
Panel Discussion: Proposals for Improving OCL

Achim D. Brucker1, Tony Clark2, Carolina Dania3, Geri Georg4,
Martin Gogolla5, Frédéric Jouault6, Ernest Teniente7, and Burkhart Wolff8

1 SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 Department of Computer Science, Middlesex University, London, UK
t.n.clark@mdx.ac.uk

3 IMDEA Software Institute, Madrid, Spain
carolina.dania@imdea.org

4 Computer Science Department, Colorado State University, Fort Collins, USA
georg@cs.colostate.edu

5 Database Systems Group, University of Bremen, Germany
gogolla@informatik.uni-bremen.de

6 LUNAM, L’Université Nantes Angers Le Mans
TRAME team, ESEO, Angers, France

frederic.jouault@eseo.fr
7 Department of Service and Information System Engineering

Universitat Politècnica de Catalunya – BarcelonaTech
teniente@essi.upc.edu

8 Univ. Paris-Sud, Laboratoire LRI, UMR8623, 91405 Orsay, France
CNRS, 91405 Orsay, France
burkhart.wolff@lri.fr

Abstract. During the panel session at the OCL workshop, the OCL
community discussed, stimulated by short presentations by OCL experts,
potential future extensions and improvements of the OCL. As such, this
panel discussion continued the discussion that started at the OCL meet-
ing in Aachen in 2013 and on which we reported in the proceedings of
the last year’s OCL workshop.
This collaborative paper, to which each OCL expert contributed one sec-
tion, summarises the panel discussion as well as describes the suggestions
for further improvements in more detail.

1 Introduction

While OCL is nearly 20 years old [6], it is still an evolving language and there
is an ongoing effort in academia to improve it. This is also witnessed by the
constant updates to the official OMG standards and the current standardisation
efforts that will eventually results in OCL version 2.5. Already as a follow up
of the last OCL workshop, a number of OCL experts met in November 2013
in Aachen to discuss possible improvements of the OCL (see the report on the
OCL meeting in Aachen in the proceedings of the OCL workshop 2013 [2]).

The panel session provided a platform for the OCL community to discuss
the presented proposal for improving the OCL as well as to discuss the general

83

future of textual modelling. The following sections, each of them contributed by
one expert of the field, discuss the different areas for improvements that were
discussed during the panel session.

2 Frame Conditions for OCL

Achim D. Brucker. Traditionally, OCL operation contracts do only specify
the intended changes to the system state. In general, there is no guarantee that
other parts of the system remain unchanged. In particular, the default post
condition true allows arbitrary changes to the system state.

We suggest to introduce a new method, called ->modifiesOnly(), that
allows to explicit specify frame conditions, i. e., what can be modified by an
OCL operation.

2.1 Motivating Example

When using contracts, or pairs of preconditions and postconditions for state
transition there arises the need to specify exactly which parts of the system
are allowed to be modified and which have to stay unchanged, i. e., we have to
specify the frame property of the system. Otherwise, arbitrary relations from
pre-states to post-states are allowed. For most applications this is too general:
there must be a way to express that parts of the state do not change during a
system transition, i. e., to specify the frame properties of system transition. As

Account
balance:Integer
id:Integer
getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

Customer
id:Integer
name:String
getId():Integer
setName(n:String):Boolean
getName():String

accounts
..* owner

Fig. 1. Consider a state transition constrained by the operation specification for the
operation deposit. Obviously, only the attribute balance of one specific object should
be changed, but how can this be specified?

an example, consider Figure 1 with an particular focus on the specification of the
operation deposit of the class Account. This specification only describes which
part of the system should change, i. e., the balance of the context object (which
is an Account object) should be increased. But this is not specified, which parts
of the system should remain unchanged, e. g., the id of the context object.

84

One solution to solve this frame problem would be an implicit invariability
assumption on the meta-level which would somehow express “all things that are
not changed explicitly remain unchanged.” But this is neither formal nor precise
and thus not usable within a formal framework for object-oriented specifications.

Another possibility is to enumerate, in the postcondition of the operation,
all path expressions that should remain unchanged, e. g., in our example a first
attempt to do so would be:

context Account :: deposit(a:Integer): Boolean

post: balance = balance@pre+a

post: id = id@pre

post: owner = owner@pre

post: owner.id = owner@pre.id@pre

post: owner.name = owner@pre.name@pre

But this is also not sufficient, as it would still not describe if objects not re-
lated to our context object (of type Account) must remain unchanged or not.
Enumerating all classes (and attributes) using static path expressions (e. g.,
Customer::name = Customer::name@pre) is tedious and moreover leads to con-
tradictions if the name attribute of the owner of the context object should be
changed.

Our Proposal. This framing problem is well-known (one of the suggested solu-
tions is,e. g., [5]). We suggest to introduce an OCL method that explicitly allows
to specify what might be changed during a system transition. We define

(S:Set(OclAny))->modifiesOnly (): Boolean

where S is a set of objects (i. e., a set of OclAny objects). This also allows recursive
operations collect the set of objects that are potentially changed by a recursive
function. Obviously, similar to @pre the use of ->modifiesOnly() is restricted
to postconditions.

In our formalisation, called Featherweight OCL [3], we encode the set S as
a set of object ids (oid). The semantics of the _->modifiesOnly() operator is
defined such that for any object whose oid is not represented in S and that is
defined in pre and post state, the corresponding object representation will not
change in the state transition. A simplified presentation is as follows:

IJX->modifiesOnly()K(σ, σ′) ≡
{
⊥ if X ′ = ⊥ ∨ null ∈ X ′

x∀ i ∈M. σ i = σ′ iy otherwise .

where X ′ = IJXK(σ, σ′) and M = (dom σ ∩ dom σ′) − {OidOf x| x ∈ pX ′q}.
Thus, if we require in a postcondition Set{}->modifiesOnly() and exclude via
_.oclIsNew() and _.oclIsDeleted() the existence of new or deleted objects,
the operation is a query in the sense of the OCL standard, i. e., the isQuery prop-
erty is true. So, whenever we have τ � X->excluding(s.a)->modifiesOnly()
and τ � X->forAll(x|not(x

.
= s.a)), we can infer that τ � s.a , s.a @pre.

85

3 Extending OCL with Functions

Tony Clark. The current OCL standard does not support functional abstrac-
tion. This is surprising given the origins of OCL and its relationship, with respect
to extensive support for collection processing, to functional programming lan-
guages such as ML and Haskell. OCL can currently be used to specify operations
on classes. It would be useful to extend this notion so that OCL could be used
to define a self supporting, albeit high-level and side-effect free, executable sys-
tem that could be used for a variety of purposes including scripting, simulation,
model management, etc. Adding functions to OCL is a step in this direction.

In this regard, a functional abstraction in OCL will provide a new type of
expression that defines an anonymous function comprised of a sequence of named
arguments and a body, which is any OCL expression. The denotation of such an
expression is a function that can be applied to the requisite number of argument
values causing the function definition body to be evaluated. Since a function is a
value it can be named in the usual way, for example by passing it as an argument
to another function or (equivalently) binding in a let-expression. Free variables
within the body of a function definition will exhibit lexical scoping, meaning that
the life-time of the function, and any associated free variable values, may outlive
that of the binding scope in which it is defined. Since the name of a function is
not an intrinsic part of its definition, recursive functions are to be established
using a new binding mechanism provided by let that is designated as recursive.

Having outlined above the characteristics of functions, their use within OCL
is motivated as follows:

abstraction Currently OCL lacks a mechanism for abstracting patterns of def-
initions and then reusing them throughout a system specification. This may
take the form of a collection of domain specific functions that provide, for
example, arithmetic calculations. Furthermore, the higher-order aspect of
functions will facilitate patterns over functions, for example by defining cal-
culations involving sorts where the sort-relationship (alpha-sort, numeric-
sort, ascending, descending, etc.) is passed as an argument.

modularity Current OCL specifications can be long-winded where expressions
contain a great deal of detail. Functions, especially locally defined functions,
can help to reduce the complexity both in terms of size and readability.
Functions allow parts of a specification can establish a collection of private
reusable abstractions. Functions can be the basis of defining both general-
purpose and domain-specific library modules for OCL.

iteration OCL provides a string support for processing collections. The itera-
tion processing expressions are built-in to the OCL language when this is not
necessary. They can all be defined in terms of a small number of primitive
collection operations and recursive functions (as demonstrated by functional
languages whose libraries contain a much larger range of collection opera-
tors). Languages should strive for both semantic universality and semantic
parsimony with regard to their intended domain; currently OCL provides
neither.

86

3.1 Proposal

This section proposes the addition of anonymous function definitions and func-
tions, and associated language support, to OCL. This section provides a brief
overview of how this might be achieved.

Fig. 2. Abstract Syntax Extension

Types Figure 2 shows the proposed extensions to the OCL abstract syn-
tax model that are necessary to support function definitions. A new type
FunExpression is introduced as a sub-class of OCLExpression, it has any num-
ber of (ordered) arguments defined as variables, and a body. The existing LetExp

class is extended to allow two different types of binding: recursive and non-
recursive. The DataType class is extended to produce a new data type called
FunType whose domain and range types describe the argument and body types
of a function respectively.

Concrete Syntax OCL functions are supported by a small concrete syntax ex-
tension. A function expression including domain and range types can be written
as follows (assuming the availability of a function sqrt):

fun(x:Integer ,y:Integer): Integer

sqrt(x*x + y*y)

end

We can name the function:

let

distance = fun(x:Integer ,y:Integer): Integer sqrt(x*x + y*y)

end

in distance (100 ,200)

end

87

which suggests the following sugar:

let distance(x:Integer ,y:Integer): Integer = sqrt(x*x + y*y)

in distance (100 ,200)

end

At the top-level of a specification we might allow distance to be available ev-
erywhere:

let distance(x:Integer ,y:Integer): Integer = sqrt(x*x + y*y);

In the above definition, the name distance will not refer to the function being
defined (if anything it will refer to a definition in a surrounding scope). To achieve
a recursive function, an extra keyword is used:

let rec

size(s:Sequence(T)): Integer = if s->isEmpty

then 0

else 1 + size(s->rest ());

3.2 Examples

To see how higher-order features of functional-OCL can be used to good effect,
consider the case of OCL without built-in iteration. The select expression can
be achieved using a function called select that is defined in the context of a
polymorphic type Sequence(T). The function select takes a function q as an
argument; q acts as a predicate on each element of the collection. The function
select recursively processes the collection and returns a collection containing
only those elements that satisfy q:

context Sequence(T):: select(q:(T)->Boolean): Sequence(T) =

let s:Sequence(T) = self ->rest()->select(q)

x:T = self ->first()

in if q(x)

then s->prepend(x)

else s

end

end

Now any occurrence of S->select(e | p) can be translated to:
S.select(fun(e) p end) and all other OCL iteration constructs can be
treated the same way. This significantly reduces the number of semantic
primitives for OCL and provides a basis for new collection processing operations
based on higher-order functions, for example:

context Sequence(T):: foldr(g:(T,T’)->T’,x:T’):T’ =

if self ->isEmpty

then x

else g(self ->first(),self ->rest (). foldr(g,x))

end

88

Once defined, this can be used as the basis of many different sequence operations:

context Sequence(Boolean):: allTrue (): Boolean =

self.foldr(and ,true)

context Sequence(Boolean):: anyTrue (): Boolean =

self.foldr(or ,false)

context Sequence(Integer):: sum (): Integer =

self.foldr (+,0)

context Sequence(Integer):: product (): Integer =

self.foldr (*,1)

context Sequence(T):: size (): Integer =

self.foldr(fun(x) x + 1 end ,0)

context Sequence(Sequence(T)):: concat (): Sequence(T) =

self.foldr(fun(l1,l2) l1->append(l2) end ,Seq {})

context Sequence(T):: reverse:Sequence(T) =

self.foldr(fun(x,l) l->append(Seq{x}) end ,Seq {})

4 Implicit Strict Downcasts in OCL Collection
Operations

Martin Gogolla. Current OCL allows to select elements of a particular type
from a heterogeneous collection and to apply subtype specific operations to the
selected elements.

Set{4,’VII’,’IV’,7}->

selectByKind(Integer)->

collect(i | i*i)

==> Bag {16 ,49} : Bag(Integer)

As an example, consider the above evaluation on a heterogeneous collec-
tion with Integer and String elements. Due to the relatively new operation
selectByKind this task can be formulated in a more condensed way than in
older OCL versions.

Set{4,’VII’,’IV’,7}->

select(x:OclAny | x.oclIsTypeOf(Integer))->

collect(x | let i:Integer=x.oclAsType(Integer) in i*i)

==> Bag {16 ,49} : Bag(Integer)

As shown above, evaluations of this kind were possible in OCL from the very
beginning by employing select, type assertions, collect, and type downcasts,
however more notational overhead was needed when compared to the formulation
with selectByKind.

The proposal that we put forward here is to reduce the notational overhead
even more by allowing explicit downcasts from more general types to more special
types in collection operations by explicitly giving a subtype to a variable that is
used in the collection operation.

89

Set{4,’VII’,’IV’,7}->

collect(i:Integer | i*i)

==> Bag {16 ,49} : Bag(Integer)

Starting from types S and G with S<G and a term COL evaluating to a col-
lection of type Collection(G), the general translation schema for such explicit
downcasts in collection operations would look as indicated below: the central
idea is that a call for colOp is replaced by a select call and a colOp call; the
variable s is typed through the more special type S and the OCL expression
expr[s] uses s in contexts where the more special type S and not the more
general type G is expected; the operation colOp can be any collection operation,
not only as in the above example the collection operation collect.

COL ->colOp(s:S | expr[s])

==>

COL ->

select(x | x.oclIsTypeOf(S))->

colOp(g:G | let s:S=g.oclAsType(S) in expr[s])

In particular applications of this construct in the context of
type generalization seem to be useful. For example, assume we have
Female<Person, Male<Person, the following evaluation would be possi-
ble.

Set{ada ,bob ,cyd ,dan ,eve}->

collect(f:Female | f.husband.firstName)

==> Bag{’Dan’,’Dan’}

The discussion at the workshop brought up reservations about the use of the
colon : at the crucial point of giving a subtype to the variable. In order to avoid
accidental use of the subtyping mechanism, using a new, differentiating syntax
was discussed. Some proposals are indicated below. The lasts syntax proposal
employing brackets are referring to the syntax proposed for patterns matching
(inspired from Haskell).

Set{ada ,bob ,cyd ,dan ,eve}->

collect(f<: Female | f.husband.firstName)

Set{ada ,bob ,cyd ,dan ,eve}->

collect(f@Female {} | f.husband.firstName)

Set{ada ,bob ,cyd ,dan ,eve}->

collect(f:Female {} | f.husband.firstName)

5 Active Operations for OCL

Frédéric Jouault. Before its 2.0 version (when it was still defined as a part of
UML [8]), OCL only had three kinds of constraints: inv for classifier invariants,

90

as well as pre and post respectively for preconditions and postconditions of
operations9. Starting with version 2.0, additional kinds of constraints appeared:
body to implement (side-effect free) operations, as well as init and derive

respectively to specify initial values, and to implement derived features.
A derived feature is a feature (attribute or association end), which has a

value that is computed from the values of other features. The fact that a feature
is derived is specified in a class diagram (e.g., in UML), not in OCL. In gen-
eral, the value of a derived feature is specified in OCL as an invariant. However,
the computation of the value of a derived feature is not always trivial from an
invariant. Consequently, derive constraints were introduced in the OCL spec-
ification as a special case of invariants. They work by specifying an expression
that evaluates to the value of the derived feature. The computation of the value
of a derived feature becomes as simple as evaluating that expression.

Although the more recent derive kind of constraint is useful, it notably does
not address the 3 following issues that arise when working with derived features:

– Changeability is limited to read-only access. Writable derived features
must typically be achieved by actual implementation (e.g., in Java), not
by modeling in OCL.

– Observability is generally not possible because derived features are com-
puted by evaluating the specified OCL expressions, which typically happens
on-demand. Arguably, this is more an implementation issue than a modeling
one. However, it is a real problem for modeling tools. For instance, a model
editor that displays the value of a derived feature cannot directly listen for
its changes.

– Direct use of invariants to specify derived features should also be possible,
but is generally not supported by tools. When derive is used instead of inv,
the person writing the constraint must decide how to compute the derived
features. Ideally, tools should be able to do this from more general invariants.

In this section, we propose to extend OCL with active operations [1]. Ba-
sically, active operations enable incremental synchronization of collections. In
some cases, bidirectionality is even possible.

Here are three concrete benefits of integrating active operations in OCL:

– Changeability is achieved by relying on bidirectionality of active opera-
tions. This works independently of whether inv or derive is used.

– Observability is possible because active operations incrementally update
derived features as soon as there is a change in the values they depend on.
This is also independant of the use of inv or derive.

– Direct use of invariants becomes possible without having to rewrite them
into derive constraints (whether manually or automatically). This means
that inv may be used instead of derive.

Active operations perform their work by producing side-effects on models:
some collections get updated when other collections are changed. We believe they

9 def “definition” constraints enable expression reuse but do not constrain models.

91

are nonetheless compatible with OCL because: only “when OCL expressions are
evaluated, they do not have side effects” [9], but active operations do not work by
evaluating OCL expressions. With active operations, OCL constraints are used
in way that is similar to how constraints are used in constraints programming:
they specify the form of desired solutions, not how to compute them.

5.1 Motivating Example

Consider Figure 3: a Transporter handles several Transports, each associated
to a Truck and a Driver, which are two kinds of Resources. The set of all re-
sources used by a Transporter is captured as the resources association. Finally,
a Transporter has three derived features: derivedResources, trucks, and drivers.
Note that from a modeling point of view derivedResources is redundant with
resources. However, from a pedagogical point of view we need both derived and
non-derived versions of the same relation.

Fig. 3. Transporter class diagram

Listing 1.1 gives a set of OCL constraints over the class diagram depicted in
Figure 3. Constraint C1 specifies with an invariant that all derivedResources of a
transporter must be used in at least one transport. Constraint C2 specifies how
the derivedResources derived feature can be computed. One can observe that C1
logically implies C2. Nonetheless, C2 must generally be specified so that tools
may actually be able to compute the value of the derived feature. With active
operations, the more general C1 is enough and C2 is redundant. Nonetheless,
C2 would also work without C1. Note that in this case derivedResources cannot
trivially be made writable because adding a resource to a transporter may then
require the creation of a new instance of class Transport. This may be captured
in the class diagram by specifying derivedResources as read-only. It should be
noted that UML also provides a specific built-in mechanism for derived unions,

92

which is roughly equivalent to what we are doing here with C1. However, UML
specifies that derived unions must be read-only whereas we can do better with
active operations.

Similarly, constraint C3 specifies with an invariant that non-derived resources
correspond to the union of derived drivers and trucks. Constraint C4 and C5
respectively specify expressions that can be used to directly compute the values
of drivers and trucks. One can observe that C3 logically implies C4, and C5.
Nonetheless, C4 and C5 must generally be specified so that tools may actually
be able to compute the values of the derived features. With active operations,
the more general C3 is enough and C4 and C5 are redundant (but would still
work). Additionally, C3 is usable in both directions: resources, drivers, and trucks
are all writable features. Moreover, even if C3 did not exist, C4 and C5 would
be usable bidirectionaly to update resources when either drivers or trucks was
updated.

-- [C1] all derivedResources must be used by transports

context Transporter inv:

self.derivedResources = self.transports.driver ->union(

self.transports.truck)

-- [C2] implementation of /derivedResources derived feature

context Transporter :: derivedResources : OrderedSet(Resource)

derive: self.transports.driver ->union(self.transports.truck)

-- [C3] resources are the union of drivers and trucks

context Transporter inv:

self.resources = self.drivers ->union(self.trucks)

-- [C4] implementation of /drivers derived feature

context Transporter :: drivers : OrderedSet(Driver)

derive: self.resources ->select(e | e.oclIsKindOf(Truck))

-- [C5] implementation of /trucks derived feature

context Transporter :: trucks : OrderedSet(Truck)

derive: self.resources ->select(e | e.oclIsKindOf(Truck))

Listing 1.1. OCL constraints for the class diagram of Figure 3

We have seen above that with active operations, not only are C1 and C3
enough, but they are also enough for the tools to be actually able to compute
the values of derived features. Concretely, here is how active operations work for
C3:

– Initialization consists in setting drivers and trucks to appropriate values
by doing something similar to what C4 and C5 specify, but by only relying
on information given in C3. Additionally, the active operations engine starts
to listen for changes in either resources, drivers, or trucks.

– Synchronization is triggered whenever a change is performed, and the
model is considered to be in a stable state only after it is done. If resources

93

is modified, then either drivers or trucks is updated with the new element. If
either drivers or trucks is modified, then resources is updated with the new
element. Should these features be ordered, active operations may preserve
ordering (e.g., by considering that union is equivalent to concatenation).

Once synchronization has ended, the model is again in a stable state, and the
invariant satisfied.

5.2 Conclusion

Active operations address concrete shortcomings of OCL when used with derived
features. They are compatible with its semantics, even though they require a
different execution engine. Algorithms proposed in [1] can be used to implement
active operations, and cover most OCL operations on collections. We do not
foresee any issue with missing ones.

6 Purpose-specific Fragments of OCL

Ernest Teniente.10 An important direction on the improvement of OCL should
be devoted to analyze how can we make this language broadly used in industry.
In this proposal, we suggest to identify purpose-specific fragments of OCL, each
of them devoted to a different goal in software development, as a significant
step in this direction. Having purpose-specific fragments of OCL would help its
learning and understanding while showing up the benefits of its use.

6.1 Motivation

OCL is aimed at defining all relevant aspects of a specification that cannot be
stated diagrammatically. It is a formal language, intended to be easy to read
and write and it can be used for a number of different purposes: as a query
language, to specify invariants in UML class diagrams, to describe pre- and post
condictions on operations and methods, to describe guards, to specify target sets
for messages and actions, etc. [7].

OCL is proposed to be used in software development, mainly at the initial
stages of this process, because it is intended to fill the gap between natural and
classical formal languages being understandable but formal at the same way;
and it is expected to be widely used in industry because of the advantages it
provides to the automation of code generation or to automated reasoning. This
is particularly important in the context of model-driven development.

Providing an answer to the question ”How can OCL be improved?” should
take all these issues into account. So, the aim of this contribution is not to
propose some additional, missing, feature of the language to make it better in

10 This work has been partially supported by the Ministerio de Ciencia e Innovación
under project TIN2011-24747

94

some sense but trying to contribute to the debate of why OCL is not used
(almost) in industry and to propose a possible solution to it.

There are two possible reasons for that: either the industry does not build
(UML) models or OCL is too complex already to be understood by people from
industry. In the first case, there would still be a long way to go as far as mod-
eling in industry is concerned and making the language more expressive would
not solve the problem. In the second, it seems clear that considering additional
features of the language would not help people to better understand OCL.

Some issues allow to illustrate the difficulties to understand OCL. For in-
stance, when learning about the use of OCL expressions in UML models in the
OCL specification document [7], we find the following sentence: ”everywhere in
the UML specification where the term expression is used, an OCL expression
can be used (...), but other placements are possible too. The meaning of the
value, which results from the evaluation of the OCL expression, depends on its
placement within the UML model”. Does it mean that we need to read the
whole UML specification also to know when an OCL expression can be used?
How do we know the different values that an expression can take depending on
its placement? How can we easily learn that?

Additionally, some aspects are difficult to explain or may even look like con-
tradictory. A couple of examples follow. Being OCL a declarative language, is
the iterate construct declarative? How can we justify that? When should tuple
types be used? What are they useful for? Which is the relationship between the
expressive power of OCL and that of well-known languages such as relational
algebra or first-order logic?

Under these considerations, and bearing in mind that our purpose is getting
OCL to be used in industry, my guess is that we should not actually extend
OCL further but trying to simplify or to structure it in such a way that it can
be better understood. This is further discussed in the next section.

6.2 Purpose-specific Fragments of OCL

One way to improve the understanding of OCL, thus facilitating its adoption by
industry, would be to identify purpose-specific fragments of the language. Each
fragment should be devoted to a particular purpose or use of the language in
software development. So, we could identify a fragment to define invariants in
UML class diagrams, another one to specify pre- and postconditions of operation
contracts, a third one to state model transformations, etc.

Different fragments would share several OCL operators but probably none
of them would require the whole set of actual operators because of its particular
purpose. Note that we are not advocating for simplyfing the language nor for
removing some operators. We are just proposing to structure the language in such
a way that understanding each fragment is easier than understanding the whole
OCL. Moreover, knowing that the fragment is aimed at an specific purpose would
also facilitate knowing the formal semantics of the language and the comparison
with other languages for the same purpose.

95

The definition of the expressions and the operators of each fragment should
be performed in an incremental way, going from the basic concepts and the
most common patterns found in its purpose to the most complex and specific
issues. Thus, for instance, in the fragment devoted to specify invariants in UML
class diagrams one could start by showing how to build expressions that specify
invariants tied to a contextual instance and obtained through the navigation
of binary associations and, afterwards, proceed with more difficult cases like
explaining the particular usage of the allInstances operator (i.e. when is it strictly
required and why) or the navigation through n-ary associations.

Having a purpose-oriented structure of the language would allow also iden-
tifying the tools that allow the automation of software development with that
purpose in mind. This is particularly important because without the existence
of such tools it will be very difficult for industry to adopt the OCL language. In
fact, the best way to convince industry about the usefulness of the use of OCL
would be to show the economical benefits they would get and also the improve-
ment on the quality of the final product obtained, and this can only be achieved
by means of practical tools.

Finally, and is it clearly happens in the Java community, we would also need
books so that people can do self-learning of each specific fragment of OCL.
Right now, there are only a very few books, rather introductory, explaining how
the elements of the OCL language can be used to complement UML models
[4, 10, 11]. Moreover, they are ten years old already and aimed at covering the
most common usages of OCL thus being too general as far as self-learning for
an specific purpose is concerned.

6.3 Conclusion

Simple is better, definitely. So, if we want the OCL language to be widely used
in industry we need to structure it in such a way that it is easily understandable,
easy to learn and so that the benefits it provides to software development are
out of discussion. One way to achieve this is by considering purpose-specific
fragments of the language as advocated in this paper. Tools and books for each
of the fragments are also required.

7 Patterns in OCL

Burkhart Wolff. Pattern-Matching is a widely used and well-known concept in
functional programming leading to concise and readable code. They are partic-
ularly valuable for defining model-transformers and compilers, a domain where
OCL is prominently used.

With the advent of Tuples (called records in the functional programming
literature) we could also introduce pattern-matching wherever variables were
bound, so in definitions of recursive functions, quantifiers, select-operators, ...

Moreover, we suggest the concept of shadow classes which can be associate
to each class-definition A (allowing objects in a state) a shadow - tuple A{a,

... , z} (so: a value) that is amenable to pattern matching.

96

7.1 Pattern Matching in Collection Types

OCL possesses hidden second-order combinators, implicitly accepting a lambda
buried under first-order notation. These are:

->iterate ->exists ->forall ->select

->collect ->any ->isUnique.

For all these constructs, we propose to allow:

S->select(PATTERN | P (x1 ,...,xn))

or in the general case:

S->select(PATTERN1 | P1 (x1 ,...,xn)

@ ...

@ PATTERNm | Pm (x1 ,...,xmn))

For example:

S->select(Seq{_, 3, a, b, ...} | a >= 15 and a = b)

which filters from a Collection of Sequences integers those who have a 3 as second
argument, and where the third argument is larger 15 and identical with the forth
argument. It can be seen as shortcut for:

S->select(X | X->nth (2) = 3 and X->nth (3) >= 15

and X->nth (3) = X->nth (4))

Similarly, a construction like:

S->select(Set{3, a, b, ...} | a >= 15 and a = b)

could be seen as shortcut for:

S->select(X | X->includes (3) and

X->exists(a b | a >= 15 and a = b))

With respect to Tuples (called usually records in functional programming
languages), the following notations are possible:

S->select(Tuple{name=’mueller ’,sex=male ,age=x, ...} |

x >= 21)

Note that to be on the safe side, we propose to allow the ... notation for unused
labels in a tuple, but allow the pattern-match notation only when the tuple type
can be completely inferred.

7.2 Shadow Tuples of Classes

The power of the pattern-matching mechanism is further increased if a seamless
transition between objects and corresponding tuples is supported. For example:

97

class Employee is Person

+ salary : Integer [0..1]

+ dept_id : Integer [1]

end

induces the implicit declaration of the shadow-tuple:

Employee{salary : Integer; dept_id : Integer;

sex: Sex; name: String }

(where Person provides the remaining attributes sex and name) which motivates
the pattern matching notation:

Employee.allInstancesOf ()

->select(Employee{salary=x,dept_id =5 ,... } |

x <> null and x >2000)

Access to the implicit object id is forbidden; and we suggest to construct shadow-
tuples completely, i.e. not producing partial tuples or the like which tends to
complicate the type inference. The ”...” notation is thus only used in patterns,
not in declaration of tuples (introducing a concept like extensible records as in
Isabelle).

8 Conclusion

The lively discussion both during the panel discussion as well as for each paper
that was presented showed again that the OCL community is a very active
community. Moreover, it showed that OCL, even though it is a mature language
that is widely used, has still areas in which the language can be improved. We
all will look forward to upcoming version of the OCL standard.

Acknowledgments. We would like to thank all participants of this years OCL
workshop for their active contributions to the discussions at the workshop. This
lively discussions are a significant contribution to the success of the OCL work-
shop series.

References

[1] Beaudoux, O., Blouin, A., Barais, O., Jézéquel, J.M.: Active Operations on
Collections. In: Petriu, D., Rouquette, N., Haugen, Ø. (eds.) Model Driven
Engineering Languages and Systems, Lecture Notes in Computer Science,
vol. 6394, pp. 91–105. Springer Berlin Heidelberg (2010)

[2] Brucker, A.D., Chiorean, D., Clark, T., Demuth, B., Gogolla, M., Plot-
nikov, D., Rumpe, B., Willink, E.D., Wolff, B.: Report on the Aachen OCL
meeting. In: Cabot, J., Gogolla, M., Rath, I., Willink, E. (eds.) Proceed-
ings of the MoDELs 2013 OCL Workshop (OCL 2013). CEUR Workshop
Proceedings, vol. 1092, pp. 103–111. ceur-ws.org (2013)

98

[3] Brucker, A.D., Tuong, F., Wolff, B.: Featherweight ocl: A proposal for a
machine-checked formal semantics for ocl 2.5. Archive of Formal Proofs (Jan
2014), http://afp.sf.net/entries/Featherweight_OCL.shtml, Formal
proof development

[4] Clark, T., Warmer, J. (eds.): Object Modeling with the OCL, The Ratio-
nale behind the Object Constraint Language, Lecture Notes in Computer
Science, vol. 2263. Springer (2002)

[5] Kosiuczenko, P.: Specification of invariability in ocl. In: Nierstrasz, O.,
Whittle, J., Harel, D., Reggio, G. (eds.) Model Driven Engineering Lan-
guages and Systems (MoDELs). Lecture Notes in Computer Science, vol.
4199, pp. 676–691. Springer-Verlag, Heidelberg (2006)

[6] Object constraint language specification (version 1.1) (Sep 1997), available
as OMG document ad/97-08-08

[7] Object Management Group (OMG): Object Constraint Language (UML),
version 2.3.1 (2012), http://www.omg.org/spec/OCL/

[8] (OMG), O.M.G.: Unified Modeling Language (UML), Version 1.5. http:
//www.omg.org/spec/UML/1.5/ (Mar 2003)

[9] (OMG), O.M.G.: Object Constraint Language (OCL), Version 2.4. http:
//www.omg.org/spec/OCL/2.4/ (Feb 2014)

[10] Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1999)

[11] Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your
Models Ready for MDA. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2 edn. (2003)

99

