
Model-Based Formal Reasoning about
Data-Management Applications?

Carolina Dania and Manuel Clavel

IMDEA Software Institute, Madrid, Spain
{carolina.dania,manuel.clavel}@imdea.org

Abstract. Data-management applications are focused around so-called
CRUD actions that create, read, update, and delete data from persis-
tent storage. These operations are the building blocks for numerous ap-
plications, for example dynamic websites where users create accounts,
store and update information, and receive customized views based on
their stored data. Typically, the application’s data is required to satisfy
some properties, which we may call the application’s data invariants. In
this paper, we introduce a tool-supported, model-based methodology for
proving that all the actions possibly triggered by a data-management ap-
plication will indeed preserve the application’s data invariants. Moreover,
we report on our experience applying this methodology on a non-trivial
case study: namely, an application for managing medical records, for
which over eighty data invariants need to be proved to be preserved.

1 Introduction

Model-Driven Architecture (MDA) [13] supports the development of complex
software systems by generating software from models. Of course, the quality of
the generated software depends on the quality of the source models. If the models
do not properly specify the system’s intended behavior, one should not expect
the generated system to do so either. Experience shows that even when using
powerful, high-level modelling languages, it is easy to make logical errors and
omissions. It is critical not only that the modelling language has a well-defined
semantics, so one can know what one is doing, but also that there is tool support
for analyzing the modelled systems’ properties.

ActionGUI [2] is a methodology for the model-driven development of secure
data-management applications. It consists of languages for modelling multi-tier
systems, and a toolkit for generating these systems. Within this methodology, a
secure data-management application is modelled using three interrelated models:

1. A data model defines the application’s data domain in terms of its classes,
attributes, and associations. It also defines the application’s data invariants,
i.e., the properties about the application’s data that are required to be sat-
isfied in every state.

? This work is partially supported by the Spanish Ministry of Economy and Competi-
tiveness Project “StrongSoft” (TIN2012-39391-C04-01 and TIN2012-39391-C04-04).



2. A security model defines the application’s security policy in terms of autho-
rized access to the actions on the resources provided by the data model.

3. A graphical user interface (GUI) model defines the application’s graphical
interface and application logic.

From these models, ActionGUI generates complete, ready-to-deploy, security-
aware web applications, along with all support for access control.

In this paper, we enhance ActionGUI with a tool-supported, model-based
methodology for proving the invariant preservation property, i.e., that all the
action possibly triggered by an application will indeed preserve the application’s
data invariants. In a nutshell, our approach, which was first informally sketched
in [6], consists of the following three steps. Suppose that we are interested in
checking whether a sequence A = 〈act1, . . . , actn−1〉 of data actions preserves
an invariant φ of an application’s data model D. We proceed as follows: (Step 1)
From the data model D, we automatically generate a new data model Film(D, n)
for representing all sequences of n states of D. Notice that some of these se-
quences will correspond to executions of A, but many others will not. (Step 2)
We constrain the model Film(D, n) in such a way that it will represent exactly
the sequences of states corresponding to executions of A. We do so by adding
to Film(D, n) a set of constraints Execute(D, act i, i) capturing the execution of
the action act i upon the i-th state of a sequence of states, for i = 1, . . . , n − 1.
(Step 3) We prove that, for every sequence of states represented by the model

Film(D, n) constrained by
⋃n−1
i=1 Execute(D, act i, i), if the invariant φ is satisfied

in the first state of the sequence then it is also satisfied in the last state of the
sequence.

Organization. After describing in more detail the three steps of our methodology,
we report on our experience applying it to a non-trivial case study. We conclude
with a brief discussion on related and future work.

2 Modelling Sequences of States (Step 1)

A data model provides a data-oriented view of a system, the idea being that
each state of a system can be represented by an instance of the system’s data
model. In this section, however, we introduce a special data model: one whose
instances do not represent states of a system but instead sequences of states of
a system. We begin recalling the notions of ActionGUI data models and object
models. Notice that, for the sake of readability, we have moved the technical
definitions to Appendix A.

2.1 Data Models

ActionGUI employs ComponentUML [1] for data modelling. ComponentUML
provides a subset of UML class models where entities (classes) can be related
by associations and may have attributes. A formal definition of ComponentUML
data models is given in the Appendix A (Definition 2).



Fig. 1: EHR: a sample data model.

Example 1. Consider the ComponentUML model EHR shown in Fig. 1. It con-
sists of three entities: Patient, Department, and Doctor.

Patient It represents patients. The doctor treating a patient is set in the at-
tribute doc and the department where a patient is treated is set in the
attribute dept.

Department It represents departments. The doctors working in a department
are linked to the department through the association-end doctors.

Doctor It represents doctor’s information. Departments where a doctor works
are linked to the doctor’s information through the association-end doctorDepts.

2.2 Object Models

Object models represent instances of data models, consisting of objects (in-
stances of entities), with concrete attribute values, and links (instances of asso-
ciations). A formal definition of ComponentUML object models is given in the
Appendix A (Definition 3).

Fig. 2: Inst EHR: a sample object model.

Example 2. Consider the ComponentUML object model Inst EHR shown in Fig. 2.
It represents an instance of the ComponentUML model EHR shown in Fig. 1.
In particular, Inst EHR represents a state of the system in which there are only
two departments, namely, Cardiology and Digestive; one doctor, namely, J Smith,
working for both departments; and one patient, M Perez, treated by doctor
J Smith in the department of Cardiology.

Let D be a data model. In what follows, we denote by JDK the set of all
instances of D.



2.3 Data Invariants

Data invariants are properties that are required to be satisfied in every state of
a system.

In ActionGUI we use Object Constraint Language (OCL) [15] to formalize a
system’s data invariants. OCL is a strongly typed textual language. Expressions
either have a primitive type, a class type, a tuple type or a collection type.
OCL provides: standard operators on primitive data, tuples, and collections;
a dot-operator to access the values of the objects’ attributes and association-
ends in the given object model; and operators to iterate over collections. OCL
includes two constants, null and invalid, to represent undefinedness. Intuitively,
null represents unknown or undefined values, whereas invalid represents error
and exceptions. To check if a value is null or invalid, OCL provides the boolean
operator oclIsUndefined().

OCL expressions are written in the context of a data model and can be
evaluated on any object model of this data model. The evaluation of an OCL
expression returns a value but does not alter the given object model, since OCL
evaluation is side-effect free. Let D be a data model, let I ∈ JDK be an object
model, and let expr be an OCL expression. In what follows, we denote by JexprKI
the result of evaluating expr in I. Also, let Φ be a set of data invariants over
D. Then, we denote by JD, ΦK ⊆ JDK the set of all the valid instances of D with
respect to Φ. More formally,

JD, ΦK = {I ∈ JDK | JφKI = true, for every φ ∈ Φ}.

Example 3. Suppose that the following data invariants are specified for the data
model EHR in Fig. 1:

1. Each patient is treated by a doctor.

Patient.allInstances()→forAll(p|not(p.doc.oclIsUndefined()))

2. Each patient is treated in a department.

Patient.allInstances()→forAll(p|not(p.dept.oclIsUndefined()))

3. Each patient is treated by a doctor who works in the department where the
patient is treated.

Patient.allInstances()→forAll(p|p.doc.doctorDepts→includes(p.dept))

Clearly, the object model Inst EHR in Fig. 2 is a valid instance of EHR with
respect to the data invariants (1)–(3), since they evaluate to true in Inst EHR.

2.4 Filmstrip Models

Next, we introduce the notion of filmstrips to model sequences of states of a
system. Given a data model D, a D-filmstrip model of length n, denoted by
Film(D, n), is a new data model which contains the same classes as D, but now:



Fig. 3: Film(EHR,3): a filmstrip model of length 3 of EHR.

(a) Inst#1 EHR (b) Inst#2 EHR (c) Inst#3 EHR

Fig. 4: Three instances of EHR.

– To represent that an object may have different attribute values and/or links
in each state, each class c contains n different “copies” of each of the at-
tributes and association-ends that c has in D. The idea is that, in each
instance of a filmstrip model, the value of the attribute at (respectively,
association-end as) for an object o in the i-th state of the sequence of states
modelled by this instance is precisely the value of the i-th “copy” of at
(respectively, as).

– To represent that an object may exist in some states, but not in others, each
class c contains n “copies” of a new boolean attribute st. The idea is that,
in each instance of a filmstrip model, an object o exists in the i-th state of
the sequence of states modelled by this instance if and only if the value of
the i-th “copy” of st is true.

A formal definition of ComponentUML filmstrip models is given in Appendix A
(Definition 4).

Example 4. In Fig. 3 we show the filmstrip model Film(EHR, 3). Consider now
the three instances of EHR shown in Fig. 4. The first instance (Inst#1 EHR) cor-



Fig. 5: An instance of Film(EHR, 3).

responds to a state where there are two departments, Cardiology and Digestive,
and one doctor, J Smith, working in Digestive. The second instance (Inst#2 EHR)
is like the first one, except that now J Smith also works in Cardiology and, more-
over, there is a patient, M Perez, who is treated in Cardiology, but has no doc-
tor assigned yet. Finally, the third instance (Inst#3 EHR) is like the second
one, except that it does not contain any doctor. In Fig. 5 we show how the
sequence 〈Inst#1 EHR, Inst#2 EHR, Inst#3 EHR〉 can be represented as an in-
stance of Film(EHR, 3).

To conclude this section, we introduce a function Project(), which we will
use when reasoning about filmstrip models. Let D be a data model and let φ be
an expression. Project(D, φ, i) “projects” the expression φ so as to refer to the
i-th state in the sequences represented by the instances of Film(D, n), for n ≥ i.
A formal definition of Project() is given in Appendix A (Definition 5).

Example 5. Consider the data invariants (1) and (3) presented in the Example 3.
Then,

Project(EHR, (1), 1) =

Patient.allInstances()→select(p|p.st 1)→forAll(p|not(p.doc 1.oclIsUndefined()))

Project(EHR, (3), 1) =

Patient.allInstances()→select(p|p.st 1)→forAll(p|p.doc 1.doctorDepts 1

→includes(p.dept 1))

Recall that Patient.allInstances()→select(p|p.st 1) refers to the instances of the
entity Patient which exist in the first state of the sequences of states modelled
by Film(EHR, 3), while .doc 1 and .doctorDepts 1 refer, respectively, to the value
of the attribute doc and the links through the association-end doctorDepts of
the instances of the entity Patient also in the first state of the aforementioned
sequences of states.

3 Modelling Sequences of Data Actions (Step 2)

As explained before, given a data model D and a positive number n, the instances
of the filmstrip model Film(D, n) represent sequences of n states of the system.



Notice, however, that, in the sequence of states represented by an instance of
Film(D, n), the (i + 1)-th state does not need to be the result of executing an
atomic data action upon the i-th state.

Let D be a data model and let act be a CRUD data action. In this section we
introduce a set of boolean OCL expressions, Execute(D, act , i), which capture
the relations that hold between the i-th and (i+1)-th states of a sequence, if the
latter is the result of executing the action act upon the former. For the sake of
space limitation, however, we only provide here the expressions that capture the
differences between the two states, (i + 1)-th and i-th, but not the expressions
that capture their commonalities.

As expected, we define Execute(D, act , i) by cases. In ActionGUI, we consider
the following atomic data actions: create or delete an object of an entity; read
the value of an attribute of an object; and add or remove a link between two
objects. 1

Action create. For act the action of creating an instance new of an entity c, the
difference between the states (i+1)-th and i-th can be captured by the following
expressions in Execute(D, act , i):

– new .st i = false.

– new .st (i+ 1) = true.

– new.at (i+ 1) = null, for every attribute at of the entity c.

– new.as (i+ 1)→isEmpty(), for every association-end as of the entity c.

Action delete. For act the action of deleting an instance o of an entity c, the
difference between the states (i+1)-th and i-th can be captured by the following
expressions in Execute(D, act , i):

– o.st i = true.

– o.st (i+ 1) = false.

– o.at (i+ 1) = null, for every attribute at of the entity c.

– o.as (i+ 1)→isEmpty(), for every association-end as of the entity c.

– c′.allInstances().as ′ (i+1)→excludes(o) for every entity c′, and every association-
end as ′ between c′ and c.

Action update. For act the action of updating an attribute at of an instance o of
an entity c with a value v, the difference between the states (i+ 1)-th and i-th
can be captured by the following expression in Execute(D, act , i):

– o.at (i+ 1) = v.

1 ActionGUI supports also conditional data actions, where the conditions are boolean
OCL expressions. Notice that, when act is a conditional data action, we must also
include in Execute(D, act , i), the expression that results from “projecting” its con-
dition, using the function Project(), so as to refer to the i-th state in the sequence.



Action add. For act the action of adding an object o′ to the objects that
are linked with an object o through an association-end as (whose opposite
association-end is as ′), the difference between the states (i + 1)-th and i-th
can be captured by the following expressions in Execute(D, act , i):

– o.as (i+ 1) = (o.as i)→including(o′).
– o′.as ′ (i+ 1) = (o′.as ′ i)→including(o).

Action remove. For act the action of removing an object o′ to the objects
that are linked with an object o through an association-end as (whose oppo-
site association-end is as ′), the difference between the states (i+ 1)-th and i-th
can be captured by the following expressions in Execute(D, act , i):

– o.as (i+ 1) = (o.as i)→excluding(o′).
– o′.as ′ (i+ 1) = (o′.as ′ i)→excluding(o).

To end this section, we list below the expressions in Execute(D, act , i) that
capture the commonalities between the states (i + 1)-th and i-th, for the case
of the action updating an attribute at of an instance o of and entity c; the
expressions for the other cases are entirely similar.

– d.allInstances()→select(x|x.st (i+ 1)) = d.allInstances()→select(x|x.st i), for ev-
ery entity d.

– d.allInstances()→select(x|x.st i)→forAll(x|x.at ′ (i+1) = x.at ′ i), for every en-
tity d and every attribute at ′ of d, such that at ′ 6= at .

– c.allInstances()→select(x|x.st i)→excluding(o)→forAll(x|x.at (i+1) = x.at i).
– d.allInstances()→select(x|x.st i)→forAll(x|x.as (i + 1) = x.as i) for every en-

tity d, and every association-end as of d.

4 Proving Invariants Preservation (Step 3)

Invariants are properties that are required to be satisfied in every system state.
Recall that, in the case of data-management applications, the system states
are the states of the applications’ persistence layer, which can only be changed
by executing the sequences of data actions associated to the applications’ GUI
events. Also recall that, within ActionGUI, (i) data invariants are specified along
with the application’s data model, and also that (ii) the sequences of actions
triggered by the GUI events are specified in the application’s GUI model. We
can now formally define the invariant-preservation property as follows:

Definition 1 (Invariant preservation). Let D be a data model, with invari-
ants Φ. Let A = 〈act1, . . . , actn−1〉 be a sequence of data actions. We say that
A preserves an invariant φ ∈ Φ if and only if

∀F ∈ JFilm(D, n),

n−1⋃
i=1

Execute(D, act i, i)K . (1)

JProject(D,
∧
ψ∈Φ

(ψ), 1) implies Project(D, φ, n)KF = true,



i.e., if and only if, for every A-valid instance F of Film(D, n) the following
holds: if all the invariants in Φ evaluate to true when “projected” over the first
state of the sequence of states represented by F , then the invariant φ evaluates to
true as well when “projected” over the last state of the aforementioned sequence.

Using SMT Solvers for Checking Invariant-Preservation

In [4, 5] we proposed a mapping from OCL to first-order logic, which consists of
two, inter-related components: (i) a map from ComponentUML models to first-
order formulas, called ocl2foldef ; and (ii) a map from boolean OCL expressions
to first-order formulas, called ocl2fol. The following remark formalizes the main
property of our mapping from OCL to first-order logic.

Remark 1. Let D be a data model, with data invariants Φ. Let φ be a boolean
expression. Then,

∀I ∈ JD, ΦK .(JφKI = true)⇐⇒
ocl2foldef(D) ∪ {ocl2fol(γ) | γ ∈ Φ} ∪ ocl2fol(not(φ)) is unsatisfiable.

By the previous remark, we can reformulate Definition 1 as follows: Let D
be a data model, with invariants Φ. Let A = 〈act1, . . . , actn−1〉 be a sequence
of data actions. We say that A preserves an invariant φ ∈ Φ if and only if the
following set is unsatisfiable:

ocl2foldef(Film(D, n)) ∪ {ocl2fol(γ) | γ ∈
n−1⋃
i=1

Execute(D, act i, i)} (2)

∪ ocl2fol(not(Project(D,
∧
ψ∈Φ

(ψ), 1) implies Project(D, φ, n))).

In other words, using our mapping from OCL to first-order logic, we can trans-
form an invariant-preservation problem (1) into a first-order satisfiability prob-
lem (2). And by doing so, we open up the possibility of using SMT solvers
to automatically (and effectively) check the invariant-preservation property of
non-trivial data-management applications, as we will report in the next section.

5 Case Study

In this section we report on a case study about using SMT solvers —in par-
ticular, Z3 [7]— for proving the invariant-preservation property. Satisfiability
Modulo Theories (SMT) generalizes boolean satisfiability (SAT) by incorporat-
ing equality reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers, and
other first-order theories. Of course, when dealing with quantifiers, SMT solvers
cannot be complete, and may return “unknown” after a while, meaning that
neither they can prove the quantified formula to be unsatisfiable, nor they can
find an interpretation that makes it satisfiable.



The data-management application for this case study is the eHealth Record
Management System (EHRM) developed, using ActionGUI, within the Euro-
pean Network of Excellence on Engineering Secure Future Internet Software
Services and Systems (NESSoS) [14]. The EHRM application consists of a web-
based system for electronic health record management. The data model contains
18 entities, 40 attributes, and 48 association-ends. It also contains 86 data in-
variants. For the sake of illustration, we can group the EHRM’s data invariants
in the following categories:

G1. Properties about the population of certain entities. E.g., There must be at
least a medical center.

MedicalCenter.allInstances()→notEmpty().

G2. Properties about the definedness of certain attributes. E.g., The name of
a professional cannot be left undefined.

Professional.allInstances()→forAll(p|not(p.name.oclIsUndefined())).

G3. Properties about the uniqueness of certain data. E.g.: There cannot be two
different doctors with the same licence number.

Doctor.allInstances()→forAll(d1,d2|d1<>d2 implies d1.licence<>d2.licence).

G4. Properties about the population of certain association-ends. E.g., Every
medical center should have at least one employee.

MedicalCenter.allInstances()→forAll(m|m.employees→notEmpty()).

G5. Other properties: E.g., A patient should be treated in a department where
its assigned doctor works.

Patient.allInstances()
→forAll(p|p.doctor.doctorDepartments→includes(p.department)).

In our case study, we have checked the invariant-preservation property for
seven non-trivial sequences of data actions: namely, those that create a new
admin staff, a new nurse, or a new doctor; those that reassign a doctor or a
nurse to another department; and those that register a new patient, and move
a patient to a different ward. The result of our case study is shown in Fig. 6. In
particular, for each of the aforementioned sequences of actions, we indicate:

– The number of data actions (and conditions) in the sequence.
– The number of data invariants (potentially) affected by the actions in the

sequence, indicating how many of them we have proved to be preserved by
the sequence and how many to be violated.2

2 Interestingly, when an invariant is violated, Z3 returns also an instance of the given
filmstrip model responsibly for this violation. This counterexample can then be used
to fix accordingly the given sequence of actions.



Sequences Acts. Conds.
Invariants Time

affected preserved violated min. max. avge.

Create an administrative 8 9 18 18 0 0.03s 0.20s 0.05s

Create a nurse 10 11 22 22 0 0.03s 0.22s 0.06s

Create a doctor 11 12 25 24 1 0.03s 27.00s 0.07s

Reassign a doctor 2 6 2 2 0 6.88s 11.10s 8.94s

Reassign a nurse 2 6 2 1 1 0.10s 17.01s 8.55s

Register patient 30 6 28 26 2 0.03s 0.20s 0.05s

Move a patient 2 3 3 3 0 0.03s 0.03s 0.03s

Total 100 96 4

Fig. 6: EHRM case study: summary.

– The minimum, maximum, and average time taken for proving that the se-
quence preserves (or violates) each of the (potentially) affected invariants.

All the proofs have been ran on a machine with an Intel Core2 processor running
at 2.83 GHz with 8GB of RAM, using Z3 versions 4.3.1 and 4.3.2. All the Z3
input files have been automatically generated with an ActionGUI plugin which
implements our mapping from OCL to first-order logic. These files are available
at http://software.imdea.org/~dania/tools/ehrm.html, where we also in-
dicate which files are to be ran with which version.

Lessons learned. There are two main lessons that we can learn from this case
study. The first lesson is that, when modelling non-trivial data-management ap-
plications, it is indeed not difficult to make errors, or at least omissions, even
when using a high-level language like ActionGUI. In fact, the four violated invari-
ants showed in Fig. 6 arise because the EHRM’s modeler inadvertently omitted
some conditions for the execution of the corresponding sequence of actions. As an
example, for the case of creating a doctor, the invariant that is violated is “Every
doctor has a unique licence number”, and it is so because the modeler omitted
a condition for checking that the licence number of the doctor to be created
must be different from the licence numbers of the doctors already in the system.
As another example, for the case of reassigning a nurse, the invariant that is
violated is “There should be at least one nurse assigned to each department”,
and this is produced because the modeler omitted a condition for checking that
the department where the nurse to be reassigned currently works must have at
least two nurses working in it.

The second lesson that we have learned is that, using our methodology, and,
in particular, using Z3 as the back-end prover, the invariant-preservation prop-
erty can indeed be effectively checked for non-trivial data-management applica-
tions. As reported in Fig. 6, we are able to automatically prove that, for each
of the sequences of actions under consideration, all the affected invariants are
either preserved or violated. This means that Z3 does not return “unknown”
for any of the 100 checks that we have to perform (corresponding to the total
number of affected invariants), despite the fact that in all these checks there



are (many) quantifiers involved. Moreover, regarding performance, Fig. 6 shows
that, in most of the cases we are able to prove the invariant-preservation prop-
erty in less than 100ms (worst case: 27s). This great performance is achieved
even though, for each case, Z3 needs to check the satisfiability of a first-order
theory containing on average 190 declarations (of function, predicate and con-
stant symbols), 20 definitions (of predicates), and 550 assertions. Overall, these
results improve very significantly those obtained in a preliminary, more simple
case study reported in [6], where some checks failed to terminate after several
days, and some others took minutes before returning an answer. However, we
should take these new results with a grain of salt. Indeed, we are very much
aware (even painfully so) that our current results depend on the (hard-won) in-
teraction between (i) the way we formalize sequences of n states, OCL invariants,
actions’ conditions, and actions’ executions, and (ii) the heuristics implemented
in the verification back-end we use, namely Z3. This state-of-affairs is very well
illustrated by the fact that, as indicated before, we have had to use two differ-
ent versions of Z3 (4.3.1 and 4.3.2) to complete our case study for the following
reason: there are some checks for which one of the versions returns “unknown”,
while the other version returns either “sat” or “unsat”; but there are some other
checks for which precisely the opposite occurs.

6 Related Work

In the past decade, there has been a plethora of proposals for model-based rea-
soning about the different aspects of a software system. For the case of the static
or structural aspects of a system, the challenge lies in mapping the system’s data
model, along with its data invariants, into a formalism for which reasoning tools
may be readily available (see [10] and references). By choosing a particular for-
malism each proposal commits to a different trade-off between expressiveness
and termination, automation, or completeness (see [16, 3] and references). On
the other hand, for the case of model-based reasoning about a system’s dynamic
aspects, which is our concern here, the main challenge lies in finding a suitable
formalism in which to map the models specifying how the system can change
over time. To this extent, it is worthwhile noticing the different attempts made
so far to extend OCL with temporal features (see [12] and references). In our
case, however, we follow a different line of work, one that is centered around
the notion of filmstrips [8, 18]. A filmstrip is, ultimately, a way of encoding a
sequence of snapshots of a system. Interestingly, when this encoding uses the
same language employed for modelling the static aspects of a system, then the
tools available for reasoning about the latter can be used for reasoning about
the former. This is precisely our approach, as well as the one underlying the pro-
posals presented in [11] and [9]. However, the difference between our approach
and those are equally important. It has its roots in our different way of mapping
data models and data invariants (OCL) into first-order logic [4, 5], which allows
us to effectively use SMT solvers for reasoning about them, while [9] and [11]
resort to SAT solvers. As a consequence, when successful, we are able to prove



that all possible executions of a given sequence of data actions preserve a given
data invariant. On the contrary, [9] can only validate that a given execution
preserves a given invariant, while [11] can prove that all possible executions of a
given sequence of data action preserve a given invariant, but only if these execu-
tions do not involve more than a given number of objects and links. Finally, [17]
proposes also the use of filmstrip models and SMT solvers for model-based rea-
soning about the dynamic aspects of a system. This proposal, however, at least
in its current form, lacks too many details (including non-trivial examples) for
us to be able to provide a fair comparison with our approach.

7 Conclusions and Future Work

Data-management applications are focused around the so-called CRUD actions,
namely, to create, read, update, and delete data from persistent storage. These
operations are the building blocks for numerous applications, for example dy-
namic websites where users create accounts, store and update information, and
receive customized views based on their stored data. In [2] we proposed a model-
driven development environment, called ActionGUI, for developing data-manage-
ment application. With ActionGUI, complete, ready-to-deploy, security-aware
web applications can be automatically generated from the applications’ data,
security, and GUI models. In this paper, we present our work to enhance Ac-
tionGUI with a methodology for automatically proving that the application’s
data invariants, i.e., the properties that are required to hold in every state of the
system, are indeed preserved after the execution of the sequences of data actions
supported by the application’s GUI. We have also reported on a non-trivial case
study, in which we have successfully applied our methodology over an eHealth
application whose data model contains 80 data invariants, and whose GUI model
includes events possibly triggering more than 20 data actions in a sequence.

Finally, we are currently extending our methodology to deal with complex,
non-atomic data action. The idea, of course, is to model the execution of these
complex actions using OCL, as we have done for the case of CRUD actions.
A more challenging goal, however, is to extend our methodology to deal with
iterations. In ActionGUI, each iteration specifies that a sequence of data actions
must be iterated over a collection of data elements. The idea here is to integrate
in our methodology the notion of iteration invariant, taking advantage of the
fact that the collection over which the sequence of data actions must be iterated
is also specified using OCL. Finally, we are analyzing in depth the interaction
between (i) the way we formalize data-invariants and data-action executions and
(ii) the heuristics implemented in the verification back-end we use, namely Z3,
to better understand its scope and limitations.
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A Technical Definitions

Definition 2 (Data models). A data model is a tuple 〈C,AT ,AS ,ASO〉 such
that:



– C is a set of class identifiers.
– AT is a set of triples 〈at , c, t〉, also represented as at (c,t), where at is an

attribute identifier, c ∈ C, t ∈ C ∪ {Integer,Real,String,Boolean}, and c
and t are, respectively, the class and the type of the attribute at.

– AS is a set of tuples 〈as, c, c′〉, also denoted by as(c,c′), where as is an
association-end identifier, c, c′ ∈ C, c and c′ are, respectively, the source
and the target classes of as.

– ASO is a symmetric relation, ASO ⊆ AS × AS, where (as(c,c′), as ′(c′,c)) ∈
ASO represents that as ′ is the association-end opposite to as, and vice versa,
and c, c′ ∈ C.

Definition 3 (Object models). Let D be a data model 〈C,AT ,AS ,ASO〉.
Then, a D-object model is a tuple 〈O,VA,LK 〉, such that:

– O is a set of pairs 〈o, c〉, where o is an object identifier and c ∈ C. Each pair
〈o, c〉, also represented as oc, denotes that the object o is of the class c.

– VA is a set of triples 〈oc, at (c,t), va〉, where at (c,t) ∈ AT , oc ∈ O, t ∈ C ∪
{Integer,Real,String,Boolean}, and va is a value of type t. Each triple
〈oc, at (c,t), va〉 denotes that va is the value of the attribute at of the object o.

– LK is a set of triples 〈oc, as(c,c′), o
′
c′〉, where as(c,c′) ∈ AS, and oc, o

′
c′ ∈ O.

Each tuple 〈oc, as(c,c′), o
′
c′〉 denotes that the object o′ is among the objects

that are linked to the object o through the association-end as.

Definition 4 (Filmstrip models). Let D be a data model, D = 〈C,AT ,AS ,ASO〉.
Let n be a positive number. We denote by Film(D, n) the model of the sequences
of length n of D-object models. Film(D, n) is defined as follows:

Film(D, n) = 〈C, (n×{st}) ∪ (n×AT ), (n×AS ), (n×ASO)〉

where

– (n×{st}) = {(st i)(c,Boolean) | c ∈ C ∧ 1 ≤ i ≤ n}.
– (n×AT ) = {(at i)(c,t) | at (c,t) ∈ AT ∧ 1≤ i≤n}.
– (n×AS ) = {(as i)(c,c′) | as(c,c′) ∈ AS ∧ 1≤ i≤n}.
– (n×ASO) = {((as i)(c,c′), (as ′ i)(c′,c)) | (as(c,c′), as ′(c′,c)) ∈ ASO∧1≤ i≤n}.

Definition 5 (Project). Let D = 〈C,AT ,AS ,ASO〉 be a data model. Let n
be positive number. Let φ be a D-expression. For 1 ≤ i ≤ n, Proj(D, φ, i) is the
Film(D, n)-expression that “projects” the expression φ so as to refer to the i-th
state in the sequences represented by the instances of Film(D, n). Proj(D, φ, i)
is obtained from φ by executing the following:

– For every class c ∈ C, replace every occurrence of c.allInstances() by c.allInst-
ances()→select(o|o.st (i)).

– For every attribute at (c,t) ∈ AT , replace every occurrence of .at by .at (i).
– For every link as(c,c′) ∈ AS, replace every occurrence of .as by .as (i).


