces
required interpolation in order to use a common clock tick
for all events, since some of those traces were based on
events instead of sensing periodically a variable. We did this
interpolation whenever needed.

B. HYPOTHESIS
For the empirical evaluation of this paper we evaluated the
following hypothesis:
• (H1) Our time Asynchronous algorithm behaves no
worse than the synchronous algorithm from [17] when
the network presents a synchronous behavior.

• (H2) Synchronous SRV can simulate the monitoring of
a time asynchronous network with a software layer that
provides the illusion of synchronicity, but at a very high
cost in delays and memory usage.

• (H3) Our theoretical results of Section V hold for the
execution of the experiments.

• (H4) The local memory of the root monitor is bounded,
resulting in a trace length independent monitor our the-
oretical results predict.

• (H5) Our algorithm scales in terms of the number of
monitors and network usage. We expect that memory
will increase linearly with ‘‘network usage’’ but will
remain constant when increasing the number of local
monitors. Here we refer with local monitor to a non-
empty set of streams that are computed at the same
network node.

• (H6) The algorithm benefits from using redundant spec-
ifications and redundant topologies (exploiting simpli-
fiers) to reduce TTRs by avoiding delays of slow or
faulty links.

C. EMPIRICAL RESULTS
In order to validate hypothesis (H1) we built the following
experiments:

• SmartPolitechDistr: we detect fire hazards by analyzing
the levels of temperature, CO2 and humidity in the air
in different rooms in university buildings. We use a
quantitative robust specification.

• tomskHeating: we check that the heating system is
behaving as expected (extracted from the data). Again,
this is a quantitative robust specification.

• orange4Home: we detect fire hazards by analyzing the
activities performed by the tenant in the apartment.

• contextAct: we detect fire hazards by analyzing the
levels of temperature, CO2 and humidity in the air in
different rooms in an smart apartment. This is also a
quantitative specification.

We use TADSRV to refer to the solution in this paper, and
DSRV for the solution in [17] which only works for syn-
chronous networks. Figure 5 shows metrics of the delay of

VOLUME 11, 2023 84105

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

the root of the specification for the different datasets analyzed
with different network behaviors. This proves empirically
that TADSRV subsumes DSRV with no additional loss of
performance, as expected by our theoretical proofs. Therefore
(H1) holds. All these different network behaviors show that
TADSRV is more general than DSRV, as we expected.

For the validation of (H2) we built an experiment with the
specification of obtaining both the maximum and sum of the
inputs. We placed this in the topology shown in Figure 7.

FIGURE 7. Monitor topology of the experiment for (H2).

We looked for the maximum delay present in the normal-
Peak traces that we have and used that duration as the global
delay between each pair of monitors in the synchronous sce-
nario. We measured both settings: simulating synchronicity
and the execution of the timed asynchronous algorithm. The
results are shown in Figure 8. The figure shows that we
can emulate TADSRV with DSRV but with a high cost in
memory usage (+200% than the worst instant) and incurring
in delays of worst delay ∗ depth of topology, which in this
case is 558 instants. This corresponds to an increase of around
30 times the delay when compared to the timed asynchronous
solution. Therefore, (H2) holds as well. This results makes
it clear that it is not feasible in practice to use DSRV in a
time asynchronous scenario (even with the layer that simu-
lates synchrony), where the contribution of this work applies
naturally with much better performance.

Also, we can see that the TTRs obtained empirically
are lower than or equal to our estimated bounds calculated
a-priori with the equations described in Section V. Hence,
(H3) holds.

For the validation of (H4)—studying the scalability in
terms of trace length—we used the smartPolitechDistr dataset
and run it with a trace of 200k instants with the normalPeak
behavior. In the extract shown below we compute both a
Boolean and a quantitative stream to look for temperature
uprisings.
define bool temp_up eval =
temp > 1.1 * tempini and temp <= 1.6 * tempini

define num temp_up_q eval =
if temp <= 1.1*tempini then 0~else
if temp > 1.6*tempini then 1~else
(temp - 1.1*tempini)/(1.6*tempini-1.1*tempini)

define bool temp_spike eval =
temp > 1.6 *tempini

define num temp_spike_q eval =
if temp <= 1.6*tempini then 0~else
if temp > 2 * tempini then 1~else
(temp - 1.6*tempini)/(2*tempini-1.6*tempini)

Figure 9 shows that the memory used in the root monitor
of this experiment remains bounded. The pikes in memory

FIGURE 8. Synchronous and asynchronous in an asynchronous network
with details of asynchronous.

correspond to higher delays in the network links among
nodes. This forces monitors to keep records in their memory
until the messages that they need arrive, allowing the monitor
to resolve streams and prune their memories. This result
suggests that the algorithm with a decentralized efficiently
monitorable specification can behave in a trace-length inde-
pendent fashion, validating hypothesis (H4).

84106 VOLUME 11, 2023

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

FIGURE 9. Memory of root monitor for a trace of 200000 instants.

FIGURE 10. Average memory usage of the monitor that uses most
memory of the last 1000 instants, tlen 20k, with different network
coverages.

Figure 10 shows that the memory usage of a single monitor
does not depend on the number of other monitors in the net-
work but it depends on themaximumdepth of its specification
that travels the network. In this experiment the depth of the
specification deployed in the network was kept constant (5)
while we changed the number of monitors in a binary tree
topology (preserving the depth in one branch). The intuition
is that the variable that affects memory usage is not howmany
monitors we have but the number of network nodes and links
among them that affect the monitoring performance. This is
because adding more links increases the probability that there
is a failure in the network (modelled as a delay) that affects
the run. These results prove that hypothesis (H5) holds.

1) REDUNDANCY AND DELAYS
In this subsection we take a closer look at hypothesis (H6),
so we build the topology and the specification to minimize
the TTR of the instant variables.We seek to benefit from using
simplifiers to minimize the effect network delays of messages
required to compute the instant variables. Thus, we intend to
exploit the messages that go through the fastest path in the
network from the nodes that read the inputs to the nodes that
compute the root of the specification. Intermediate results
are generated faster in the least congested deployment and
messages will travel through the least weight path (in terms
of accumulated delays) between the inputs and the root of
the specification yielding a minimum TTR for the instant
variables.

This improvement can be achieved because intermediate
results from slower monitors will not be needed due to the
use of simplifiers, and therefore the engine will not wait
to achieved a final result of the root monitor. We build the
following fragment of the specification for the data in smart-
Politech, where we make the streams C3_fire_risk_q
and C3_fire_risk_q_red redundant of each other and
we deploy them in different monitors so that they are affected
by different delays. We use a normal delay for the whole
network but introduce a failure in the form of a peak in the
delays between the monitors connected to monitor 3. This
will make the path through monitor 2 faster.

We can observe in Figure 11 how the delay of obtaining
the value for the root of the specification takes the best
delay possible. Since we use an OR to take advantage of the
simplifiers, in the best case verdict (outcome true) there is
a gain, but in the worst case verdict (false) the redundant
solution gains no speed as the engine needs to wait for all
the values to calculate the OR.

FIGURE 11. Benefits of using Redundancy in terms of accumulated delays.

@0{
define bool C3_alarm eval =
(C3_fire_risk or C3_fire_risk_red) and
(C3_fire_risk_q > 0.5~or C3_fire_risk_q_red >0.5)
}
@2{
define bool C3_fire_risk_red eval =
AND(C3_temp_spike,C3_co2_spike,C3_humid_down)
define num C3_fire_risk_q_red eval =
AVG(C3_temp_spike_q,C3_co2_spike_q,C3_humid_down_q)
}
@3{
define bool C3_fire_risk eval =
AND(C3_temp_spike,C3_co2_spike,C3_humid_down)
define num C3_fire_risk_q eval =
AVG(C3_temp_spike_q,C3_co2_spike_q,C3_humid_down_q)
}

Figure 11 shows the difference between using the redun-
dant specification with redundant topology and not using
any redundancy. Even though a general study of exploiting
redundant paths in the network is out of the scope of this
paper, this case study illustrates how redundant deployments
can improve decentralized monitoring.

VII. LAZY ALGORITHM
We introduce now a variant of Algorithm 2 where some of the
streams are not sent unless their values are requested by the

VOLUME 11, 2023 84107

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

Algorithm 2 Local monitoring algorithm at node n with
MSn = ⟨Qn,Un,Rn,Pn,Wn⟩

1: procedureMonitor
2: MSn← ∅; k ← Now()
3: while not END do Step(k)
4: M ← k; Finalize(M)
5: procedure Step(k)
6: Rold ← MSn.Rn
7: ProcessMessages(MSn)
8: Rn.add({r⟨k⟩ 7→read(r, k) | r ∈ insn})
9: Un.add({s⟨k⟩ 7→es⟨k⟩ | s ∈ outsn})

10: Evaluate(MSn)
11: SendResponses(MSn)
12: SendRequests(MSn)
13: SendConfirmations(MSn)
14: Prune(MSn)
15: procedure Evaluate(MSn)
16: done← false
17: while not done do
18: done← true
19: for all s⟨k⟩ 7→e ∈ Un do
20: e′← Subst(e,Rn)
21: if ground(e′) then done← false
22: Un.del(s⟨k⟩ 7→e);Rn.add(s⟨k⟩ 7→e′)
23: else Un.del(s⟨k⟩ 7→e);Un.add(s⟨k⟩ 7→e′)
24: procedure ProcessMessages(MSn)
25: for all msg← Qn.pop() do
26: switch msg do
27: case ⟨req, s⟨k⟩⟩ Pn.add(s⟨k⟩)
28: case ⟨resp, s⟨k⟩, c⟩
29: Rn.add(s⟨k⟩ 7→c);Wn.del(s⟨k⟩)
30: procedure SendResponses(MSn,Rold)
31: Rnew← MS.Rn Rold
32: for all u⟨k⟩ 7→c ∈ Rnew do ▷ Eager new knowledge
33: send(resp, s⟨k⟩, c, n, nr)
34: for all ⟨req, s⟨k⟩, nr , n⟩ ∈ Pn do ▷ Lazy requests
35: if s⟨k⟩ 7→c ∈ Rn then
36: send(resp, s⟨k⟩, c, n, nr)
37: Pn.del(⟨req, s⟨k⟩, nr , n⟩)
38: procedure SendRequests(MSn)
39: for all (, e) ∈ Un do
40: for all u⟨k ′⟩ ∈ sub(e) do
41: if u⟨k ′⟩ /∈ Wn ∧ µ(u) ̸= n then
42: send(req, u⟨k ′⟩, n, µ(u));Wn.add(u⟨k ′⟩)
43: procedure SendConfirmations(MSn)
44: for all u⟨k⟩ 7→c ∈ Rnew do ▷ new knowledge
45: send(confirm, s⟨k⟩, n, nr)
46: procedure Prune(MSn) ▷ If u⟨j⟩ will not be needed
47: for all u⟨j⟩ 7→c ∈ Rn | confirmed(u⟨j⟩ 7→c) do
48: Rn.del(u⟨ji⟩ 7→ci);Un.del(u⟨ji⟩)

remote nodes. This is beneficial in cases where the value to
be requested is rarely needed (for example, it is only needed

in the else part where the test is typically true and locally
checkeable). We call these lazy streams.

To introduce the modified algorithm we need to introduce
a new type of message: the request message. We also call a
response message to the messages containing the value of an
instant variable.

• Responsemessages: (resp, s⟨k⟩, c, ns, nd) where s⟨k⟩ is
an instant variable, c is a constant of the same datatype
as s⟨k⟩, ns is the source node and nd is the destination
node of the message.

• Requests messages: (req, s⟨k⟩, ns, nd) where s⟨k⟩ is an
instant variable, ns is the source node and nd is the
destination node of the message.

Again, if msg = (req, s⟨k⟩, ns, nd), then msg.src = ns,
msg.dst = nd , msg.type = req, msg.stream = s⟨k⟩.
Similarly, for a response message we have the same, the only
difference is that we add msg.val = c.
Each stream variable v can be assigned one of the following

two communication strategies to denote whether an instant
value v⟨k⟩ is automatically communicated to all potentially
interested nodes, or whether its value is provided upon request
only. Let v and u be two stream variables such that v appears
in the equation of u and let nv = µ(v) and nu = µ(u).

• Eager communication: the node nv informs nu of every
value v⟨k⟩ = c that it resolves by sending a message
(resp, v⟨k⟩, c, nv, nu). This is what we have used previ-
ously in the paper.

• Lazy communication: node nu requests nv the value
of v⟨k⟩ (in case nu needs it to resolve u⟨k ′⟩ for some
k ′) by sending a message (req, v⟨k⟩, nu, nv). When nu
receives this message and resolves v⟨k⟩ to a value c, nu
will respond with (resp, v⟨k⟩, c, nv, nu).

Each stream variable can be independently declared as eager
or lazy. We use two predicates eager(u) and lazy(u) (which is
defined as¬eager(u)) to indicate the communication strategy
of stream variable u. Note that the lazy strategy involves two
messages and the eager strategy only one, but the eager strat-
egy sends a message every time an instant variable resolved,
while lazy will only sends those that are requested. In case
the values are almost always needed, eager is preferable
while if values are less frequently required lazy is preferred.
We now need to add the communication strategy to the def-
inition of the decentralized SRV problem. A decentralized
SRV problem ⟨ϕ, T , µ, eager⟩ is now characterized by a
specification ϕ, a topology T , a stream assignment µ and a
communication strategy for every stream variable.

A. LAZY DSRV ALGORITHM FOR TIMED ASYNCHRONOUS
NETWORKS
We extend our local monitor to ⟨Qn,Un,Rn,Pn,Wn⟩ adding
the following two storages:

• Pending requests Pn, where n records instant variables
that have been requested from n by other monitors but
that n has not resolved yet.

84108 VOLUME 11, 2023

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

• Waiting for responsesWn, where n records instant vari-
ables that n has requested from other nodes but has
received no response yet.

The storageWn is used to prevent n from requesting the same
value twicewhile waiting for the first request to be responded.
An entry in Wn is removed when the value is received, since
the value will be subsequently fetched directly from Rn and
not requested through the network. The storage Pn is used to
record that a value that n is responsible for has been requested,
but n does not know the answer yet. When n computes the
answer, then nwill send the corresponding response message
and remove the entry from Pn. Finally, request messages are
generated for unresolved lazy instant variables and inserted
in the queues of the corresponding neighbors.

More concretely, every node n will execute the procedure
Monitor shown in Algorithm 2, which invokes Step in every
clock tick until the input terminates or ad infinitum. Proce-
dure Finalize is used to resolve the pending values at the end
of the trace to their default if the trace ends. Procedure Step
now executes somemodified procedures and additional steps:

1) Process Messages: Line 27 annotates requests in Pn,
which will be later resolved and responded. Lines 28-29
handle response arrivals, adding them to Rn and remov-
ing them fromWn.

2) Send Responses: Lines 34-37 deal with pending lazy
variables. If a pending instant variable is now resolved,
the response message is sent and the entry is removed
from Pn.

3) Send newRequests:Lines 38-42 send new requestmes-
sages for all lazy instant streams that are now needed.

4) Send Confirmations: Line 43-45 send confirma-
tions for the newly resolved instant variables. See
section VII-C1.d.

5) Prune: Line 46-48 prune the set R andU from informa-
tion that is no longer needed. See section VII-C1.d.

B. FORMAL CORRECTNESS
We now show that our solution is correct again by proving
that the output computed is the same as in the denotational
semantics, and that every output is eventually computed.
Theorem 4: All of the following hold for every instant

variable u⟨k⟩:
(1) The value of u⟨k⟩ is eventually resolved.
(2) The value of u⟨k⟩ is c if and only if (u⟨k⟩, c) ∈ R at some

instant.
(3) If eager(u) then a response message for u⟨k⟩ is eventu-

ally sent.
(4) If lazy(u) then all request messages for u⟨k⟩ are eventu-

ally responded.
Proof: The proof proceeds by induction in the evaluation

graph, showing simultaneously in the induction step (1)-(4) as
these depend on each other (in the previous inductive steps).
Let M be a length of a computation and σI be an input of
length M . Note that (1) to (4) above are all statements about
instant variables u⟨k⟩, which are the nodes of the evaluation

graph Gϕ,M . We proceed by induction on Gϕ,M (which is
acyclic because Dϕ is well-formed).
• Base case: The base case are vertices of the evaluation
graph that have no outgoing edges, which are either
instant variables that correspond to inputs or to defined
variables whose instant equation does not contain other
instant variables. Statement (1) follows immediately for
inputs because at instant k , s⟨k⟩ is read at nodeµ(k). For
output equations that do not have variables, or whose
variables have offsets that once instantiated become
negative or greater than M , the value of its leafs is
determined either immediately or atM when the offset if
calculated. At this point, the value computed is inserted
in R, so (2) also holds at µ(u). Note that (2) also holds
for other nodes because the response message contains
u⟨k⟩ = c if and only if (u⟨k⟩, c) ∈ Rn, where µ(u) = n.
Then the response message is inserted exactly at the
point it is resolved, so (1) implies (3). Finally, (4) also
holds at the time of receiving the request message or
resolving u⟨k⟩ (whatever happens later).

• Inductive case: Consider an arbitrary u⟨k⟩ in the eval-
uation graph Gϕ,M and let u1⟨k1⟩ . . . ul⟨kl⟩ the instant
variables that u⟨k⟩ depends on. These are nodes inGϕ,M
that are lower than u⟨k⟩ so the inductive hypothesis
applies, and (1)-(4) hold for these instant variables. Let
n = µ(u). At instant k , u⟨k⟩ is instantiated and inserted
in Un. At the end of cycle k , lazy variables among
u1⟨k1⟩ . . . ul⟨kl⟩ are requested. By induction hypothesis,
at some instant all these requests are responded by (1)
and (4). Similarly, the values of all eager variables are
calculated and sent as well (by (1) and (3) which hold
by IH). At the latest time of arrival, the equation for
u⟨k⟩ has no more variables and it is evaluated to a value,
so (1) holds and (2) holds for u⟨k⟩ at n. At this point,
if eager(u) then the response message is sent (so (1)
holds for u⟨k⟩) and if lazy(u) then all requests (previ-
ously received in Pn or future requests) are answered,
so (1) also holds.

This finishes the proof.

C. COMPLEXITY ANALYSIS FOR LAZY
Analyzing the lazy case requires modifications.

1) MEMORY COMPLEXITY FOR LAZY
In timed asynchronous networks we need to introduce a new
kind of message to provide confirmations that are only used
to inform the receiving node that some instant variables are
not needed so they can be pruned. This newmessage have the
following form:
• Confirmation messages: (confirm, s⟨k⟩, ns, nd) where
s⟨k⟩ is an instant variable, ns is the source node and nd
is the destination node of the message.

This message will be interpreted as the source node ns has
resolved instant variable s⟨k⟩. This information allows the
destination node to conclude that instant variables required at

VOLUME 11, 2023 84109

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

the remote node for instant variables that have been resolved
are no longer necessary. We change MTRrem to include that
the response gets emitted when the request arrives or when
the remote instant variable gets resolved, whichever happens
later.

MTRlazyrem (s⟨t⟩)
def
= max(t,M (s⟨t⟩)

where

M (s⟨t⟩) = {arrr→s(t ′) s.t.s
w
−−→
rem

r and t + w ≥ 0})

and

t ′ = max(arrs→r (t),MTRlazy(r⟨t + w⟩))

Here arrs→r (t) is the time when the request is sent, that is,
when the instant variable s gets instantiated and stored in
U . MTRlazyrem (r⟨t + w⟩) is when the remote instant stream
gets resolved. Finally arrr→s(t ′) is the moment at which the
response of the lazy instant stream variable arrives at the
requesting node.

a: INSTANTIATION TO SYNCHRONOUS
Again, we first consider the case where the delay of any link
to be a constant throughout the execution. This constant is
useful to simplify the equations but we need to consider now
that for each instant variable we need a request and afterwards
a response, in order to get the remote value. Again, distr_s is
used to represent the delay that every message will take from
µ(r) to µ(s), independently of the time instant at which the
message is sent. We use this knowledge to simplify MTRlazyrem
for synchronous networks as follows

MTRsynclazyrem (s⟨t⟩) def
= max(t, t ′) s.t.s

w
−−→
rem

r; t + w ≥ 0})

where

t ′ = {distr_s +max(t + dists_r ,MTRsynclazy(r⟨t + w⟩))

where the value of the remote instant variable arrives when
the response message arrives distr_s, which is emitted either
when the request arrived t + dists_r or when the remote value
is resolvedMTRsync(r⟨t + w⟩), whichever occurs later.

b: AETERNALLY BOUNDED DELAYS
Nowwe consider that case where we know a maximum delay
in the network that upper bounds all the other delays in
the network behavior. Substituting the upper-bound value d
in the equations forMTR, we obtain an constant upper-bound
on the MTR (although this value can be a gross over-
approximation):

MTRaeternal lazyrem (s⟨t⟩) def
= max(t,M (s⟨t⟩))

where

M (s⟨t⟩ = {d +max(t + d, t ′) s.t. s
w
−−→
rem

r; t + w ≥ 0})

and

t ′ = MTRaeternal lazy(r⟨t + w⟩)

c: TEMPORARILY BOUNDED DELAYS
Finally, we do not assume an aeternal bound on the delays
of the network. Instead, we can just look at what affects the
computation of the instant variables, that is, other instant
variables that it depends on and the network delays that affect
the messages to compute those instant variables. We take
into account again the window win(s⟨t⟩), which contains the
interval that includes all the instants at which values that
influence s⟨t⟩ are resolved and sent. This window always
ends at most at MTR(s⟨t⟩). Inside this window we can find
the worst delay of a message sent for the computing of the
instant variable: dworst (s⟨t⟩). Then, we can bound MTR(s⟨t⟩)
as follows for the lazy case:

MTRtemp lazyrem (s⟨t⟩) def
= max(t, {t ′ s.t.s

w
−−→
rem

r; t + w ≥ 0})

where

t ′ = dworst (s⟨t⟩)+max
(

dworst (s⟨t⟩)
MTRtemp lazy(r⟨t + w⟩)

)
Here, dworst (s⟨t⟩) is the time for worst message affect-

ing the computation of s⟨t⟩, so the window for obtaining
this value considers both request and response messages.
We use this value to bound both the request and the
response. First, we obtain the latter instant at which either
the request arrives or the remote dependency is resolved in
max(dworst (s⟨t⟩),MTRtemp lazy(r⟨t + w⟩)) and then we add
the time for the response message to arrive with the value in
dworst (s⟨t⟩). Obtaining the moment at which we know that the
remote dependency is guaranteed to be resolved and its value
arrived at the requesting network node.

d: PRUNING THE RESOLVED STORAGE
We are finally ready to prune Rn for the lazy algorithm case
because we know now when every instant variable will be
resolved.
Theorem 5: Every unresolved instant variable s⟨t⟩ that is

lazy in Un is resolved at most atMTRlazy(s⟨t⟩).
As soon as this moment is reached, considering that the

network delays are bounded, a confirmation message will be
sent to those monitors where lazy instant variables that are
dependencies to the resolved instant variable are computed
and this message will arrive in bounded time. Then the receiv-
ing node can prune the corresponding instant variables from
its memory. Now we need to add tconf in this theorem which
is the time for the confirmation message to arrive:

Every unresolved s⟨k⟩ = e in Un is pruned at most at
max({MTRlazy(u⟨k − w⟩) + tconf u}). Where u⟨k − w⟩ is a
remote instant variable that contains s⟨k⟩ in its equation and
tconf u is the time for the confirmation message to travel from
µ(u) to µ(s) sent at time MTRlazy(u⟨k − w⟩). This message
arrives at destination in bounded time and the instant variable
gets pruned. Because at that point the receiving node knows

84110 VOLUME 11, 2023

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

that the instant variable is no longer needed and we say that
the instant variable is confirmed. At that point the monitor
can prune the instant variable even if it is not resolved yet,
as shown in lines 47-48 of Algorithm 2.
With this mechanism, we can assure that every instant

variable will be in memory (Un,Rn) for a bounded amount
of time. This implies that decentralized efficiently moni-
torable specifications in timed asynchronous networks can be
monitored with bounded resources. The bound depends only
linearly on the size of the specification, the diameter of the
network and the delays among the nodes of the network.

2) TIME COMPLEXITY ANALYSIS FOR LAZY
The Time complexity remains unchanged from the eager
case.

3) MESSAGE COMPLEXITY ANALYSIS FOR LAZY
Here we analyze the total number of messages amortized and
it is different from the eager case. For each instant variable,
we will have a request, a response and a confirmation mes-
sage traversing the network.
Proposition 2: Let ϕ be a specification with s streams and

N be the trace length, then there will be at most 3 ∗ s ∗ N
messages during the monitoring.

Proof: As we have s streams and a tracelength of N ,
then we have s ∗ N instant variables by instancing the
streams at each time point. By procedure SendRequests in
line 12 of Algorithm 2 we observe that line 41 will be invoked
once per instant variable. Also, by procedure SendResponses
in line 11 of Algorithm 2 we observe that line 35 will
be invoked once per instant variable. Finally, by procedure
SendConfirmations in line 42 of Algorithm 2 we observe that
line 41 will be invoked once per instant variable.

So, now we have a total of 3 messages(request,
response and confirmation) per instant variable. The worst
case(when most messages are needed) occurs when each
stream is mapped to a different node. In that case we have
up to 3 ∗ s ∗ N messages.

VIII. CONCLUSION AND FUTURE WORK
We have studied the problem of decentralized stream run-
time verification for timed asynchronous networks where
messages can take an arbitrary amount of time to arrive.
This problems starts from a specification and a network.
Our solution consists of a placement of output streams and
an online local monitoring algorithm that runs on every
node. We prove the termination and correctness of the pro-
posed algorithm. We have studied the algorithms complexity
and captured specifications and network assumptions (syn-
chronous, aeternal and temporary bounds) that guarantee
that the monitoring can be performed with constant mem-
ory independently of the length of the trace showing that
our solution subsumes the previous synchronous algorithm.
We report on an empirical evaluation of our prototype tool
tadLola. Our empirical evaluation shows that placement is

crucial for performance and suggest that in most cases careful
placement can lead to bounded costs and delays.

As future work we plan to extend our solution to disaster
scenarios where some links may present a delay ad infinitum,
so no message can traverse that link. Our intuition is that we
could use redundancy in the specifications and the network
topology to provide resilience against faulty network links
while also providing better performance than just by repli-
cating the time asynchronous algorithm and running them in
parallel isolated from each other.

REFERENCES
[1] D. Ancona, A. Ferrando, and V. Mascardi, ‘‘Exploiting probabilistic trace

expressions for decentralized runtime verification with gaps,’’ in Proc.
37th Italian Conf. Comput. Log., vol. 3204, R. Calegari, G. Ciatto, and
A. Omicini, Eds. Bologna, Italy, 2022, pp. 154–170.

[2] E. Asarin, P. Caspi, and O. Maler, ‘‘Timed regular expressions,’’ J. ACM,
vol. 49, no. 2, pp. 172–206, 2002.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, ‘‘Rule-based runtime
verification,’’ in Proc. 5th Int. Conf. Verification, Model Checking Abstract
Interpretation (Lecture Notes in Computer Science), vol. 2937. Cham,
Switzerland: Springer, 2004, pp. 44–57.

[4] D. Basin, D. S. Dietiker, S. Krstic, Y.-A. Pignolet, M. Raszyk, J. Schneider,
and A. Ter-Gabrielyan, ‘‘Monitoring the internet computer,’’ in Formal
Methods, M. Chechik, J.-P. Katoen, and M. Leucker, Eds. Cham, Switzer-
land: Springer, 2023, pp. 383–402.

[5] D. Basin, F. Klaedtke, and E. Zalinescu, ‘‘Failure-aware runtime verifica-
tion of distributed systems,’’ in Proc. 35th IARCS Annu. Conf. Foundations
Softw. Technol. Theor. Comput. Sci., vol. 45, 2015, pp. 590–603.

[6] D. A. Basin, F. Klaedtke, and E. Zalinescu, ‘‘The MonPoly monitoring
tool,’’ RV-CuBES, vol. 3, pp. 19–28, Dec. 2017.

[7] A. Bauer, J.-C. Kuster, and G. Vegliach, ‘‘From propositional to first-
order monitoring,’’ in Runtime Verification (Lecture Notes in Computer
Science), A. Legay and S. Bensalem, Eds. Rennes, France: Springer, 2013,
pp. 59–75.

[8] A. Bauer, M. Leucker, and C. Schallhart, ‘‘Runtime verification for LTL
and TLTL,’’ ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4, p. 14, 2011.

[9] A. K. Bauer and Y. Falcone, ‘‘Decentralised LTL monitoring,’’ in Proc.
18th Int. Symp. Formal Methods (Lecture Notes in Computer Science),
vol. 7436. Cham, Switzerland: Springer, 2012, pp. 85–100.

[10] B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. Rosenblueth, and
C. Travers, ‘‘Decentralized asynchronous crash-resilient runtime verifica-
tion,’’ J. ACM, vol. 69, no. 5, pp. 1–31, Oct. 2022.

[11] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, ‘‘Apache flink: Stream and batch processing in a single
engine,’’ IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28–38, Dec. 2015.

[12] A. Castañeda and G. Valeria Rodríguez, ‘‘Asynchronous wait-free runtime
verification and enforcement of linearizability,’’ 2023, arXiv:2301.02638.

[13] L. Convent, S. Hungerecker, M. Leucker, T. Scheffel, M. Schmitz, and
D. Thoma, ‘‘TeSSLa: Temporal stream-based specification language,’’ in
Proc. 21st Brazilian Symp. Formal Methods (Lecture Notes in Computer
Science), vol. 11254. Cham, Switzerland: Springer, 2018, pp. 144–162.

[14] F. Cristian and C. Fetzer, ‘‘The timed asynchronous distributed system
model,’’ IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 6, pp. 642–657,
Jun. 1999.

[15] J. Cumin, G. Lefebvre, F. Ramparany, and J. Crowley, ‘‘A dataset of routine
daily activities in an instrumented home,’’ in Proc. Int. Conf. Ubiquitous
Comput. Ambient Intell., 2017, pp. 413–425.

[16] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson,
B. Finkbeiner, H. B. Sipma, S. Mehrotra, and Z. Manna, ‘‘LOLA:
Runtime monitoring of synchronous systems,’’ in Proc. 12th Int. Symp.
Temporal Represent. Reasoning, 2005, pp. 166–174.

[17] L. M. Danielsson and C. Sanchez, ‘‘Decentralized stream runtime veri-
fication,’’ in Runtime Verification (Lecture Notes in Computer Science),
vol. 11757, B. Finkbeiner and L. Mariani, Eds. Porto, Portugal: Springer,
2019, pp. 185–201.

[18] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and
D. Van Campenhout, ‘‘Reasoning with temporal logic on truncated paths,’’
in Proc. 15th Int. Conf. Comput. Aided Verification (Lecture Notes in Com-
puter Science), vol. 2725. Cham, Switzerland: Springer, 2003, pp. 27–39.

VOLUME 11, 2023 84111

L. M. Danielsson, C. Sánchez: Decentralized Stream Runtime Verification for Timed Asynchronous Networks

[19] A. El-Hokayem and Y. Falcone, ‘‘Monitoring decentralized specifica-
tions,’’ in Proc. 26th ACM SIGSOFT Int. Symp. Softw. Test. Anal.,
Jul. 2017, pp. 125–135.

[20] A. El-Hokayem and Y. Falcone, ‘‘THEMIS: A tool for decentralized
monitoring algorithms,’’ in Proc. 26th ACM SIGSOFT Int. Symp. Softw.
Test. Anal., Jul. 2017, pp. 372–375.

[21] A. El-Hokayem and Y. Falcone, ‘‘On the monitoring of decentralized spec-
ifications: Semantics, properties, analysis, and simulation,’’ ACM Trans.
Softw. Eng. Methodol., vol. 29, no. 1, pp. 1–57, Jan. 2020.

[22] A. El-Hokayem and Y. Falcone, ‘‘Bringing runtime verification home:
A case study on the hierarchical monitoring of smart homes using decen-
tralized specifications,’’ Int. J. Softw. Tools Technol. Transf., vol. 24, no. 2,
pp. 159–181, Apr. 2022.

[23] P. Faymonville, B. Finkbeiner, S. Schirmer, and H. Torfah,
‘‘A stream-based specification language for network monitoring,’’
in Proc. 16th Int. Conf. Runtime Verification (Lecture Notes in
Computer Science), vol. 10012. Cham, Switzerland: Springer, 2016,
pp. 152–168.

[24] P. Faymonville, B. Finkbeiner, M. Schledjewski, M. Schwenger,
M. Stenger, L. Tentrup, and T. Hazem, ‘‘StreamLAB: Stream-based
monitoring of cyber-physical systems,’’ in Proc. 31st Int. Conf. Comput.-
Aided Verification (Lecture Notes in Computer Science), vol. 11561.
Cham, Switzerland: Springer, 2019, pp. 421–431.

[25] A. Francalanza, J. A. Perez, and C. Sanchez, ‘‘Runtime verifica-
tion for decentralised and distributed systems,’’ in Lectures Run-
time Verification (Lecture Notes in Computer Science), vol. 10457,
E. Bartocci and Y. Falcone, Eds. Cham, Switzerland: Springer, 2018,
pp. 176–210.

[26] F. Gallay and Y. Falcone, ‘‘Decent: A benchmark for decentralized
enforcement,’’ in Runtime Verification, T. Dang and V. Stolz, Eds. Cham,
Switzerland: Springer, 2022, pp. 293–303.

[27] R. Ganguly, A. Momtaz, and B. Bonakdarpour, ‘‘Distributed runtime
verification under partial synchrony,’’ in Proc. 24th Int. Conf. Princ.
Distrib. Syst. (Lecture Notes in Computer Science), vol. 184, Q. Bramas,
R. Oshman, P. Romano, Eds. Dagstuhl, Germany: Schloss Dagstuhl-
Leibniz Center for Informatics, 2021, pp. 1–17.

[28] R. Ganguly, Y. Xue, A. Jonckheere, P. Ljung, B. Schornstein,
B. Bonakdarpour, and M. Herlihy, ‘‘Distributed runtime verification
of metric temporal properties for cross-chain protocols,’’ in Proc. IEEE
42nd Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2022, pp. 23–33.

[29] F. Gorostiaga, L.M. Danielsson, and C. Sanchez, ‘‘Unifying the time-event
spectrum for stream runtime verification,’’ inRuntime Verification (Lecture
Notes in Computer Science), vol. 12399, J. Deshmukh and D. Nickovic,
Eds. Los Angeles, CA, USA: Springer, 2020, pp. 462–481.

[30] F. Gorostiaga and C. Sanchez, ‘‘Striver: Stream runtime verification for
real-time event-streams,’’ in Proc. 18th Int. Conf. Runtime Verification
(Lecture Notes in Computer Science), vol. 11237. Cham, Switzerland:
Springer, 2018, pp. 282–298.

[31] K. Havelund and G. Roşu, ‘‘Synthesizing monitors for safety properties,’’
in Proc. 8th Int. Conf. Tools Algorithms Construction Anal. Syst. (Lecture
Notes in Computer Science), vol. 2280. Cham, Switzerland: Springer,
2002, pp. 342–356.

[32] M. Jaber, Y. Falcone, P. Attie, A.-A. Khalil, R. Hallal, and A. El-Hokayem,
‘‘From global choreographies to verifiable efficient distributed imple-
mentations,’’ J. Log. Algebr. Methods Program., vol. 115, Oct. 2020,
Art. no. 100577.

[33] L. Kaupp, H. Webert, K. Nazemi, B. Humm, and S. Simons, ‘‘CONTEXT:
An industry 4.0 dataset of contextual faults in a smart factory,’’ Proc.
Comput. Sci., vol. 180, pp. 492–501, Jan. 2021.

[34] S. Kazemlou and B. Bonakdarpour, ‘‘Crash-resilient decentralized syn-
chronous runtime verification,’’ in Proc. IEEE 37th Symp. Reliable Distrib.
Syst. (SRDS), Oct. 2018, pp. 207–212.

[35] N. A. Lynch, Distributed Algorithms. San Francisco, CA, USA: Morgan
Kaufmann, 1996.

[36] A. Momtaz, H. Abbas, and B. Bonakdarpour, ‘‘Monitoring signal temporal
logic in distributed cyber-physical systems,’’ in Proc. ACM/IEEE 14th Int.
Conf. Cyber-Phys. Syst., May 2023, pp. 154–165.

[37] F. Pajuelo-Holguera, J. A. Gómez-Pulido, and F. Ortega, ‘‘Recommender
systems for sensor-based ambient control in academic facilities,’’ Eng.
Appl. Artif. Intell., vol. 96, Nov. 2020, Art. no. 103993.

[38] I. Perez, F. Dedden, and A. Goodloe, ‘‘Copilot 3,’’ NASA, Washington,
DC, USA, Tech. Rep., NASA/TM-2020-220587, Apr. 2020.

[39] L. Pike, A. Goodloe, R. Morisset, and S. Niller, ‘‘Copilot: A hard real-time
runtime monitor,’’ in Proc. 1st Int. Conf. Runtime Verification (Lecture
Notes in Computer Science), vol. 6418. Cham, Switzerland: Springer,
2010, pp. 345–359.

[40] L. Pike, N. Wegmann, S. Niller, and A. Goodloe, ‘‘Copilot: Monitoring
embedded systems,’’ Innov. Syst. Softw. Eng., vol. 9, no. 4, pp. 235–255,
Dec. 2013.

[41] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe, ‘‘Pri-
vApprox: Privacy-preserving stream analytics,’’ in Proc. USENIX Annu.
Tech. Conf., Santa Clara, CA, Jul. 2017, pp. 659–672.

[42] G. Rosu and K. Havelund, ‘‘Rewriting-based techniques for runtime veri-
fication,’’ Automated Softw. Eng., vol. 12, no. 2, pp. 151–197, Apr. 2005.

[43] V. Roussanaly and Y. Falcone, ‘‘Decentralised runtime verification of
timed regular expressions,’’ in Proc. 29th Int. Symp. Temporal Repre-
sent. Reasoning, vol. 247, A. Artikis, R. Posenato, and S. Tonetta, Eds.
Dagstuhl, Germany: Schloss Dagstuhl-Leibniz Center for Informatics,
2022, pp. 1–18.

[44] M. Samadi, F. Ghassemi, and R. Khosravi, ‘‘Decentralized runtime verifi-
cation of message sequences in message-based systems,’’ Acta Inf., vol. 60,
no. 2, pp. 145–178, 2022.

[45] C. Sanchez, ‘‘Online and offline stream runtime verification of syn-
chronous systems,’’ in Proc. 18th Int. Conf. Runtime Verification (Lecture
Notes in Computer Science), vol. 11237. Cham, Switzerland: Springer,
2018, pp. 138–163.

[46] K. Sen and G. Roşu, ‘‘Generating optimal monitors for extended reg-
ular expressions,’’ in Electronic Notes in Theoretical Computer Sci-
ence, vol. 89, O. Sokolsky and M. Viswanathan, Eds. Amsterdam,
The Netherlands: Elsevier, 2003.

[47] K. Sen, A. Vardhan, G. Agha, and G. Rosu, ‘‘Efficient decentralized
monitoring of safety in distributed systems,’’ in Proc. 26th Int. Conf. Softw.
Eng., 2004, pp. 418–427.

[48] P. Zorin andO. Stukach, ‘‘Data of heatingmeters from residential buildings
in Tomsk (Russia) for statistical modeling of the thermal characteristics of
buildings,’’ 2020, doi: 10.21227/3r4e-ch18.

LUIS MIGUEL DANIELSSON was born in
Madrid, Comunidad de Madrid, España, in 1992.
He received the B.S. degree in computer engineer-
ing and the M.S. degree in software and systems
from Universidad Politécnica de Madrid, Madrid,
Spain, in 2015 and 2018, respectively, where he is
currently pursuing the Ph.D. degree in software,
systems and computing.

From 2015 to 2016, he was working at
the consulting firm Management Solutions.

From 2016 to 2017, he was with Speex as a Web Developer.
From 2017 to 2018, he was a Research Intern with the Reactive Systems
Group, IMDEA Software Institute. Since 2018, he has been a Research
Assistant with the Reactive Systems Group. His research interests include
software verification, formal methods, runtime verification, stream runtime
verification, distributed systems, and fault tolerance.

CÉSAR SÁNCHEZ (Senior Member, IEEE)
received the M.S. degree in electrical engineering
from Ingenería Superior de Telecomunicación,
Universidad Politécnica de Madrid, in 1998, and
the M.S. and Ph.D. degrees in computer science
from Stanford University, in 2001 and 2007,
respectively. In 2007, he was a Postdoctoral
Researcher with the University of California at
Santa Cruz. He joined the IMDEA Software Insti-
tute, in 2008, as an Assistant Professor, and he was

promoted to an Associate Professor, in 2013. From 2009 to 2020, he was a
Research Scientist with the Spanish National Council for Research (CSIC).
His research interests include the applications of logic to computer science,
and applicable formal methods for the design, the analysis and verification
of distributed systems, real-time systems, and embedded systems. He is a
Senior Member of ACM and a member of Mensa. He was a recipient of the
Frank Anger Memorial Award, in 2006.

84112 VOLUME 11, 2023

http://dx.doi.org/10.21227/3r4e-ch18

