
A machine-checked framework
for relational separation logic

Juan Manuel Crespo1 and César Kunz1,2

1 IMDEA Software Institute, Madrid, Spain
2 Universidad Politécnica de Madrid

Abstract. Relational methods are gaining growing acceptance for specifying and
verifying properties defined in terms of the execution of two programs—notions
such as simulation, observational equivalence, non-interference, and continuity
can be elegantly casted in this setting. In previous work, we have proposed pro-
gram product construction as a technique to reduce relational verification to stan-
dard verification. This method hinges on the ability to interpret relational asser-
tions as traditional predicates, which becomes problematic when considering as-
sertions from relational separation logic. We report in this article an alternative
method that overcomes this difficulty, defined as a relational weakest precondi-
tion calculus based on separation logic and formalized in the Coq proof assistant.
The formalization includes an application to the formal verification of the Schorr-
Waite graph marking algorithm. We discuss additional variants of relational sep-
aration logic inspired by the standard notions of partial and total correctness, and
extensions of the logic to handle non-structurally equivalent programs.

1 Introduction

Separation logic [16, 24, 25] is a formalism devised to verify pointer programs using
local reasoning; its extensions and variants have been used successfully in a variety of
large scale programs [31] and smaller but challenging examples [18], including lock-
free algorithms [14].

Relational reasoning, on the other hand, provides an effective means to understand
program behavior: in particular, it allows one to establish that the same program be-
haves similarly on two different runs, or that two programs execute in a related fashion.
Relational judgments are often formalized by quadruples {ϕ} c1∼ c2 {ψ}, denoting
that every pair of executions of c1 and c2 with initial states related by ϕ returns with
final states related by ψ. Prime examples of relational properties include notions of sim-
ulation and observational equivalence, and 2-properties, such as non-interference and
continuity.

Syntactic methods [7] have been developed to support relational reasoning. In par-
ticular, relational separation logic [30] is a variant of separation logic that supports
reasoning about two pointer programs; it embodies the conventional wisdom that cast-
ing program correctness as an equivalence between two programs is often more benefi-
cial than functional verification. More concretely, relational separation logic is intended
to prove program correctness by showing the equivalence between the program to be
verified and a reference implementation: e.g. Yang [30] provides an elegant proof in

relational separation logic that the Schorr-Waite graph marking algorithm is equivalent
to depth-first search.

However, these syntactic methods suffer from two important caveats: on the one
hand, these logics confine reasoning to structurally equivalent programs with equivalent
guards; on the other hand, tool support is negligible, with the exception of recent work
by Aleks Nanevski et al [23]—which focuses mainly on the specification and proof
of a rich set of security policies and its static enforcement. Although the relational
postconditions used to describe such policies can be arbitrary relations between pairs
of initial, final heaps and results, this tool seems to be specially tailored to reason about
two runs of the same program, rather than about two different programs. To some extent
it is possible to circumvent such restriction by casting two different programs P and P’
as a single program with a guard deciding which program to execute, i.e. if x then
P else P’. However, this approach seems a bit awkward and it is not at all clear
whether doing this can enable reasoning in terms of relational invariants—which is
essential to keep invariants simple.

In recent work [4] we propose a technique—product program construction—that
reduces relational program reasoning to traditional program reasoning—even for non-
structurally equivalent programs. Perhaps more importantly, it enables the use of tradi-
tional verification tools, circumventing two of the main issues of techniques supporting
relational reasoning. However, this method relies on the ability to interpret relational
assertions (predicates on two states) as traditional assertions (predicates on one state),
but this is not straightforward when using assertions from relational separation logic.
More precisely, an issue arises when trying to interpret the relational assertion

R =

(
p
q

)
(two heaps h1 and h2 are related by R if p holds in h1 and q holds in h2) as a predicate
p ? q. Note that this interpretation induces a loss of information: predicate R holds for a
fixed partition of the heap while the latter holds for any partition of the heap. This loss
of information renders our method unsound. Indeed, {P ? emp}skip; skip{emp ? P} is
a valid separation logic judgment for all P , whereas the following relational judgment
is not: (

P
emp

)
skip ∼ skip

(
emp
P

)
We present in this article an alternative approach that overcomes the difficulties of

relational verification by product construction, based on a weakest precondition calcu-
lus for relational separation logic. The calculus is complete and formalized in the Coq
proof assistant, and can be regarded as a first step towards providing tool support for
relational methods that enables reasoning about heap manipulating programs.

The formalization provides a framework to reason about a small imperative lan-
guage —using a deep embedding—with heap manipulating instructions very similar to
the one described in Yang’s article. We have formalized its semantics and provided a
soundness proof of the relational weakest precondition. Local reasoning is supported
by proving that the calculus is compatible with the frame rule. Also, we have defined an
alternative calculus ensuring total relational correctness relying on variants (or ranking
functions) defining a well-founded order on states.

(integer expressions) E ::= 0 | 1 | E + E | E × E | E − E | hd(L)
(boolean expressions) B ::= false | B ⇒ B | E = E | E < E | L = L

(list expressions) L ::= α | ε | E::L | tl(L)
(instructions) I ::= x := alloc(E) | x := [E] | [E] := E | free(E) |

x := E | α := L | assert(B)
(statements) C ::= I | C1;C2 | if B then C1 else C2 | while b do c | skip

Fig. 1. Syntax of Programs

The Coq formalization has been used to provide a formal proof of the equivalence
of Depth First Search and the Schorr-Waite graph marking algorithm, reproducing the
proof of the Schorr-Waite graph marking algorithm performed by Yang. We have ex-
tended Yang’s prove to the total relational correctness case, hence ensuring that both
programs terminate. The formal proof of the Schorr-Waite algorithm required a slightly
stronger loop invariant, indicating perhaps a small weakness in the original specification
provided in Yang’s article.

We also introduce an extension of the relational calculus beyond structurally equiv-
alent program, preserving relational reasoning over loop invariants, and thus retaining
the aforementioned advantages. We illustrate the application of the calculus with the
validation of a complex program optimization.

The present article does not intend to be a thorough description of the Coq frame-
work but to present the main ideas in an amenable way. The interested reader is invited
to study the Coq formalization, which has been done using the ssreflect library [13]. The
sources are available online at http://software.imdea.org/~ckunz/coqrelwp/

Contents. The rest of the paper is structured as follows: Section 2 describes the for-
malization of the relational weakest precondition calculus, instantiated with a simple
programming setting. In this section, we briefly review relational separation logic and
present the main properties of the calculus: soundness and framing. Also, we present
a variant of the calculus that ensures termination of both programs. Section 3 presents
our main case study, the proof of equivalence between the Schorr-Waite graph marking
algorithm w.r.t. depth-first search. Section 4 describes an extension to non-structurally
equivalent code.

2 Formalization of relational separation logic

We start this section by introducing a simple program setting and then we provide an
overview of relational separation logic. Afterwards, we develop our relational calculus
based on weakest precondition computation.

The programming language presented in Figure 1 is a mild extension of the typical
setting used in standard separation logic [24] to include list expressions. List values are
rather uncommon in similar formalizations of imperative languages but are included
here to ease the description of the Depth First Search (DFS) algorithm, which uses a
stack as auxiliary data structure. In the figure, α stands for a list variable. We let BExp
denote the set of boolean expressions and Stmt the set of statements.

State model. We let S denote the set of states. A state comprises two components:
the store and the heap. The store itself comprises two components to accommodate
two types of expressions: natural numbers and lists. Each of the store components is
modeled the usual way, as a finite mapping from scalar variables in VarN to natural
numbers and as a finite mapping from list variables in VarL to lists of natural numbers.
We assume that the sets of variables VarN and VarL are disjoint. We let upd(x, n, s)
stand for the result of updating the variable x to value n in the store s.

The heap is modeled as a finite mapping from locations (natural numbers) to values.
The special location 0 is denoted null and cannot belong to the domain of a heap. Heaps
are equipped with several operations such as look-up, free, fresh, disjoint union and
interact in the expected way:

Expression Meaning
freshn(h, n) base location for a sequence of n consecutive free cells in h;
look(h, n) value of the cell n in the heap h;
mut(n,m, h) result of setting the contents of cell n of heap h to m;
dealloc(h, n) result of freeing cell n from heap h;

Moreover, we let dom(h) stand for the set of allocated locations of heap h, and h1]h2
denote the disjoint union of heaps h1 and h2. In the actual Coq development, failure is
captured in an error monad, but for simplicity we omit these details here. Much of the
formalization is adapted from Nanevski et al [22].

Semantics of basic instructions. The semantics of an instruction i is modeled as a
relation JiK on states; the rules are given in Fig. 2. The denotation of an instruction is
a relation between states. States are noted as tuples (h, si, sl) where h represents the
heap and si and sl denote the stores for integer and list variables, respectively. The
instruction x := alloc(E) evaluates the expression E to a natural number n and then
allocates n free contiguous heap cells, initializes them with value 0 and sets the value
of x to the first allocated cell. The look up instruction x := [E] evaluates expression E
to a location n and if it is allocated it updates the value of variable x to the contents of
the heap cell n. The mutation instruction [E1] := E2 evaluates E1 to a location n and
if n is a valid location in the current heap, this is modified so that it maps n to the result
of evaluating E2. A field access x := E.f is used as a syntactic sugar of x := [E+f],
when the field identifier f represents a known offset. Similarly, we use E1.f := E2 as a
syntax sugar of [E1+f] := E2. The instruction free(E) releases the heap cell allocated
at the location represented by E. The assert instruction has blocking semantics. The
remaining assignments for integer and list variables are completely standard.

Semantics of commands. The semantics JcK of a command is defined as a relation on
states (big step style), using as auxiliary definition the semantics of boolean expressions,
modeled as a function from states to booleans. The definitions are standard and omitted.
Also, we denote 〈c, µ〉 〈c′, µ′〉 the small-step command semantics and we use ?

for its reflexive transitive closure. Obviously these two semantic styles are sound and
complete w.r.t. each other, i.e. JcKµµ′ if and only if 〈c, µ〉 ? 〈skip, µ′〉. Also, we say
that a command c is ϕ-safe if for any µ such that ϕµ there exists µ′ and c′ such that
〈c, µ〉 〈c′, µ′〉, i.e., c is not stuck in ϕ-states.

((h, si, sl), (h
′, s′i, s

′
l)) ∈ Jx := alloc(E)K .

= s′i = upd(x,m, si)

∧ s′l = sl ∧ h′ = h] (
n−1⊎
i=0

(m+ i) 7→ 0)

∧ m = freshn(h, n) ∧ n ∈ (JEK (h, si, sl))
((h, si, sl), (h

′, s′i, s
′
l)) ∈ Jx := [E]K .

= s′l = sl ∧ h′ = h ∧ s′i = upd(x, look(h, n), si)
∧ n ∈ dom(h) ∧ n ∈ (JEK (h, si, sl))

((h, si, sl), (h
′, s′i, s

′
l)) ∈ J[E1] := E2K

.
= s′i = si ∧ s′l = sl ∧ h′ = mut(n,m, h)
∧ n ∈ dom(h) ∧ n ∈ (JE1K (h, si, sl))
∧ m ∈ (JE2K (h, si, sl))

((h, si, sl), (h
′, s′i, s

′
l)) ∈ Jfree(E)K .

= s′i = si ∧ s′l = sl ∧ h′ = dealloc(h, n)
∧ n ∈ dom(h) ∧ n ∈ (JEK (h, si, sl))

((h, si, sl), (h
′, s′i, s

′
l)) ∈ Jx := EK .

= h′ = h ∧ s′l = sl ∧ s′i = upd(x, n, si)
∧ n ∈ (JEK (h, si, sl))

((h, si, sl), (h
′, s′i, s

′
l)) ∈ Jα := LK .

= h′ = h ∧ s′i = si ∧ s′l = upd(α, xs, sl)
∧ xs ∈ (JLK (h, si, sl))

((h, si, sl), (h
′, s′i, s

′
l)) ∈ Jassert(B)K .

= JbK(h, si, sl) ∧ h = h′ ∧ si = s′i ∧ sl = s′l

Fig. 2. Semantics of basic instructions

2.1 Relational calculus

We introduce in this section the relational calculus establishing the validity of rela-
tional specifications. Relational judgments are formalized as quadruples of the form
{ϕ} c1∼ c2 {ψ}, where ϕ and ψ are relations on states and c1 and c2 are programs,
establishing a relation over every pair of executions of c1 and c2, as formalized in the
following definition:

Definition 1 (valid relational judgment). Two commands c1 and c2 satisfy the pre
and post-relation ϕ and ψ, denoted by the judgment � {ϕ} c1∼ c2 {ψ} if for all states
µ1, µ2 s.t. JϕKµ1 µ2 one of the following holds:

– c1 diverges with initial state µ1 iff c2 diverges with initial state µ2; or
– for all states µ′

1 and µ′
2 s.t. Jc1Kµ1 µ

′
1 and Jc2Kµ2 µ

′
2 we have JψKµ′

1 µ
′
2.

Assertions. Rather than representing assertions as syntactic objects, we have modeled
them as relations between states. All of the assertions presented in Yang’s work have a
straightforward interpretation as state relations. The definition of some of them is shown
in Figure 3. We let P,Q stand for relational assertions and p, q for standard separation
logic assertions.

Adopting a shallow embedding of assertions provides extra flexibility by not com-
mitting beforehand to a particular logical language, and allows inheriting all the fea-
tures of Coq’s rich higher-order language. This proved to be convenient when defining
a weakest precondition calculus ensuring termination, in which a well-founded relation
must be provably decreasing throughout loop iterations—see Subsection 2.2.

Same st1 st2
.
= st1.h = st2.h

emp2 st1 st2
.
= st1.h = empty ∧ st2.h = empty

(P ? Q) st1 st2
.
= ∃h11 h12 h21 h22.
st1.h = h11] h12 ∧ st2.h = h21] h22

∧ P (h11, st1.si, st1.sl)(h21, st2.si, st2.sl)
∧ Q(h12, st1.si, st1.sl)(h22, st2.si, st2.sl)(

p
q

)
st1 st2

.
= p st1 ∧ q st2

Fig. 3. Definition of some Relational Assertions

wp(x := alloc(E)) ϕ (h, si, sl)
.
= ∀n m. n ∈ (JEK (h, si, sl)) ∧m = freshn(h, n)⇒

ϕ(h]
n−1⊎
i=0

(m+ i) 7→ 0, si, sl)

wp(x := [E]) ϕ (h, si, sl)
.
= ∀n. n ∈ (JEK (h, si, sl))⇒
ϕ(h, upd(x, look(h, n), si), sl)

wp([E1] := E2) ϕ (h, si, sl)
.
= ∀n m. n ∈ (JE1K (h, si, sl)) ∧m ∈ (JE2K (h, si, sl))⇒
n ∈ dom(h) ∧ ϕ(mut(n,m, h), si, sl)

wp(free(E)) ϕ (h, si, sl)
.
= ∀n. n ∈ (JEK (h, si, sl))⇒
n ∈ dom(h) ∧ ϕ(dealloc(h, n), si, sl)

wp(x := E) ϕ (h, si, sl)
.
= ∀n. n ∈ (JEK (h, si, sl))⇒ ϕ(h, upd(x, n, si), sl)

wp(α := L) ϕ (h, si, sl)
.
= ∀xs. xs ∈ (JLK (h, si, sl))⇒ ϕ(h, si, upd(α, xs, sl))

wp(assert(B)) ϕ (h, si.sl))
.
= JBK(h, si.sl) ∧ ϕ(h, si.sl)

Fig. 4. Weakest Precondition of basic instructions

Weakest precondition calculus for basic instructions. Most program verification tools
rely on weakest precondition calculi rather than program logics: concretely, the prevail-
ing means to verify programs against a pre-condition and a post-condition is to generate
a set of proof obligations using a weakest precondition calculus, and finally to discharge
the proof obligations using automatic or interactive provers. Our formalization supports
a similar methodology for relational judgments, and provides a weakest precondition
calculus that computes a set of proof obligations from relational judgments. The weak-
est precondition of a basic instruction i w.r.t. to a state predicate φ is again, a state
predicate (a function taking states and returning propositions). Here instead of using
λ-abstractions we write the state on the left side as arguments to the wp function. More-
over, by abuse of notation we use pattern matching, i.e. a state is noted as a tuple. The
definition of the weakest precondition of the basic instructions is provided in figure 4.
Its definition is straightforward and obviously sound w.r.t. the semantics.

Weakest precondition calculus for 2-statements. Our weakest precondition calculus
wp2 operates on 2-statements, which combine two structurally equivalent statements
into a single construction. Formally, the set Stmt2 of 2-statements is defined induc-
tively by the clauses: i) if i1 and i2 are instructions, then [i1, i2] is a 2-statement;
ii) if c, c1, c2 are 2-statements and b, b′ are boolean expressions, then c1; c2, and

wp2 〈i1, i2〉φ = wp i1 (λm1. wp i2 (λm2. φm1m2))

wp2 (c1; c2)φ = wp2 c1 (wp2 c2 φ)

wp2 (if 〈b, b′〉 then c1 else c2)φ = Ψb,b′ ∧ (b〈1〉 ⇒ wp2 c1 φ) ∧ (¬b〈1〉 ⇒ wp2 c2 φ)

wp2 (while 〈b, b′〉 do c)φ = ∃ϕ.ϕ ∧ ∀m1,m2. Ψb,b′ m1m2 ∧ Ψϕm1m2 ∧ Ψφm1m2

where
Ψb,b′

.
= b〈1〉 ⇔ b′〈2〉 guard equivalence

Ψϕ
.
= ϕ ∧ b〈1〉 ⇒ wp2 c ϕ invariant preservation

Ψφ
.
= ϕ ∧ ¬b〈1〉 ⇒ φ valid postcondition

Fig. 5. Relational weakest precondition calculus

if 〈b, b′〉 then c1 else c2, and while 〈b, b′〉 do c are 2-statements. Each 2-statement yields
two structurally equivalent statements; we write c . (c1, c2) to denote that c is a 2-
statement whose left and right components are the statements c1 and c2 respectively.
Conversely, any two structurally equivalent statements yield a 2-statement. Intuitively,
a 2-statement encodes the simultaneous execution of its components, restricting the
calculus to structurally similar programs. In Section 4 we explain how to remove this
restriction by the application of a preliminary program transformation.

The weakest precondition calculus wp2 is defined inductively on the structure of 2-
statements; the rules are given in Figure 5, where b〈1〉 and b〈2〉 respectively denote the
interpretation of the expression b in the first and second memories, and the extension of
connectives to relations is defined in the usual way.

Frame rule. The frame rule lies at the very heart of any separation logic based ver-
ification framework, being the cornerstone of so called “local reasoning”. In order to
support modular verification, we have shown that it holds on the framework presented
in this paper. Let P , Q, and R be relational assertions and c a 2-statement. Then, if

1. the proposition ∀st1, st2. P st1 st2 ⇒ wp2 c Q st1 st2 holds; and
2. R is independent of the variables modified by c

then the following proposition holds:

∀st1, st2. (P ? R) st1 st2 ⇒ wp2 c (Q ? R) st1 st2

Intuitively, the hypothesis 1 and 2 implies that the only part of state that program c is
allowed to inspect or operate on is described by P and any other part R will remain
unchanged after its execution. This simplifying result has been systematically used to
ease the verification of the Schorr-Waite algorithm.

One of the most challenging aspects of characterizing the frame rule in our setting
is the fact that there is no syntax for assertions, so the customary side condition on R is
formulated semantically by defining the modset of c, i.e. the set of modified variables,
and requiring the validity of R to be independent of it.

Soundness. The calculus is sound, i.e. for all statements c1 and c2, and 2-statement c
s.t. c . (c1, c2), and assertions ϕ and ψ,

JϕK ⊆ Jwp2 c ψK =⇒ � {ϕ} c1∼ c2 {ψ}

Moreover, the weakest precondition calculus is sound and complete w.r.t. relational
separation logic, i.e. for all statements c1 and c2, and 2-statement c s.t. c . (c1, c2), and
assertions ϕ and ψ,

JϕK ⊆ Jwp2 c ψK ⇐⇒ `{ϕ} c1∼ c2 {ψ}

where ` {ϕ} c1∼ c2 {ψ} is used to denote that the judgment is derivable in relational
separation logic.

2.2 Total correctness

One can modify the weakest precondition calculus wp2 to enforce total correctness. To
this end, one must provide for each while statement a variant relation between pairs of
initial and final states, and prove that it is a well-founded order (i.e. no infinite descend-
ing chains) and that it decreases with each iteration. The clause for the while statement
is modified accordingly:

wptc2 (while 〈b, b′〉 do c)φµ1 µ2
.
=

∃ϕ,∃µ, ϕ ∧ ∀m1,m2. (Ψb,b′ m1m2 ∧ Ψϕm1m2 ∧ Ψφm1m2)∧
wellfounded(µ) ∧ ∀m1,m2. (ϕm1m2 ∧ JbKm1m2 ⇒
wp2 c (λs1, s2. µ (s1, s2) (m1,m2))m1m2)

where Ψb,b′ , Ψϕ, and Ψφ are defined as in Figure 5 (replacing wp2 by wptc2), and µ stands
for the variant relation. The predicate wellfounded(µ) requires µ to be well-founded to
establish the termination of the loop. Notice that we use wp2 instead wptc2 in the last
line of the formulae above, to avoid redundancy on the verification of termination of c,
which is already established by Ψϕ. Then, assuming termination of instructions, we can
prove total correctness, i.e. for all statements c1 and c2, and 2-statement c s.t. c.(c1, c2),
and assertions ϕ and ψ, and memories µ1 and µ2 s.t. ϕ µ1 µ2,

JϕK ⊆ Jwptc2 c ψK =⇒ ∃µ′
1, µ

′
2. Jc1K µ1 µ

′
1 ∧ Jc2K µ2 µ

′
2 ∧ ψ µ′

1 µ
′
2

Note that the shallow embedding of assertions plays a crucial role here, a partial
application of the variant is used as argument for the wp. This would not be possible if
we had established a syntax for the formulae through a deep embedding.

3 Verification of the Schorr-Waite algorithm

The Schorr-Waite graph marking algorithm is a widely used case study, see Section 5.
Yang [30] uses relational separation logic to prove the equivalence between the Schorr-
Waite algorithm and depth-first search, and convincingly argues that the proof in re-
lational separation logic is more elegant and more concise than an earlier functional

verification [29] of the SW algorithm in separation logic. In this section we report on a
machine-checked proof of the Schorr-Waite algorithm using the weakest precondition
calculus described in the previous section. The structure of the proof is similar to Yang’s
pen-and-paper proof [30]; one difference is that we prove total correctness rather than
co-termination.

Algorithm and relational specification. DFS traverses a binary tree marking every node
in a depth-first basis. In order to backtrack the tree traversal, it uses a stack as an auxil-
iary storage to keep track of the parent nodes that need to be revisited. The Schorr-Waite
algorithm optimizes the space needed by DFS by removing the stack. The set of nodes
to be revisited are encoded as a transformation on the heap structure: pushing a node
in the stack is implemented as an inversion of the left edge that is traversed, removing
a node from the stack is defined as restoring the original edge. Figure 6 shows a 2-
statement merging the Schorr-Waite algorithm (marked with a gray shadow) with DFS.

Verification. We have used the Coq framework to verify the 2-statement in Figure 6
against the specification:

Pre
.
= Same ∧ c=c′ ∧

(
noDangG ∧ c ∈ G∪{nil}
noDangG ∧ c′ ∈ G∪{nil}

)
Post

.
= Same

where c and c′ represent the corresponding tree roots and G denotes the set of tree
nodes. The predicate noDangG states that G is a set of non-dangling pointers closed
under heap reachability:

noDangG
.
= ∀?x ∈ G. ∃lr. (x 7→ l, r,−,−) ∧ l ∈ G∪{nil} ∧ r ∈ G∪{nil}

The additional condition c ∈ G implies that the set of tree nodes reachable from the
root c is a subset of G. The specification states that under initial heaps with the same
tree structure with root c, SW and DFS terminate with the same final states.

The application of the wp2 function to the 2-statement and the postcondition above
returns a verification condition that contains an existential quantification for the loop in-
variant. We have used a slightly modified version of the invariant proposed by Yang [30]:

Same ? uniqα ∧ Stack p cα ∧ p=p′ ∧
(

noDangG ∧ p∈G ∧ c ∈ G
noDangG ∧ p′∈G ∧ α ⊆ G∪{nil}

)
Basically, the invariant establishes that no dangling pointers can be introduced during
the algorithms execution, and provides a relation between the auxiliary stack storage
used by DFS and its representation in the Schorr-Waite algorithm. This relation is for-
malized by the predicate Stack:

Stack p c ε
.
= c=nil

Stack p c a::α
.
= ∃n0, x. Stack c n0 α ? c=a∧[(

c 7→ n0, x,Marked, Left
c 7→ p, x,Marked, Left

)
∨
(
c 7→ x, n0,Marked,Right
c 7→ x, p,Marked,Right

)]

if 〈 c 6= nil , c′ 6= nil〉 then
p := c.Left;
c.Mark :=Marked
c.Current := isLeft;
c.Left := nil

,

p′ := c′.Left;
c′.Mark :=Marked;
c′.Current := isLeft;
α := c′::ε

else[

p := nil ,
p′ := nil;
α := ε

]
fi

while 〈 c 6= nil , α 6= ε〉 do

if 〈 p 6= nil , p′ 6= nil〉 then

[m := p.Mark ,m′ := p′.Mark]

else

[m :=Marked ,m′ :=Marked]
fi

if 〈 p 6= nil ∧m 6=Marked , p′ 6= nil ∧m′ 6=Marked〉 then
t := p.Left;
p.Left := c;
c := p;
p := t;
c.Mark :=Marked;
c.Current := isLeft

,

α := p′::α;
p′.Mark :=Marked;
p′.Current := isLeft;
p′ := p′.Left

else

[d := c.Current , d′ := (hd α).Current]

if 〈 d = isLeft , d′ = isLeft〉 then
t := c.Left;
c.Left := p;
p := c.Right;
c.Right := t;
c.Current := isRight

,
(hd α).Current := isRight;
p′ := (hd α).Right

else

t := p;
p := c;
c := p.Right;
p.Right := t

,
p′ := hd α;
α := tl α

fi

fi
done

Fig. 6. Schorr-Waite and DFS 2-statement

In particular, when c 6= nil, c is the top element in the stack α and p its left or right
child. The remaining stack elements are related inductively. The difference with respect
to Yang’s invariant consists on the predicate uniq α, that states that the list α does
not contain repeated elements. The need for this extra condition became evident when
discharging the verification conditions in the Coq proof assistant.

Total correctness. We have also developed a total correctness argument for the Schorr-
Waite algorithm using the total correctness version of the weakest precondition calculus
presented earlier. Then, we extended the proof with the addition of a variant relation,
a lexicographic order similar to the one used by Giorgino et al [12]: let (st1, st2) and
(st′1, st

′
2) be pairs of states, then var(st1, st2)(st

′
1, st

′
2) iff one of the following holds:

– the number of unmarked nodes in (st1, st2) is smaller than the number of unmarked
nodes in (st′1, st

′
2),

– the number of unmarked nodes in (st1, st2) and (st′1, st
′
2) is the same but the

number of nodes in (st1, st2) with Current field set to isLeft is smaller than
in (st′1, st

′
2), or

– the number of unmarked nodes and the number of nodes of (st1, st2) and (st′1, st
′
2)

is the same but the size of the stack α in (st1, st2) is smaller than in (st′1, st
′
2).

We showed that this is a well-founded order and proved that it holds for the pre and post
states of the loop body using the wp2 calculus. In particular note that of the three ways
to construct the order, the first one corresponds to a push, the second one to a swing and
the third one to a pop operation.

4 Beyond structurally equivalent programs

A common caveat of syntactic relational methods is the limited support for non struc-
turally equivalent programs. Although this restriction can be circumvented in the setting
of relational separation logic by using the embedding rule, the ability to reason in terms
of relational loop invariants is still not supported.

In this section, we present a different strategy that cleanly extends the weakest pre-
condition based calculus presented in Section 2 to cope with non structurally equivalent
code. We enhance the previous formalism through a preliminary transformation that
is performed on the programs to be verified. This syntactic transformations can yield
structurally equivalent programs while retaining some semantic properties that ensure
that the relational validity on the transformed programs also holds on the original pro-
grams.

Let us first make precise the notion of refinement we adopt. We say that c is a
refinement of c′, noted c< c′ if the following conditions hold for all µ, µ′, µ′′ and σ:

– if Jc′K µ µ′ then JcK µ µ′;
– if Jc′K µ µ′ and JcK µ µ′′ then µ′ = µ′′ and
– if c is σ-safe then c′ is σ-safe.

We know, under this rather weak definition of refinement, that in order to establish a
relational property on two programs c1 and c2, it is sufficient to establish such property
for any two programs c′1 and c′2 s.t. c1< c′1 and c2< c′2:

(RO)
` c; d< d; c

if fv(c) ∩ fv(d) = ∅ (SK)
` c; skip< c

(IF1)
` if b then c1 else c2< assert(b); c1

(IF2)
` if b then c1 else c2< assert(¬b); c2

(WHU)
` while b do c< assert(b); c;while b do c

(WHS)
` while b do c< assert(b); c; assert(¬b)

(IFM)
` if b then c ; if b′ then c′ < assert(b⇔ b′); if b then c; assert(b′); c

(LRS)
` for i=m to n by k do c< assert(m ≤ n′ ≤ n); for i=m to n′ by k do c;

for j= i to n by k do c[j/i]
(LT)
` for i=0 to n by 1 do c< assert(n mod k = 0);

for i=0 to n by k do (for j=0 to k by 1 do c[i+j/i])
(R-RI)

` for i=m to n by k do c< assert(
⌈n−m

k

⌉
=

⌈
n′ −m′

k

⌉
);

for i=m′ to n′ by k do c[(i−m′+m)/i]

Fig. 7. Syntactic refinement rules (excerpt).

Lemma 1. For all programs c1 and c2, and c′1, c′2 such that c1< c′1 and c2< c′2, if
� {ϕ} c′1∼ c′2 {ψ} then � {ϕ} c1∼ c2 {ψ}, provided c′1 and c′2 are ϕ-safe.

Figure 7 provides a set of syntactic rules deriving a refinement relation. For clarity,
we introduce the statement for i =m to n by k do c as a syntax sugar for statement
i:=m;while i<n do c; i:= i+k. As can be seen in the figure, the rules consist of basic
structure transformations. The most complex rules are perhaps (LRS) and (LT), which
perform loop range splitting and loop tiling, respectively. The set of refinement rules in
Figure 7 is sound, i.e., it induces a refinement relation:

Lemma 2. For all statements c and c′, if ` c< c′ then c< c′.

Example: vectorization of sum. Figure 8 presents a simple algorithm that computes
the sum of the values of the node elements in a singly linked list. A program vector-
ization consists on relying on special purpose SIMD (single instruction, multiple data)
instructions, taking advantage of the associativity and commutativity of the arithmetic
computation performed in a program loop. Intuitively, for this particular example the
vectorization consists in grouping the loop iterations in chunks of 4 iterations, and per-
forming 4 addition operations simultaneously with the mm add epi32 instruction.
Figure 9 shows the vectorized algorithm. Let n denote the length of the linked list
pointed by head. The first loop iterates n÷ 4 times and computes the summation of the
first 4 × (n ÷ 4) elements of the linked list, storing it in the 128-bits vector sum. The
second loop computes the summation of the remaining n mod 4 elements and stores it

sum (list∗ head, int size)
rest:= 0;
for i=0 to size by 1 do
rest:= rest+head.val;
head:=head.next;

Fig. 8. Original version of sum algorithm.

in variable rest. The final value is computed by adding to the variable rest the partial
results stored in the bit vector sum.

By applying a sequence of refinement steps over the original program one can obtain
a pair of structurally similar programs. Then, providing a relational invariant becomes
much simpler that verifying each of the programs functionally. Indeed, assume that the
predicate EqList(head, head′, size) holds as precondition, with inductive predicate
EqList is defined by the following clauses:

EqList(l1, l2, 0)
.
= l1= l2=null

EqList(l1, l2, n+1)
.
= EqList(l′1, l

′
2, n) ∧ ∃v, l′1, l′2. l1 7→ (v, l′1) ∧ l2 7→ (v, l′2)

Then, in order to verify that original and vectorized algorithms compute the same value,
i.e., that rest = rest′ holds as a relational postcondition, it is sufficient to establish the
validity of loop invariants of the form:

sum[0]+sum[1]+sum[2]+sum[3] = rest

and
rest′+sum[0]+sum[1]+sum[2]+sum[3] = rest

Notice that these relational loop invariants are much simpler that those required in a
functional verification of the algorithm.

5 Related work

Relational methods and program verification techniques are intimately connected since
their origins. In particular, methods based on program refinement, program equivalence,
and logical relations have been used widely to reason about program correctness. In
this respect, it is perhaps surprising that relational program logics have only been in-
troduced recently. Benton [7] develops a relational Hoare logic for a small impera-
tive language and shows how program optimizations can be validated using relational
reasoning. Other relational logics include Yang’s relational separation logic [30] and
Barthe, Grégoire and Zanella’s probabilistic relational Hoare logic [5]. More recently,
Nanevski, Banerjee and Garg developed a relational separation logic for Hoare type the-
ory [23]. It extends Yang’s logic to a richer programming and specification language,
and is tailored for reasoning information flow; the logic is formalized in the Coq proof

ssesum (list∗ head′, int size)
sum = mm set1 epi32(0);
for i=0 to size− 3 by 4 do
curr:= mm insert epi32(curr, head′.val, 0);
head′:=head′.next;
curr:= mm insert epi32(curr, head′.val, 1);
head′:=head′.next;
curr:= mm insert epi32(curr, head′.val, 2);
head′:=head′.next;
curr:= mm insert epi32(curr, head′.val, 3);
head′:=head′.next;
sum:= mm add epi32(sum, curr);

rest′:= 0;
for j= i to size by 1 do
rest′:= rest′+head′.val;
head′:=head′.next;

rest′:= rest′+ mm extract epi32(sum, 0)+ mm extract epi32(sum, 1)+
mm extract epi32(sum, 2) + mm extract epi32(sum, 3);

Fig. 9. SSE optimized version of sum algorithm.

assistant; in contrast to our formalization, it uses a shallow embedding of programs. In-
dependently, Beringer [8] provided a reconstruction of relational separation logic based
on a notion of decomposition that allows reducing relational program logics to standard
program logics; the soundness of the logic is formalized in the Isabelle proof assis-
tant. In addition to these general-purpose logics, specialized relational logics have been
developed to reason about specific properties, and especially information flow [1].

On the formalization side, there have been many machine-checked accounts of sep-
aration logic in proof assistants, e.g. [3, 27], including some frameworks designed to
support automated reasoning in separation logic [2, 11, 19, 21]. Moreover, the Schorr-
Waite algorithm is a classical example in program verification, and has been verified
formally using a variety of tools and techniques. Suzuki [26] provides an early machine-
supported proof of the Schorr-Waite algorithm using an automated verifier for pointer
programs. More recently, Bornat [10] provides a machine-checked proof of the algo-
rithm in the Jape proof assistant. Subsequently, Mehta and Nipkow [20], Hubert and
Marché [15], Bubel [6], Jacobs and Piessens [17] formalize the algorithm in Isabelle,
Caduceus, KeY and VeriFast respectively. More recently, Giorgino et al [12] prove the
correctness and termination of the algorithm in Isabelle, using refinement. All these
formalizations use standard program logics.

6 Conclusion

Relational separation logic is a powerful tool devised for reasoning about the relation
between heap manipulating programs. To the best of our knowledge, we have formal-
ized in the Coq proof assistant the first certified weakest precondition calculus for rela-

tional separation logic. We illustrated its usefulness and scalability by proving a chal-
lenging case study: the correctness of the Schorr-Waite graph marking algorithm.

The Coq development has been done using ssreflect library which greatly improves
the conciseness of the proofs. For example, the relational weakest precondition, sound-
ness proofs, the definition and specification and proof of the Schorr-Waite graph mark-
ing algorithm and Depth First Search take 1586 lines of specification and 3538 lines of
proofs. We believe that the formalization of the verification setting and the formal proof
of the algorithms poses no significant overhead over hand-written proofs as overviewed
by Yang [30].

In the future, it would be interesting to formalize the modular proof of the algo-
rithm reported in [9] and to prove the equivalence between different implementations of
ADTs; for the latter, we believe that the extensions to non-structurally equivalent code
will prove crucial. Another line of work is to extend our formalization to reason about
concurrent separation logic [28] and verify the correctness of lock-free algorithms [14].

References

1. T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in object-oriented
programs. In G. Morrisett and S. Peyton Jones, editors, Principles of Programming Lan-
guages, pages 91–102. ACM, 2006.

2. A. Appel. Tactics for separation logic. Unpublished manuscript (http://www.cs.
princeton.edu/˜appel/papers/septacs.pdf), January 2006.

3. Andrew W. Appel and Sandrine Blazy. Separation logic for small-step cminor. In K. Schnei-
der and J. Brandt, editors, Theorem Proving in Higher-Order Logics, volume 4732 of Lecture
Notes in Computer Science, pages 5–21. Springer, 2007.

4. G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product programs. In
Formal Methods, Lecture Notes in Computer Science. Springer, 2011.

5. G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification of code-based crypto-
graphic proofs. In Z. Shao and B. C. Pierce, editors, Principles of Programming Languages,
pages 90–101. ACM Press, 2009.

6. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software:
The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

7. N. Benton. Simple relational correctness proofs for static analyses and program transforma-
tions. In N. D. Jones and X. Leroy, editors, Principles of Programming Languages, pages
14–25. ACM Press, 2004.

8. L. Beringer. Relational program logics in decomposed style, 2010. Submitted.
9. R. Bodı́k, S. Chandra, J. Galenson, D. Kimelman, N. Tung, S. Barman, and C. Rodar-

mor. Programming with angelic nondeterminism. In Principles of Programming Languages,
pages 339–352, 2010.

10. R. Bornat. Proving pointer programs in hoare logic. In R. C. Backhouse and J. N. Oliveira,
editors, Mathematics of Program Construction, volume 1837 of Lecture Notes in Computer
Science, pages 102–126. Springer, 2000.

11. H. Gast. Lightweight separation. In O. Mohamed, C. Muñoz, and S. Tahar, editors, Theorem
Proving in Higher Order Logics, volume 5170 of Lecture Notes in Computer Science, pages
199–214. Springer, 2008.

12. M. Giorgino, M. Strecker, R. Matthes, and M. Pantel. Verification of the Schorr-Waite algo-
rithm - From trees to graphs, January 2010.

13. G. Gonthier and A. Mahboubi. A Small Scale Reflection Extension for the Coq system.
Research Report RR-6455, INRIA, 2008.

14. A. Gotsman, B. Cook, M. J. Parkinson, and V. Vafeiadis. Proving that non-blocking al-
gorithms don’t block. In Z. Shao and B. C. Pierce, editors, Principles of Programming
Languages, pages 16–28. ACM, 2009.

15. T. Hubert and C. Marché. A case study of c source code verification: the schorr-waite algo-
rithm. In B. Aichernig and B. Beckert, editors, Software Engineering and Formal Methods,
pages 190–199. IEEE Computer Society, 2005.

16. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In
Principles of Programming Languages, pages 14–26, 2001.

17. B. Jacobs and F. Piessens. The VeriFast program verifier. Technical Report CW-520,
Katholieke Universiteit Leuven, 2008.

18. B. Jacobs, J. Smans, and F. Piessens. Verifying the composite pattern using separation
logic. In Workshop on Specification and Verification of Component-Based Systems, Chal-
lenge Problem Track, November 2008.

19. A. McCreight. Practical tactics for separation logic. In S. Berghofer, T. Nipkow, C. Urban,
and M. Wenzel, editors, Theorem Proving in Higher Order Logics, volume 5674 of Lecture
Notes in Computer Science, pages 343–358. Springer, 2009.

20. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. Inf. Comput.,
199(1-2):200–227, 2005.

21. M. O. Myreen. Separation logic adapted for proofs by rewriting. In Matt Kaufmann and
Lawrence C. Paulson, editors, Interactive Theorem Proving, volume 6172 of Lecture Notes
in Computer Science, pages 485–489. Springer, 2010.

22. A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the verification of heap-manipulating
programs. In M. Hermenegildo and J. Palsberg, editors, Principles of Programming Lan-
guages, pages 261–274. ACM, 2010.

23. Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Verification of information flow
and access control policies with dependent types. In 2011 IEEE Symposium on Security and
Privacy. IEEE Computer Society, 2011. To appear.

24. P. W. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data
structures. In L. Fribourg, editor, Computer Science Logic, volume 2142 of Lecture Notes in
Computer Science, pages 1–19. Springer-Verlag, 2001. Invited paper.

25. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in
Computer Science, pages 55–74. IEEE Computer Society, 2002.

26. N. Suzuki. Automatic Verification of Programs with Complex Data Structures. PhD thesis,
Stanford University, 1976.

27. H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In M. Hofmann and
M. Felleisen, editors, Principles of Programming Languages, pages 97–108. ACM, 2007.

28. V. Vafeiadis and M. J. Parkinson. A marriage of rely/guarantee and separation logic. In
L. Caires and V. T. Vasconcelos, editors, Conference on Concurrency Theory, volume 4703
of Lecture Notes in Computer Science, pages 256–271. Springer-Verlag, 2007.

29. H Yang. Local reasoning for stateful programs. PhD thesis, University of Illinois, Urbana,
IL, USA, 2001.

30. H. Yang. Relational separation logic. Theoretical Computer Science, 375(1-3):308–334,
2007.

31. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn. Scal-
able shape analysis for systems code. In A. Gupta and S. Malik, editors, Computer Aided
Verification, volume 5123 of Lecture Notes in Computer Science, pages 385–398. Springer,
2008.

