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2 Universidad Politécnica de Madrid. Spain

Abstract. In this paper, we address the problem of the (reactive) re-
alizability of specifications of theories richer than Booleans, including
arithmetic theories. Our approach transforms specifications into purely
Boolean specifications by (1) substituting theory literals by Boolean vari-
ables, and (2) computing an additional Boolean requirement that cap-
tures the dependencies between the new variables imposed by the literals.
The resulting specification can be passed to existing Boolean off-the-shelf
realizability tools, and is realizable if and only if the original specification
is realizable. The first contribution is a brute-force version of our method,
which requires a number of SMT queries that is doubly exponential in
the number of input literals. Then, we present a faster method that ex-
ploits a nested encoding of the search for the extra requirement and uses
SAT solving for faster traversing the search space and uses SMT queries
internally. Another contribution is a prototype in Z3-Python. Finally, we
report an empirical evaluation using specifications inspired in real indus-
trial cases. To the best of our knowledge, this is the first method that
succeeds in non-Boolean LTL realizability.

1 Introduction

Reactive synthesis [31,30] is the problem of automatically producing a system
that is guaranteed to model a given temporal specification, where the Boolean
variables (i.e., atomic propositions) are split into variables controlled by the en-
vironment and variables controlled by the system. Realizability is the related
decision problem of deciding whether such a system exists. These problems have
been widely studied [21,17], specially in the domain of Linear Temporal Logic
(LTL) [29]. Realizability corresponds to infinite games where players alterna-
tively choose the valuations of the Boolean variables they control. The winning
condition is extracted from the temporal specification and determines which
player wins a given play. A system is realizable if and only if the system player
has a winning strategy, i.e., if there is a way to play such that the specification
is satisfied in all plays played according to the strategy.
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However, in practice, many practical and industrial specifications use com-
plex data beyond Boolean atomic propositions, which precludes the direct use of
realizability tools. These specifications cannot be written in (propositional) LTL,
but instead use literals from a richer domain. We use LTLT for the extension
of LTL where Boolean atomic propositions can be literals from a (multi-sorted)
first-order theory T . The T variables (i.e., non-Boolean) in the specification are
again split into those controlled by the system and those controlled by the envi-
ronment. The resulting realizability problem also corresponds to infinite games,
but, in this case, players chose valuations from the domains of T , which may
be infinite. Therefore, arenas may be infinite and positions may have infinitely
many successors. In this paper, we present a method that transforms a specifica-
tion that uses data from a theory T into an equi-realizable Boolean specification.
The resulting specification can then be processed by an off-the-shelf realizability
tool.

The main element of our method is a novel Boolean abstraction method,
which allows to transform LTLT specifications into (Boolean) LTL specifica-
tions. The method first substitutes all T literals by fresh Boolean variables con-
trolled by the system, and then extends the specification with an additional sub-
formula that constrains the combination values of these variables. This method
is described in Section 3. The main idea is that, after the environment selects
values for its (data) variables, the system responds with values for the variables
it controls, which induces a Boolean value for all the literals. The additional
formula we compute captures the set of possible valuations of literals and the
precise power of each player to produce each valuation.

Example 1. Consider the following specification φ = □(R0 ∧R1), where:

R0 : (x < 2)→ (y > 1) R1 : (x ≥ 2)→ (y < x)

where x is a numeric variable that belongs to the environment and y to the sys-
tem. In the game corresponding to this specification, each player has an infinite
number of choices at each time step. For example, in TZ (the theory of integers),
the environment player chooses an integer for x and the system responds with
an integer for y. This induces a valuation of all literals in the formula, which in
turn induces (also considering the valuations of the literals at other time instants,
according to the temporal operators) a valuation of the full specification.

In this paper, we exploit that, from the point of view of the valuations of
the literals, there are only finitely many cases and provide a systematic manner
to compute these cases. This allows us to reduce a specification into a purely
Boolean specification that is equi-realizable. This specification encodes the (fi-
nite) set of decisions of the environment, and the (finite) set of reactions of the
system. ⊓⊔

Ex. 1 suggests a naive algorithm to capture the powers of the environment
and system to determine a combination of the valuations of the literals, by
enumerating all these combinations and checking the validity of each potential
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reaction. Checking that a given combination is a possible reaction requires an
∃∗∀∗ query (which can be delegated to an SMT solver for appropriate theories).

In this paper, we describe and prove correct a Boolean abstraction method
based on this idea. Then, we propose a more efficient search method for the set
of possible reactions using SAT solving to speed up the exploration of the set of
reactions. The main idea of this faster method is to learn from an invalid reaction
which other reactions are guaranteed to be invalid, and from a valid reaction
which other reactions are not worth being explored. We encode these learnt
sets as a incremental SAT formula that allows to prune the search space. The
resulting method is much more efficient than brute-force enumeration because,
in each iteration, the learning can prune an exponential number of cases. An
important technical detail is that computing the set of cases to be pruned from
the outcome of a given query can be described efficiently using a SAT solver.

In summary, our contributions are: (1) a proof that realizability is decidable
for all LTLT specifications for those theories T with a decidable ∃∗∀∗ fragment;
(2) a simple implementation of the resulting Boolean abstraction method; (3)
a much faster method based on a nested-SAT implementation of the Boolean
abstraction method that efficiently explores the search space of potential re-
actions; and (4) an empirical evaluation of these algorithms, where our early
findings suggest that Boolean abstractions can be used with specifications con-
taining different arithmetic theories, and also with industrial specifications. We
used Z3 [10] both as an SMT solver and a SAT solver, and Strix [27] as the
realizability checker. To the best of our knowledge, this is the first method that
succeeds (and efficiently) in non-Boolean LTL realizability.

2 Preliminaries

We study realizability of LTL [29,26] specifications. The syntax of LTL is:

φ ::= T
∣∣ a ∣∣ φ ∨ φ ∣∣¬φ ∣∣φ ∣∣ φ U φ

where a ranges from an atomic set of proposition AP, ∨, ∧ and ¬ are the usual
Boolean disjunction, conjunction and negation, and  and U are the next and
until temporal operators. The semantics of LTL associate traces σ ∈ Σω with
formulae as follows:

σ |= T always
σ |= a iff a ∈ σ(0)
σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2

σ |= ¬φ iff σ ̸|= φ
σ |= φ iff σ1 |= φ
σ |= φ1 U φ2 iff for some i ≥ 0 σi |= φ2, and for all 0 ≤ j < i, σj |= φ1

We use common derived operators like ∨, R,  and .
Reactive synthesis [33,28,5,14,4] is the problem of producing a system from

an LTL specification, where the atomic propositions are split into propositions
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that are controlled by the environment and those that are controlled by the
system. Synthesis corresponds to a turn-based game where, in each turn, the
environment produces values of its variables (inputs) and the system responds
with values of its variables (outputs). A play is an infinite sequence of turns. The
system player wins a play according to an LTL formula φ if the trace of the play
satisfies φ. A (memory-less) strategy of a player is a map from positions into a
move for the player. A play is played according to a strategy if all the moves
of the corresponding player are played according to the strategy. A strategy is
winning for a player if all the possible plays played according to the strategy are
winning.

Depending on the fragment of LTL used, the synthesis problem has different
complexities. The method that we present in this paper generates a formula
in the same temporal fragment as the original formula (e.g., starting from a
safety formula another safety formula is generated). The generated formula is
discharged into a solver capable to solve formulas in the right fragment. For
simplicity in the presentation, we illustrate our method with safety formulae.

We use LTLT as the extension of LTL where propositions are replaced by
literals from a first-order theory T . In realizability for LTLT , the variables that
occur in the literals of a specification φ are split into those variables controlled
by the environment (denoted by ve) and those controlled by the system (vs),
where ve ∩ vs = ∅. We use φ(ve, vs) to remark that ve ∪ vs are the variables
occurring in φ. The alphabet ΣT is now a valuation of the variables in ve ∪ vs.
A trace is an infinite sequence of valuations, which induces an infinite sequence
of Boolean values of the literals occurring in φ and, in turn, a valuation of the
temporal formula.

Realizability for LTLT corresponds to an infinite game with an infinite arena
where positions may have infinitely many successors if the ranges of the variables
controlled by the system and the environment are infinite. For instance, in Ex. 1
with T = TZ, valuation ranges over infinite values, and literal (x ≥ 2) can be
satisfied with x = 2, x = 3, etc.

Arithmetic theories are a particular class of first-order theories. Even though
our Boolean abstraction technique is applicable to any theory with a decidable
∃∗∀∗ fragment, we illustrate our technique with arithmetic specifications. Con-
cretely, we will consider TZ (i.e., linear integer arithmetic) and TR (i.e., non-linear
real arithmetic). Both theories have a decidable ∃∗∀∗ fragment. Note that the
choice of theory influences the realizability of a given formula.

Example 2. Consider Ex. 1. The formula φ := R0 ∧ R1 is not realizable for TZ,
since, if at a given instant t, the environment plays x = 0 (and hence x < 2 is
true), then y must be greater than 1 at time t+1. Then, if at t+1 the environment
plays x = 2 then (x ≥ 2) is true but there is no y such that both (y > 1) and
(y < 2). However, for TR, φ is realizable (consider the system strategy to always
play y = 1.5).

The following slight modifications of Ex. 1 alters its realizability (R′
1 now has

y ≤ x instead of y < x):

R0 : (x < 2)→ (y > 1) R′
1 : (x ≥ 2)→ (y ≤ x)
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Now, φ′ = (R0 ∧ R′
1) is realizable for both TZ and TR, as the strategy of the

system to always pick y = 2 is winning. ⊓⊔

3 Boolean Abstraction

We solve the realizability problem modulo theories by transforming the spec-
ification into an equi-realizable Boolean specification. Given a specification φ
with literals li, we get a new specification φ[li ← si]∧φextra, where si are fresh
Boolean variables and φextra ∈ LTLB is a Boolean formula (without temporal op-
erators). The additional sub-formula φextra uses the freshly introduced variables
si controlled by the system, as well as additional Boolean variables controlled by
the environment e, and captures the precise combined power of the players to
decide the valuations of the literals in the original formula. We call our approach
Booleanization or Boolean abstraction. The approach is summarized in Fig. 1:
given an LTL specification φT , it is translated into a Boolean φB which can be
analyzed with off-the-shelf realizability checkers. Note that GB and GT are the
games constructed from specifications φB and φT , respectively. [20] shows that
we can construct a game G from a specification φ and that φ is realizable if and
only if G is winning for the system.

The Booleanization procedure constructs an extra requirement φextra and
conjoinsφextra with the formula φ[li ← si]. In a nutshell, after the environment
chooses a valuation of the variables it controls (including e), the system responds
with valuations of its variables (including si), which induces a Boolean value for
all literals. Therefore, for each possible choice of the environment, the system has
the power to choose a Boolean response among a specific collection of responses
(a subset of all the possible combinations of Boolean valuations of the literals).
Since the set of all possible responses is finite, so are the different cases. The extra
requirement captures precisely the finite collection of choices of the environment
and the resulting finite collection of responses for each case.

3.1 Notation

In order to explain the construction of the extra requirement, we introduce some
preliminary definitions. We will use Ex. 1 as the running example.

A literal is an atom or its negation, no matter the atom is a Boolean variable
or a predicate. Let Lit(φ) be the collection of literals that appear in φ (or Lit , if

φT φB

GBGT

Booleanization

⊨
Thm. 1

⊨

Realizability
Tool

Fig. 1: The tool chain with the correctness argument.
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the formula is clear from the context). For simplicity, we assume that all literals
belong the same theory, but each theory can be Booleanized in turn, as each
literal belongs to exactly one theory and we assume in this paper that literals
from different theories do not share variables. We will use x as the environment
controlled variables occurring in Lit(φ) and y for the variables controlled by the
system.

In Ex. 1, we first translate the literals in φ. Since (x < 2) is equivalent to
¬(x ≥ 2), we use a single Boolean variable for both. The substitutions is:

(x < 2)← s0 (y > 1)← s1 (y < x)← s2
(x ≥ 2)← ¬s0 (y ≤ 1)← ¬s1 (y ≥ x)← ¬s2

After the substitution we obtain φ′′ = (RB
0 ∧RB

1 ) where

RB
0 : s0 → s1 RB

1 : ¬s0 → s2

Note that φ′′ may not be equi-realizable to φ, as we may be giving too much
power to the system if s0, s1 and s2 are chosen independently without restriction.
Note that φ′′ is realizable, for example by always choosing s1 and s2 to be true,
but φ is not realizable in LTLTZ .

Definition 1 (Choice). A choice c ⊆ Lit(φ) is a subset of the literals of φ.

The intended meaning of a choice is to capture what literals are true in the
choice, while the rest (i.e., Lit \ c) are false. Once the environment picks values
for x, the system can realize some choice c by selecting y and making the literals
in c true (and the rest false). However, for some values of x, some choices may
not be possible for the system for any y. Given a choice c, we use f(c(x, y)) to
denote the formula: ∧

l∈c

l ∧
∧
l/∈c

¬l

which is a formula with variables x and y that captures logically the set of values
of x and y that realize precisely choice c. We use C for the set of choices. Note
that there are |C| = 2|Lit| different choices. We call the elements of C choices
because they may be at the disposal of the system to choose by picking the right
values of its variables.

A given choice c can act as potential (meaning that the response is possible)
or as antipotential (meaning that the response is not possible). A potential is a
formula (that depends only on x) that captures those values of x for which the
system can respond and make precisely the literals in c true (and the rest of the
literals false). The negation of the potential captures precisely those values of x
for which there are no values of y that lead to c.

Definition 2 (Potential and Antipotential). Given a choice c, a potential
is the following formula cp and a antipotential is the following formula ca:

cp(x) = ∃y.f(c(x, y)) ca(x) = ∀y.¬f(c(x, y))
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Example 3. We illustrate two choices for Ex. 1. Consider choices c0 = {(x <
2), (y > 1), (y < x)} and c1 = {(x < 2), (y > 1)}. Choice c0 corresponds to
f(c0) = (x < 2) ∧ (y > 1) ∧ (y < x), that is literals (x < 2), (y > 1) and (y < x)
are true. Choice c1 corresponds to f(c1) = (x < 2) ∧ (y > 1) ∧ (y ≥ x), that
is literals (x < 2), (y > 1) being true and (y < x) being false (i.e., (y ≥ x)
being true). It is easy to see the meaning of c2, c3 etc. Then, the potential and
antipotential formulae of e.g., choices c0 and c1 from Ex. 1 are as follows:

cp0 = ∃y.(x < 2) ∧ (y > 1) ∧ (y < x) ca0 = ∀y.¬
(
(x < 2) ∧ (y > 1) ∧ (y < x)

)
cp1 = ∃y.(x < 2) ∧ (y > 1) ∧ (y ≥ x) ca1 = ∀y.¬

(
(x < 2) ∧ (y > 1) ∧ (y ≥ x)

)
Note that potentials and antipotentials have x as the only free variables. ⊓⊔

Depending on the theory, the validity of potentials and antipotentials may be
different. For instance, consider cp0 and theories TZ and TR:

– In TZ: ∃y.(x < 2) ∧ (y > 1) ∧ (y < x) is equivalent to false.
– In TR: ∃y.(x < 2) ∧ (y > 1) ∧ (y < x) is equivalent to (x < 2).

These equivalences can be obtained by Cooper’s algorithm [9] for TZ and Tarski’s
method [32] for TR.

A reaction is a description of the specific choices that the system has the
power to choose.

Definition 3 (Reaction). Let P and A be a partition of C that is: P ⊆ C,
A ⊆ C, P ∩A = ∅ and P ∪A = C. The reaction react(P,A) is

react(P,A)(x)
def
=

∧
c∈P

cp ∧
∧
c∈A

ca

The reaction react(P,A) is equivalent to:

react(P,A)(x) =
∧
c∈P

(
∃y.f(c(x, y))

)
∧

∧
c∈A

(
∀y.¬f(c(x, y))

)
.

There are 22
|Lit|

different reactions.
A reaction r is called valid whenever there is a move of the environment for

which r captures precisely the power of the system, that is exactly which choices
the system can choose. Formally, a reaction is valid whenever ∃x.r(x) is a valid
formula. We use R for the set of reactions and VR for the set of valid reactions.
It is easy to see that, for all possible valuations of x the environment can pick,
the system has a specific power to respond (among the finitely many cases).
Therefore, the following formula is valid:

φVR = ∀x.
∨

r∈VR

r(x).



8 Andoni Rodŕıguez and César Sánchez

Example 4. In Ex. 1, for theory TZ, we find there are two valid reactions (using
choices from Ex. 3):

r1 : ∃x.cA0 ∧ cP1 ∧ cP2 ∧ cP3 ∧ cA4 ∧ cA5 ∧ cA6 ∧ cA7
r2 : ∃x.cA0 ∧ cA1 ∧ cA2 ∧ cA3 ∧ cA4 ∧ cP5 ∧ cP6 ∧ cA7 ,

where reaction r1 models the possible responses of the system after the envi-
ronment picks a value for x with (x < 2), whereas r2 models the responses to
(x ≥ 2). On the other hand, for TR, there are three valid reactions:

r1 : ∃x.cA0 ∧ cP1 ∧ cP2 ∧ cP3 ∧ cA4 ∧ cA5 ∧ cA6 ∧ cA7
r2 : ∃x.cP0 ∧ cP1 ∧ cP2 ∧ cA3 ∧ cA4 ∧ cA5 ∧ cA6 ∧ cA7
r3 : ∃x.cA0 ∧ cA1 ∧ cA2 ∧ cA3 ∧ cP4 ∧ cP5 ∧ cP6 ∧ cA7

Note that there is one valid reaction more, since in TR there is one more
case: x ∈ (1, 2]. Also, note that c4 cannot be a potential in TZ (not even with a
collaboration between environment and system), whereas it can in TR. ⊓⊔

3.2 The Boolean Abstraction Algorithm

Boolean abstraction is a method to compute φB from φT . In this section we
describe and prove correct a basic brute-force version of this method, and later
in Section 4, we present faster algorithms. All Boolean abstraction algorithms
that we present on this paper first compute the extra requirement, by visit-
ing the set of reactions and computing a subset of the valid reactions that is
sufficient to preserve realizability. The three main building blocks of our algo-
rithms are (1) the stop criteria of the search for reactions; (2) how to obtain
the next reaction to consider; and (3) how to modify the current set of valid
reactions (by adding new valid reactions to it) and the set of remaining re-
actions (by pruning the search space). Finally, after the loop, the algorithm
produces as φextra a conjunction of cases, one per valid reaction (P,A) in VR.

Alg. 1: Brute-force

1 Input: φT
2 φ′ ← φT [li ← si] VR ← {}
3 C ← choices(literals(φT ))

4 R ← 2C

5 for (P,A) ∈ R do
6 if ∃x.react(P,A)(x) then
7 VR← VR ∪ {(P,A)}

8 φextra ← getExtra(VR)
9 return φB ← φ′ ∧ φextra

We introduce a fresh variable e(P,A), con-
trolled by the environment for each valid
reaction (P,A), to capture that the en-
vironment plays values for x that corre-
spond to the case where the system is left
with the power to choose captured pre-
cisely by (P,A). Therefore, there is one
additional environment Boolean variable
per valid reaction (in practice we can enu-
merate the number of valid reactions and
introduce only a logarithmic number of
environment variables). Finally, the ex-

tra requirement uses P for each valid reaction (P,A) to encode the potential
moves of the systems as a disjunction of the literals described by each choice in
P . Each of these disjunction contains precisely the combinations of literals that
are possible for the concrete case that (P,A) captures.
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A brute-force algorithm that implements Boolean Abstraction method by
exhaustively searching all reactions is shown in Alg 1. The building blocks of
this algorithm are:
(1) It stops when the remaining set of reactions is empty.
(2) It traverses the set R according to some predetermined order.
(3) To modify the set of valid reactions, if (P,A) is valid it adds (P,A) to the

set VR (line 7). To modify the set of remaining reactions, it removes (P,A)
from the search.

Finally, the extra sub-formula φextra is generated by getExtra (line 8) defined as
follows:

getExtra(VR) =
∧

(P,A)∈VR

(e(P,A) →
∨
c∈P

(
∧
li∈c

si ∧
∧
li /∈c

¬si))

Note that there is an ∃∗∀∗ validity query in the body of the loop (line 6) to
check whether the candidate reaction is valid. This is why decidability of the
∃∗∀∗ fragment is crucial because it captures the finite partitioning of the envi-
ronment moves (which is existentially quantified) for which the system can react
in certain ways (i.e., potentials, which are existentially quantified) by picking ap-
propriate valuations but not in others (i.e., antipotentials, which are universally
quantified). In essence, the brute-force algorithm iterates over all the reactions,
one at a time, checking whether each reaction is valid or not. In case the reaction
(characterized by the set of potential choices3) is valid, it is added to VR.

Example 5. Consider again the specification in Ex. 1, with TZ as theory. Note
that the valid reactions are r1 and r2, as shown in Ex. 4, where the potentials of
r1 are {c1, c2, c3} and the potentials of r2 are {c5, c6}. Now, the creation of φextra

requires two fresh variables d0 and d1 for the environment (they correspond to
environment decisions (x < 2) and (x ≥ 2), respectively), resulting into:

φextra
TZ

:

d0 →
(
(s0 ∧ s1 ∧ ¬s2) ∨ (s0 ∧ ¬s1 ∧ s2) ∨ (s0 ∧ ¬s1 ∧ ¬s2)

)
∧

d1 →
(
(¬s0 ∧ s1 ∧ ¬s2) ∨ (¬s0 ∧ ¬s1 ∧ s2)

)


For example c2 = {s0} is a choice that appears as potential in valid reaction
r1, so it appears as a disjunct of d0 as (s0 ∧ ¬s1 ∧ ¬s2). The resulting Booleanized
specification is as follows:

φB
TZ

= (φ′′ ∧ (AB → □φextra
TZ

)) ⊓⊔

Note that the Boolean encoding is extended with an assumption formula
AB = (d0 ↔ ¬d1)∧ (d0 ∨ d1) that restricts environment moves to guarantee that
exactly one environment decision variable is picked. Also, note that a Boolean
abstraction algorithm will output three (instead of two) decisions for the envi-
ronment, but we ackowledge that one of them will never be played by it, since
it gives strictly more power to the system. The complexity of this brute-force
Booleanization algorithm is doubly exponential in the number of literals.

3 The potentials in a choice characterize the precise power of the system player, be-
cause the potentials correspond with what the system can respond.
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3.3 From Local Simulation to Equi-Realizability

The intuition about the correctness of the algorithm is that the extra requirement
encodes precisely all reactions (i.e., collections of choices), for which there is a
move of the environment that leaves the system with precisely that power to
respond. As an observation, in the extra requirement, the set of potentials in
valid reactions cannot be empty. This is stated in Lemma 1.

Lemma 1. Let C ∈ C be such that reactC ∈ VR. Then C ̸= ∅.

Proof. Bear in mind reactC ∈ VR is valid. Let v be such that reactC [x � v] is
valid. Let w be an arbitrary valuation of y and let c be a configuration and l a
literal. Therefore: ∧

l[x�v,y�w] is true

l ∧
∧

l[x�v,y�w] is false

¬l

It follows that I[x← v]∃y.c, so c ∈ C. ⊓⊔

Lemma 1 is crucial, because it ensures that once a Boolean abstraction algorithm
is executed, for each fresh e variable in the extra requirement, at least one
reaction with one or more potentials can be responded by the system.

Therefore, in each position in the realizability game, the system can re-
spond to moves of the system leaving to precisely corresponding positions in
the Boolean game. In turn, this leads to equi-realizability because each move
can be simulated in the corresponding game. Concretely, is easy to see that we
can define a simulation between the positions of the games for φT and φB such
that (1) each literal li and the corresponding variable si have the same truth
value in related positions, (2) the extra requirement is always satisfied, and (3)
moves of the system in each game from related positions in each game can be
mimicked in the other game. This is captured by the following theorem:

Theorem 1. System wins GT if and only if System wins the game GB. There-
fore, φT is realizable if and only if φB is realizable.

Proof. Since realizability games are memory-less determined, it is sufficient to
consider only local strategies. Given a strategy ρB that is winning in GB we define
a strategy ρT in GT as follows. Assuming related positions, ρT moves in GT to
the successor that is related to the position where ρB moves in GB. By (3) above,
it follows that for every play played in GB according to ρB there is a play in
GT played according to ρT that results in the same trace, and vice-versa: for
every play played in GT according to ρT there is a play in GB played according
to ρB that results in the same trace. Since ρB is winning, so is ρT . The other
direction follows similarly, because again ρB can be constructed from ρT not only
guaranteeing the same valuation of literals and corresponding variables, but also
that the extra requirement holds in the resulting position. ⊓⊔

The following corollary of Thm. 1 follows immediately.

Theorem 2. Let T be a theory with a decidable ∃∗∀∗-fragment. Then, LTLT
realizability is decidable.
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4 Efficient algorithms for Boolean Abstraction

4.1 Quasi-reactions

The basic algorithm presented in Section 3 exhaustively traverses the set of
reactions, one at a time, checking whether each reaction is valid. Therefore the
body of the loop is visited 2|C| times. In practice, the running time of this basic
algorithm quickly becomes unfeasible.

We now improve Alg. 1 by exploiting the observation that every SMT query
for the validity of a reaction reveals information about the validity of other
reactions. We will exploit this idea by learning uninteresting subsequent sets of
reactions and pruning the search space. The faster algorithms that we present
below encode the remaining search space using a SAT formula, whose models
are further reactions to explore.

To implement the learning-and-pruning idea we first introduce the notion of
quasi-reaction.

Definition 4 (Quasi-reaction). A quasi-reaction is a pair (P,A) where P ⊆
C, A ⊆ C and P ∩A = ∅.

Quasi-reactions remove from reactions the constraint that P∪A = C. A quasi-
reaction represents the set of reactions that would be obtained from choosing
the remaining choices that are neither in P nor in A as either potential or
antipotential. The set of quasi-reactions is:

Q = {(P,A)|P,A ⊆ C and P ∩A = ∅}

Note that R = {(P,A) ∈ Q|P ∪A = C}.

Example 6. Consider a case with four choices c0, c1, c2 and c3. The quasi-reaction
({c0, c2}, {c1}) corresponds to the following formula:

∃x.
(
∃y. f(c0(x, y)) ∧ ∀y. ¬f(c1(x, y)) ∧ ∃y. f(c2(x, y))

)
Note that nothing is stated in this quasi-reaction about c3 (it neither acts as a
potential nor as an antipotential). ⊓⊔

Consider the following order between quasi-reactions: (P,A) ⪯ (P ′, A′) holds
if and only if P ⊆ P ′ and A ⊆ A′. It is easy to see that ⪯ is a partial order,
that (∅, ∅) is the lowest element and that for every two elements (P,A) and
(P ′, A′) there is a greatest lower bound (namely (P ∩ P ′, A ∩ A′)). Therefore

(P,A) ⊓ (P ′, A′)
def
= (P ∩ P ′, A ∩ A′) is a meet operation (it is associative,

commutative and idempotent). Note that q ⪯ q′ if and only if q ⊓ q′ = q.
Formally:

Proposition 1. (Q,⊓) is a lower semi-lattice.
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The quasi-reaction semi-lattice represents how informative a quasi-reaction
is. Given a quasi-reaction (P,A), removing an element from either P or A results
in a strictly less informative quasi-reaction. The lowest element (∅, ∅) contains
the least information.

Given a quasi-reaction q, the set Qq = {q′ ∈ Q|q′ ⪯ q} of the quasi-reactions
below q form a full lattice with join (P,Q) ⊔ (P ′, Q′)

def
= (P ∪ P ′, Q ∪Q′). This

is well defined because P ′ and Q, and P and Q′ are guaranteed to be disjoint.

Proposition 2. For every q, (Qq,⊓,⊔) is a lattice.

As for reactions, quasi-reactions correspond to a formula in the theory as
follows:

qreact(P,A)(x) =
∧
c∈P

(
∃y.c(x, y)

)
∧

∧
c∈A

(
∀y.¬c(x, y)

)
Again, given a quasi-reaction q, if ∃x.qreactq(x) is valid we say that q is valid,
otherwise we say that q is invalid. The following holds directly from the def-
inition (and the fact that adding conjuncts makes a first-order formula “less
satisfiable”).

Proposition 3. Let q, q′ be two quasi-reactions with q ⪯ q′. If q is invalid then
q′ is invalid. If q′ is valid then q is valid.

These results enable the following optimizations.

4.2 Quasi-reaction-based Optimizations

A Logic-based Optimization. Consider that, during the search for valid reac-
tions in the main loop, a reaction (P,A) is found to be invalid, that is react(P,A)

is unsatisfiable. If the algorithms explores the quasi-reactions below (P,A), find-
ing (P ′, A′) ⪯ (P,A) such that qreact(P ′,A′), then by Prop. 3, every reaction
(P ′′, A′′) above (P ′, A′) is guaranteed to be invalid. This allows to prune the
search in the main loop by computing a more informative quasi-reaction q after
an invalid reaction r is found, and skipping all reactions above q (and not only
r). For example, if the reaction corresponding to ({c0, c2, c3}, {c1}) is found to
be invalid, and by exploring quasi-reactions below it, we find that ({c0}, {c1})
is also invalid, then we can skip all reactions above ({c0}, {c1}). This includes
for example ({c0, c2}, {c1, c3}) and ({c0, c3}, {c1, c2}). In general, the lower the
invalid quasi-reaction in ⪯, the more reactions will be pruned. This optimization
resembles a standard choosing of max/min elements in an anti-chain.

A Game-based Optimization. Consider now two reactions r = (P,A) and
r′ = (P ′, A′) such that P ⊆ P ′ and assume that both are valid reactions. Since
r′ allows more choices to the system (because the potentials P determine these
choices), the environment player will always prefer to play r than r′. Formally, if
there is a winning strategy for the environment that chooses values for x (corre-
sponding to a model of reactr), then choosing values for x′ instead (corresponding
to a model of reactr′) will also be winning.

https://orcid.org/0009-0006-3464-8667
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Therefore, if a reaction r is found to be valid, we can prune the search for reac-
tions r′ that contain strictly more potentials, because even if r′ is also valid, it will
be less interesting for the environment player. For instance, if ({c0, c3}, {c1, c2})
is valid, then ({c0, c1, c3}, {c2}) and ({c0, c1, c3, c2}, {}) become uninteresting to
be explored and can be pruned from the search.

4.3 A Single Model-loop Algorithm (Alg. 2)

We present now a faster algorithm that replaces the main loop of Alg. 1 that
performs exhaustive exploration with a SAT-based search procedure that prunes
uninteresting reactions. In order to do so, we use a SAT formula ψ with one
variable zi per choice ci, in a DPLL(T) fashion. An assignment v : Vars(ψ)→ B
to these variables represents a reaction (P,A) where

P = {ci|v(zi) = true} A = {cj |v(zj) = false}

Similarly, a partial assignment v : Vars(ψ)⇀ B represents a quasi-reaction. The
intended meaning of ψ is that its models encode the set of interesting reactions
that remain to be explored. This formula is initialized with ψ = true (note that
¬(

∧
zi
¬zi) is also a correct starting point because the reaction where all choices

are antipotentials is invalid). Then, a SAT query is used to find a satisfying
assignment for ψ, which corresponds to a (quasi-)reaction r whose validity is

Alg. 2: Model-loop

10 Input: φT
11 φ′ ← φT [li ← si] ; VR ← {}
12 C ← choices(literals(φT ))

13 R ← 2C ; ψ ← ⊤
14 while SAT(ψ) do
15 m = model(ψ)
16 if ∃x. (toTheory(m, C))

then
17 P ← posVars(m)
18 ψ ← ψ ∧ ¬(

∧
p∈P p)

19 VR ← VR ∪ (et, P )

20 else
21 N ← negVars(m)
22 fh←

∧
n∈N n

23 if ∃x. toTheory(fh, C)
then

24 ψ ← ψ ∧ ¬m
25 else
26 ψ ← ψ ∧ ¬fh

27 φextra ← getExtra(VR)
28 return φB ← φ′ ∧ φextra

interesting to be explored. Alg. 2 shows
the Model-loop algorithm. The three
main building blocks of the model-loop
algorithm are:
(1) Alg. 2 stops when ψ is invalid (line

14).
(2) To explore a new reaction, Alg. 2 ob-

tains a satisfying assignment for ψ
(line 15).

(3) Alg. 2 checks the validity of the reac-
tion (line 16) and enriches ψ o prune
according to what can be learned, as
follows:
– If the reaction is invalid (as a

result of the SMT query in line
16), then it checks the validity of
quasi-reaction q = (∅, A) in line
23. If q is invalid, add the nega-
tion of q as a new conjunction
of ψ (line 26). If q is valid, add
the negation of the reaction (line
24). This prevents all SAT mod-
els that agree with one of these
q, which correspond to reactions
q ⪯ r′, including r.
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– If the reaction is valid, then it is added to the set of valid reactions VR
and the corresponding quasi-reaction that results from removing the an-
tipotentials is added (negated) to ψ (line 18), preventing the exploration
of uninteresting cases, according to the game-based optimization.

As for the notation in Alg. 2 (also in Alg. 3 and Alg. 4), model(ψ) in line
15 is a function that returns a satisfying assignment of the SAT formula ψ,
posVars(m) returns the positive variables of m (e.g., ci, cj etc.) and negVars(m)
returns the negative variables. Finally, toTheory(m, C) =

∧
mi
cpi ∧

∧
¬mi

cai (in
lines 16 and 23) translates a Boolean formula into its corresponding formula in
the given T theory. Note that unsatisfiable m can be minimized finding cores.

If r is invalid and (∅, A) is found also to be invalid, then exponentially many
cases can be pruned. Similarly, if r is valid, also exponentially many cases can
be pruned. The following result shows the correctness of Alg. 2:

Theorem 3. Alg. 2 terminates and outputs a correct Boolean abstraction.

Proof. (sketch) Alg. 2 terminates because, at each step in the loop, ψ removes
at least one satisfying assignment and the total number is bounded by 2|C|. Also,
the correctness of the generated formula is guaranteed because, for every valid
reaction in Alg. 1, either there is a valid reaction found in Alg. 2 or a more
promising reaction found in Alg. 2. ⊓⊔

4.4 A Nested SAT algorithm (Alg. 3)

We now present an improvement of Alg. 2 that performs a more detailed search
for a promising collection of invalid quasi-reactions under an invalid reaction r.

Alg. 3: Nested-SAT

29 Input: φT
30 φ′ ← φT [li ← si] ; VR ← {}
31 C ← choices(literals(φT ))

32 R ← 2C ; ψ ← ⊤
33 while SAT(ψ) do
34 m = model(ψ)
35 if ∃x. (toTheory(m, C))

then
36 P ← posVars(m)
37 ψ ← ψ ∧ ¬(

∧
p∈P P )

38 VR ← VR ∪ (et, P )

39 else
40 N ← negVars(m)
41 ψ ← ψ ∧ ¬m
42 I ← inner loop(m, C)
43 ψ ← ψ ∧ ¬(

∧
i∈I i)

44 φextra ← getExtra(VR)
45 return φB ← φ′ ∧ φextra

Note that it is not necessary to find
the precise collection of all the smallest
quasi-reactions that are under an invalid
reaction r, as long as at least one quasi-
reaction under r is calculated (perhaps, r
itself). Finding lower quasi-reactions al-
low to prune more, but its calculation is
more costly, because more SMT queries
need to be performed. The Nested-SAT
algorithm (Alg. 3) explores (using an in-
ner SAT encoding) this trade-off between
computing more exhaustively better in-
valid quasi-reactions and the cost of the
search. The three main building blocks
of the nested-SAT algorithm (see Alg. 3)
are:

(1) It stops when ψ is invalid (as in
Alg. 2), in line 33.

(2) To get the reaction, obtain a satisfy-
ing assignmentm for ψ (as in Alg. 2),
in line 34.

https://orcid.org/0009-0006-3464-8667
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(3) Check the validity of the corresponding reaction and prune ψ according to
what can be learned as follows. If the reaction is valid, then we proceed as in
Alg. 2. If r = (P,A) is invalid (as a result of the SMT query), then an inner
SAT formula encodes whether a choice is masked (eliminated from P or A).
Models of the inner SAT formula, therefore, correspond to quasi-reactions
below r. If a quasi-reaction q found in the inner loop is invalid, the inner
formula is additionally constrained and the set of invalid quasi-reactions is
expanded. If a quasi-reaction q found is valid, then the inner SAT formula
is pruned eliminating all quasi-reactions that are guaranteed to be valid. At
the end of the inner loop, a (non-empty) collection of invalid quasi-reactions
are added to ψ.

The inner loop, shown in Alg. 4 (where VQ stands for valid quasi-reactions),

Alg. 4: Inner loop

46 Input: m, C
47 VQ ← {} ; β ← ⊤
48 while SAT(β) do
49 u = model(β)
50 if

∃x. (toTheory inn(u,m, C))
then

51 P ← posVars(u)
52 β ← β ∧ ¬(

∧
p∈P p)

53 else
54 N ← negVars(u)
55 β ← β ∧ ¬(

∧
n∈N n)

56 VQ ← VQ ∪ u

57 return VQ

explores a full lattice. Also, note that
¬(

∧
zi
¬zi) is, again, a correct starting

point. Consider, for example, that the
outer loop finds ({c1, c3}, {c0, c2}) to be
invalid and that the inner loop produces
assignment w0 ∧ w1 ∧ w2 ∧ ¬w3. This
corresponds to c3 being masked producing
quasi-reaction ({c1}, {c0, c2}). The prun-
ing system is the following:
– If quasi-reaction q is valid then the

inner SAT formula is pruned elim-
inating all inner models that agree
with the model in the masked choices.
In our example, we would prune all
models that satisfy ¬w3 if q is valid
(because the resulting quasi-reactions
will be inevitably valid).

– If quasi-reaction q is invalid, then we prune in the inner search all quasi-
reactions that mask less than q, because these will be inevitably invalid. In
our example, we would prune all models satisfying ¬(w0 ∧ w1 ∧ w2).

Note that toTheory inn(u,m, C) =
∧

mi∧uj
cpi ∧

∧
¬mi∧uj

cai is not the same func-

tion as the toTheory() used in Alg. 2 and Alg. 3, since the inner loops needs
both model m and mask u (which makes no sense to be negated) to translate a
Boolean formula into a T -formula. Also, note that there is again a trade-off in
the inner loop because an exhaustive search is not necessary. Thus, in practice,
we also used some basic heuristics: (1) entering the inner loop only when (∅, A)
is invalid; (2) fixing a maximum number of inner model queries per outer model
with the possibility to decrement this amount dynamically with a decay; and (3)
reducing the number of times the inner loop is exercised (e.g., enter the inner
loop only if the number of invalid outer models so far is even).

Example 7. We explore the results of Alg. 3. A possible execution for 2 literals
can be as follows:
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1. Reaction ({c0, c3}, {c1, c2}) is obtained in line 34, which is declared invalid
by the SMT solver in line 35. The inner loop called in line 42 produces
({c0}, {c1}), ({c3}, {c2}) and ({}, {c1, c2}) as three invalid quasi-reactions,
and their negations are added to the SAT formula of the outer loop in line
43.

2. A second reaction ({c0, c1}, {c3, c4}) is obtained from the SAT solver in line
34, and now the SMT solver query is valid in line 35. Then, ¬(c0 ∧ c1) is
added to the outer SAT formula in line 37.

3. A third reaction ({c2, c3}, {c0, c1}) is obtained in line 33 , which is again
valid in line 35. Similarly, ¬(c2 ∧ c3) is added the outer SAT formula in line
37.

4. A fourth reaction ({c1, c2}, {c0, c3}) is obtained in line 33, which is now
invalid (line 35). The inner loop called in line 42 generates the following cores:
({c1}, {c0}) and ({c2}, {c3}). The addition of the negation of these cores leads
to an unsatisfiable outer SAT formula, and the algorithm terminates.

The execution in this example has performed 4 SAT+SMT queries in the
outer loop, and 3+2 SAT+SMT queries in the inner loops. The brute-force
Alg. 1 would have performed 16 queries. Note that the difference between the
exhaustive version and the optimisations soon increases exponentially when we
consider specifications with more literals.

⊓⊔

5 Empirical evaluation

We perform an empirical evaluation on six specifications inspired by real indus-
trial cases: Lift (Li.), Train (Tr.), Connect (Con.), Cooker (Coo.), Usb (Usb)
and Stage (St.), and a synthetic example (Syn.) with versions from 2 to 7 literals.
For the implementation, we used used Python 3.8.8 with Z3 4.11.

It is easy to see that “clusters” of literals that do not share variables can
be Booleanized independently, so we split into clusters each of the examples.
We report our results in Fig. 2. Each row contains the result for a cluster of
an experiment (each one for the fastest heuristic). Each benchmark is split into
clusters, where we show number of variables (vr.) and literals (lt.) per cluster.
We also show running times of each algorithm against each cluster; concretely,
we test Alg. 1 (BF ), Alg. 2 (SAT ) and Alg. 3 (Doub.). For Alg. 2 and Alg. 3,
we show the number of queries performed; in the case of Alg. 3, we also show
both outer and inner queries. Alg. 1 and Alg. 2 require no heuristics. For Alg. 3,
we report, left to right: maximum number of inner loops (MxI.), the modulo
division criteria (Md.)4, the number of queries after which we perform a decay
of 1 in the maximum number of inner loops (Dc.), and if we apply the invalidity
of (∅, A) as a criteria to enter the inner loop (A.), where ✓ means that we do
and × means the contrary. Also, ⊥ means timeout (or no data).

4 This means that the inner loop is entered if and only if the number of invalid models
so far is divisible by Md.
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Bn. Cls. Time (s) Queries (out+inn) Heuristics (doub) φB

(nm.) (vr, lt) BF SAT Doub. SAT Doub. MxI. Md. Dc. A. Val. Tme.

(1, 7) ⊥ 6740 31.77 30375 72/1040 40 2 0 ✓ 1
(2, 4) 3911 0.70 0.91 27 25/20 10 2 0 × 16
(1, 3) 3.64 1.19 0.52 46 10/20 10 2 0 × 4

Li.

(1, 2) 0.23 0.09 0.14 4 4/3 3 3 0 × 3

4.41

(1, 3) 3.18 0.04 0.96 16 26/20 10 2 0 ✓ 5
(2, 1) 0.05 0.04 0.04 2 2/0 1 1 0 ✓ 2
(1, 3) 3.10 1.64 0.21 74 2/10 10 2 0 ✓ 1
(1, 1) 0.04 0.06 0.11 3 3/2 1 1 0 ✓ 1
(3, 6) ⊥ 1269 112.5 13706 1170/4716 100 20 40 × 15
(4, 5) ⊥ 5251 4144 44177 52623/12332 100 20 40 × 24
(3, 5) ⊥ 2044 359.3 31363 9123/10158 100 20 40 × 9

Tr.

(4, 12) ⊥ ⊥ 6571 ⊥ 2728/40920 100 20 40 × 104

5.13

Con. (2, 2) 0.23 0.09 0.09 4 4/0 3 3 0 ✓ 4 4.37

Coo. (3, 5) ⊥ 1356 2.81 27883 16/160 20 2 0 ✓ 1 3.64

(2, 3) 3.40 0.21 0.17 8 8/0 3 3 0 ✓ 8
Usb.

(3, 5) ⊥ 231.9 364.4 5638 5638/0 20 2 0 ✓ 32
3.93

(8, 8) ⊥ 18.19 18.20 256 256/0 40 2 0 ✓ 256
St.

(3, 6) ⊥ 1311 194.8 14994 1697/6536 100 20 40 × 45
6.06

Syn.

(2, 2) 0.21 0.24 0.18 11 4/3 3 3 0 ✓ 2 4.12
(2, 3) 3.42 2.69 1.24 119 14/40 10 2 0 ✓ 3 4.11
(2, 4) 2842 108.6 16.51 3982 188/620 10 2 0 ✓ 3 4.28
(2, 5) ⊥ 7151 68.90 44259 380/2800 20 2 0 ✓ 11 4.53
(2, 6) ⊥ ⊥ 402.2 ⊥ 4792/9941 100 20 40 × 24 4.85
(2, 7) ⊥ ⊥ 3596 ⊥ 7344/139440 40 2 0 ✓ 1 5.30
(2, 7) ⊥ ⊥ 3862 ⊥ 24311/40615 200 20 40 × 45 5.99

Fig. 2: Empirical evaluation results of the different Boolean abstraction algo-
rithms, where the best results are in bold and φB only refers to best times.

The brute-force (BF) Alg. 1 performs well with 3 or fewer literals, but the
performance dramatically decreases with 4 literals. Alg. 2 (single SAT) performs
well up to 4 literals, and it can hardly handle cases with 6 or more literals. An
exception is Lift (1,7) which is simpler since it has only one variable (and this
implies that there is only one player). The performance improvement of SAT
with respect to BF is due to the decreasing of queries. For example, Train (3,6)

performs 13706 queries, whereas BF would need 22
6

= 1.844 · 1018 queries.
All examples are Booleanizable when using Alg. 3 (two SAT loops), partic-

ularly when using a combination of concrete heuristics. For instance, in small
cases (2 to 5 literals) it seems that heuristic-setups like 3/3/3/0/✓5 are fast,
whereas in bigger cases other setups like 40/2/0/✓ or 100/40/20/× are faster.

5 This means: we only perform 3 inner loop queries per outer loop query (and there
is no decay, i.e., decay = 0), we enter the inner loop once per 3 outer loops and we
only enter the inner loop if (∅, A) is invalid.
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Lits Alg. Performed queries (out+inn) Out of Needed queries (≃ %)

2 Alg 2 4 16 25

3 Alg 2 8 256 3.125

4 Alg 3 83 + 380 65536 0.709

5 Alg 3 380 + 2800 4294967296 7.404 · 10−5

6 Alg 3 4792 + 9941 1.844 · 1019 1 · 10−13

... ... ... ... ...

12 Alg 3 2728 + 40920 ∞ 0

Fig. 3: Best numbers of queries for Alg. 2 and 3 relative to brute-force (Alg.1).

We conjecture that a non-zero decay is required to handle large inputs, since
inner loop exploration becomes less useful after some time. However, adding a
decay is not always faster than fixing a number of inner loops (see Syn (2,7)),
but it always yields better results in balancing the number of queries between
the two nested SAT layers. Thus, since balancing the number of queries typi-
cally leads to faster execution times, we recommend to use decays. Note that
we performed all the experiments reported in this section running all cases sev-
eral times and computing averages, because Z3 exhibited a big volatility in the
models it produces, which in turn influenced the running time of our algorithms.
This significantly affects the precise reproducibility of the running times. For
instance, for Syn(2,5) the worst case execution was almost three times worst
than the average execution reported in Fig. 2. Studying this phenomena more
closely is work in progress. Note that there are cases in which the number of
queries of SAT and Doub. are the same (e.g., Usb(3,5)), which happened when
the A. heuristic had the effect of making the search not to enter the inner loop.

In Fig. 2 we also analyzed the constructed φB, measuring the number of valid
reactions from which it is made (Val.) and the time (Tme.) that a realizability
checker takes to verify whether φB (hence, φT ) is realizable or not (expressed
with dark and light gray colours, respectively). We used Strix [27] as the realiz-
ability process. As we can see, there is a correspondence between the expected
realizability in φT and the realizability result that Strix returns in φB. Indeed,
we can see all instances can be solved in less than 7 seconds, and the length of
the Boolean formula (characterized by the number of valid reactions) hardly af-
fect performance. This suggests that future work should be focused on reducing
time necessary to produce Boolean abstraction to scale even further.

Also, note that Fig. 2 shows remarkable results as for ratios of queries required
with respect to the (doubly exponential) brute-force algorithm: e.g., 4792+9941
(outer + inner loops) out of the 1.844·1019 queries that the brute-force algorithm
would need, which is less than its 1 ·10−13% (see Fig. 3 for more details). We also
compared the performance and number of queries for two different theories TZ
and TR for Syn (2,3) to Syn (2,6). Note, again, that the realizability result may
vary if a specification is interpreted in different theories, but this is not relevant
for the experiment in Fig. 4.
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Lits Heuristic
TZ TR

setup Time (s) Queries (ou/in) Time (s) Queries (ou/in)

3 10/2/0/✓ 0.63 8/30 0.90 14/40

4 10/2/0/✓ 16.14 308/500 11.19 125/560

5 20/2/0/✓ 62.44 408/3220 88.55 357/3460

6 40/2/0/✓ 678.71 2094/32760 722.64 1862/35840

Fig. 4: Comparison of TZ and TR for Syn (2,3) to Syn (2,6).

6 Related Work and Conclusions

Related work. Constraint LTL [11] extends LTL with the possibility of express-
ing constraints between variables at bounded distance (of time). The theories
considered are a restricted form of TZ with only comparisons with additional
restrictions to overcome undecidability. In comparison, we do not allow predi-
cates to compare variables at different timesteps, but we prove decidability for
all theories with an ∃∗∀∗ decidable fragment. LTL modulo theories is studied in
[19,12] for finite traces and where they allow temporal operators within predi-
cates, leading to undecidability.

As for works closest to ours, [7] proposes numerical LTL synthesis using an
interplay between an LTL synthesizer and a non-linear real arithmetic checker.
However, [7] overapproximates the power of the system and hence it is not pre-
cise for realizability. Linear arithmetic games are studied in [13] introducing al-
gorithms for synthesizing winning strategies for non-reactive specifications. [22]
considers infinite theories (like us), but it does not guarantee success or termi-
nation, whereas our Boolean abstraction is complete. They only consider safety,
while our approach considers all LTL. The follow-up [23] has still similar limi-
tations: only liveness properties that can be reduced to safety are accepted, and
guarantees termination only for the unrealizability case. Similarly, [18] is incom-
plete, and requires a powerful solver for many quantifier alternations, which can
be reduced to 1-alternation, but at the expense of the algorithm being no longer
sound for the unrealizable case (e.g., depends on Z3 not answering “unknown”).
As for [34], it (1) only considers safety/liveness GR(1) specifications, (2) is lim-
ited to the theory of fixed-size vectors and requires (3) quantifier elimination (4)
and guidance. We only require ∃∗∀∗-satisfiability (for Boolean abstraction) and
we consider multiple infinite theories. The usual main difference is that Boolean
abstraction generates a (Boolean) LTL specification so that existing tools can be
used with any of their internal techniques and algorithms (bounded synthesis,
for example) and will automatically benefit from further optimizations. More-
over, it preserves fragments like safety and GR(1) so specialized solvers can be
used. On the contrary, all approaches above adapt one specific technique and
implement it in a monolithic way.

Temporal Stream Logic (TSL) [16] extends LTL with complex data that can
be related accross time, making use of a new update operator Jy ← [ fxK, to indi-
cate that y receives the result of applying function f to variable x. TSL is later
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extended to theories in [15,25]. In all these works, realizability is undecidable.
Also, in [8] reactive synthesis and syntax guided synthesis (SyGuS) [1] collab-
orate in the synthesis process, and generate executable code that guarantees
reactive and data-level properties. It also suffers from undecidability: both due
to the undecidability of TSL [16] and of SyGus [6]. In comparison, we cannot
relate values accross time but we provide a decidable realizability procedure.

Comparing TSL with LTLT , TSL is undecidable already for safety, the theory
of equality and Presburger arithmetic. More precisely, TSL is only known to be
decidable for three fragments (see Thm. 7 in [15]). TSL is (1) semi-decidable for
the reachability fragment of TSL (i.e., the fragment of TSL that only permits the
next operator and the eventually operator as temporal operators); (2) decidable
for formulae consisting of only logical operators, predicates, updates, next oper-
ators, and at most one top-level eventually operator; and (3) semi-decidable for
formulae with one cell (i.e., controllable outputs). All the specifications consid-
ered for empirical evaluation in Section 5 are not within the considered decidable
or semi-decidable fragments. Also, TSL allows (finite) uninterpreted predicates,
whereas we need to have predicates well defined within the semantics of theories
of specifications for which we perform Boolean abstraction.

Conclusion. The main contribution of this paper is to show that LTLT is decid-
able via a Boolean abstraction technique for all theories of data with a decidable
∃∗∀∗ fragment. Our algorithms create, from a given LTLT specification where
atomic propositions are literals in such a theory, an equi-realizable specification
with Boolean atomic propositions. We also have introduced efficient algorithms
using SAT solvers for efficiently traversing the search space. A SAT formula en-
codes the space of reactions to be explore and our algorithms reduce this space
by learning uninteresting areas from each reaction explores. The fastest algo-
rithm uses a two layer SAT nested encoding, in a DPLL(T) fashion. This search
yields dramatically more efficient running times and makes Boolean abstraction
applicable to larger cases. We have performed an empirical evaluation of imple-
mentations of our algorithms. We found empirically that the best performances
are obtained when there is a balance in the number of queries made by each
layer of the SAT-search. To the best of our knowledge, this is the first method
to propose a solution (and efficient) to realizability for general ∃∗∀∗ decidable
theories, which include, for instance, the theories of integers and reals.

Future work includes first how to improve scalability further. We plan to
leverage quantifier elimination procedures [9] to produce candidates for the sets
of valid reactions and then check (and correct) with faster algorithms. Also, op-
timizations based in quasi-reactions can be enhanced if state-of-the-art tools for
satisfiability core search (e.g., [24,3,2]) are used. Another direction is to extend
our realizability method into a synthesis procedure by synthesizing functions in
T to produces witness values of variables controlled by the system given (1) en-
vironment and system moves in the Boolean game, and (2) environment values
(consistent with the environment move). Finally, we plan to study how to extend
LTLT with controlled transfer of data accross time preserving decidability.
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