Model-driven Development of a Secure eHealth
Application

Miguel A. Garcia de Dios', Carolina Dania', David Basin?, and Manuel Clavel®

! IMDEA Software Institute, Madrid, Spain
[miguelangel.garcia,carolina.dania,manuel.clavel]@imdea.org
2 ETH Ziirich, Switzerland

basin@inf.ethz.ch

Abstract. We report on our use of ActionGUI to develop a secure
eHealth application based on the NESSoS eHealth case study. ActionGUI
is a novel model-driven methodology with an associated tool for de-
veloping secure data-management applications with three distinguishing
features. First, it enables a model-based separation of concerns, where
behavior and security are modeled individually and subsequently com-
bined. Second, it supports model-based quality assurance checks, where
the properties proven about the models transfer to the generated appli-
cations. Finally, for data-management applications, the ActionGUI tool
automatically generates complete, ready-to-deploy, security-aware, web
applications. We explain these features in the context of the eHealth
application.

1 Introduction

In [3] we proposed a novel methodology, called ActionGUI, for the model-driven
development of secure data-management applications. This methodology enables
a model-based separation of concerns, where an application’s behavior and secu-
rity are modeled individually and subsequently combined. Moreover, it supports
model-based quality assurance checks, where relevant properties may be proven
about the combined models. These properties then transfer to the automatically
generated data-management applications.

We report here on our use of ActionGUI to develop a secure data-mana-
gement application. This application is based on a case study proposed within
NESSoS, the European Network of Excellence on Engineering Secure Future
Internet Software Services and Systems [12]. The eHealth case study consists of a
web-based system for electronic health record management (EHRM). Electronic
health records (EHR) record information created by, or on behalf of, a health
professional in the context of the care of a patient.

Electronic health records are highly sensitive and therefore their access must
be controlled. Part of the challenge in this case study was to model the access
control policy and build an application that enforces it at runtime. The policy
consists of various authorization rules along the lines of: The access control cri-
teria for an FHR depends, among others, on the type of EHR. For instance,

a highly sensitive record might be only available to the patient’s treating doctor
(and perhaps a few others, in rare situations). Such rules necessitate fine-grained
access control, where access control decisions depend not only on the user’s cre-
dentials but also on the satisfaction of constraints on the state of the persistence
layer, i.e. on the values of stored data items.

We show how ActionGUI’s modeling languages can be used to specify the
application’s data model (e.g., hospital staff, health records), security policy
(e.g., rules like the above) and behavior. Moreover, by illustrative examples,
we highlight various features the ActionGUI methodology and associated tool.
Overall, the eHealth case study is interesting as an example of developing a
secure data-management application and it provides a proof-of-concept for the
application of the ActionGUI methodology to an industry-relevant problem.

Organization. In Section 2 we provide background on the ActionGUI methodol-
ogy and tool. In Section 3 we give an account of our modeling and generation of
the EHRM application with ActionGUI. In Section 4 we describe a proof method
for checking that the behavior of the modeled data-management application re-
spects the invariants of the application’s underlying data model, and we apply
it to our EHRM models. Finally, in Section 5, we draw conclusions.

2 ActionGUI

ActionGUT [3] is a methodology for the model-driven development of secure
data-management applications. It consists of languages for modeling multi-tier
systems, and a toolkit for generating these systems. Within this methodology, a
secure data-management application is modeled using three interrelated models:

1. A data model defines the application’s data domain in terms of its classes,
attributes, associations, and methods.

2. A security model defines the application’s security policy in terms of autho-
rized access to the actions on the resources provided by the data model.

3. A graphical user interface, or GUI model, defines the application’s graphical
interface and application logic. Note, in particular, that this model formalizes
both UI structure and behavior.

The heart of this methodology, illustrated in Figure 1, is a model-transfor-
mation function that automatically lifts the policy that is specified in the security
model to the GUI model. The idea is simple but powerful. The security model
specifies under what conditions actions on data are authorized. The control in-
formation in the GUI model specifies which actions are executed in response
to which events. Lifting essentially consists of prefixing each data action in the
GUI model with the authorization check specified in the security model. The
resulting GUI model is security aware. It specifies Ul structure, information flow
with persistent storage, and all authorization checks.

The ActionGUI methodology is implemented within a toolkit, also called Ac-
tionGUI [1], which performs the aforementioned many-models-to-model trans-
formation. From the resulting security-aware GUI model, ActionGUI generates

s

Software Engineer,
% ,,,,,,,,,,,,,,,,,, Data [,
Model
Security Engineer GUI Engineer
Security GUI
Model Model

Model Transformation

Security-aware

GUI Model

Code Generation

Security-aware
GUI Application

Fig. 1. Model-driven development of security-aware GUIs.

a deployable application along with all support for access control. In particular,
when the security-aware GUI model contains only calls to execute CRUD actions,
i.e., those actions that create, read, update, and delete data, then ActionGUI
will generate the complete implementation automatically.

In the remaining part of this section we briefly introduce the languages that
are used within the ActionGUI methodology to model the applications’ data,
security, and GUI models, including their constraints, as well as the tools sup-
porting the ActionGUI methodology.

2.1 Data models

Data models provide a data-oriented view of a system. They typically specify
how data is structured, the format of data items, and their logical organization,
i.e., how data items are grouped and related. ActionGUI employs Component-
UML [4] for data modeling. ComponentUML provides a subset of UML class
models where entities (classes) can be related by associations and may have
attributes and methods.

2.2 Constraints

The Object Constraint Language (OCL) [13] is a language for specifying con-
straints and queries using a textual notation. ActionGUI supports different uses
of OCL: it is used in data models to specify data invariants, in security models
to specify authorization constraints, and in GUI models to specify if-then-else
conditions and action arguments.

Every OCL expression is written in the context of a model (called the con-
textual model), and is evaluated on an object model (also called the instance
or scenario) of the contextual model. This evaluation returns a value but does
not alter the given object model, since OCL’s evaluation is side-effect free. The
contextual model for the OCL expressions in ActionGUI models is always the
underlying data model.

OCL is strongly typed. Expressions either have a primitive type, a class type,
a tuple type, or a collection type. OCL provides: standard operators on primitive
data, tuples, and collections; a dot-operator to access the values of the objects’
attributes and association-ends in the given scenario; and operators to iterate
over collections. Particularly relevant for its use in ActionGUI models, OCL
includes two constants, null and invalid, to represent undefinedness. Intuitively,
null represents unknown or undefined values, whereas invalid represents error and
exceptions. To check if a value is null or invalid, OCL provides, respectively, the
Boolean operators ocllsUndefined() and ocllsInvalid().

2.3 Security models

SecureUML [4] extends Role-Based Access Control (RBAC) [9] with authoriza-
tion constraints. These constraints are used to specify policies that depend on
properties of the system state. SecureUML supports the modeling of roles and
their hierarchies, permissions, actions, resources, and authorization constraints.

In ActionGUI, we use an extension of SecureUML for specifying security
policies over data models. In this extension:

— The protected resources are the entities, along with their attributes, meth-
ods, and association-ends.

— The controlled actions are: to create and delete entities; to read and up-
date attributes; to read, create, and delete association-ends; and to execute
methods.

— The authorization constraints are specified using OCL.

The contextual model of the authorization constraints is the underlying data
model. Additionally, authorization constraints may contain the variables self,
caller, value, and target, which are interpreted as follows:

— self refers to the root resource upon which the action will be performed if
permission is granted. The root resource of an attribute, a method, or an
association-end is the entity to which it belongs.

— caller refers to the user that will perform the action if the permission is
granted.

— value refers to the value that will be used to update an attribute if the
permission is granted.

— target refers to the object that will be added to (or removed from) the (root)
resource at an association-end if the permission is granted.

2.4 GUI models

GUI models provide a human-interface oriented view of a system. A GUI consists
of widgets, which are visual elements that display information and trigger events
that execute actions. In ActionGUI, we use GUIML [3] for modeling both

— the GUT’s structure, i.e, the elements (widgets) that comprise it,
— and the GUT’s behavior, i.e., how its elements will react (actions) in response
to user interactions with them (events).

Behavioral modeling is a key feature of GUIML and uses OCL to specify both
the conditions and the arguments for the different actions. This enables both the
security model and the GUI model to “speak” the same language, namely OCL
in the context of the common, underlying data model. This allows us to define
rigorously the transformation function that lifts the security policy to the GUI
level.

We next briefly describe the main elements of GUIML, namely, widgets (with
their associated variables), events, and actions.

Widgets. A GUI model consists of widgets of different kinds. Examples include
windows (pages, when referring to web applications), combo-boxes (selectable
lists), tables, date fields, boolean fields (check boxes), buttons, text fields, and
labels.

Variables. Widgets may own wvariables, which store values for later use. Each
widget declaration may contain variable declarations, listing the variables owned
by the widget. There are variables that are, by default, owned by every widget
of a given type. In particular, the variables caller and role are predefined in every
window. They store, respectively, the application’s user and the user’s role. The
variable text is predefined in every label, button, and text field. This variable
stores the string displayed on the screen within the label, button, and text field.
The variable rows is predefined in every combo-box and table. This variable stores
the collection of items that can be selected from the combo-box or table. The
variable row is also predefined in every combo-box and table where, for each row,
it stores the item that corresponds to this row. Finally, the variable selected is
also predefined in every combo box or table where it stores the item(s) selected
in the combo box or table.

FEvents. Widget may trigger events, which execute actions either on data or on
other widgets. The actions executed when an event is triggered are specified
using statements. A statement is either an action, a conditional statement, an

iteration, a try-catch, or a sequence of statements. The conditions in conditional
statements are specified using OCL expressions, whose context is the underlying
data model. Additionally, they can refer to the widget variables. Note that each
sequence of statements associated to an event is executed as a single transaction:
either all statements in the sequence successfully execute in the given order, or
none of them are executed at all.

Actions. Events trigger actions that can be executed either on objects belong-
ing to the persistence tier or on objects belonging to the presentation tier. The
former are called data actions and the latter are called GUI actions. Data ac-
tions are precisely those controlled in the security model, namely: to create
and delete entities; to read and update attributes; to read, create, and delete
association-ends; and to execute methods. GUI actions include a set action for
widget variables, and the actions open, back, fail, and skip. The action fail, in
particular, forces a rollback of the current transaction. Note that some actions
may take arguments. The values of these arguments are specified using OCL
expressions, whose context is the underlying data model, and they can also refer
to the widget variables.

2.5 Security-aware GUI models

The heart of ActionGUI is a model-transformation function Sec that, given a
GUIML model G and a SecureUML model S, automatically generates a new
GUIML model Sec(G, S). The generated model is identical to G except that it
is security aware with respect to S. The transformation function Sec works by
wrapping around every data action act in G an if-then-else statement with the
following arguments:

— a condition that reflects the constraints associated to the permissions speci-
fied in S, for each of the different roles, to execute the action act;

— a then branch that contains the action act; and

— an else branch that contains the action fail.

Thus, the semantics of an if-then-else statement ensures that act will only be
executed if the constraints associated to the corresponding permissions are sat-
isfied. Moreover, if these constraints are not satisfied, then the action fail will be
executed, forcing a rollback in the current transaction.

2.6 Tool support

Security-aware GUI models are platform independent and can be mapped to
implementations employing different technologies. This includes desktop appli-
cations, web applications, and mobile applications. The ActionGUI Toolkit [1],
automatically generates web-based data-management applications from security-
aware GUIML models.

The ActionGUI Toolkit features model editors for constructing and ma-
nipulating ComponentUML, SecureUML, and GUIML models. Crucially, the

ActionGUI Toolkit implements our model transformation to generate security-
aware GUIML models. Moreover, it includes a code generator that, given a
security-aware GUIML model, produces a web application based on the follow-
ing three-tier architecture:

1. Presentation tier (also known as front-end): Users access web applications
through standard web browsers, which render the content (HTML and Java-
Script) dynamically provided by the application server.

2. Application tier: The toolkit generates Java Web Applications, implemented
using the Vaadin framework. The applications run in a servlet container
(such as Tomcat or GlassFish), process client requests and, generate content,
which is sent back to the client for rendering.

3. Persistence tier (also known as data tier or back-end): The generated appli-
cation manages information stored in a database.

3 The EHRM ActionGUI Application

The NESSoS EHRM application scenario defines different system use cases along
with the associated access control policy. The use cases include: register new
patients in a hospital and assign them to clinicians, such as nurses or doctors;
retrieve patient information; register new nurses and doctors in a hospital and
assign them to a ward; change nurses or doctors from one ward to another; and
reassign patients to doctors. Due to space limitations, we will not describe how
we model all of these use cases. We focus instead on a representative use case as
a running example: reassigning patients to doctors. We will use this example to
illustrate ActionGUTI’s modeling languages as well as the model-based separation
of concerns supported by the ActionGUI methodology.

3.1 The EHRM’s data model

The full data model for the EHRM application contains 18 entities, 40 at-
tributes, and 48 association-ends. We discuss below just the entities, attributes,
and association-ends that are required for our running example.

Figure 2 presents this data model, formalized using ActionGUI’s textual
syntax. As this example shows, ActionGUI data models specify how the applica-
tion’s data is structured, independently of how it will be visualized or accessed.

Professional. This entity represents the EHRM’s users. The role assigned to each
user is specified by its role attribute. The roles considered are DIRECTOR, ADMIN-
ISTRATOR, DOCTOR, NURSE, and SYSTEM. The medical centers where a user
works are linked to the user through the association-end worksln. If a user is a
doctor, then it is linked to the corresponding doctor information through the
association-end asDoctor. Similarly, if a user is an administrative staff, then it is
linked to staff information through the association-end asAdministrative.

MedicalCenter. This entity represents medical centers. The departments belonging
to a medical center are linked to the medical center through the association-end
departments. The professionals working for a medical center are linked to the
medical center through the association-end employees.

Doctor. This entity represents doctor information. Doctor information is linked
to the corresponding professional through the association-end doctorProfessional.
The departments where a doctor works are linked to the doctor’s information
through the association-end doctorDepartments. The patients treated by a doctor
are linked to the doctor’s information through the association-end doctorPatients.

Administrative. This entity represents administrative staff information. Adminis-
trative staff information is linked to the corresponding professional through the
association-end administrativeProfessional.

Department. This entity represents departments. The medical center to which
a department belongs is linked to the department through the association-end
belongsTo. The doctors working in a department are linked to the department
through the association-end doctors. The patients treated in a department are
linked to the department through the association-end patients.

Patient. This entity represents patients. The doctor treating a patient is linked to
the patient through the association-end doctor. The department where a patient
is treated is linked to the patient through the association-end department.

3.2 The EHRM data model’s invariants

The full EHRM application data model is constrained by 66 data invariants,
formalized using OCL. The following three invariants are representative.

1. Each patient is treated by a doctor.
Patient.alllnstances()—forAll(p|not(p.doctor.ocllsUndefined()))

2. Fach patient is treated in a department.
Patient.alllnstances()—forAll(p|not(p.department.oclisUndefined()))

3. FEach patient is treated by a doctor who works for a set of departments, in-
cluding the department where the patient is treated.
Patient.alllnstances()—forAll(p| p.doctor.doctorDepartments—includes(p.department))

These invariants make precise the intended meaning of the associations be-
tween the entities Patient, Doctor, and Department. The first two invariants state
that the doctor and the department associated to a patient cannot be undefined,
i.e., null. The third invariant states that a doctor who treats a patient must work
in the department where the patient is treated, although the doctor may also
work in other departments.

entity Professional {
Role role
Set (MedicalCenter) worksln oppositeTo employees
Doctor asDoctor oppositeTo doctorProfessional
Administrative asAdministrative oppositeTo administrativeProfessional }
entity MedicalCenter {
Set (Department) departments oppositeTo belongsTo
Set (Professional) employees oppositeTo worksIn }
entity Doctor {
Professional doctorProfessional oppositeTo asDoctor
Set (Department) doctorDepartments oppositeTo doctors
Set(Patient) doctorPatients oppositeTo doctor }
entity Administrative {
Professional administrativeProfessional oppositeTo asAdministrative }
entity Department {
MedicalCenter belongsTo oppositeTo departments
Set (Doctor) doctors oppositeTo doctorDepartments
Set(Patient) patients oppositeTo department }
entity Patient {
Doctor doctor oppositeTo doctorPatients
Department department oppositeTo patients }
enum Role { DIRECTOR ADMINISTRATOR DOCTOR NURSE SYSTEM }

Fig. 2. The eHRMApp’s data model (partial).

3.3 The EHRM’s security model

Electronic health records are by their nature highly sensitive and the NESSoS
case study informally defines the policy that regulates their access. As expected,
the authorization to carry out certain actions is not only role-based, but also
context-based. In other words, the EHRM access control policy is fine grained.

The full EHRM application’s security model contains 5 roles and 573 permis-
sions, where each permission authorizes users in a role to execute an action upon
the satisfaction of an authorization constraint formalized in OCL. In Figure 3 we
present examples of two permissions, modeled using ActionGUI’s textual syntax.
The first permission authorizes a user (caller) with the role ADMINISTRATOR to
reassign a patient to a department (value) provided that the user works in a set
of medical centers that includes the one to which the department belongs where
the patient will be reassigned. The second permission authorizes a user (caller)
with the role ADMINISTRATOR to reassign a patient (self) to a doctor (value)
provided two conditions are satisfied: (i) among the medical centers where the
user works, there is at least one where the doctor to which the patient will be
reassigned also works; and (ii) the user works in medical centers that includes
the center to which the department belongs where the patient is currently being
treated. Note that no other role has permissions associated to the actions of
reassigning a patient to a department or to a doctor.

As this example illustrates, ActionGUI security models are formulated in
terms of the application’s data. This formalization is independent of how the
data is visualized or accessed through the application’s graphical user interface.

1 role ADMINISTRATOR {

2 Patient{

3 update (department) constrainedBy [caller.worksln—includes(value.belongsTo)] }
4 Patient{

5 update (doctor) constrainedBy

6 [caller.worksIn—exists(m | value.doctorProfessional.worksIn—includes(m))

7 and caller.worksln—includes(self.department.belongsTo)] }

Fig. 3. Examples of the EHRM security model’s permissions.

3.4 The EHRM’s GUI model

The full EHRM application’s GUI model contains 8 windows for the following
use cases: login to the application; access a medical center’s information; register
a new patient; review a patient’s information; reassign a patient to a doctor and
department; access options reserved for the medical center’s director; introduce
a professional into the system; and reassign a professional to a department.3

We discuss below the window relevant for our running example: the window
movePatientWI for reassigning a patient to a doctor and a department. Figures 4
and 5 present our model of this window, in ActionGUT’s textual syntax. Figure 6
contains a screenshot of the actual window generated from this model.

The window movePatientWI assumes that both a medical center and a patient
have previously been selected. This information is stored, respectively, in the
variables medicalCenter and patient (lines 2-3). The window movePatientW! contains
the following widgets:

— A label patientLa that displays the name and surname of the selected patient
(lines 5-7).

— A label departmentlLa that displays the name of the department where the
selected patient is treated (lines 8-9).

— A label doctorLa that displays the name and surname of the doctor who treats
the selected patient (lines 10-13).

— A label departmentsLa that displays a message inviting the user to select a
department (lines 14-15).

3 Here are some other concrete figures about the size of the GUI model: i) Widgets:
19 buttons; 73 labels; 19 text fields; 5 boolean fields; 1 date field; 1 combo box;
and 9 tables; ii) Statements: 34 if-then-else statements; iii) Data actions: 11 create
actions; 41 update actions; 5 add link actions; and 2 remove link actions; iv) GUI
actions: 157 set actions; and 7 open actions; v) OCL expressions: 361 expressions
(77 non-literals).

— A label doctorsLa that displays a message inviting the user to select a doctor
(lines 16-17).

— A table departmentsTa that displays information about the departments that
belong to the selected medical center (line 22); in particular, the name of
each of these departments is shown (line 31-34). Also, when the user selects a
department from this list, it refreshes the list of doctors displayed in the table
doctorsTa (see below) with the doctors who work for the selected department
(lines 19-21).

— A table doctorsTA that is initially empty (line 24). As previously explained,
upon selection of a department in the table departmentsTa, it displays in-
formation about the doctors who work for the selected department (lines
19-21); in particular, the name and surname of each of these doctors are
shown (lines 35-41).

— A button moveBu that, when clicked upon, if there is a department selected
in the table departmentsTa (line 44), and there is also a doctor selected in the
table doctorsTa (line 45), then:

e it reassigns the selected department to the selected patient (line 46);

e it reassigns the selected doctor to the selected patient (line 47);

e it notifies the user that the reassignment succeeded (lines 48).
Otherwise, it notifies the user that either a doctor (line 50) or a department
(line 52) must first be selected.

— A button backBU that, when the user clicks on it, it returns to the previous
window (line 55).

As this example illustrates, ActionGUI GUI models depend on how the ap-
plication’s data is structured — after all, they describe how users interact with
this data — but not on the application’s security policy. Of course, in terms of
the final application’s usability, there is a dependency: a GUI can end up being
unusable precisely because of the application’s security policy.

3.5 The EHRM’s security-aware GUI model

As explained in Section 2.5, the heart of ActionGUI is a model-transformation
function that, essentially, prefixes each data action in the GUI model with the
authorization check specified in the security model. The full EHRM application’s
GUI model contains 59 data actions, and therefore the automatically generated
EHRM application’s security-aware GUI model contains the same number of
authorization checks.

To illustrate our model-transformation function, we show in Figure 7 the part
of the security-aware GUI model for the button moveBu’s event onClick that is
relevant for our running example. The action of reassigning the selected patient
to the department selected in the table departmentsTa (line 46 in Figure 5) is
now wrapped by an if-then-else statement (lines 46.1-46.5 in Figure 7) whose
condition reflects the permission for executing this action given by line 3 in
Figure 3. Similarly, the action of reassigning the selected patient to the doctor
selected in the table doctorsTa (line 47 in Figure 5) is wrapped by an if-then-else

1 Window movePatientWi {

2 MedicalCenter medicalCenter

3 Patient patient

4 String text := ['Move a patient’]

5 Label patientlLa {

6 String text := ['Patient: ".concat($movePatientWi.patient$.contact.name)

7 .concat(’ ").concat($movePatientWi.patient$.contact.surname)] }

8 Label departmentLa {

9 String text := ['Department: ".concat($movePatientWi.patient$.department.name)] }

10 Label doctorLa {

11 String text := ['Doctor: ".concat($movePatientWi.patient$.doctor.

12 doctorProfessional.name).concat(’ ').

13 concat($movePatientWi.patient$.doctor.doctorProfessional.surname)] }

14 Label departmentslLa {
15 String text := ['Select the new department:’] }

16 Label doctorsLa {
17 String text := ['Select the new doctor:'] }

18 Table departmentsTa {

19 Department selected {

20 if [not $selected$.ocllsUndefined()] {

21 movePatientWi.doctorsTa.rows := [$selected$.doctors] } }

22 Set(Department) rows := [$movePatientWi.medicalCenter$.departments] }

23 Table doctorsTa {
24 Set(Doctor) rows := [Doctor.alllnstances()—select(false)]
25 Doctor selected }

26 Button moveBu {
27 String text := ['Move the patient’] }

28 Button backBu {

29 String text := ['Back’]
30}

Fig. 4. A window for reassigning a selected patient (part I)

31
32
33
34

35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52

53
54
55

Table movePatientWi.departmentsTa {
columns{
[Department’] : Label department {
String text := [$departmentsTa.row$.name] } } }

Table movePatientWi.doctorsTa {
columns {
[Doctor’] : Label doctor {
String text :=
[$doctorsTa.row$.doctorProfessional.name
.concat(" ')
.concat($doctorsTa.row$.doctorProfessional.surname)] } } }

Button movePatientWi.moveBu {
event onClick {
if [not $departmentsTa.selected$.ocllsUndefined()] {
if[not $doctorsTa.selected$.ocllsUndefined()] {
[$movePatientWi.patient$.department] := [$departmentsTa.selected$]
[$movePatientWi.patient$.doctor] := [$doctorsTa.selected$]
notification(['Success’],[The patient has been reassigned.’],[0]) }
else {
notification(['Error’],['Please, select first a doctor.’],[0]) } }
else {
notification(['Error'],['Please, select first a department.’],[0]) } } } }

Button movePatientWi.backBu {

event onClick {
back } }

Fig. 5. A window for reassigning a selected patient (part II)

Exit

Patient: Bob Carter
Department: Department N2
Doctor: Miguel Garcia

Select the new deparment: Selectthe new doctor:
DEPARTMENT b DOCTOR -
Deparment N1 Miguel Garcia

Move the patient Back

Fig. 6. Screenshot of the window for reassigning a selected patient

statement (lines 47.1-47.7 in Figure 7) whose condition reflects the permission
for executing this action given by lines 5-7 in Figure 3.

46.1 if [[$movePatientWi.role$ = ADMINISTRATOR

46.2 and $movePatientWi.caller$.worksIn

46.3 —includes($departmentsTa.selected$.belongsTo)] {

46.4 [$movePatientWi.patient$.department] := [$departmentsTa.selected$] }
46.5 else { fail }

47.1 if [[$movePatientWi.role$ = ADMINISTRATOR

47.2 and $movePatientWi.caller$.worksIn—exists(m |

47.3 $doctorsTa.selected$.doctorProfessional.worksIn—includes(m))
47.4 and $movePatientWi.caller$.worksIn

47.5 —includes($movePatientWi.patient$.department.belongsTo))] {

47.6 [$movePatientWi.patient$.doctor] := [$doctorsTa.selected$] }
47.7 else { fail }

Fig. 7. The security-aware actions for reassigning a selected patient

3.6 Generating the EHRM application

The ActionGUI Toolkit automatically generates the complete EHRM application
in under 10 seconds. The generated .war file includes the Vaadin library as well
as other external libraries. The Vaadin library is responsible of 70% of the size
of the generated file and only 10% of this file corresponds to the code that
ActionGUI automatically generates to interpret the application’s model. The
size of the .war file containing the complete application is roughly 15 MB.

4 Analyzing the EHRM ActionGUI Application

Model-Driven Architecture supports the development of complex software sys-
tems by generating software from models. Of course, the quality of the generated
code depends on the quality of the source models. If the models do not properly
specify the system’s intended behavior, one should not expect the generated sys-
tem to do so either. Quod natura non dat, Salmantica non praestat.* Experience
shows that even when using powerful, high-level modeling languages, it is easy
to make logical errors and omissions. It is critical not only that the modeling
language has a well-defined semantics, so one can know what one is doing, but
also that there is tool support for analyzing the modeled systems’ properties.

In this section we explain how we can reason about an important property
of ActionGUI models, called data invariant preservation. We use the EHRM
application for illustration.

4 Less elegantly said, garbage in, garbage out.

4.1 Data invariant preservation

We first introduce some terminology. Recall that the actions triggered by an
event may be specified using if-then-else statements. At execution time, the
exact sequence of actions taken is determined by how the different conditions of
each if-then-else statements are evaluated in the system’s state at the time of
evaluation. Note that this state includes both the state of the persistence layer
and the state of the GUI, in particular, its widget variables. Since each action
may update the system’s state, a sequence of actions gives rise to a sequence of
states, which we call an execution path.

ActionGUT’s data model may include data invariants. We have given several
examples of these in Section 3.2. These are properties that are required to be
satisfied in every (reachable) system state. Invariance of a property must be
proven and the standard way to do this is to show that the property is inductive,
that is, it is satisfied in the system’s initial state and, whenever it satisfied in a
state, it is satisfied in all possible successor states. Below we shall focus on the
inductive step: proving invariant preservation.

Formally, let @ be a collection of data invariants. An event preserves a data
invariant ¢ € @ if and only if for every execution path triggered by the event, if
every data invariant ¢ € @ is satisfied at the initial state of the execution path,
then ¢ is also satisfied at the final state. Here we leverage ActionGUI’s trans-
action semantics and that transactions are implemented in a way that ensures
their atomicity: The intermediate states of an execution path may be considered
to be internal and may therefore (temporarily) violate ¥. An event is @-data
invariant preserving when it preserves all data invariants in @.

Our proof procedure, illustrated below, is based on the fact that each event
defines a action tree. The nodes in this tree are the actions triggered by the
event and branching corresponds to the if-then-else conditions governing the
execution of these actions. As expected, every successful transaction corresponds
to executing a sequence of actions given by one of the branches of the action
tree, from the root to a leaf. Note that, to simplify our exposition we omit both
iteration statements and event-triggering actions; including these would lead to
action graphs rather than trees.

Reassigning doctors and departments to patients We show in Figure 9
the action tree defined by the the button moveBu’s event onClick. For ease of
later reference, we assign labels for the actions and the if-then-else conditions.
Note that:

— Branch 1 corresponds to the case when a department and a doctor are both
selected when the button moveBU is clicked-on. In this situation, the patient
will be first assigned to the selected department, and then to the selected
doctor; finally, a message confirming these actions will be displayed.

— Branch 2 corresponds to the case when a department is not selected when
the button moveBU is clicked-on. In this situation, a message stating that a
department must be first selected will be displayed.

—_

FEach patient is treated by a doctor.

Patient.alllnstances()—forAll(p|not(p.doctor.ocllsUndefined()))

2| Fach patient is treated in a department.

Patient.allInstances()—forAll(p|not(p.department.ocllsUndefined()))

FEach patient is treated by a doctor who works for a set of departments that

includes the department where the patient is treated.

Patient.alllnstances()—forAll(p|
p.doctor.doctorDepartments—includes(p.department))

w

Fig. 8. Examples of the EHRM data model’s invariants.

— Branch 3 corresponds to the case when a department is selected, but a doctor
is not, when the button moveBU is clicked-on. In this situation, a message
stating that a doctor must first be selected will be displayed.

Next, we use this action tree to reason about whether the button moveBu’s
event onClick preserves the data invariants 1-3.

Branch 1: Data invariants 1 and 2. Recall that these data invariants state that
every patient is assigned to exactly one doctor and one department. Observe that
the initial state in every successful transaction in this branch will satisfy the con-
ditions a_dept_is_selected and a_doctor_is_selected. Therefore the arguments of the
actions assign_dept and assign_doctor will necessarily not be null when these ac-
tions are called. Thus, the conditions a_dept_is_selected and a_doctor_is_selected,
together with the postconditions of the actions assign_dept and assign_doctor,
guarantee that every successful transaction in this branch preserves the data
invariants 1 and 2.

Branch 1: Data invariant 3. Recall that this data invariant states that every
patient is assigned to a department where its doctor works. Interestingly, there
is no guarantee that every successful transaction in this branch preserves the
data invariant 3. This is because the doctors shown in the table doctorsTa are
those belonging to the selected department at the time of this selection (line
19-21 in Figure 4); however, there is no guarantee that, by the time the user
clicks on the button moveBu, this relationship still holds for the selected doctor.

To guarantee that data invariant 3 is preserved by every successful transac-
tions in this branch, we can simply enclose the sequence of actions assing_dept,
assig_dept, and notifiy_reassignment (lines 46-54 in Figure 5) within an (addi-
tional) if-then-else with the following condition:

$departmentsTa.selected$.doctors—includes($doctorsTa.selected$).

Branch 2 and 3. Since these branches do not contain any data actions, every
successful transaction in these branches will trivially preserve all the data model’s
invariants.

Actions

assign_dept = [$movePatientWi.patient$.department]|[$departmentsTa.selected$]
assign_doctor = [$movePatientWi.patient$.doctor] := [$doctorsTa.selected$]
notify_reassign = notification(['Success'],[' The patient is reassigned.’],[0])
error_select_doctor = notification(['Error'],['Select first a doctor.],[0])
error_select_dept = notification(['Error'],['Select first a department.’],[0])

If-then-else conditions

a-dept_is_selected = not $departmentsTa.selected$.ocllsUndefined()
a-doctor_is_selected= not $doctorsTA.selected$.ocllsUndefined()

Branch 1
a_dept_is_selected = true A a_doctor_is_selected = true
nodes|actions

1 |assign_dept

2

assign_doctor

3

notify_reassignment

Branch 2

a-dept_is_selected = false

nodes

actions

1

error_select_dept

Branch 3

a-dept_is_selected = true A a_doctor_is_selected = false

nodes

actions

1

error_select_doctor

Fig. 9. Action tree for the button moveBU’s onClick.

We conclude this section by summarizing in Figure 10(a) our analysis of
data invariant preservation for the button moveBu’s event onClick. For the sake
of illustration, we also consider in Figures 10(b) and 10(c) data invariant preser-
vation for two modified versions of the button moveBu’s event onClick. In the first
case, we have removed the innermost if-then-else, i.e., the one whose condition
checks that a doctor has been selected. In the second case, we have removed the
outermost if-then-else, i.e., the one whose condition checks that a department
has been selected. As expected, if we remove the innermost if-then-else, there is
no guarantee that data invariant 1, i.e., that every patient is assigned to exactly
one doctor, will be preserved. Similarly, if we remove the outermost if-then-else,
there is no guarantee that data invariant 2, i.e., that every patient is assigned
to exactly one department, will be preserved.

Schemas Schemas Schemas
Invs.|1 (2 (3 Invs.|1 |2 Invs.|1 |2
1|V |V 11XV 1|V
2V |V |V 2|V |V 2|1X |V
3|\ X ||V 3|X |V 3|X |V
(a) Original (b) With- (¢) Without
out a_dept_- a_doctor-
is_selected _is_selected

Fig.10. Checking data invariants preservation for different versions of the button
moveBu’s onClick.

4.2 Checking data invariant preservation

We now describe how we check whether modeled events preserve data invariants.

Fix a data model D and a GUI model G. Let @ be D’s declared invariants.
Let ev be an event in GG and let B be a branch of ev’s action tree containing
n actions. To check that every instance of B preserves the invariants in @, we
proceed as follows:

1. We define a ComponentUML data model D,, that represents all sequences
of n states. Recall that a state is any instance of the data model D along
with any assignment to the widget variables in G.

2. For 1 < ¢ < n, we formalize an OCL expression, in the context of D,,, that
the i-th action’s postconditions is satisfied in the (¢ + 1)-th state. We denote
by Posts(B) the resulting set of OCL expressions.

3. For 1 < i < n, we formalize an OCL expression, in the context of D,,
that the guard of the i-th action is satisfied in the i-th state. We denote by
Guards(B) the resulting set of OCL expressions.

4. For each invariant ¢ € @, we formalize an OCL expression, in the context
of D, that ¢ is satisfied in the first state (initial state). We denote by &(1)
the resulting set of OCL expressions.

5. For each invariant ¢ € &, we formalize an OCL expression t(n), in the
context of D,,, stating that 1 is satisfied in the n-th (final) state.
6. We prove that there is no instance of D,, that satisfies

&(1) U Posts(B) U Guards(B) U{—-¢(n)}.

This formula expresses that there is no sequence of n states where the first state
satisfies all the invariants, each state satisfies the postcondition of the action
leading to it, each state satisfies the condition that guards the action leading to
the next state, and the final state does not satisfy .

We have built a tool that implements the above steps. For every data model
D with invariants @, GUI model G, and event ev in G, our tool automatically
generates the set of branches IT corresponding to ev. Then, for each branch
B € II and invariant ¢y € @, it generates the data model D, and the sets
of OCL expressions ¢(1), Posts(B), Guards(B), and {—(n)}, where n is B’s
length. Finally, our tool uses the mapping OCL2FOL™ [8] to generate the first-
order proof-score corresponding to step 6 above, both in SMT-LIB syntax [2]
and DFG syntax [14].

4.3 Analyzing the EHRM application

We report here on preliminary experiments where we used our tool to check
data invariant preservation for the EHRM application. The application’s full
GUI model only contains 8 events whose associated statements includes data
actions, and therefore must be checked. Moreover, the action trees defined by
these events contain 49 branches in total, but only 8 of these branches include
data actions. Therefore, since the full EHRM application’s data model contains
66 invariants, we must perform a total of 528 checks (8 branches x 66 invariants)
to prove data invariant preservation for this application.

We ran these checks on a laptop computer, with a 2.66GHz Intel Core 2
Duo processor and 4Gb 1067MHz. memory, using SPASS [15] as the back-end
theorem-prover. Here we summarize the results. First, for branches containing up
to 3 data actions (50% of the non-trivial checks fall into this category, including
our running example) checking takes less than a second to return the expected
answer: “proof found” when the invariant is preserved and “completion found”
when (for the sake of experiment) we remove some of conditions from the branch,
thereby violating the invariant. Second, when checking branches containing 8-10
actions and 8-10 conditions (45% of the non-trivial checks), we also obtain the
expected answer in less than a second, except for several checks that take up to
20 seconds. Third, there is one branch containing 30 actions and 6 conditions
for which our check does not terminate (we timed out after four days) after we
removed some of the conditions required for proving data invariant preservation.
Finally, note that all these results depend on the (so far successful) interaction
between (i) the way we formalize sequences of n states, OCL invariants, ac-
tions’ guards, and actions’ post-conditions, and (ii) the heuristics implemented
in the verification back-end we use, here SPASS. We are currently analyzing this
interaction in depth to better understand the scope and limitations of our tool.

5 Conclusions

This chapter complements the article [3], where we present the ActionGUI
methodology and tool in detail. [3] also contains an extensive comparison with
related work such as [6,7,11,10] and provides summary statistics from five dif-
ferent developments. The eHealth application was one of the smaller examples
considered there and other examples are roughly an order of magnitude larger,
e.g., with hundreds of windows, buttons, labels, and if-then-else-statements and
thousands of OCL statements. In contrast, in this paper, we present one case
study in detail. We also describe model-based property checking, which was not
addressed in [3].

In the following we draw some conclusions based on our experience with the
eHealth application and developing other applications with ActionGUI. First,
ActionGUT’s security modelling language is well suited for modeling access con-
trol policies that combine both declarative and programmatic aspects. Declara-
tive access control policies depend on static information, namely the assignments
of users and permissions to roles. Programmatic access control depends on dy-
namic information, namely the satisfaction of authorization constraints in the
current system state. Programmatic access control is formalized using authoriza-
tion constraints and, as Section 3.3 illustrates, this allows us to model directly
the kinds of authorization rules considered in the eHealth case study.

Second, ActionGUTI’s graphical user interface modelling language is well suited
for modeling dynamic web pages. These are pages, displayed at the client, that
are generated at the time of access by a user or that change as a result of user
interaction. As Section 3.4 illustrates, an important aspect of our methodology
is that developers can model this behavior independent of the access control pol-
icy. The policy is later lifted from the security model to this behavioral model,
as described in Section 3.5.

Third, as explained in Section 3.6, the ActionGUI code generator can au-
tomatically generate ready-to-deploy, security-aware, data-management web ap-
plications. By data-management, we mean that most of the behavior described
in the GUI model is built from CRUD actions (which create, read, update and
delete data). When all behavior can be described this way, then the entire ap-
plication can be generated from the models, including a complete, configured
security infrastructure and back-end database support.

Finally, our case study illustrates how users can specify properties of Ac-
tionGUI models, such as invariant preservation. Moreover, as described in Sec-
tion 4, our approach to checking these properties based on translation to first-
order logic is practical, see also [5]. This is a form of model-checking and, as
in other domains, it has an important role to play in building and certifying
security-critical systems. Designers and system certifiers can reason about sys-
tems at the model level using automated tool support. Moreover, with our ap-
proach, they can afterwards generate model-conform, and therefore property
conform, systems simply by pressing a button. Our experience with ActionGUI
shows that this is not merely a vision for the future, but it is realizable today,
at least for small and medium-scale data-management applications.

Acknowledgements

This work is partially supported by the EU FP7-ICT Project “NESSoS: Network
of Excellence on Engineering Secure Future Internet Software Services and Sys-
tems” (256980) and by the Spanish Ministry of Economy and Competitiveness
Project “StrongSoft” (TIN2012-39391-C04-04).

References

10.

11.

12.

13.

14.
15.

ActionGUI. The ActionGUI project, 2013. http://www.actiongui.org.

C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In
A. Gupta and D. Kroening, editors, Proceedings of the 8th International Workshop
on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

D. Basin, M. Clavel, M. Egea, M. A. G. de Dios, and C. Dania. A model-driven
methodology for developing secure data-management applications. IEEE Trans-
actions on Software Engineering, 2014. To appear.

D. Basin, J. Doser, and T. Lodderstedt. Model driven security: From UML models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology, 15(1):39-91, 2006.

D. A. Basin, M. Clavel, and M. Egea. A decade of model-driven security. In
Proceedings of the 16th ACM symposium on Access control models and technologies
(SACMAT 2011), volume 1998443, pages 1-10, Innsbruck, Austria, 2011. New
York, NY, USA.

H. Baumeister, N. Koch, and L. Mandel. Towards a UML extension for hypermedia
design. In R. B. France and B. Rumpe, editors, Proc. of UML’99, LNCS, pages
614-629. Springer, 1999.

M. Busch and N. Koch. MagicUWE - a case tool plugin for modeling web appli-
cations. In M. Gaedke, M. Grossniklaus, and O. Diaz, editors, Proc. of ICWE’09,
volume 5648 of LNCS, pages 505-508. Springer, 2009.

C. Dania and M. Clavel. OCL2FOL+: Coping with Undefinedness. In J. Cabot,
M. Gogolla, I. Rath, and E. D. Willink, editors, OCL@MoDELS, volume 1092 of
CEUR Workshop Proceedings, pages 53—62. CEUR-WS.org, 2013.

D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli.
Proposed NIST standard for role-based access control. ACM Transactions on
Information and System Security, 4(3):224-274, 2001.

X. Jia, A. Steele, L. Qin, H. Liu, and C. Jones. FExecutable visual software
modeling—the ZOOM approach. Software Quality Control, 15:27-51, March 2007.
C. Kroiss, N. Koch, and A. Knapp. UWE4JSF: A model-driven generation ap-
proach for web applications. In M. Gaedke, M. Grossniklaus, and O. Diaz, editors,
Proc. of ICWE’09, volume 5648 of LNCS, pages 493-496. Springer, 2009.
NESSoS. The European Network of Excellence on Engineering Secure Future
internet Software Services and Systems, 2010. http://www.nessos-project.eu.
Object Management Group. Object constraint language specification version 2.3.1.
Technical report, OMG, 2012. http://www.omg.org/spec/0CL/2.3.1.

C. Weidenbach. SPASS input syntax version 1.5, 1999.

C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski.
SPASS version 3.5. In R. A. Schmidt, editor, CADE, volume 5663 of Lecture Notes
in Computer Science, pages 140-145. Springer, 2009.

