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ABSTRACT
In this paper we propose a mapping from OCL to many-
sorted first-order logic, called OCL2MSFOL. This new map-
ping significantly improves our previous results in two key
aspects. First, it accepts as input a larger subset of the
UML/OCL language; in particular, it supports UML gener-
alization, along with generalization-related OCL operators.
Secondly, it generates as output a class of satisfiability prob-
lems that can be efficiently handled by SMT solvers with
finite model finding capabilities. We report on a non-trivial
case study and draw comparisons with related tools.
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1. INTRODUCTION
Model-Driven Architecture (MDA) supports the develop-

ment of complex software systems by generating software
from models. Logically, the quality of the generated software
depends on the quality of the source models. Experience
shows that even when using powerful, high-level modelling
languages, it is easy to make logical errors and omissions.
It is critical then, not only that the modelling language has
a well-defined semantics, but also that there is tool support
for analyzing the modelled systems’ properties.

The Object Constraint Language (OCL) is a strongly-
typed, declarative formal language defined by the UML stan-
dard to provide the level of conciseness and expressiveness
that is required for certain aspects of a design. Expressions
in OCL either have a primitive type (integer, real, string,
or Boolean), a class type, a tuple type, or a collection type
(set, bag, ordered set, or sequence). The language provides
standard operators on collections as well as iterators. It
also provides the usual operators on primitive types and tu-
ples, and a dot-operator to access object properties, namely,
attributes and association-ends. Moreover, OCL provides
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two constants, null and invalid, to represent undefinedness.
Intuitively, null represents an unknown or undefined value,
whereas invalid represents an error or exception.

With the goal of providing support for UML/OCL rea-
soning, different mappings to other formalisms have been
proposed in the past (see [17] for a systematic review). In
each case, the chosen target formalism imposes a different
trade-off between expressiveness, termination, automation,
and completeness. In particular, most proposals have disre-
garded OCL undefinedness in order to more easily map OCL
to a two-valued formalism; exceptions to this trend are [7]
and [4, 15], although the latter only deals with null-related
undefinedness.

In [14] a benchmark was introduced for assessing the dif-
ferent UML/OCL reasoning tools. According to this bench-
mark, tools should be able to address, with respect to a given
UML/OCL model, questions regarding consistency (whether
there exist object diagrams at all), independence (whether
there are redundant OCL invariants), consequences (whether
new properties can be derived from stated ones), and reacha-
bility (whether there exist object diagrams with stated prop-
erties). Very naturally, these questions can be formulated as
UML/OCL satisfiability problems.

In previous works we proposed two mappings from OCL to
first-order logic (FOL) that supported the use of Satisfiabil-
ity Modulo Theories (SMT) solvers for checking UML/OCL
satisfiability problems.1 In [10] we proposed a first map-
ping from UML/OCL to first-order logic, called OCL2FOL,
which did not support UML generalization or OCL unde-
finedness. In [11] we proposed a second mapping, called
OCL2FOL+, which did take into account OCL undefined-
ness, but did not support UML generalization. Moreover,
OCL2FOL+ turned out to be rather inefficient in practice,
since SMT solvers would often return unknown, as a conse-
quence of two facts: first, that non-trivial OCL constraints
contain expressions that are naturally mapped to quantified
formulas (since they refer to all the objects in a class, for
example), and, secondly, that techniques for dealing with
quantified formulas in SMT are generally incomplete.

To overcome this limitation, we decided to use SMT solvers
along with finite model finding methods for checking the
satisfiability of the formulas resulting from our mapping.
In particular, we opted for using the SMT solver CVC4 [6],
which has a finite model finding method [24] fully integrated

1SMT solvers generalize Boolean satisfiability (SAT) by in-
corporating equality reasoning, arithmetic, fixed-size bit-
vectors, arrays, quantifiers, and other first-order theories.



with its SMT solver architecture. The finite model finding
method implemented in CVC4 requires, however, that quan-
tified variables in the input problem always range over finite
domains. OCL2FOL+ could not satisfy this requirement,
since its target formalism was unsorted FOL: variables in
quantified formulas generated by OCL2FOL+ range over a
single, infinite domain that includes the integer numbers. By
switching to many-sorted FOL (MSFOL), we were able to
satisfy the aforementioned requirement: variables in quanti-
fied formulas range now over the domain of a distinguished
sort, called Classifier, which essentially contains the objects
in an object diagram and the undefined values (but not the
integer numbers or the strings), and which, for the purpose
of UML/OCL verification, can be considered as finite (ob-
ject diagrams can be assumed to contain only a finite num-
ber of objects). Finally, many-sorted FOL provides a more
adequate target formalism than unsorted FOL for mapping
UML generalization and generalization-related OCL opera-
tions.

In summary, we propose a new mapping from OCL to
many-sorted first-order logic, called OCL2MSFOL, which
successfully overcomes the limitations of our previous map-
pings. First, it accepts as input a significantly larger subset
of the UML/OCL language; in particular, it supports UML
generalization, along with the generalization-related OCL
operators. Secondly, it generates as output a class of sat-
isfiability problems that are amenable to checking by using
SMT solvers with finite model finding capabilities.

Organization.
In Section 2 we introduce our mapping from UML class

diagrams to MSFOL theories and, in Section 3 we explain
our mapping from OCL constraints to MSFOL formulas. In
Section 4 we discuss how to check the satisfiability of OCL
constraints using SMT solvers, based on our mapping from
UML/OCL to MSFOL. Also, we present a tool that supports
our methodology and we provide a preliminary benchmark.
In Section 5 we report on a non-trivial case study, involving
a UML class diagram with 9 classes, 3 generalizations, 24
attributes, 10 associations, and 38 invariants. We conclude
with a discussion of related work and draw conclusions.

2. FROM DATA MODELS TO MSFOL
OCL is a contextual language. We call data models the

contexts supported by our mapping OCL2MSFOL. Data
models are a subclass of UML class diagrams. In partic-
ular, data models support generalizations, binary associa-
tions, and attributes either of primitive types Integer and
String or of class types. In Definition 1 (Appendix A) we
formally define our notion of data models.

Our mapping from OCL to MSFOL builds upon a base
mapping from data models to MSFOL theories, called o2fdata.
Let D be a data model. In a nutshell, o2fdata(D) contains:

• The sorts Int and String, whose intended meaning is
to represent the integer numbers and the strings.

• The constants nullInt, nullString, invalInt, and inval-
String, whose intended meaning is to represent null and
invalid for integers and strings.

• The sort Classifier, whose intended meaning is to rep-
resent all the objects in an instance of D, as well as
null and invalid for objects.

Figure 1: A data model for a basic social network.

• The sort Type, whose intended meaning is to represent
the type identifiers declared in D.

• For each class c in D, a unary predicate c, whose in-
tended meaning is to define the objects of the class c
in an instance of D

• For each attribute at in D, a function at, whose in-
tended meaning is to define the values of the attribute
at in the objects in an instance of D.

• For each binary association aso in D with association-
ends as (with multiplicity *) and as ′ (with multiplicity
*), a binary predicate as as ′, whose intended meaning
is to define the links through the association aso be-
tween objects in an instance of D.2

• The axioms that constrain the meaning of the afore-
mentioned sorts, constants, predicates, and functions.

In the following example we illustrate the mapping o2fdata.
A partial definition of o2fdata, which basically contains the
clauses required for the example below, is given in Defini-
tion 2 (Appendix A). The interested reader can find the full
definition of the mapping o2fdata in [12].

Example 1. Consider the data model SSN shown in Fig-
ure 1, which models a basic social network. Then, the MS-
FOL theory o2fdata(SSN) contains, among other elements:

• The constants nullClassifier and invalClassifier of sort
Classifier, along with the axiom:

¬(nullClassifier = invalClassifier).

• The constants nullInt and invalInt of sort Int, along
with the axiom:

¬(nullInt = invalInt).

2For associations with both association-ends with multi-
plicities 0..1, our mapping declares a function for each
association-end, instead of a predicate for the association.
Then, for associations with one association-end with multi-
plicity * and the other with multiplicity 0..1, our mapping
declares a binary predicate for the association-end with mul-
tiplicity * and a function for the one with multiplicity 0..1.



• The predicate Profile:Classifier→ Bool, along with the
axioms:

∀(x)(Profile(x) =⇒
¬(Photo(x) ∨ Status(x) ∨ Timeline(x) ∨ Post(x))).
¬(Profile(nullClassifier) ∨ Profile(invalClassifier)).

• The function age : Classifier → Int, along with the
axioms:

age(nullClassifier) = invalInt.
age(invalClassifier) = invalInt.
∀(x)(Profile(x) =⇒ ¬(age(x) = invalInt)).

• The predicate myFriends friendsOf:Classifier × Clas-
sifier → Bool, along with the axioms:

∀(x, y)(myFriends friendsOf(x, y)
⇔ (Profile(x) ∧ Profile(y))).

• The constants Posttype, Phototype, and Statustype of
sort Type, along with the axioms:

¬(Posttype = Phototype).
¬(Posttype = Statustype).
¬(Phototype = Statustype).

• The predicate oclIsKindOf : Classifier× Type→ Bool,
along with the axioms:

∀(x)(oclIsKindOf(x,Posttype)
⇔ (Post(x) ∨ Photo(x) ∨ Status(x))).
∀(x)(oclIsKindOf(x,Phototype)⇔ Photo(x)).
∀(x)(oclIsKindOf(x,Statustype)⇔ Status(x)).

3. FROM OCL TO MSFOL
OCL2MSFOL is designed for checking the satisfiability of

OCL constraints: it accepts as input OCL Boolean expres-
sions, and only deals with non-Boolean expressions inasmuch
as they appear as subexpressions of Boolean expressions.

The mappings o2ftrue, o2f false, o2fnull, and o2f inval.
In the presence of undefinedness, OCL Boolean expres-

sions can evaluate not only to true and false but also to null
or invalid. To cope with four Boolean values in a two-valued
logic like MSFOL, we define four mappings, namely, o2ftrue,
o2f false, o2fnull, and o2f inval, which formalize when a Bool-
ean expression evaluates to true, when to false, when to null,
and when to invalid. We define these mappings by structural
recursion. In the recursive case, when the subexpression is
a non-Boolean type, we call an auxiliary mapping, o2feval,
which we will discuss below. For now, it is sufficient to know
that o2feval returns a term when its argument is an expres-
sion of a class type or of type Integer or String, and that it
returns a predicate when its argument is an expression of a
set type.3

In the following examples we illustrate the recursive defi-
nitions of the mappings o2ftrue, o2f false, o2fnull, and o2f inval.
A partial definition of these mappings, which basically con-
tains the clauses required for the examples below, is given
in Appendix B. The interested reader can find the full defi-
nition of these mappings in [12].
3We assume that all non-Boolean subexpressions have either
a class type, a primitive type (either Integer or String), or a
set type.

Example 2. Consider the Boolean expression:

Profile.allInstances()→notEmpty().

Then,

o2ftrue(Profile.allInstances()→notEmpty())
= ∃(x:Classifier)(o2feval(Profile.allInstances())(x))
∧ ¬(o2f inval(Profile.allInstances()))

= ∃(x:Classifier)(o2feval(Profile.allInstances())(x))
∧ ¬(⊥).

Example 3. Consider the Boolean expression:

Profile.allInstances()→forAll(p|not(p.age.oclIsUndefined())).

Then,

o2f false(Profile.allInstances()
→forAll(p|not(p.age.oclIsUndefined())))

= ∃(p:Classifier)(o2feval(Profile.allInstances())(p)
∧ o2f false(not(p.age.oclIsUndefined()))

∧ ¬(o2f inval(Profile.allInstances()))),

where

o2f false(not(p.age.oclIsUndefined()))
= o2ftrue(p.age.oclIsUndefined())
= o2fnull(p.age) ∨ o2f inval(p.age)
= o2feval(p.age) = nullClassifier
∨ (o2fnull(p) ∨ o2f inval(p))

= o2feval(p.age) = nullClassifier
∨(p = nullClassifier ∨ p = invalClassifier).

Example 4. Consider the Boolean expression:

Profile.allInstances()→select(p|p.age.oclIsUndefined())
→notEmpty().

Then,

o2ftrue(Profile.allInstances()
→select(p|p.age.oclIsUndefined())→notEmpty())

= ∃(x:Classifier)(o2feval(Profile.allInstances()
→select(p|p.age.oclIsUndefined()))(x))

∧ ¬(o2f inval(Profile.allInstances()
→select(p|p.age.oclIsUndefined())))

= ∃(x:Classifier)(o2feval(Profile.allInstances()
→select(p|p.age.oclIsUndefined()))(x))

∧ ¬(o2f inval(Profile.allInstances()))
= ∃(x:Classifier)(o2feval(Profile.allInstances()

→select(p|p.age.oclIsUndefined()))(x))
∧ ¬(⊥).

The mapping o2feval.
In the definition of the mapping o2feval we distinguish

three classes of non-Boolean expressions. We explain be-
low the differences between these classes and illustrate the
mapping o2feval for the first two classes. A partial definition
of o2feval, which basically contains the clauses required for
the examples below, is given in Appendix C. The interested
reader can find the full definition of these mappings in [12].

The first class is formed by variables and by expressions
that denote primitive values and objects. Expressions denot-
ing primitive values and objects are basically the literals (in-
tegers or strings), the arithmetic expressions, the expressions



denoting operations on strings, and the dot-expressions for
attributes or association-ends with multiplicity 0..1. Vari-
ables are mapped to MSFOL variables of the appropriate
sort. Expressions denoting primitive values and objects are
mapped by o2feval following the definition of the mapping
o2fdata. The output of the mapping o2feval for this first class
of non-Boolean expressions is always an MSFOL term.

Example 5. Consider the non-Boolean expression:

p.age,

where p is a variable of type Profile. Then,

o2feval(p.age)
= age(o2feval(p)) = age(p),

where p is a variable of sort Classifier.

The second class of non-Boolean expressions is formed
by the expressions that define sets. These expressions are
basically the allInstances-expressions, the select and reject-
expressions, the including and excluding-expressions, the in-
tersection and union-expressions, and the collect-expressions.
Each expression expr in this class is mapped by o2feval to
a new predicate, denoted as [expr ]. This predicate formal-
izes the set defined by the expression expr and its definition
is generated by calling another mapping, o2fdef c, over the
expression expr .

Example 6. Consider the non-Boolean expression:

Post.allInstances().

Then,

o2feval(Post.allInstances())
= [Post.allInstances()],

where the new predicate

[Post.allInstances()]

is defined by o2fdef c as follows:

∀(x:Classifier)([Post.allInstances()]
⇔ (Post(x) ∨ Photo(x) ∨ Status(x))).

Example 7. Consider the non-Boolean expression:

Profile.allInstances()->select(p|p.age.oclIsUndefined).

Then,

o2feval(Profile.allInstances()
→select(p|p.age.oclIsUndefined()))

= [Profile.allInstances()→select(p|p.age.oclIsUndefined())],

where the new predicate

[Profile.allInstances()→select(p|p.age.oclIsUndefined())]

is defined by o2fdef c as follows:

∀(p:Classifier)([Profile.allInstances()
→select(p|p.age.oclIsUndefined())](p)

⇔
(o2feval(Profile.allInstances())(p)
∧ o2ftrue(p.age.oclIsUndefined())))

= ∀(p:Classifier)([Profile.allInstances()

→select(p|p.age.oclIsUndefined())](p)
⇔

[Profile.allInstances()](p)
∧ o2feval(p.age) = nullClassifier
∨ (p = nullClassifier ∨ p = invalClassifier))

= ∀(p:Classifier)([Profile.allInstances()
→select(p|p.age.oclIsUndefined())](p)

⇔
[Profile.allInstances()](p)
∧ age(p) = nullClassifier
∨ (p = nullClassifier ∨ p = invalClassifier)).

where the new predicate [Profile.allInstances()] is defined by
o2fdef c as follows:

∀(x:Classifier)([Profile.allInstances()]
⇔ Profile(x)).

The third class of non-Boolean expressions is formed by
the expressions that distinguish an element from a set. These
expressions are, basically, the any, max, and min-expressions.
Each expression expr in this class is mapped by o2feval to
a new function, denoted as [expr ], which represents the ele-
ment referred to by expr . To generate the axioms defining
[expr ], we call another mapping, o2fdef o, over expr .

In what follows we denote by o2fdef(expr) the set of ax-
ioms that result from applying o2fdef c and o2fdef o to the
corresponding non-Boolean subexpression in expr . Notice
that, in particular, for each literal integer i and literal string
st in expr , o2fdef o generates the following axioms:

o2fdfn o(i) = {¬(i = nullInt) ∧ ¬(i = invalInt)}.
o2fdfn o(st) = {¬(i = nullString) ∧ ¬(i = invalString)}

Current limitations of our mapping.
The key limitation of OCL2MSFOL comes from the fact

that expressions defining collections are mapped, as we have
explained, to predicates. Although these new predicates
are defined so as to capture the property that distinguishes
the elements belonging to the given collection, this is not
sufficient for reasoning about the size of this collection, or
about the multiplicity or the ordering of its elements. Be-
cause of this, OCL2MSFOL cannot support, in general, size-
expressions or expressions of collection types different from
set types. Fortunately, we are not finding this limitation hin-
dering the applicability of our mapping. Other limitations
of OCL2MSFOL are mostly due to time constraints, and
will be soon corrected, including the current lack of support
for attributes of type Boolean and for multiplicities of the
form [n..m], where n, m are natural numbers. In the first
case, the corresponding terms t of type Boolean would be
replaced by formulas of the form t = >. In the second case,
the data model would be extended with the corresponding
invariants. Finally, notice that it is also fairly trivial to ex-
tend our mapping to support n-ary associations.

4. CHECKING SATISFIABILITY
WebOCL2MSFOL [29] is a Java Web Application that im-

plements OCL2MSFOL. More specifically, it takes as input
a data model D and a set of D-constraints I, and returns a



file containing the following MSFOL theory:

o2fdata(D) ∪

( ⋃
inv∈I

o2fdef(inv)

)
(1)

∪

( ⋃
inv∈I

{o2ftrue(inv)}

)
Additionally, the user can introduce a D-Boolean expres-

sion expr and request WebOCL2MSFOL to map expr to
MSFOL using either o2ftrue, o2f false, o2fnull, or o2f inval. The
result will be a file containing the MSFOL theory (1) ex-
tended with the following axioms:

o2fdef(expr) ∪ {o2fmap(expr)}. (2)

where map is either true, false, null, or inval, depending on
the user’s choice.

The typical use case for WebOCLMSFOL is as follows.
Suppose a data-model D, with invariants I, and a Boolean
D-expression expr . Then, to check whether there exists a
valid instance of D in which expr evaluates to true, we do the
following: i) we input in WebOCL2MSFOL the data model
D, the set of invariants I, and the expression expr ; ii) we
select the option true; and iii) we input the file generated
by WebOCL2MSFOL into our SMT solver of choice. If the
SMT solver returns sat, then we know that such an instance
of D exists; if the SMT solver returns unsat then we know
that no such an instance of D exists; and, finally, if the
SMT solver returns unknown, then we know that it remains
unknown whether such an instance of D exists. The process
is entirely similar if we want to know whether there exists
a valid instance of D in which an expression expr evaluates
to false, null, or inval; the only difference is that, instead of
true, we will select, respectively, false, null, or inval.

To conclude this section we introduce a benchmark for
checking the satisfiability of OCL constraints, and report on
our results. All checks are ran on a laptop computer, with
an Intel Core i7 processor running at 3.1GHz with 8Gb of
RAM. As back-end theorem-provers, we use Z3 [13] (version
4.4.1), and CVC4 [6] (version 1.5-prerelease). In the case
of Z3, we use its default setting, but in the case of CVC4,
we use two different settings, namely, with and without the
option finite-model-find. In what follows, we refer to the
latter as CVC4 Finite Model (or CVC4fm, for short).

The data model for our benchmark is the basic social net-
work model shown in Figure 1. The Boolean expressions
that we consider in our benchmark are the following:

1. Profile.allInstances()→forAll(p|p.age>18)
2. Profile.allInstances()→exists(p|p.age<=18)
3. Profile.allInstances()→exists(p|p.age.oclIsUndefined())
4. Profile.allInstances()→exists(p|p.oclIsUndefined())
5. Profile.allInstances()→forAll(p|p.oclIsUndefined())
6. Profile.allInstances()→notEmpty()
7. Profile.allInstances()→collect(p|p.age)→asSet()

→exists(a|a.oclIsUndefined())
8. Profile.allInstances()→any(p|p.age>16).oclIsUndefined()
9. Profile.allInstances()→any(p|p.age>16).age.oclIsInvalid()
10. not(Profile.allInstances()

→any(p|p.age<16).age.oclIsInvalid())
11. Status.allInstances()→notEmpty()
12. Post.allInstances()→forAll(p|

Photo.allInstances()→exists(q|p.id=q.id))
13. Post.allInstances()→forAll(p|not(p.id.oclIsUndefined()))

14. Status.allInstances()→notEmpty()
15. Status.allInstances()→isEmpty()
16. Photo.allInstances()→notEmpty()
17. Photo.allInstances()→isEmpty()
18. Post.allInstances()→notEmpty()
19. Post.allInstances()→isEmpty()
20. Post.allInstances()

→forAll(p|Photo.allInstances()->exists(q|p.id=q.id))
21. Photo.allInstances()→forAll(p|p.oclIsKindOf(Post))
22. Photo.allInstances()→forAll(p|p.oclIsKindOf(Timeline))
23. Post.allInstances()→forAll(p|p.oclIsTypeOf(Timeline))
24. Post.allInstances()

→forAll(p|not(p.oclIsTypeOf(Post)))
25. 2.oclIsUndefined()
26. Post.allInstances()→forAll(p|

Post.allInstances()→forAll(q|p<>q implies p.id<>q.id)
27. Profile.allInstances()

→forAll(p|p.myFriends→notEmpty())

In Table 1 we show the result of checking, using We-
bOCL2MSFOL, the satisfiability of different subsets of our
benchmark’s Boolean expressions. We have grouped all our
checks in two tables: (1a) contains the checks related to un-
definedness, while (1b) contains the checks related to UML
generalization. In both cases, the first column indicates the
set of Boolean expressions to be checked for satisfiability;
the second column indicates the expected result, according
to our understanding of the semantics of OCL; and the third,
fourth, and fifth column indicate, respectively, the time (in
milliseconds) taken by CVC4, Z3, and CVC4 Finite Model
to return the expected result, or ‘—’, in the case they return
unknown. Notice that CVC4 Finite Model is able to return
the expected result in all cases, while Z3 and CVC4 return
unknown in some cases.

5. CASE STUDY
In this section we carry out a case study for checking

the efficiency of CVC4 Finite Model when reasoning about
UML/OCL using our mapping OCL2MSFOL.4

The data model for our case study, shown in Figure 2,
models a basic eHealth management system. It contains 9
classes, 3 generalizations, 24 attributes, and 10 associations.
It also contains 38 invariants, which can be grouped in the
5 categories:5

G1. Invariants stating the non-emptiness of certain classes.
For example, There must be at least one medical center.

MedicalCenter.allInstances()→notEmpty().

There are 9 invariants in this category, one for each
class in the data model: namely, MedicalCenter, De-
partment, Professional, Director, Doctor, Nurse, Refer-
ral, Patient, and ContactInfo.

G2. Invariants stating the definedness of certain attributes.
For example, The name of a professional cannot be
undefined.

4As discussed before, pure SMT solvers like Z3 or CVC4, i.e.,
SMT solvers without finite model finding capabilities, typi-
cally return unknown when checking the satisfiability of non-
trivial OCL constraints using our mapping OCL2MSFOL.
5Notice that the given set of invariants is not intended to be
complete.



CVC4 Z3 CVC4fm

{1,2} unsat 161 24 48

{1,3} unsat 173 13 22

{2,3} sat — 16 25

{4} unsat 138 15 27

{5} sat — 17 22

{5,6} unsat 172 13 30

{1,7} unsat 237 14 30

{1,8} sat — 18 25

{1,6,8} unsat 198 16 26

{1,9} sat — 18 25

{1,6,9} unsat 200 19 29

{1,10} unsat 203 18 30

{12} sat — 169 27

{11,12,13} sat — 24 174

(a) Undefinedness-related (times in ms)

CVC4 Z3 CVC4fm

{14,20} sat — 105 28

{16,20} sat — 466 32

{17,20} sat — 14 22

{14,17,20} unsat 239 13 26

{16,19} unsat 168 16 28

{21} sat — 17 27

{22} sat — 199 24

{16,22} unsat 149 18 25

{16,23} unsat 148 16 26

{15,17,18,24} unsat 250 15 35

{25} unsat 63 58 24

{11,12,13,18} sat — — 27

{6,27} sat — — 26

{11,12,13,18,26} unsat 352 13 25

(b) Generalization-related (times in ms)

Table 1: Checking satisfiability of OCL constraints.

Professional.allInstances()
→forAll(p|not(p.name.oclIsUndefined())).

There are 11 invariants in this category, stating the de-
finedness of the attributes name (MedicalCenter), city
(MedicalCenter), country (MedicalCenter), director (Me-
dicalCenter), name (Department), name (Professional),
surname (Professional), login (Professional), password
(Professional), contactInfo (Patient), and license (Nurse),

G3. Invariants stating the uniqueness of certain data with
respect to certain attributes. For example, There can-
not be two different doctors with the same medical li-
cense number.

Doctor.allInstances()→forAll(d1|
Doctor.allInstances()→forAll(d2|

not(d1=d2) implies not(d1.license=d2.license)).

There are 5 invariants in this category, stating the
uniqueness of certain data with respect to different at-
tributes. In particular, data of the class MedicalCenter,
when considering together address, zipCode, city, and
country; data of the class Professional, with respect to
login; data of the class Doctor, with respect to license;
data of the class Nurse, with respect to license; and
data of the class Referral, when considering together
patient, referringTo, and referredBy.

G4. Invariants stating the non-emptiness of certain associ-
ation-ends. For example, Every medical center should
have at least one employee.

MedicalCenter.allInstances()
→forAll(m|m.employees→notEmpty()).

There are in total 6 invariants in this category, stat-
ing the non-emptiness of the association-ends employ-
ees (MedicalCenter), belongsTo (Department), doctors
(Department), nurses (Department), patient (Referral),
referredBy (Referral), doctor (Patient), and department
(Patient).

G5. Other invariants: namely,

• A patient should be treated in a department where
his/her doctor works.

Patient.allInstances()→forAll(p|
p.doctor.departments→exists(d|d=p.department))

• A professional cannot have an empty string as
password.

Professional.allInstances()→forAll(p|
not(p.password = ‘’))

• A professional cannot have an empty string as lo-
gin.

Professional.allInstances()→forAll(p|
not(p.login = ‘’))

• If a doctor’s status is ‘unavailable’, then he/she
should have a substitute different from him/herself.

Doctor.allInstances()→forAll(d|
d.status=‘unavailable’ implies

(not(d.substitutedBy.oclIsUndefined() or
d.substitutedBy = d)))

• If doctor’s status is ‘available’, then he/she should
not have any substitute.

Doctor.allInstances()→forAll(d|
d.status=‘available’ implies

d.substitutedBy.oclIsUndefined())

• If a doctor is a substitute of other doctors, his/her
status should be ‘available’.

Doctor.allInstances()→forAll(d|
d.substitutions→notEmpty() implies

d.status=“available”)

• If a referral indicates both the patient and the doc-
tor whom the patient is referred to, then the doc-
tor who is referring the patient cannot be the same
than the doctor whom the patient is referred to.



Figure 2: EHR: a data model for a basic eHealth Record Management System.

Referral.allInstances()→forAll(r|
not(r.patient.oclIsUndefined() and

r.referringTo.oclIsUndefined()) implies
not(r.referringTo = r.referredBy))

In what follows we report on the results obtained in our
case study. The first experiment we carried out was to check
whether there exists an instance of the case study’s data
model satisfying all the given invariants. Using CVC4 Finite
Model we obtained the answer in 6 seconds. In particular,
we show in Figure 3 the valid instance of the case study’s
data-model automatically generated by CVC4 Finite Model.

The second experiment consisted in checking whether there
exists a valid instance of the case study’s data model for
which the following also holds:

• There exists only one doctor and his/her status is “un-
available”.

Doctor.allInstances()→exists(d1|
d1.status=’unavailable’ and

Doctor.allInstances()→forAll(d1|d1=d2)).

Using CVC4 Finite Model we obtained unsat in about 4
seconds. This is the expected result, since there is an invari-
ant stating that “if a doctor’s status is ‘unavailable’, then
he/she should have a substitute different from him/herself.”

Finally, the third experiment consisted in checking whether
there exists a valid instance of the case study’s data model
for which the following holds:

• There exists only one doctor

Figure 3: Automatically generated instance of the
case study’s data model satisfying all the invariants.



Mapping Target formalism

G1
FiniteSAT [19] System of Linear Inequalities

DL [5] Description Logics, CSP
MathForm [28] Mathematical Notation

G2

UMLtoCSP [9] CSP
EMFtoCSP [16] CSP

AuRUS [22] FOL
OCL2FOL [10] FOL
OCL-Lite [21] Description Logics
BV-SAT [27] Relation Logic

PVS [23] HOL
CDOCL-HOL [2] HOL

KeY [1] Dynamic Logic
Object-Z [25] Object-Z
UML-B [20] B

G3
UML2Alloy [3] Relation Logic

USE [15] Relation Logic

G4
HOL-OCL [8] HOL

OCL2FOL+ [11] FOL

Table 2: Other mappings from UML/OCL to other
formalism.

Doctor.allInstances→exists(d1|
Doctor.allInstances→forAll(d2|d1=d2)).

Using CVC4 Finite Model we obtained sat in 7 seconds.
This may be an unexpected result, since there is an invari-
ant stating that “that there must be at least one referral”
and there is another invariant stating that “if a referral has
defined both the patient and the doctor to whom the pa-
tient is referred to, then the doctor referring the patient
cannot be the same than the doctor the patient is referred
to”. However, the result returned by CVC4 Finite Model is
correct, since there is no invariant stating that every referral
has defined the doctor to whom the patient is referred to.
Therefore, it is certainly possibly a valid instance of the case
study’s data model basically containing only one doctor and
only one referral in which the doctor to whom the patient is
referred to is not defined. This is in fact the instance auto-
matically generated by CVC4 Finite Model when returning
sat in this experiment. Of course, if we want to “correct”
this, we can simply add to the case study’s data model the
following invariant:

Referral.allInstances()→forAll(r|
not(r.referringTo.oclIsUndefined()))

Then, if we run again the experiment, the answer returned
by CVC4 Finite Model, in about 4 seconds, is unsat.

6. RELATED WORK
In Table 2 we summarize the mappings from UML/OCL

to other formalism proposed in the past. They are grouped
as follows. The first group (G1) includes mappings that do
not not support OCL constraints. FiniteSAT [19] uses con-
strained generalization sets for reasoning about finite satisfi-
ability of UML class diagrams. DL [5] encodes the problem
of finite model reasoning in UML classes as a constraint sat-
isfaction problem (CSP). MathForm [28] formalizes UML
class diagrams using set and partial functions.

The second group (G2) includes mappings that support
OCL constraints, but that do not consider OCL undefined-

ness. UMLtoCSP [9] translates UML class diagrams and
OCL constraints into CSP. EMFtoCSP [16] is an evolution
of UMLtoCSP, which supports EMF models; AuRUS [22,
26] supports verifying and validating UML/OCL conceptual
schemes using first-order logic; OCL2FOL [10] also maps
UML/OCL class diagrams to first-order logic. OCL-Lite [21]
maps a fragment of OCL to DL, ensuring termination. BV-
SAT [27] encodes UML/OCL into bit vectors, and solves
UML/OCL verification problems based on Boolean satisfi-
ability. PVS [23] and CDOCL-HOL [2] uses higher-order
logic: in particular, they map UML/OCL to the specifi-
cation languages of the theorem provers PVS and Isabelle,
respectively. KeY [1] uses dynamic logic, a multi modal ex-
tension of first-order logic; Object-Z [25] maps UML/OCL
into Object-Z; and finally UML-B [20] maps UML/OCL to
the B formal specification.

The third group (G3) includes mappings that support OCL
constraints and consider null-related undefinedness, but not
invalid-related undefinedness. UML2Alloy [3] and USE [15,
18] map UML/OCL to relational logic and use the SAT-
based constraint solver KodKod for solving UML/OCL ver-
ification problems.

The fourth group (G4) includes mappings that support
OCL constraints and OCL undefinedness. OCL2MSFOL be-
longs to this group. OCL-HOL [8] embeds UML/OCL in the
specification language of the interactive theorem provers Is-
abelle. It supports the full OCL language, but it requires
advanced user interaction to solve UML/OCL verification
problems. OCL2FOL+ [11] maps UML/OCL to first-order
logic and uses SMT solvers to attempt to solve automatically
UML/OCL verification problems.

Next, we compare more closely OCL2MSFOL with the
mappings in groups G3 and G4, and, in particular, with
USE and HOL-OCL, from a practical point of view. In [14],
USE is used to analyse four UML/OCL case studies. For
the sake of space limitation, we discuss here only one case
study, called CivilStatus (the others case studies are similar
in size and complexity). The CivilStatus’ data model con-
tains only one class, Person, with 4 attributes, name, gender
(either Male or Female), civilStatus (either Single, Married,
Divorced, and Widowed), and spouse, and a self-association,
marriage. The CivilStatus’ invariants are: i) all persons have
a defined name, gender, and civilStatus; ii) each person have
a unique name; iii) Female-persons are not married with Fe-
male-persons, iv) Male-persons are not married with Male-
persons, and v) every person has a spouse if and only if
his/her civilStatus is Married. The analyses proposed in [14]
are of four types: (1) consistency analysis, which basically
corresponds to satisfiability checking in our setting; (2) in-
variants independence analysis, which in our setting corre-
sponds to checking, for each invariant, that there exists at
least a valid instance of the data model in which the rest
of the invariants evaluate to true, while the given invariant
evaluates to false; (3) consequence analysis, which in our set-
ting corresponds to checking that every valid instance of the
data model satisfies the given property; and (4) large state
analysis, which in our setting corresponds to satisfiability
checking with additional invariants defining the given “large
state”. As part of this related work, we have done the four
aforementioned analysis using WebOCL2MSFOL with the
following results:6 (1) it proves that the model is consistent

6More information can be found at http://software.imdea.



in less that 1 second; (2) it proves that the invariants are
independent; each analysis takes less than 1 second; (3) it
proves, in less that 1 second, that the model is bigamy-free,
i.e., that no person can be married with both Male-person
and a Female-person. (5) it proves, in about 6 seconds, that
there is a valid instances of the model with 5 Female-persons,
7 Male-persons, and 4 marriage-links. Notice that, in con-
trast with USE, we prove in (4) that the model is bigamy-free
for all possible instances, and not only for instances up to a
given size. This is indeed the key advantage of using SMT-
solvers instead of SAT-based constraint solvers for reasoning
about UML/OCL models.

With regard to HOL-OCL, there are two significant dif-
ferences. On the one hand, HOL-OCL uses an interactive
theorem prover, Isabelle, for UML/OCL reasoning, which
requires advanced knowledge (and possibly time) from the
part of the user. OCL2MSFOL, on the contrary, uses SMT
solvers with finite model finding capabilities, which, as we
have shown, efficiently support automated UML/OCL rea-
soning. On the other hand, HOL-OCL supports the full
OCL language (in fact, it can be considered as providing
’de facto’ formal semantics for OCL), while OCL2MSFOL
has a number of limitations, as we have discussed before, in
supporting the OCL language.

7. CONCLUSION
In this paper we have proposed a mapping, called OCL2-

MSFOL, from UML/OCL to many-sorted first-order logic
(MSFOL) that supports the direct use of SMT solvers with
finite model finding capabilities for automatically reason-
ing about UML/OCL models. We have also reported on a
non-trivial case study, which shows that our mapping is also
practical. However, the reader should not forget that our
results ultimately depend on the (hard-won) positive logi-
cal interaction between (i) our formalization of UML/OCL
in MSFOL, and (ii) the heuristics implemented in the SMT
solver. This means, in particular, that changes in the SMT
solver’s heuristics may have consequences (hopefully posi-
tive) in the applicability of OCL2MSFOL. It also means that
a deeper understanding from our part of the SMT solver’s
heuristics may lead us to redefine OCL2MSFOL.
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APPENDIX
A. DATA MODELS

Definition 1. A data model D is a tuple 〈C,CH ,AT , AS ,
ASO , MU 〉 such that:

• C is a set of class identifiers.

• CH is a binary relation, CH ⊆ C × C, where (c, c′) ∈
CH represents that c is a subclass of c′, also denoted
as c ≺ c′.

• AT is a set of triples 〈at , c, t〉, also denoted as at(c,t),
where at is an attribute identifier, c ∈ C, t ∈ C ∪
{Integer, String}, and c and t are, respectively, the class
and the type of the attribute at .

• AS is a set of tuples 〈as, c, c′〉, also denoted as as(c,c′),
where as is an association-end identifier, c, c′ ∈ C, and
c and c′ are, respectively, the source and the target
classes of as.

• ASO is a symmetric relation, ASO ⊆ AS ×AS , where
(as(c,c′), as ′(c′,c)) ∈ ASO represents that as ′ is the asso-
ciation-end opposite to as, and vice versa.

• MU is a set of tuples 〈as(c,c′),mu〉, where as(c,c′) ∈ AS ,
and mu ∈ {0..1, ∗} represents the multiplicity of the
association-end as(c,c′).

We assume that data models satisfy the following proper-
ties: there is no class whose identifier is Integer or String;
attributes and associations-ends have different identifiers;
there are no cycles in the class hierarchy; and association-
ends are related with exactly another association-end and
with exactly one multiplicity.

Definition 2. Let D be a data model 〈C,CH ,AT ,AS ,
ASO , MU 〉. Then, o2fdata(D) is an MSFOL theory, which
is partially defined below. The interested reader can find
the full definition of o2fdata(D) in [12].

• It declares two sorts, Classifier and Type, to represent
the OCL types Classifier and Type. It also declares two
sorts, Int and String, to represent the integer numbers
and the strings. 7

• It declares two constants of sort Classifier, nullClassifier
and invalClassifier, to represent, the values null and in-
valid of type Classifier. In addition, it includes the fol-
lowing axiom:

¬(nullClassifier = invalClassifier).

Similarly for the type Type.

• It declares two constants of sort Int, nullInt and invalInt,
to represent, respectively, the values null and invalid of
the primitive data-type Integer. In addition, it includes
the following axiom:

¬(nullInt = invalInt).

Similarly for the primitive data-type String.

• For each class c ∈ C, it declares a predicate c: Classifier
→ Bool, to represent the objects of type c. In addition,
it includes the following axioms:

∀(x:Classifier)(c(x)⇒ ¬(
∨

c′∈(C\{c}) c
′(x))).

¬(c(nullClassifier) ∨ c(invalClassifier)).

• For each attribute at(c,Integer), it declares a function at :
Classifier → Int. In addition, it includes the following
axioms:

∀(x:Classifier)((
∨

s�c(s(x)))⇒ at(x) 6= InvalInt).

at(nullClassifier) = InvalInt.
at(invalClassifier) = InvalInt.

• For each association between two classes c and c′, with
association-ends as(c,c′) and as ′(c′,c), such that 〈as(c,c′),
∗〉, 〈as ′(c′,c), ∗〉 ∈ MU , it declares a predicate as as ′:
Classifier × Classifier → Bool. In addition, it includes
the following axiom:

∀(x:Classifier, y:Classifier)
(as as ′(x, y)⇒ ((

∨
s�c(s(x))) ∧ (

∨
s′�c′(s

′(y))))).

• For each class c ∈ C, it declares a constant ctype of sort
Type. In addition, it includes the following axiom:∧

c′∈C\{c} ¬(ctype = c′type).

• It declares two predicates OclIsTypeOf, OclIsKindOf:
Classifier×Type→Bool. In addition, for each class c ∈
C, it includes the following axioms:

∀(x:Classifier)
(OclIsTypeOf(x, ctype)⇔ c(x)).

∀(x:Classifier)
(OclIsKindOf(x, ctype)⇔

∨
s�c(s(x))).

7We assume that Int and String are declared with the stan-
dard operations and semantics.



B. BOOLEAN EXPRESSIONS
Let expr be an expression. In what follows, we assume,

without loss of generality, that each iterator in expr in-
troduces a different iterator variable. Moreover, we de-
note by fVars(expr) the sequence formed by the free vari-
ables in expr , sorted alphabetically. Finally, we denote by
App(P, (x1, . . . , xn), y) the atomic formula P (x1, ..., xn, y),
and we denote by App(f, (x1, . . . , xn)) the term f(x1, ..., xn).

Definition 3. Let expr be an expression. Then,

o2ftrue(expr .oclIsUndefined()) =
o2fnull(expr) ∨ o2f inval(expr).

o2f false(expr .oclIsUndefined()) =
¬(o2fnull(expr) ∨ o2f inval(expr)).

o2fnull(expr .oclIsUndefined()) = ⊥.

o2f inval(expr .oclIsUndefined()) = ⊥.

Definition 4. Let expr be an expression of the appropriate
type. Then,

o2ftrue(expr→notEmpty()) =
∃(x)(App(o2feval(expr), fVars(expr), x))
∧ ¬(o2f inval(expr)).

o2f false(expr→notEmpty()) =
∀(x)(¬(App(o2feval(expr), fVars(expr), x))
∧ ¬(o2f inval(expr)).

o2fnull(expr→notEmpty()) = ⊥.

o2f inval(expr→notEmpty()) = o2f inval(expr).

Definition 5. Let src and body be expressions of the ap-
propriate types. Then,

o2ftrue(src→forAll(x | body)) =
∀(x)(App(o2feval(src), fVars(src), x)⇒ o2ftrue(body))
∧¬(o2f inval(src)).

o2f false(src→forAll(x | body)) =
∃(x)(App(o2feval(src), fVars(src), x) ∧ o2f false(body))
∧¬(o2f inval(src)).

o2fnull(src→forAll(x | body)) =
¬ o2f inval(src)
∧ ∃(x)(App(o2feval(src), fVars(src), x) ∧ o2fnull(body))
∧ ∀(x)(App(o2feval(src), fVars(src), x)
⇒ (o2ftrue(body) ∨ o2fnull(body).

o2f inval(src→forAll(x | body)) =
o2f inval(src)
∨ ∃(x)(App(o2feval(src), fVars(src), x) ∧ o2f inval(body))
∧ ∀(x)(App(o2feval(src), fVars(src), x)
⇒ (o2ftrue(body) ∨ o2fnull(body) ∨ o2f inval(body))).

C. NON-BOOLEAN EXPRESSIONS
In what follows, for t a type, NullOf(t) = nullClassifier

if t is a class type, NullOf(t) = nullInt if t = Integer, and
NullOf(t) = nullString if t = String. Similarly, InvalOf(t) =
invalInt if t is a class type, InvalOf(t) = invalInt if t =
Integer, and InvalOf(t) = invalString if t = String.

Definition 6. Let v be a variable of type t. Then,

o2feval(v) = v.

o2fnull(v) = (v = NullOf(t)).

o2f inval(v) = (v = InvalOf(t)).

Definition 7. Let i be an integer. Then,

o2feval(i) = i.

o2fnull(i) = ⊥.

o2f inval(i) = ⊥.

Definition 8. Let at be an attribute of type t and let expr
be an expression of the appropriate type. Then,

o2feval(expr .at) = at(o2feval(expr)).

o2fnull(expr .at) = (o2feval(expr .at) = NullOf(t)).

o2f inval(expr .at) = o2fnull(expr) ∨ o2f inval(expr).

Definition 9. Let c be a class. Then,

o2feval(c.allInstances()) = [c].

o2fdef c(c.allInstances()) =
{∀(x)(App([c], ∅, x)⇔ (

∨
s�c(s(x))))}.

o2fnull(c.allInstances()) = ⊥.

o2f inval(c.allInstances()) = ⊥.

Definition 10. Let src and body be expressions of the ap-
propriate types. Then,

o2feval(src→select(x|body)) = [src→select(x|body)]

and

o2fdef c(src→select(x|body)) =
{∀(~y)(∀(x)(App([src→select(x|body)], ~y, x)
⇔

App(o2feval(src), fVars(src), x) ∧ o2ftrue(body)))}.

where ~y = fVars(src→select(x | body)).

o2fnull(src→select(x|body)) = ⊥.

o2f inval(src→select(x|body)) = o2f inval(src).


