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Abstract. In online monitoring, a monitor is synthesized from a formal specifi-
cation, which later runs in tandem with the system under study. In offline monitor-
ing the trace is logged as the system progresses to later do post-mortem analysis
after the system has finished executing.
In this tool paper we demonstrate the use of retroactive dynamic parametrization,
a technique that allows an online monitor to revisit the past log as it progresses.
This feature enables new monitors to be incorporated into an already running
system and to revisit the past for particular behaviors, based on new informa-
tion discovered. Retroactive parametrization also allows a monitor to lazily ig-
nore events and revisit and process them later, when the monitor discovers that it
should have processed those events. We showcase the use of retroactive dynamic
parametrization to perform network monitor denial of service attacks.

1 Introduction

Runtime verification (RV) [2,18] is a lightweight formal dynamic verification technique
that analyzes a single trace of execution using a monitor derived from a specification.
The initial specification languages to describe monitors in RV where borrowed from
property languages for static verification, including linear temporal logic (LTL) [23],
adapted to finite traces [3, 8, 19]. Most RV languages describe a monolithic monitor
that later processes the events received. Dynamic parametrization (also known as para-
metric trace slicing) allows quantifying over objects and spawning new monitors that
follow independently objects as they are discovered, like in Quantified Event Automata
(QEA) [1].

Stream runtime verification [4, 11, 22](SRV), pioneered by Lola [7] defines mon-
itors by declaring the dependencies between output streams and input streams. The
initial application domain of Lola was the testing of synchronous hardware. Temporal
testers [24] were later proposed as a monitoring technique for LTL based on Boolean
streams. Copilot [11, 21, 22] is a DSL similar to Lola, which declares dependencies
between streams in a Haskell-based style, and then generates C monitors. Lola2.0 [9]
extends Lola allowing dynamically parametrized streams, similarly to QEA. Stream
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runtime verification has also been extended recently to asynchronous and real-time sys-
tems [6, 10, 12, 17]. HLola [5, 13, 15] is an implementation of Lola as an embedded
DSL in Haskell, which allows borrowing datatypes from Haskell directly as Lola ex-
pressions, and using features like higher-order functions to ease the development of
specifications and the runtime system. In this paper we use HLola and extend it with
capabilities for retroactive dynamic parametrization.

In practice it is common to monitor properties that are defined after the system starts
running, and we cannot or do not wish to stop the system. Therefore, the monitor will
receive online new events after being installed. Then, one can (1) ignore that the monitor
is started in the middle of the computation and pretend that the history starts after the
monitor is installed, (2) encode the lack of knowledge of the monitor in the specification,
or, (3) if the beginning of the trace was stored in an accessible log, allow the monitor
to collaborate with the log to process the missing past events and then continue to
process the future events online. The first option is the most natural and in many cases
an acceptable solution, while the second option has been explored in [16], but these two
options neglect the beginning of the trace which can sometimes affect the monitoring
task. The third option requires a novel combination of offline and online monitoring
offering the possibility of accessing the past of the trace. Moreover, enriching an SRV
monitor with the ability of accessing the past allows the description of properties that
revisit the past exploiting information discovered at a later time.

In this tool paper we demonstrate an extension of the tool HLola4 which enables
a novel dynamic instantiation of monitors called retroactive dynamic parametrization.
The new tool offers dynamic parametrization and extends it with the ability to revisit
the past of a live stream of events, effectively combining online and offline runtime
verification. A longer version of this paper is available at [20].

2 Overview

Preliminaries. Stream Runtime Verification (SRV) generalizes monitoring algorithms
to arbitrary data, by preserving the temporal dependencies and generalizing the datatypes
using multi-sorted data theories. HLola is an extensible implementation of Lola [7] de-
veloped as an embedded DSL in Haskell, from which HLola borrows datatypes as data
theories. HLola also allows the easy implementation of new powerful features as li-
braries with no changes to the core engine. The tool described in this paper incorporates
retroactive parametrization to HLola.

A Lola specification ⟨I,O,E⟩ consists of (1) a set of typed input stream variables
I , which correspond to the inputs observed by the monitor; (2) a set of typed output
stream variables O which represent the outputs of the monitor as well as intermediate
observations; and (3) defining equations, which associate every output y ∈ O with a
stream expression Ey that describes declaratively the intended values of y (in terms
of the values of inputs and output streams). The set of stream expressions of a given
type is built from constants and function symbols as constructors (as usual), and also
from offset expressions of the form s[now], or s[k|d] where s is a stream variable,

4 Available at https://github.com/imdea-software/hlola/
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k is an integer number and d is a value of the type of s (used as default). For exam-
ple, altitude[now] represents the value of stream altitude in the current instant, and
altitude[-1|0.0] represents the value of stream altitude in the previous instant, with
0.0 as the value used at the first instant. HLola can be efficiently monitored, meaning
that (most programs) can be monitored in constant space and in constant time per event
(trace-length independent monitoring [5]).

As a byproduct of its design, HLola allows static parametrization in stream defini-
tions, this is, streams that abstract away some concrete values, which are later instanti-
ated by the compiler. Even though static parametrization is very useful to define libraries
and clean specifications, parameters are expanded at static time before the monitor starts
running, and parametric streams cannot be spawned with a value that is discovered at
runtime. The keystone of the design of HLola is to use datatypes and functions from
Haskell as the data theories of Lola. In turn, HLola also allows using Lola specifica-
tions as datatypes, via the function runSpec that executes a specification over the input
trace and produces a value of the result type. This allows Lola specifications to be used
as data theories within Lola, a feature called nested monitoring [14]. Nested monitors
allow writing functions on streams as SRV specifications, creating and executing these
specifications dynamically. In [14] nested monitors are created and destroyed within an
instant and their final states are lost. Also, nested monitors cannot access the past of the
trace before the beginning of the sub-trace they receive. In this tool paper we introduce
novel features by relaxing these restrictions, gaining the ability to combine offline and
online runtime verification. We allow nested monitors to be created dynamically and
continue executing alongside their parent monitor. The states of the dynamically cre-
ated nested monitors are carried on to the next instant, and they can inspect the full past
of the system.

We introduce the following kinds of nested monitors:
1. Retroactive Nested Monitors, which can access events and trigger a finer anal-

ysis of the past of the trace when necessary. For example, consider monitoring network
traffic, where the monitor receives (1) the source and destination of each IP packet, and
(2) the packets per second in the last hundred instants. We want to detect whether an
address has received too many packets in the last hundred instants, which can be speci-
fied as follows: if the packet flow is low, then there is no attack, but when the flow rate
is above a predefined threshold (threshold_pps) we have to inspect the last hundred
packets and check if a given address is under attack. We can define a specification which
only observes the packets per second in the last hundred instants, ignoring the source
and destination of the IP packets. If the packets per second exceed threshold_pps, this
triggers the creation of a retroactive nested monitor, which will retrieve the past of the
trace using the new keyword withTrace and do the more expensive analysis of detect-
ing if an address is in fact under attack. Note how this specification detects an attack at
most one hundred instants after it happens. Also note that the nested monitors in this
example are created, executed and destroyed at every instant.

2. (Forward) Dynamic Parametrization, which let us instantiate a parametric
stream using dynamically discovered values, via the new keyword over. The over op-
erator takes a parametric stream strm of type S with a parameter of type P, and a stream
params of sets of values of type P, and creates an expression of type Map P S, whose
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keys at any given instant are the values in params[now], and where the value associated
to each key is the instantiation of s over the key. Using the over operator we can dy-
namically instantiate a parametric stream over a set of parameters that are discovered
while processing the trace of input.

Consider a scenario where we are monitoring network traffic, and following every
TCP 3-way handshake in which (1) the source sends a packet SYN, then (2) the desti-
nation sends SYN/ACK and then (3) the source sends ACK. We define a parametric stream
which receives a pair of addresses and generates a value, which can be Valid or Error,
depending on whether the handshake is correct or not. We cannot know statically for
which pair of addresses we have to instantiate the parametrized stream, and therefore,
the monitor has as parameter a pairs of addresses to follow. At every instant, the moni-
tor can add a new pair of source and destination addresses. In this manner we can use a
parametric stream over dynamic values using the over operator. Every time a new value
is incorporated to the set of active parameters, we spawn a new monitor parametrized
with the new value. Then, we preserve the state of this monitor between instants in
an auxiliary stream, executing the nested monitor alongside the outer monitor until the
auxiliary monitor is no longer needed, that is, until its associated parameter is removed
from the set.

3. Retroactive Dynamic Parametrization, which allows revisiting the past of a
trace every time the monitor discovers a new parameter to instantiate the parametric
stream. The new parametrized stream continues to monitor in an online manner. The
static parametrization already present in HLola is too limited to implement this feature
because the monitor cannot know the state of a parametric stream over an arbitrary pa-
rameter in the middle of the trace unless the parameter was determined statically. Using
static parametrization to implement dynamic parametrization is only feasible for small
parameter sets, like Booleans or a small enumerated type, but it becomes unfeasible
when the space of potential parameters is large.

To implement retroactive dynamic parametrization we add a new clause withInit
to the over operator to describe an initializer, which indicates how the nested monitor
can take its state up to the current instant. An initializer will typically call an external
program with the corresponding arguments that indicate how to efficiently retrieve the
elements in the past of the trace that are relevant to the parameter.

Consider the case of monitoring a file system assessing whether every time a file
is read or written, it had been created previously. One way is to use forward dynamic
parametrization following all the files as they are opened. With retroactive monitoring,
we can start following a file id just when it is read or written, and only then (calling an
external program) retrieve the past of the trace for that parameter. The external program
can use an index to efficiently retrieve only the events relevant to a file id or even only
the open events.

3 HLola with Dynamic Parametrization

We have implemented retroactive nested parametrization, forward dynamic parametriza-
tion and retroactive dynamic parametrization in HLola.
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Dynamically mapping a parametric stream strm with a stream of set of parame-
ters params of type Set P creates an auxiliary stream x_over_params of type Map P
MonitorState that associates, at every instant, each parameter p in paramswith the state
of the nested monitor corresponding to s<p>. The value of x ‘over‘ params is simply
the projection of the parametrized streams in the monitors of x_over_params[now].
There are three possibilities for the behavior of the auxiliary stream for given p:
(1) p ∈ params[-1|∅] \ params[now]: the parameter was in the set in the previous

instant, but it is no longer in the set in the current instant. In this case, p and its
associated value are deleted from the map x_over_params[-1|∅].

(2) p ∈ params[-1|∅] ∩ params[now]: the parameter was in the set and it is still in the
set now. In this case, we feed the current event to the monitor associated with p and
let it progress one step. Then, the value of the parametrized stream in the nested
monitor is associated with p in the returned map.

(3) p ∈ params[now]\params[-1|∅]: the parameter was not in the set, but it is now. The
monitor for p is installed, executing the initializer (possibly revisiting the past) to
get the monitor up to date and ready to continue online. After installing the monitor,
the new event is injected, and the value of s<p> is associated to p the returned map.
Note that the past is only revisited when a new parameter is discovered. Once the
stream is instantiated with the parameter, its corresponding nested monitor will
continue executing over the future of the trace online.
Since we want HLola to support initialization from different sources (e.g. a DBMS,

a blockchain node, or plain log files) the initializer of the internal monitors typically
invokes an external program. This external program, called adapter, is in charge of
recovering the trace and formatting it adequately for the monitor.

4 A Network Traffic Case Study and Empirical Evaluation

We report in this section an empirical evaluation of retroactive dynamic parametrization,
implemented in our tool, that extends HLola [13]. We use our tool to implement mon-
itors that describe several algorithms for the detection of distributed denial of service
attacks (DDOS). All the experiments were executed on a Linux machine with 256GB
of RAM and 72 virtual cores (Xeon Gold 6154 @3GHz) running Ubuntu 20.04. For
conciseness we use RP to refer to retroactive parametrization, and non-RP to implemen-
tations that do not use retroactive parametrization (but use dynamic parametrization).
We evaluate empirically the following hypotheses:

(H1) RP is functionally equivalent to non-RP.
(H2) RP and non-RP run at similar speeds, particularly when most dynamic instantia-

tions turn out to be irrelevant.
(H3) RP consumes significantly less memory than non-RP, particularly when most

instantiations are irrelevant.
(H4) Aggregated RP—where the monitor receives summaries of the trace that indicate

if further processing is necessary—is functionally equivalent to RP.
(H5) Aggregated RP is much more efficient than RP and non-RP without aggregation.

The datasets for the experiments are (anonymized) samples of real network traffic col-
lected by a Juniper MX408 router that routes the traffic of an academic network used
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by several tens of thousand of users (students and researchers) simultaneously, routing
approximately 15 Gbps of traffic on average. The sampling ratio provided by the routers
was 1 to 100 flows5. Each flow contains the metadata of the traffic sampled, with infor-
mation such as source and destination ports and addresses, protocols and timestamps,
but does not carry information about the contents of the packets. These flows are stored
in aggregated batches of 5 minutes encoded in the netflow format.

Our monitors implement fourteen known DDOS network attacks detection algo-
rithms. An attack is detected if the volume of connections to a destination address sur-
passes a fixed attack-specific threshold, and those connections come from a sufficiently
large number of different attackers, identified by source IP address. The number of dif-
ferent source addresses communicating with a destination is known as the entropy of the
destination. Each attack is concerned with a different port and protocol and considers a
different entropy as potentially dangerous.

In order to process the network data needed by the monitors, we developed a Python
adapter that uses nfdump, a toolset to collect and process netflow data. The tool nfdump
can be used to obtain all the flows in a batch, optionally applying some simple filters,
or to obtain summarized information about all the flows in the batch. For example,
nfdump can provide all the flows received, filtered by a protocol or address, as well
as the volume of traffic to the IP address that has received the most connections of a
specific kind.

Our empirical evaluation consists of four datasets in which we knew whether each
attack was present:

(D1) A batch of network flows with an attack based on malformed UDP packets (UDP
packets with destination port 0). This batch contains 419938 flows, with less than
1% malformed UDP packets. The threshold for this attack is 2000 packets per sec-
ond, which is surpassed in this batch for one single address, for which the entropy
of 5 is exceeded.

(D2) A batch of network flows with no attack, containing 361867 flows, of which only
66 are malformed UDP packets (roughly, 0.001%).

(D3) A batch of network flows with no attack, but with many origin IP addresses and
100 destination addresses.

(D4) Intervals with several batches, where only one batch has an attack based on mal-
formed UDP packets.

The monitors in our experiments follow the same attack description: In a batch of
5 minutes of flow records, an address is under attack if it receives more than t0 packets
per second or bits per second from more than t1 different source addresses (where t0
and t1 depend on the attack).

We have implemented our monitors in three different ways6:
(S1) Brute force: Using (forward) dynamic parametrization, the monitor calculates

the number of packets and bits per second (which we call “volume”) for all potential

5 Most detection systems use a much slower sampling of 1 to 1000 or even less.
6 The specifications for (S1), (S2) and (S3) as well as the instructions and dataset to exe-

cute them are available in a dedicated branch of the repository, at https://github.com/
imdea-software/hlola/tree/RV2023.

https://github.com/imdea-software/hlola/tree/RV2023
https://github.com/imdea-software/hlola/tree/RV2023
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target IP addresses. It also computes the entropy for each potential target address and
for each attack. For every flow, the monitor internally updates the information about the
source address, destination and volume.

1 input String fileId
2 input Flow flow

3 define Int flowCounter = flowCounter[-1|0] + 1
4 define Bool firstFlow = fileId[now] /= fileId [-1|""]
5 define Bool lastFlow = fileId[now] /= fileId[1|""]

6 output [String] attacked_IPs = map detect attacks
7 where detect atk = (attack_detection atk)[now]

8 define String attack_detection <AttackData atk> =
9 if (markerRate atk)[now] > threshold atk then
10 if (ipEntropy atk)[now] > maxEntropy atk then
11 (maxDestAddress atk)[now]
12 else "Over threshold but not entropy"
13 else "No attack"

14 define Int markerRate <AttackData atk> = ...
21 define String maxDestAddress <AttackData atk> = ...

29 define AddrInfo addrInfo <AttackData atk> =
30 insertWith updt destAddr[now] (extractInfo atk flow[now]) prev
31 where
32 prev = if firstFlow[now] then empty else (addrInfo atk) [-1|empty]
33 updt (p,b,ts,te) (p’,b’,ts’,te’) = (p+p’,b+b’,min ts ts’,max te te’)

34 define Histogram attackHist <AttackData atk> = let
35 hist = if firstFlow[now] then empty else (attackHist atk) [-1|empty]
36 in insertWith (+) destAddr[now] 1 hist

The specification uses the flowCounter to perform retroactive dynamic parametriza-
tion. The stream attacked_IPsmaps the parametric stream attack_detection over the
list of attacks. The stream attack_detection checks that the marker (bits per seconds
or packets per second) of the attack and the IP entropy of any address do not exceed the
thresholds. If the thresholds are exceeded, the IP address most accessed (which is cal-
culated in maxDestAddress) is considered to be under attack. The stream markerRate
calculates the bits per seconds or packets per second of an attack, while the stream
maxDestAddress calculates the most accessed address. The stream addrInfo keeps a
map of the packets, bits, start time and endtime per destination address. Similarly, the
stream attackHist keeps a map of the number of accesses per destination address. In
this scenario, we calculate the ipEntropy (not shown in the monitor above) of every ad-
dress at all times, and we simply return the size of the set of different origin IP addresses
of the most accesseed IP.

(S2) Retroactive: In this implementation, the monitor also analyzes all flows, calcu-
lating the volume of packets for each address, but in this case the monitor lazily avoids
calculating the entropy, using retroactive dynamic parametrization. The monitor only
calculates the entropy when the volume of traffic for an address surpasses the thresh-
old. The monitor uses the over operator to revisit the past flows of the batch filtered by
that attack, using the Python adapter which produces the subset of the flows required
to compute the entropy. The monitoring then continues calculating the entropy until the
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end of the batch. The specification for this implementation is the same as in (S1), but
with a different implementation of the IP entropy calculation:

37 define Int ipEntropy <AttackData atk> =
38 (maybe 0 size . listToMaybe . elems) mset
39 where
40 mset = setSrcForDestAddr atk ‘over‘ maybeAddress atk
41 ‘withInit‘ initer atk fileId[now] flowCounter[now]

42 define (Set String) setSrcForDestAddr <AttackData atk> <String dst> = let
43 prevSet = if firstFlow[now] then empty
44 else (setSrcForDestAddr atk) [-1|empty]
45 in insert srcAddr[now] prevSet

46 define (Set String) maybeAddress <AttackData atk> =
47 if (attack_detection atk)[now] then singleton (maxDestAddress atk)[now]
48 else empty

In this case, we define a parametric stream setSrcForDestAddr that calculates the set of
different origin IPs of a destination address. We define an auxiliary stream maybeAddress
that contains the most accessed address, if it exceeds the threshold. The definition of
ipEntropy will instantiate dynamically the stream setSrcForDestAddr with the most
accessed address once it exceeds the threshold, with an initializer specific to the sus-
pected attack and address. We compose different functions to retrieve the values of the
map (which is at most one), and get the size of the corresponding set, if it exists, using
0 as the default value.

(S3) Aggregated: This specification uses retroactive nested monitors with retroac-
tive dynamic parametrization to analyze summaries of batches of flows, executing a
nested specification over the current batch and the suspected attack, when one of the
markers is above a predefined threshold: the monitor receives a summary of a five
minute batch of network data, as a single event containing fourteen attack markers.
The monitor is based on the ability of the backend to pre-process batches using nfdump
to obtain—for each attack and for the whole batch—the maximum volume of traffic
for any IP address. If an attack marker is over the threshold, the monitor spawns a
nested monitor which retrieves a subset of the flows for that batch and attack, and an-
alyzes those flows in a more detailed way. This second nested monitor behaves like
the retroactive parametrization in (S2). The aggregation of data provides a first, coarse
overview serving as a necessary condition to spawn the expensive nested monitor. This
is particularly useful because attacks are infrequent and the ratio of false positives of
the summary detection is relatively low.

There are two great advantages to this implementation, in comparison to the im-
plementation in (S2): the finer analysis of the flows will only be performed when the
aggregated data indicates a possble attack, instead of all the time and for all flows; and
when the nested monitor is triggered, it will be triggered with two parameters, a specific
batch and attack, that will be used to filter the flows before processing them. Being able
to filter the flows by the characteristics of a specific attack greatly reduces the amount
of flows of the batch to a small percentage (for example, in the dataset (D1), which is a
batch with an attack, less than 1% of the flows of the batch were part of the attack).
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The nested specification flowAnalyzer is triggered by a marker which indicates a
possible attack. This specification analyzes individual flows, and it is exactly the spec-
ification described in (S2), but it will be used to analyze all flows in a batch only if the
aggregated marker is positive.

1 use innerspec flowAnalyzer
2 input String fileId
3 input Int marker <AttackData atk>

4 output [String] attacked_IPs = map detect attacks
5 where detect atk = (attack_detection atk)[now]

6 define String attack_detection <AttackData atk> =
7 if (marker atk)[now] > threshold atk then
8 runSpec (flowAnalyzer atk (flowRetriever atk fileId[now]))
9 else "No attack"

The constant attacks is a list of the attack data of the fourteen different attacks
that the monitor can detect. The nested specification flowAnalyzer analyzes individ-
ual flows, and it can use retroactive dynamic parametrization, or (the less efficient)
non-retroactive dynamic parametrization.

Results: In the first experiment we run the three implementations against dataset
(D4). In this interval of multiple batches, only one of which contains an attack, all three
implementations identify the batch with the attack and correctly detect the kind of attack
and target address. This confirms empirically hypotheses (H1) and (H4).

In the second experiment we run specifications (S1) and (S2) against datasets (D1),
(D2) and (D3). The results are reported in the following table:

(D1) (Attack) (D2) (No Attack) (D3) (No Attack)
(S1) (Brute force) 18m12.146s 15m51.599s 16m34.795s
(S2) (Retroactive) 20m43.921s 17m19.844s 19m30.518s
(S3) (Aggregated) 0m16.208s 0m2.109s 0m2.115s

We can see that the running times for the brute force and retroactive implementations
are similar, while the aggregated implementation is extremely fast in comparison, which
empirically confirms (H2) and (H5). This is because (S3) exploits the summarized in-
formation, and does not find any marker over the threshold for the datasets (D2) and
(D3) so the flows within the batch are never individually processed. For dataset (D1),
a nested monitor will be executed because one of the markers (for the attack with mal-
formed UDP packets) is over the threshold, but it will only try to detect the attack
corresponding to that marker, and it will only receive a small subset of the flows (less
than 1% of the flows of the batch are relevant for the attack). If all the markers for all
the attacks were over their threshold and all the flows were implicated in the attacks,
the time required would be closer to the retroactive implementation. The ad-hoc aggre-
gation of data by the external tool is very efficient, as is the verification of this data by
the monitor, so this implementation is especially advantageous when the positives (or
false positives) are expected to be infrequent, and when most of the data can be filtered
out before executing the nested monitor.

In a third experiment we run a version of specifications (S1) and (S2)—instrumented
with capabilities to measure memory consumption—on (D1), (D2) and (D3). The re-
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Fig. 1. Memory usage of the brute force (a), (b), (c) and retroactive (d), (e), (f).

sults, reported in Fig. 1, empirically confirm (H3). For the three datasets, the memory
used by the brute force approach increases linearly over time, as it has to keep track
of the volume and IP entropy for every attack and every potential target address. On
the other hand, the memory usage of the retroactive implementation remains close to
constant, with a sudden increase when an attack is detected and the past flows have to
be retrieved and processed.

5 Conclusions

In this paper we have introduced the concept of retroactive dynamic parametrization.
In dynamic parametrization, proposed in QEA and Lola2.0, a new monitor (which is an
instance of a generic monitor) is instantiated the first time a parameter is discovered.
In retroactive dynamic parametrization the decision to instantiate a dynamic paramet-
ric monitor can be taken later in the future, for example when a given parameter is
discovered to be interesting.

Effectively implementing retroactive parametrization requires the ability to revisit
the history of the computation, a task that can be efficiently implemented with a logging
system. Therefore, retroactive parametrization allows a fruitful combination of offline
and online monitoring. Retroactive parametrization also allows monitors to be created
in the middle of an execution without requiring to process the whole trace from the
beginning.

We have implemented this technique in HLola and empirically evaluated its effi-
ciency, illustrating that it can efficiently detect distributed denial of service attacks in
realistic network traffic.
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