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Abstract

Nowadays, most of the main database management
systems offer, in one way or another, the possibil-
ity of protecting data using fine-grained access con-
trol (FGAC) policies, i.e., policies that depend on
dynamic properties of the system state. Reasoning
about FGAC policies typically amounts to answering
questions about whether a security-related property
holds in a (possibly infinite) set of system states. To
carry out this reasoning, we propose a novel, tool-
supported methodology, which consists in transform-
ing the aforementioned questions about FGAC poli-
cies into satisfiability problems in first-order logic.
In addition, we report on our experience using the
Z3 Satisfiability Modulo Theory (SMT) solver for
automatically checking the satisfiability of the first-
order formulas generated by the tool implementing
our methodology, called SecProver, for a non-trivial
set of examples.

1 Introduction

In Role-Based Access Control (RBAC) (Ferraiolo
et al. 2001), permissions specify which roles are al-
lowed to perform given operations. These roles typi-
cally represent job functions within an organization.
Users are granted permissions by being assigned to
the appropriate roles based on their competencies and
responsibilities in the organization. RBAC allows one
to organize the roles in a hierarchy where roles can in-
herit permissions along the hierarchy. In this way, the
security policy can be described in terms of the hier-
archical structure of an organization. However, it is
not possible in RBAC to specify fine-grained access
control (FGAC) policies, i.e., policies that depend on
dynamic properties of the system state, for example,
to allow an operation only during weekdays.

SecureUML (Basin et al. 2006) is a modeling
language for formalizing FGAC policies. It ex-
tends RBAC with authorization constraints, which
allow one to specify constraints for granting permis-
sions. Authorization constraints are formalized in
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SecureUML using the Object Constraint Language
(OCL) (Object Management Group 2014). Using Se-
cureUML, one can then model access control decisions
that depend on two kinds of information:

1. static information, namely the assignments of
users and permissions to roles, and the role hier-
archy, and

2. dynamic information, namely the satisfaction of
authorization constraints in the given system
state.

SecureUML is currently supported by Ac-
tionGUI (Basin et al. 2014, ActionGUI 2012), a
model-driven methodology for developing secure
data-management applications. In ActionGUI, sys-
tem developers proceed by modeling three different
views of the desired application: its data model, se-
curity model, and GUI model. These models formal-
ize respectively the application’s data domain, autho-
rization policy, and its graphical interface together
with the application’s behavior. Afterwards a model-
transformation function lifts the policy specified by
the security model to the GUI model. Finally, a code
generator generates a multi-tier application, along
with all support for fine-grained access control, from
the security-aware GUI model.

In this paper we propose a novel methodology for
carrying out formal reasoning about FGAC policies
specified using SecureUML. Reasoning about FGAC
policies typically amounts to answering questions
about whether a security-related property holds in
a (possibly infinite) set of states. The key compo-
nent of our methodology is a mapping from OCL to
first-order logic (Clavel et al. 2009, Dania & Clavel
2013), thanks to which we are able to transform the
aforementioned questions about FGAC policies into
satisfiability problems in first-order logic. Finally,
to validate our methodology, we have implemented
a tool, called SecProver (SecProver 2014), and we
have applied the Z3 SMT solver (de Moura & Bjørner
2008) for automatically checking the satisfiability of
the first-order formulas generated by SecProver, for
a non-trivial set of security-related questions about
SecureUML models.

Organization. In Section 2 we provide background
information about SecureUML, and we also discuss its
semantics and compare its expressiveness with that
of other languages currently supported by commer-
cial database management systems. In Section 3 we
summarize the key principles underlying our mapping
from OCL to first-order logic. Then, in Section 4,
we explain how, using the aforementioned mapping,
interesting questions about SecureUML models can
be translated into satisfiability problems in first-order



logic, and, in Section 5, we report on our experience
using the Z3 SMT solver for automatically checking
the satisfiability of the formulas generated by our
methodology, for a non-trivial set of examples. We
conclude the paper with sections on related work and
future work.

2 Modeling Fine-Grained Access Control
Policies

SecureUML (Basin et al. 2006) is a modeling lan-
guage for specifying fine-grained access control poli-
cies (FGAC) for actions on protected resources. Us-
ing SecureUML one can model roles (with their hi-
erarchies), permissions, actions, resources, and con-
straints on the permissions, which are called autho-
rization constraints. SecureUML is, however, generic
in that it leaves open the nature of the protected re-
sources, i.e., whether these resources are data, busi-
ness objects, processes, controller states, etc. Basin
et al. (2006) initially combined SecureUML with a
design modeling language based on class diagrams,
called ComponentUML, and with a language based
on state diagrams, called ControllerUML. More re-
cently, Basin et al. (2014) have combined SecureUML
with a language for modeling graphical user inter-
faces for data-centric applications, called ActionGUI.
In this work, we will use the aforementioned combi-
nation of SecureUML with ComponentUML, called
SecureUML+ComponentUML.

Next, we will explain, and illustrate with exam-
ples, the main concepts used when modeling with Se-
cureUML+ComponentUML: namely, resources and
actions; invariants; authorization constraints; and
permissions. Also, we will briefly compare Se-
cureUML+ComponentUML with other languages
supported by commercial data management systems
for specifying FGAC policies

2.1 Resources and Actions

ComponentUML provides a subset of UML class
models where entities (classes) can be related by
associations and may have attributes. In Se-
cureUML+ComponentUML, the protected resources
are the ComponentUML entities, along with their at-
tributes and association-ends (but not the associa-
tions as such), and the actions that they offer to the
actors are those shown in the following table:

Resource Actions
Entity create, delete
Attribute read, update
Association-end read, create, delete

Example 1 In Figure 1 we show a ComponentUML
model, named EmplBasic.dtm. This model speci-
fies that every employee may have a name, a sur-
name, and a salary; that every employee may have
a supervisor and may in turn supervise other em-
ployees; and that every employee may take one of
two roles: Worker or Supervisor. In the termi-
nology of ComponentUML, Employee is an entity ;
name, surname, salary, and role are attributes;
supervisedBy and supervises are association-ends;
and Role is an enumerated class. Notice that the
association-end supervises has multiplicity 0..*,
meaning that an employee may supervise zero or more
employees, while the association-end supervisedBy
has multiplicity 0..1 meaning that an employee may
have at most one supervisor.

< < r o l e > >
Worker

< < r o l e > >
Supervisor

-Employee:salary:AtomicRead

<<permiss ion>>
WorkerReadSalary

-Employee:salary:AtomicRead

<<permiss ion>>
SupervisorReadSalary

-Employee:salary:AtomicUpdate

<<permiss ion>>
SupervisorUpdateSalary

-name : String
-surname : String
-salary : Integer
-role : Role

Employee

Worker
Supervisor

<<enumera t i on>>
Role

Class

-name : String
-surname : String
-salary : Integer
-role : Role

Employee

supervisedBy

supervises

0..1

0..*
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Figure 1: EmplBasic.dtm: a ComponentUML model
for employees’ information.
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(a) Instance 1
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(b) Instance 2

Figure 2: Two instances of EmplBasic.dtm

As expected, the instances of ComponentUML
models are, basically, UML object models where ob-
jects can be related by links and can have values for
their attributes.

Example 2 In Figure 2 we show two different in-
stances of EmplBasic.dtm. In Instance 2a there are
three employees, e1, e2 and e3, and e1 is supervised
by e2, e2 is supervised by e3, and e3 has no supervisor
at all. Moreover, e1 has role Worker and both e2 and
e3 have role Supervisor. Instance 2b has also three
employees, e1, e2 and e3, but this time e1 is super-
vised by e2, e2 is supervised by itself, and e3 has no
supervisor at all. As before, e1 has role Worker and
both e2 and e3 have role Supervisor.

2.2 Invariants

ComponentUML models can be further refined by
adding to them invariants, i.e., expressions specifying
properties that every valid instance of the model must
satisfy. Invariants are formalized in ComponentUML
using the Object Constraint Language (OCL) (Ob-
ject Management Group 2014).

OCL is a strongly typed, declarative language: ex-
pressions either have a primitive type (integer, real,
string, or boolean), an entity type, a tuple type, or
a collection type (set, bag, or collection). It provides
standard operators on collections, such as→isEmpty,
→includes, and →excluding, as well as opera-
tors to iterate over collections, such as →forAll,
→exists, and →select. It also provides stan-
dard operators on primitive data and tuples, and a
dot-operator to access the values of the objects’ at-
tributes and association-ends. Moreover, it includes



two constants, null and invalid, to represent un-
definedness. Intuitively, null represents unknown
or undefined values, whereas invalid represents er-
ror and exceptions. To check if a value is null or
invalid, it provides, respectively, the boolean oper-
ators oclIsUndefined() and oclIsInvalid().

Example 3 We can refine the model
EmplBasic.dtm (Figure 1) by adding invariants
to this model. In particular, consider the following
constraints:

1. There is exactly one employee who has no super-
visor.

2. Nobody is its own supervisor.

3. An employee has role Supervisor if and only if
it has at least one supervisee.

4. Every employee has one role.

These constraints can be formalized in OCL as fol-
lows:

(1) Employee.allInstances()→one(e|
e.supervisedBy.oclIsUndefined())

(2) Employee.allInstances()→forAll(e|
not(e.supervisedBy = e))

(3) Employee.allInstances()→forAll(e|
(e.role = Supervisor implies

e.supervises->notEmpty())
and (e.supervises->notEmpty()

implies e.role = Supervisor))

(4) Employee.allInstances()→forAll(e|
not(e.role.oclIsUndefined())

In what follows, we will refer to the constraint (1)
as oneBoss, (2) as noSelfSuper, (3) as roleSuper,
and (4) as allRole. Also, we will denote by
Empl1.dtm the refined version of EmplBasic.dtm
that includes as invariants the constraints oneBoss,
noSelfSuper, roleSuper, and allRole. Notice
that these four constraints evaluate to true in In-
stance 2a of EmplBasic.dtm (Figure 2), and there-
fore we say that this instance is a valid instance of
Empl1.dtm. On the other hand, since noSelfSuper
and roleSuper evaluate to false in Instance 2b of
EmplBasic.dtm (Figure 2), we say that this other in-
stance is a not a valid instance of Empl1.dtm.

2.3 Authorization Constraints

In SecureUML+ComponentUML, authorization con-
straints specify the conditions that need to be satis-
fied for a permission being granted to an actor (user)
who requests it to perform an action. They are for-
malized using OCL, but they can also contain the
following keywords:

• self: it refers to the root resource upon which
the action will be performed, if the permission is
granted. The root resource of an attribute or an
association-end is the entity to which it belongs.

• caller: it refers to the actor that will perform
the action, if the permission is granted.

• value: it refers to the value that will be used to
update an attribute, if the permission is granted.

• target: it refers to the object that will be linked
at the end of an association, if the permission is
granted.

< < r o l e > >
Worker

< < r o l e > >
Supervisor

-Employee:salary:AtomicRead

<<permiss ion>>
WorkerReadSalary

-Employee:salary:AtomicRead

<<permiss ion>>
SupervisorReadSalary
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<<permiss ion>>
SupervisorUpdateSalary
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-surname : String
-salary : Integer
-role : Role
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Figure 3: Empl.stm: a SecureUML+ComponentUML
model for accessing employees’ information.

Example 4 In Figure 3 we show a SecureUML+-
ComponentUML model, named Empl.stm. This
model specifies a basic FGAC policy for accessing
the employees’ information modeled in Empl1.dtm.
Permissions are assigned to users depending on their
roles, which can be Worker or Supervisor. Also,
users with role Supervisor inherit all the permissions
granted to users with role Worker, since Supervisor
is a subrole of Worker. Finally, permissions are con-
strained by authorization constraints: namely,

1. A worker is granted permission to read an
employee’s salary, provided that it is its own
salary, as specified by the authorization con-
straint caller = self.

2. A supervisor is granted unrestricted permission
to read an employee’s salary, as specified by the
authorization constraint true.

3. A supervisor is granted permission to update an
employee’s salary, provided that it supervises this
employee, as specified by the authorization con-
straint self.supervisedBy = caller.

2.4 Permissions

SecureUML+ComponentUML provides various syn-
tactic sugar constructs for expressing FGAC policies
in a more compact way. Basically, in the ‘sweeter’ pre-
sentation of a model, some roles may not have explic-
itly assigned any permission for some actions, while
the following always holds in the de-sugared presen-
tation of the model: every role has assigned exactly
one permission for every action, and this permission
has assigned exactly one authorization constraint.

Next, we will explain, and illustrate with exam-
ples, the rules that we apply for de-sugaring a Se-
cureUML+ComponentUML model S:

• Role hierarchies. Let act be an action and let r
and r′ be two roles. Suppose that r is a subrole of
r′ in S, and that there is a permission in S for r′

to execute act under the constraint auth. Then,
when de-sugaring S, we add a new permission to
S for the role r to execute act under the same
constraint auth.

• Delete actions. Let entity be an entity. Let
act be the action delete(entity). Suppose that
there is a permission in S for a role r to exe-
cute act under the constraint auth. Then, when



de-sugaring S, for every association-end assoc
owned by entity , we add to S a new permis-
sion for r to execute delete(assoc) under the same
constraint auth.

• Opposite association-ends. Let assoc and assoc′

be two opposite association-ends. Let act be the
action create(assoc). Suppose that there is a per-
mission in S for a role r to execute act under
the constraint auth. Then, when de-sugaring S,
we add to S a new permission for the role r to
execute create(assoc′) under the constraint that
results from replacing in auth the variable self
by target and the variable target by self. De-
sugaring is done similarly when act is the action
delete(assoc).

• Denying by default. Let r be a role and let act be
an action. Suppose that there is no permission in
S for the role r to execute act . When de-sugaring
S, we add to S a new permission for the role r
to execute act under the constraint false.

• Disjunction of authorization constraints. Let r
be a role and let act be an action. Suppose that
there are n permissions in S for the role r to
execute act . When de-sugaring S, we replace
these n permissions by a new permission and as-
sign to it the authorization constraint that re-
sults from disjoining together all the authoriza-
tion constraints of the original n individual per-
missions.

In what follows, we will denote by Auth(S, r, act)
the authorization constraint assigned, in the
de-sugared presentation of the Componen-
tUML+SecureUML model S, to the role r’s
permission for performing the action act .

Example 5 Consider the value of Auth(S, r, act) in
the following cases:

Auth(Empl.stm, Worker, update(salary))= false,

by the rule “denying by default”.

Auth(Empl.stm, Supervisor, update(salary))=
self.supervisedBy = caller or false,

by the combination of the rules “denying by default”,
“role hierarchies”, and “disjunction of authorization
constraints”.

Auth(Empl.stm, Worker, read(salary))=
caller = self.

Auth(Empl.stm, Supervisor, read(salary))=
caller = self or true,

by the combination of the rules “denying by default”,
“role hierarchies”, and “disjunction of authorization
constraints”.

2.5 Expressiveness

Traditionally, database management systems
(DBMS) support ‘all-or-nothing’ access control with
respect to the cells in the column of a table, i.e.,
a policy will either give or deny access to all the
cells in the column. Nowadays, however, some of the
main commercial DBMS also support fine-grained
access control, which means that a policy can also
give access only to a subset of the cells of the col-
umn. Next, we will provide some initial comparison
between SecureUML+ComponentUML and the
languages currently supported by Oracle Virtual

Private Database (Huey 2014), IBM/DB2 (IBM
2013), Microsoft SQL Server (SQL 2012), and
Teradata (Teradata 2014) for specifying FGAC
policies.

Oracle supports FGAC in its Virtual Private
Database (VPD) through the use of security pol-
icy functions (SPF), which are written in Oracle
PL/SQL. The idea is that when a user executes a
statement, the corresponding SPF is transformed into
a WHERE clause and is added to the user’s original
statement. Clearly, authorization constraints play the
same role as SPFs, and we conjecture, based on our
experience mapping OCL into SQL (Egea et al. 2010),
that any SPFs written in declarative SQL could be
formalized as an authorization constraint written in
OCL. However, since SPFs are written in PL/SQL,
they would typically contain non-declarative code.

IBM/DB2 implements FGAC through the use of
row access control and column access control rules.
They specify, respectively, which rows and columns
can be accessed and under which conditions. Again,
authorization constraints play the same role as row
and column access rules, and we also conjecture
that any combination of row and column access
control rules written in declarative SQL could be
formalized as an authorization constraint written
in OCL. On the other hand, and differently from
SecureUML+ComponentUML, IBM/DB2 only sup-
ports column access control rules for SELECT state-
ments, and, therefore, they can only be used, in gen-
eral, to protect read-actions over attributes.

Finally, both Microsoft SQL Server and Teradata
support FGAC policies through the use of security la-
bels, which can be assigned to users and resources, and
constraints. In SecureUML+ComponentUML, secu-
rity labels can be represented as additional attributes
of the entities representing users and resources, and
constraints can then be formalized as OCL authoriza-
tion constraints referring to the values of these addi-
tional attributes. On the other hand, security labels
can only be assigned to entities, and therefore, they
can not be used to protect read- or update-actions
over attributes.

3 Mapping OCL to First-Order Logic

In previous work (Clavel et al. 2009, Dania & Clavel
2013) we proposed a mapping from OCL to first-
order logic, which consists of two, inter-related com-
ponents: (i) a map from ComponentUML models
and boolean OCL expressions to first-order formulas,
called ocl2foldef ; and (ii) a map from boolean OCL ex-
pressions to first-order formulas, called ocl2fol. The
following remark formalizes the main property of our
mapping from OCL to first-order logic.

Remark 1 Let D be a ComponentUML model,
with invariants expr1, . . . , exprn, and let expr be a
boolean expression. Then, expr evaluates to true in
every valid instance of D if and only if

ocl2foldef(D)

∪
n⋃

i=1

ocl2foldef(expr i) ∪
n⋃

i=1

{ocl2fol(expr i)}

∪ ocl2foldef(expr) ∪ {¬(ocl2fol(expr))}

is unsatisfiable.

Next, we will explain, and illustrate with exam-
ples, the main ideas behind the maps ocl2foldef and
ocl2fol. We refer the interested reader to the original



papers (Clavel et al. 2009, Dania & Clavel 2013) for
a more formal presentation of these maps and of the
subset of OCL that they currently support.

3.1 The map ocl2foldef (models)

In our mapping from OCL to first-order logic, we rep-
resent entities by predicates, attributes by functions,
and association-ends, depending on their multiplicity,
either by binary predicates or by functions. Also, we
represent null and invalid, respectively, by the con-
stants null and invalid, and we introduce two unary
predicates IsNull and IsInvalid, to represent when an
element is null or invalid.

Let D be a ComponentUML model. ocl2foldef(D)
returns the axioms formalizing the properties of the
predicates and functions that represent the entities,
attributes and association-ends in D, as well as the
axioms formalizing the constants null and invalid, and
the predicates IsNull and IsInvalid.

Example 6 Consider the ComponentUML model
EmplBasic.dtm shown in Figure 1. Among others,
ocl2foldef(EmplBasic.dtm) returns the axiom

∀(x)(Employee(x)⇒ ¬(isNull(x) ∨ isInvalid(x))),

which formalizes that neither null nor invalid are
objects of the entity Employee, as well as the axiom

∀(x)∀(y)(supervises(y, x)⇒ (supervisedBy(x) = y)),

which formalizes the key property of supervises as
the opposite association-end of supervisedBy.

The following remark formalizes the main property
of the map ocl2foldef .

Remark 2 Let D be a ComponentUML model.
Then, there is a one-to-one correspondence between
the instances of D and the first-order models that sat-
isfy ocl2foldef(D).

3.2 The map ocl2fol

In our mapping from OCL to first-order logic, we rep-
resent boolean expressions as formulas.

Let expr be a boolean expression. ocl2fol(expr) is
defined recursively over the structure expr , according
to the following principles:

• Each subexpression C.allInstances() is repre-
sented by a predicate formula whose predicate is
the one representing the entity C.

• Each boolean subexpression is represented by a
formula which mirrors its logical structure.

• Each integer subexpression is represented by the
corresponding functional expression.

• Each set subexpression is represented by a pred-
icate formula whose predicate’s definition is gen-
erated using the map ocl2foldef (see below).

Example 7 Consider the constraints oneBoss
and noSelfSuper introduced in Example 3.
ocl2fol(oneBoss) returns the formula

∃(e)(Employee(e) ∧ isNull(supervisedBy(e))
∧ ∀(e′)(Employee(e′) ∧ isNull(supervisedBy(e′))

⇒ e′ = e)),

and ocl2fol(noSelfSuper) returns the formula

∀(e)(Employee(e)⇒ ¬(supervisedBy(e) = e)).

The following remark formalizes the main property
of the map ocl2fol.

Remark 3 Let D be a ComponentUML model. Let
expr be a boolean expression. Suppose that expr
does not contain any subexpression of type collec-
tion. Then, there is a one-to-one correspondence be-
tween the instances of D in which the expr evalu-
ates to true and the first-order models that satisfy
ocl2foldef(D) ∪ {ocl2fol(expr)}.

3.3 The map ocl2foldef (expressions)

Often, OCL expressions include subexpressions that
will evaluate to collections: e.g., those which are built
using →select, →collect, or →excluding. In our
mapping from OCL to first-order logic, when these
subexpressions are of type set, we represent them us-
ing new predicates whose definitions, which follow the
principles underlying ocl2foldef , are given by the map
ocl2foldef .

Example 8 Consider the expression

Employee.allInstances()→select(e|
e.supervises→notEmpty()).

This expression, which we refer to as colOfSuper,
will evaluate to a set containing only those employ-
ees whose list of supervisees is not empty. Then,
ocl2foldef(colOfSuper) returns the following axiom,

∀(x)(P colOfSuper(x)⇔
(Employee(x) ∧ ∃(y)(supervises(x, y)))),

where the new predicate P colOfSuper represents
the set that will be returned when evaluating
colOfSuper.

The following remark formalizes the main property
of the map ocl2foldef over expressions of type set.

Remark 4 Let D be a ComponentUML model. Let
expr be an expression of type set. Let P expr be the
predicate symbol generated by ocl2fol(expr). Then,
there is a one-to-one correspondence between the in-
stances of D and the first-order models that satisfy
ocl2foldef(D) ∪ ocl2foldef(expr) for which the follow-
ing holds: expr evaluates to {o1, . . . , on} in I if and
only if the element that corresponds to oi belongs to
the set that interprets P expr , for i = 1, . . . , n.

3.4 Reasoning about Data Models

Here we provide a simple example of the use of our
mapping from OCL to first-order logic for reasoning
about ComponentUML models.

In what follows, when a ComponentUML model
D contains invariants expr1, . . . , exprn, we will con-
sider that ocl2foldef(D) includes also the formulas⋃n

i=1 ocl2foldef(expr i).

Example 9 Consider the following question about
the model Empl1.dtm in Example 3: Is there a valid
instance in which someone is supervised by one of its
own supervisees? Let us formalize the property that
no employee is supervised by their own supervisees as
follows:

Employee.allInstances()→forAll(e|
e.supervises→excludes(e.supervisedBy)).



We will refer to this expression as noMixSuper. Then,
according to Remark 1, the answer to our question is
‘Yes’ since

ocl2foldef(Empl1.dtm) ∪ {¬(ocl2fol(noMixSuper))}.

is satisfiable. Indeed, consider, for example, an in-
stance of Empl1.dtm with just four employees, e1,
e2, e3, and e4, such that e1 is linked through the
association-end supervisedBy with e4, and similarly
e3 with e2, and e2 with e3. Suppose also that e1
is of role Worker, and e2, e3, and e4 are of role
Supervisor. This instance is certainly a valid one,
since all the invariants evaluate to true. However, the
expression noMixSuper evaluates to false because e2
is linked through supervisedBy with e3, but at the
same time e2 is also linked through the association-
end supervises with e3 (since e3 is linked through
supervisedBy with e2).

4 Reasoning about Fine-Grained Access
Control Policies

As discussed by Basin et al. (2014), Se-
cureUML+ComponentUML models have a rig-
orous semantics. In particular, let S be a Se-
cureUML+ComponentUML model and let I be
an instance of its underlying data model. Also,
let u be a user, with role r, and let act be an
action, with arguments args. Then, according to
the semantics of SecureUML+ComponentUML,
S authorizes u to execute act in I if and only if
[Auth(S, r, act)](u,args) evaluates to true in I, where
[Auth(S, r, act)](u,args) is the expression that results
from replacing in Auth(S, r, act) the keyword caller
by u, and the keywords self, value, and target by
the corresponding values in args.

In what follows, given a SecureUML+Component-
UML model S, we use the term scenario to refer to
any valid instance of S’s underlying data model in
which a user requests permission to execute an action.
For the sake of simplicity, we will assume that neither
the user requesting permission nor the resource upon
which the action will be executed can be undefined.

Next, we will explain, and illustrate with ex-
amples, how one can use the mapping from OCL
to first-order logic discussed in Section 3 to reason
about SecureUML+ComponentUML models. Un-
less stated otherwise, all our examples refer to the
SecureUML+ComponentUML model Empl.stm (Ex-
ample 4). Recall that this model’s underlying data
model is the ComponentUML model Empl1.dtm (Ex-
ample 3), which includes the invariants oneBoss,
noSelfSuper, roleSuper, and allRole.

We organize our examples in blocks or categories.
In the first block, we are interested in knowing if there
is any scenario in which someone with role r will be
allowed to execute an action act . Notice that, by
Remark 1, the answer will be ‘No’ if and only if the
following set of formulas is unsatisfiable:

ocl2foldef(D) ∪ {∃(caller)∃(self )∃(target)∃(value)

(ocl2fol(caller .role = r) ∧ ocl2fol(Auth(S, r, act)))}.

Example 10 Consider the following question: Is
there any scenario in which someone with role Worker
is allowed to change the salary of someone else (in-
cluding itself)? Recall that

Auth(Empl.stm, Worker, update(salary))= false.

According to Remark 1, the answer to this question
is ‘No’, since the following set of formulas is clearly
unsatisfiable:

ocl2foldef(Empl1.dtm) ∪ {∃(caller)∃(self )

(ocl2fol(caller .role = Worker)

∧ ocl2fol(false))},

(Note that ocl2fol(false) returns ⊥.) Indeed, there
is no scenario in which the expression false can eval-
uate to true.

Example 11 Consider the following question: Is
there any scenario in which someone with role
Supervisor is allowed to change the salary of some-
one else (including itself)? Recall that

Auth(Empl.stm, Supervisor, update(salary))=
(self.supervisedBy = caller or false).

According to Remark 1, the answer to this question is
‘Yes’, since the following set of formulas is satisfiable:

ocl2foldef(Empl1.dtm) ∪ {∃(caller)∃(self )

(ocl2fol(caller .role = Supervisor)

∧ ocl2fol(self .supervisedBy = caller or false))}.

(Note that ocl2fol(self .supervisedBy = caller) re-
turns supervisedBy(self ) = caller). Consider, for
example, a scenario with just two employees, e1
and e2, such that e1 is linked with e2 through the
association-end supervisedBy. Suppose also that
e1 has role Worker and e2 has role Supervisor.
Clearly, for caller = e2 and self = e1, the expres-
sion self .supervisedBy = caller evaluates to true in
this scenario.

Example 12 Consider the following question: Is
there any scenario in which someone with role
Supervisor is allowed to change its own salary? No-
tice that in any scenario in which someone is request-
ing to change its own salary, the values of self (i.e., the
employee whose salary is to be updated) and caller
(i.e., the employee who is updating this salary) are
the same. According to Remark 1, the answer to this
question is ‘No’, since the following set of formulas is
unsatisfiable:

ocl2foldef(Empl1.dtm) ∪ {∃(caller)∃(self )

(ocl2fol(caller .role = Supervisor)

∧ ocl2fol(self = caller and

(self .supervisedBy = caller or false)))}.
Indeed, notice that, in every valid scenario the
invariant noSelfSuper evaluates to true, which
implies that there are no values for caller and
self such that the expressions self = caller and
self .supervisedBy = caller both evaluate to true.

Example 13 Consider the following question: Is
there any scenario in which someone with role
Supervisor is allowed to change the salary of some-
one who has no supervisor at all? Notice that in
any scenario in which someone (caller) is requesting
to change the salary of someone (self) who has no su-
pervisor at all, the value of self.supervisedBy must
be null. According to Remark 1, the answer to this
question is ‘No’, since the following set of formulas is
unsatisfiable:

ocl2foldef(Empl1.dtm) ∪ {∃(caller)∃(self )

(ocl2fol(caller .role = Supervisor)

∧ ocl2fol(self .supervisedBy = null and

(self .supervisedBy = caller or false)))}.



Indeed, notice that, by assumption, caller
is always a defined object, i.e., it can not
be null, and therefore, if the expression
self .supervisedBy = null evaluates to true,
then the expression self .supervisedBy = caller
evaluates to false.

In our second block of examples, we are interested
in knowing if there is any scenario in which someone
with role r will not be allowed to execute an action
act . Notice that, by Remark 1, the answer will be
‘No’ if and only if the following set of formulas is
unsatisfiable:

ocl2foldef(D) ∪ {∃(caller)∃(self )∃(target)∃(value)

(ocl2fol(caller .role = r) ∧ ¬(Auth(S, r, act)))}.

Example 14 Consider the following question: Is
there any scenario in which someone with role
Supervisor is not allowed to change the salary of
someone else (including itself)? According to Re-
mark 1, the answer to this question is ‘Yes’, since the
following set of formulas is satisfiable:

ocl2foldef(Empl1.dtm) ∪ {∃(caller)∃(self )

(ocl2fol(caller .role = Supervisor) ∧
¬(ocl2fol(self .supervisedBy = caller or false)))}.

Consider, for example, a scenario with just three em-
ployees, e1, e2, and e3 such that e1 is linked with e2
through the association-end supervisedBy, and sim-
ilarly e2 with e3; but e1 is not linked with e3 through
the association-end supervisedBy. Suppose that e2
and e3 have role Supervisor and e1 has role Worker.
Clearly, for caller = e3 and self = e1, the expression
self .supervisedBy = caller evaluates to false in this
scenario.

In our third block of examples, we are interested in
knowing if there is any scenario in which nobody with
role r will be allowed to execute an action act. Notice
that, by Remark 1, the answer will be ‘No’ if and only
if the following set of formulas is unsatisfiable:

ocl2foldef(D) ∪ {∃(self )∃(target)∃(value)∀(caller)

(ocl2fol(caller .role = r)⇒
¬(ocl2fol(Auth(S, r, act))))}.

Example 15 Consider the following question: Is
there any scenario in which nobody with role
Supervisor is allowed to change the salary of some-
one else (including itself)? According to Remark 1,
the answer to this question is ‘Yes’, since the fol-
lowing set of formulas, which we will refer to as
Forms(Ex 15), is satisfiable:

ocl2foldef(Empl1.dtm) ∪ {∃(self )∀(caller)

(ocl2fol(caller .role = Supervisor)⇒
¬(ocl2fol(self .supervisedBy = caller or false)))}.

Indeed, consider, for example, a scenario with just two
employees, e1 and e2, such that e1 is linked with e2
through the association-end supervisedBy. Suppose
that e1 has role Worker and e2 has role Supervisor.
Clearly, for self = e2, for every value for caller , the
expression self .supervisedBy = caller evaluates to
false.

In our fourth block of examples, we are interested
in knowing if, in every scenario, there is at least one

object upon which nobody with role r will be allowed
to execute an action act. Notice that, by Remark 1,
the answer will be ‘Yes’ if and only if the following
set of formulas is unsatisfiable:

ocl2foldef(D) ∪ {∀(self )∃(target)∃(value)∃(caller)

(ocl2fol(caller .role = r) ∧ ocl2fol(Auth(S, r, act)))}.

Example 16 Consider the following question: In
every scenario, is there at least one employee whose
salary can not be changed by anybody with role
Supervisor? According to Remark 1, the answer
to this question is ‘Yes’, since the following set of for-
mulas is unsatisfiable:

ocl2foldef(Empl1.dtm) ∪ {∀(self )∃(caller)

(ocl2fol(caller .role = Supervisor) ∧
ocl2fol(self .supervisedBy = caller or false))}.

Indeed, notice that in every valid scenario the in-
variant oneBoss evaluates to true, which means that
there is one employee in the scenario who has no su-
pervisor. In other words, for every valid scenario,
we can find a value for self such that no value
for caller can be found such that the expression
self .supervisedBy = caller evaluates to true.

To end this section, we want to illustrate the
importance of taking into account the invariants of
the underlying data model when reasoning about
FGAC policies. Let Empl2.dtm be the Compo-
nentUML model that results from adding to the
model EmplBasic.dtm (Example 1) the invariants
noSelfSuper, roleSuper, allRole, plus the follow-
ing invariant:

5. Everybody has one supervisor.

This invariant, which we will refer to as allSuper,
can be formalized in OCL as follows:

Employee.allInstances()→forAll(e|
not(e.supervisedBy.oclIsUndefined())).

Example 17 Consider the security model Empl.stm
(Example 4), but this time with Empl2.dtm as
its underlying data model. Consider again the
question that we asked ourselves in Example 15:
namely, is there any scenario in which nobody with
role Supervisor is allowed to change the salary of
someone else (including itself)? According to Re-
mark 1, the answer to this question is different
from Example 15, namely, ‘No’, since the set of
formulas Forms(Ex 15) is now unsatisfiable. In-
deed, notice that in every valid scenario the in-
variants allSuper and roleSuper both evaluate
to true, which means that, for each value for
self , we can find a value for caller such that
the expressions self .supervisedBy = caller and
caller .role = Supervisor both evaluate to true.

Finally, let Empl3.dtm be the ComponentUML
model that results from removing from Empl2.dtm,
the invariant roleSuper.

Example 18 Consider the security model Empl.stm
(Example 4), but this time with Empl3.dtm as its
underlying data model. Consider, once again, the
question that we asked ourselves in Example 15:
namely, is there any scenario in which nobody with
role Supervisor is allowed to change the salary of
someone else (including itself)? According to Re-
mark 1, the answer to this question is now different



from Example 17, namely, ‘Yes’, since the set of for-
mulas Forms(Ex 15) is now satisfiable. Indeed, con-
sider a scenario with three employees e1, e2, and e3,
such that e1 is linked with e2 through the association-
end supervisedBy, and similarly e2 with e3 and e3
with e1. Suppose also that e2 and e3 have role
Supervisor, but e1 has role Worker. (Notice that,
since roleSuper is not included in Empl3.dtm, noth-
ing prevents e1 from not having the role Supervisor,
despite the fact that it is linked with e3 through the
association-end supervises.) Clearly, for self = e3,
for every caller of role Supervisor, namely, e2 and e3,
the expression self .supervisedBy = caller evaluates
to false.

5 Automatically Reasoning about Fine-
Grained Access Control Policies

Satisfiability modulo theories (SMT) solvers are tools
for automatically proving the satisfiability of first-
order formulas in a number of logical theories and
their combination (Barrett et al. 2009). Basically,
SMT generalizes boolean satisfiability (SAT) by in-
corporating equality reasoning, arithmetic, fixed-size
bit-vectors, arrays, quantifiers, and other useful first-
order theories. Of course, when dealing with quanti-
fiers, SMT solvers cannot be complete, and may re-
turn unknown after a while, meaning that they can
neither prove the quantified formula to be unsatisfi-
able, nor can they find an interpretation that makes
it satisfiable. In the past years, there has been a great
deal of interest and research on the foundational and
practical aspects of SMT. They have also become the
backbone of numerous applications in automated ver-
ification, artificial intelligence, program synthesis, se-
curity, product configuration, and much more.

We briefly report here on our experience using the
Z3 SMT solver (de Moura & Bjørner 2008) to auto-
matically obtain the answers to the questions posed
in the examples in Section 4. Table 1 below sum-
marizes the results of our experiments. For each ex-
ample, we show the time it takes Z3 to return an
answer (in all cases, less than 1 second); the answer
that it returns (in all cases, the expected one); and
the first-order model that it generates when the an-
swer is sat, i.e., when it finds that the input set of
formulas is satisfiable. Each model represents a sce-
nario (not necessarily the one discussed in Section 4
for the corresponding example), and here we simply
indicate the number of employees that it contains,
which employees are linked through the association-
end supervisedBy, which employees have the role
Worker, which employees have the role Supervisor,
which employee is the one requesting permission to
change the salary (caller), and which employee is
the one whose salary will be changed (self ) if per-
mission is granted. We ran our experiments on a
laptop computer, with a 2.66GHz Intel Core 2 Duo
processor and 4GB 1067 MHz memory, using Z3
version 4.3.2 9d221c037a95-x64-osx-10.9.2. Finally,
the input for Z3 has been generated using our tool
SecProver (SecProver 2014). This tool takes the fol-
lowing parameters: a data model, a security model, a
set (possibly empty) of invariants, an action, a role,
a set (possibly empty) of additional constraints, and
a question type.1 SecProver automatically generates

1Currently, only four question types are supported, which cor-
respond to the four blocks of examples considered in Section 4,
but other question types will be added soon. The reason for using
question types is to make it easier for those users who may not be
familiar with first-order logic to understand the precise meaning
of their questions, as well as the responses eventually given by the

Ex. Time Ans. Interpretation

10 0.078s unsat —–

11 0.107s sat

#employees = 3

supervisedBy = {(e3, e2),

(e1, e2)}
Worker = {e1, e3}
Supervisor = {e2}
caller = e2, self = e1

12 0.041s unsat —–

13 0.042s unsat —–

14 0.306s sat

#employees = 6

supervisedBy = {(e1, e2),

(e2, e3), (e4, e2),

(e5, e3), (e6, e3)}
Worker = {e1, e4, e5, e6}
Supervisor = {e2, e3}
caller = e3, self = e1

15 0.078s sat

#employees = 1

supervisedBy = ∅
Worker = {e1}
Supervisor = ∅
self = e1

16 0.485s unsat —–

17 0.060s unsat —–

18 0.506s sat

#employees = 15

supervisedBy = {(e1, e2),

(e2, e4), (e3, e4), (e4, e6),

(e5, e4)(e6, e12), (e7, e4),

(e8, e14), (e9, e4), (e10, e4),

(e11, e15), (e12, e13),

(e13, e4), (e14, e4), (e15, e4)}
Worker = all

Supervisor = ∅
self = e2

Table 1: Automatic reasoning over the examples 10-
18 introduced in Section 4.

the set of first-order formulas whose satisfiability will
determine, according to our methodology, the answer
to the given question.

6 Related Work

Many proposals exist for reasoning about RBAC
policies, each one using a different logic or formal-
ism, including the so-called “default” logic (Woo &
Lam 1993), modal logic (Massacci 1997), higher-
order logic (Appel & Felten 1999), C-Datalog (Ba-
con et al. 2002), first-order logic (Jajodia et al. 2001,
Bertino et al. 2003), and description logic (Zhao et al.
2005). To the best of our knowledge none of these
proposals has been properly extended to cope with
FGAC policies. In recent years, however, there has
been a growing interest in finding appropriate for-
malisms and frameworks for specifying and analysing
FGAC policies. In a nutshell, our proposal dif-
fers from other approaches in that: (i) we use Se-

SMT solver to these questions.



cureUML+ComponentUML (Basin et al. 2006) for
modeling FGAC policies, and (ii) we use a mapping
from OCL to first-order (Clavel et al. 2009, Dania &
Clavel 2013) for reasoning about these policies. In our
opinion, our approach has two main advantages: (i)
the reasoning about FGAC policies can take into ac-
count the properties of the system states, since OCL
is the language that we use both for specifying the
invariants in the data model and the authorization
constraints in the security model; and (ii) the reason-
ing about FGAC policies can be done automatically
(although sometimes may fail to find a result), since
the mapping that we use for translating OCL into
first-order logic supports the effective application of
SMT solvers over the generated formulas.

Halpern & Weissman (2008) have proposed an
interesting framework for specifying and reasoning
about FGAC policies, called Lithium. It is based
on a decidable fragment of (multi-sorted) first-order
logic. Differently from OCL, this logic does not con-
sider undefined values, which, based on our experi-
ence, is something crucial when formalizing proper-
ties of the system states. Unfortunately, we are not
aware of case studies that have been carried out us-
ing Lithium, and which we could use to compare it
with our approach in terms of the expressiveness of
the underlying formalisms and of the effectiveness of
the associated reasoning tools.

Kuhlmann et al. (2011, 2013) propose a domain-
specific language for specifying role-based policies
which is based on UML and OCL. For the purpose
of analyzing these policies, they propose to use SAT
solvers, and, in particular the one implemented in Al-
loy (Jackson 2002). Differently from SMT solvers,
Alloy requires the search space to be bounded, by ex-
plicitly indicating the number of objects in each en-
tity, the number of links of each association and the
possible values of each attribute. Also, integer expres-
sions are not allowed, neither in the invariants nor in
the policies under consideration. On the other hand,
this approach enables one to include, within the poli-
cies, some time-constraints, which are not possible in
our approach.

Finally, in the context of XACML (OASIS 2013),
there exists a XACML profile for the specification of
RBAC policies (OASIS 2010). However, no meth-
ods have been proposed for reasoning about policies
written with this profile. Also, it is unclear whether
this profile can be extended to cope with fine-grained
access control policies. To address the first concern,
Helil & Rahman (2010) propose an extension of the
XACML profile for RBAC based on OWL. This ap-
proach supports the use of an OWL-DL reasoner for
deciding about RBAC policies within XACML. More
interestingly, Ramli et al. (2014) have recently pro-
posed a new syntax and semantics for XACML, for
the purpose of supporting formal reasoning about
XACML policies. One of the challenges here is to
formalize the different algorithms for enforcing pol-
icy rules which are available in XACML. Ramli et al.
(2014) formalize the majority of these algorithms, and
propose two new algorithms (one of which is very close
to the semantics of SecureUML+ComponentUML.)
Another challenge is to formalize the concepts of obli-
gations and advices in XACML, but they are not
covered by Ramli et al. (2014). Finally, with re-
spect to methods for reasoning about XACML poli-
cies, Ramli et al. (2014) propose to explore the use of
SMT solvers, but no experiments are reported yet.

7 Conclusions and Future Work

Model-driven engineering supports the development
of complex software systems by generating software
from models. Model-driven security (Basin et al.
2011) is a specialization of this paradigm, where sys-
tem designs are modeled together with their security
requirements and security infrastructures are directly
generated from the models. Of course, the quality
of the generated code depends on the quality of the
source models. If the models do not properly spec-
ify the system’s intended behavior, one should not
expect the generated system to do so either. Experi-
ence shows that even when using powerful, high-level
modeling languages, it is easy to make logical errors
and omissions. It is critical not only that the mod-
eling language has a well-defined semantics, but also
that there is tool support for analyzing the modeled
systems’ properties.

In this paper we have presented a novel, tool-
supported methodology for reasoning about fine-
grained access control policies (FGAC). We have also
briefly reported on our experience using the Z3 SMT
solver (de Moura & Bjørner 2008) for automatically
proving non-trivial properties about FGAC policies.
Within our methodology, we use SecureUML (Basin
et al. 2006) to specify FGAC policies. SecureUML is
a modeling language that extends role-based access
control (RBAC) (Ferraiolo et al. 2001) with autho-
rization constraints, which are formalized using the
Object Constraint Language (OCL) (Object Manage-
ment Group 2014).

The key component of our methodology is a map-
ping from OCL to first-order logic (Clavel et al. 2009,
Dania & Clavel 2013), which allows one to trans-
form questions about FGAC policies into satisfiabil-
ity problems in first-order logic. Although this map-
ping does not cover the complete OCL language, our
experience shows that the kind of OCL expressions
typically used for specifying invariants and authoriza-
tion constraints are covered by our mapping. More
intriguing is, however, the issue about the effective-
ness of SMT solvers for automatically reasoning about
FGAC policies. Although our experience so far is ex-
tremely encouraging (all problems are solved in less
than a second), we should not forget that our results
completely depend on the interaction between (i) the
way our mapping translates into first-order logic the
relevant OCL expressions (invariants and authoriza-
tion constraints) and (ii) the heuristics implemented
in the SMT solver. We are currently analyzing this
interaction in depth to better understand its scope
and limitations. Ultimately, we know that there is a
trade-off when using SMT solvers. On the one hand,
they are necessarily incomplete and their results de-
pend on heuristics, which may change. In fact, we
have experienced (more than once) that two differ-
ent versions of Z3 may return ‘sat’ and ‘unknown’ for
the very same problem. This is not surprising (since
two versions of the same SMT solver may implement
two different heuristics) but it is certainly disconcert-
ing. On the other hand, SMT solvers are capable of
checking, in a fully automatic and very efficient way,
the satisfiability of large sets of complex formulas. In
fact, we have examples, involving more than a hun-
dred non-trivial OCL expressions, which are checked
by Z3 in just a few seconds.

Finally, as part of our future work, we plan to de-
fine formal mappings between the FGAC languages
and frameworks supported by commercial DBMS
(e.g., Oracle, IBM/DB2, Microsoft SQL Server and
Teradata) and SecureUML. These mappings will al-
low us to apply our methodology also when reasoning



about FGAC policies in commercial DBMS.
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