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Abstract In this paper we introduce a SQL-PL code
generator for OCL expressions that, in contrast to other
proposals, is able to map OCL iterate and iterator ex-
pressions thanks to our use of stored procedures. We ex-
plain how the mapping presented here introduces key
di↵erences to the previous version of our mapping in
order to i) simplify its definition, ii) improve the evalu-
ation time of the resulting code, and iii) consider OCL
three-valued evaluation semantics. Moreover, we have
implemented our mapping to target several relational
database management systems (RDBMS), i.e., MySQL,
MariaDB, PostgreSQL, and SQL server, which allows
us to widen its usability and to benchmark the evalua-
tion time of the SQL-PL code produced.

1 Introduction

Model building is at the heart of system design. This is
true in many engineering disciplines and is increasingly
the case in software engineering. Model-driven engineer-
ing (MDE) [16] is a software development methodol-
ogy that focuses on creating models of di↵erent system
views from which system artifacts such as code and con-
figuration data are automatically generated.This vision
has already produced results that are available for in-
dustrial practice, but these results are only partial and
specific to certain domains and languages.

The best possible scenario occurs when a source
modeling language can be perfectly linked to a target
language of election. Namely, a well defined mapping
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bridges the gap between the source and the target lan-
guage. Otherwise, manual encoding of the system de-
sign is cumbersome and error prone. Moreover, keeping
the resulting code and the design views synchronized
is very di�cult since any changes in each of them will
require manual changes to the other part.

In this setting, we provide the definition of a map-
ping comes to bridge the gap between chosen source and
target languages with the aim of saving the e↵ort and
exposition to errors that a manual translation conveys.
More concretely, we introduce a SQL-PL1 code genera-
tor for OCL expressions. Namely, our source language
is the Object Constraint Language (OCL) [23] that is
used to express constraints and queries using a textual
notation on UML models. Our target language is the
procedural language (PL) extension to the Structured
Query Language (SQL). SQL is a special-purpose pro-
gramming language designed for managing data in re-
lational database management systems (RDBMS). The
purpose of PL for SQL is to combine database language
and procedural programming language.

A variety of applications arises for a mapping from
OCL to SQL expressions. Among others, there are three
prominent types. These are i) evaluation of OCL ex-
pressions (analysis queries and metrics) on large model’s
instances, (in line with the discussions in [6,19]) ii) iden-
tification of constraints during data modeling that have
to be checked as integrity constraints on actual data
(in line with the discussion in [25]); iii) automatic code
generation from models (in line with the discussion in
[2]).

In the past, we explored other strategies to address
i) and contribute to iii). To address i) we built EOS, an

1 Please, notice that in this paper SQL-PL stands simply
for SQL Procedural Language. It is not bound to any propri-
etary PL dialect.
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e�cient Java component for OCL evaluation [6]. More-
over, we contributed our previous OCL to MySQL map-
ping to advance iii). It was used as a key component of a
toolkit [2] that automatically generated ready-to-deploy
web applications for secure data management from de-
sign models. The security policies that the toolkit han-
dled were written in SecureUML [3] over a data model.
SecureUML extends role-based access control policies
with dynamic authorization constraints that have to
be evaluated at runtime. Our component was used to
map and evaluate these OCL constraints specified in
the SecureUML policies.

OCL is an OMG [23] and ISO standard [14] spec-
ification language. As part of UML, it was originally
intended for modeling properties that could not be eas-
ily or naturally captured using graphical notation (e.g.,
class invariants in a UML class diagram).

SQL is also an ISO standard [31]. However, SQL
full standard is divided into several parts dealing with
di↵erent aspects of the language or its processing. Also,
di↵erent RDBMS implement certain syntactic varia-
tions to the standard SQL notation. Thus, we had to
adapt the implementation of our mapping to each of
them. As implementation targets we selected MariaDB
[17], PostgreSQL [27], and MS SQL Server [18]. Also, we
kept MySQL [20] which was our first target. MariaDB
and PostgreSQL were selected because they are open
source and widely used by developers. MS SQL server
was selected to be able to compare evaluation time from
open source to commercial RDBMS. Yet, it is in our
roadmap to implement our mapping into other com-
mercial engines like Oracle 12c or the Adaptive Server
Enterprise/Anywhere RDBMS by Sybase, among oth-
ers. Our code generator is defined recursively over the
structure of OCL expressions and it is implemented in
the SQL-PL4OCL tool that is publicly available at [10].
In the following sections, we discuss the structure of
the code produced by our new mapping, provide ex-
amples, and benchmark query evaluation time in Mari-
aDB, MySQL, PostgreSQL, and MS SQL Server.

The seminal work of the mapping presented here can
be found in [13,9]. The key idea that enables the map-
ping from OCL iterator expressions to iterative stored
procedures remains the same, but the work detailed in
this paper introduces a novel mapping from OCL ex-
pressions to SQL-PL stored procedures.

The most remarkable di↵erences are stated in Re-
mark 1.

Remark 1 Key di↵erences to our previous mapping

i. Each OCL expression, either non-iterator or (nested)
iterator expression is mapped into just one stored
procedure.

ii. The evaluation of the source OCL expression once
mapped is retrieved by executing exactly one call-

statement. This call-statement provokes the execu-
tion of the procedure and, in particular, the execu-
tion of an SQL query written in the last part of the
outermost block of the procedure that retrieves the
evaluation of the OCL expression.

iii. We only use temporary tables for intermediate and
final values’ storage. Final values’ tables hold the
resulting value of a query execution.

iv. We have adapted our mapping to deal with the
three-valued semantics of OCL.

Decisions (i) and (ii) have facilitated the recursive def-
inition of the code generator and simplifies its defini-
tion. Decision (iii) has significantly decreased the time
required for the evaluation of the code generated. Fea-
ture (iv) enables to deal properly with the three-valued
evaluation semantics of OCL. In addition, our original
work and implementation was intended only for the pro-
cedural extension of MySQL, while our new definition
eased the implementation of the mapping into other re-
lational database management systems. In turn, we can
now evaluate the resulting code using di↵erent RDBMS,
which permits us to widen our discussion regarding e�-
ciency in terms of evaluation-time of the code produced
by SQL-PL4OCL tool.

Organization

In Section 2 we explain the basics about the source
and target languages of our mapping, namely, OCL and
SQL-PL. In Section 3 we explain how OCL contextual
models are mapped to databases’ schemas and records.
In Section 4 we summarize the main ideas behind our
mapping definition and explain the expected new struc-
ture of the PL blocks of code. Section 5 provides details
about the definition that map OCL to SQL-PL expres-
sions. In Section 6 we explain the architecture of the
SQL-PL4OCL tool, how syntactic variations among the
DBMS are tackled, and benchmark the times obtained
by evaluating examples into the di↵erent engines. Fi-
nally, Sections 7 and 8 discuss related work, future work
and conclusions.

2 Background

Data Models

We use a strict subset of UML class diagrams for model-
ing the data. This restricted modeling language is used
as the contextual model for OCL. It essentially pro-
vides a simplified subset of UML class models where
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classes can be related by associations and may have at-
tributes. Also, classes may be related by generalization
relationships. Attributes may have either primitive or
class types and association-ends have class types.2 As
expected, the type of an attribute is the type of the at-
tribute values, and the type associated to an association-
end is the type of the objects which may be linked at
this end of the association.

Object Constraint Language (OCL): Constraints and
Queries

The Object Constraint Language (OCL) [14] is a pure
specification language, also considered as a textual mod-
eling language. In fact, OCL expressions are always
written in the context of a model, and they are evalu-
ated on scenarios of this model. This evaluation returns
a value but does not change anything of the model: OCL
is a side-e↵ect free language. OCL can be used as a con-
straint language and as a query language, i.e., OCL can
be used to analyse models and to validate them over se-
lected scenarios or concrete system states as well as to
launch arbitrary queries upon models.

We summarize next the main elements of the OCL
language which are used in this paper. OCL is a strongly
typed language. Expressions either have a primitive type
(namely, Boolean, Integer, Real, and String), a class type,
or a collection type (built up on a element type that
may be either a primitive type or a class type). OCL
distinguishes three di↵erent collection types: Set, Se-
quence, OrderedSet and Bag. Set means a mathemati-
cal set. It does not contain duplicate elements. A Bag
is like a Set, which may contain duplicates (it corre-
sponds to the mahematical structure multiset); that is,
the same element may be in a bag twice or more times.
A Sequence is like a Bag in which the elements are or-
dered. Both Bags and Sets have no order defined on
them. OCL provides the standard operators on primi-
tive types and on collections. For example, the opera-
tor includes checks whether a given object is part of a
collection, and the operator isEmpty checks whether a
collection is empty. Furthermore, OCL provides a dot-
operator to navigate to the properties of the objects,
i.e., objects’ attributes and association-ends, and to ac-
cess some operations. For example, let u be an object
of the class Car. Then, the expression u.model refers
to the value of the attribute model for the Car u, and
the expression u.owners refers to the objects linked to
the Car u through the association-end owners. In addi-
tion, OCL provides the operator allInstances to retrieve

2 We only consider binary associations and we do not con-
sider attributes of entity or collection types.

all instances of a class. For example, the expression
Car.allInstances() refers to all the objects of the class
Car. Finally, OCL provides operators to iterate on col-
lections as forAll, exists, select, reject, one, and collect.
E.g., Car.allInstances()�>select(u|u.model=’BMW’) re-
fers to the collection of objects of the class Car whose
attribute model has the value ‘BMW’.

2.1 Structured Query Language (SQL): Queries and
Stored Procedures

The Structured Query Language (SQL) is a special-
purpose programming language designed for manag-
ing data in relational database management systems
(RDBMS). Originally based upon relational algebra and
tuple relational calculus, its scope includes data insert,
query, update and delete, schema creation and modifi-
cation, and data access control. Accordingly, SQL com-
mands can be divided into two: the Data Definition
Language (DDL) that contains the commands used to
create and destroy databases and database objects; and
the Data Manipulation Language (DML) that can be
used to insert, delete, retrieve and modify the data
stored in databases. Although SQL is to a great ex-
tent a declarative language, it also includes procedural
elements.

Currently, SQL corresponds to an ISO standard [31].
However, issues of SQL code portability between major
RDBMS products still exist due to lack of full compli-
ance with, or di↵erent interpretations of, the standard.
Among the reasons mentioned are the large size and in-
complete specification of the standard, as well as ven-
dor lock-in. For the work presented in this paper, we
actually use as a target language a procedural exten-
sion of SQL which was originally developed by Oracle
Corporation in the early 90’s to enhance the capabil-
ities of SQL. It was later adopted by other RDBMS.
Namely, PL/pgSQL in PostgreSQL, stored procedures
in MySQL and MariaDB, or TransactSQL (T-SQL) in
SQL Server.

In particular, the procedural extensions to SQL sup-
port stored procedures which are routines (like a sub-
program in a regular computing language) that are sto-
red in the database. The procedural extension to SQL
allows sending an entire block of statements to the
database at one time within a stored procedure. A stored
procedure has a name, may have a parameter list, and
a SQL statement, which can contain many other SQL
statements. The procedural languages are designed to
extend the SQL’s abilities while being able to integrate
well with SQL. Yet, stored procedures cannot be called
within SQL queries.
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program_name()

...

;

;

...

;

Fig. 1: Nested blocks structure in Stored Procedures

Stored procedures provide a special syntax for local
variables, error handling, loop control, if-conditions and
cursors, and flow control which allow the definition of it-
erative structures. Within stored programs, begin-end
blocks are used to enclose multiple SQL statements,
namely, to write compound statements. A block con-
sists of various types of declarations (e.g., variables,
cursors, handlers) and program code (e.g., assignments,
conditional statements, loops). The order in which these
can occur in a routine body is the following 1) variable
and condition declarations; 2) cursor declarations; 3)
handler declarations; 4) program code.

Moreover, begin-end blocks have two other features
that are particularly useful in our case: (i) begin-end
blocks can be nested; (ii) variables declared in outer
begin-end blocks are visible in the inner blocks at any
level of depth. Both of these features are crucial in our
mapping to easily and recursively map OCL expres-
sions that contain nested operators expressions. Fig-
ure 1 gives an idea of the structure that nested blocks
adopt within stored procedures. Another case is OCL
sequential operators; in such case, these are mapped
into sequential blocks. Figure 2 gives an idea of the
structure that sequential blocks adopt within stored
procedures. Futhermore, we can have a combination
of sequential and nested operators, in that case, the
stored procedure will have a combination of sequencial
and nested blocks. Finally, to invoke a stored procedure,
we use the call statement; i.e. the routines showed in
the Figure 1 or Figure 2, are invoked by the following
statement:

program_name

3 Mapping Data Models to databases

In this section, we will explain how a restricted subset
of UML class diagrams (i.e., data models) and object
diagrams are mapped to SQL-PL tables by our code
generator. We will introduce first how we map OCL

program_name()

...

;

...

...

;

...

;

Fig. 2: Sequencial blocks structure in Stored Procedures

types to SQL-PL types. Second, we will detail the def-
inition of our code generator.

3.1 A brief description of the relation between OCL
and SQL type systems

OCL is a contextual language which takes syntactic
constructs from its contextual model. But, indepen-
dently of the contextual model, the OCL type system
contains the primitive types Boolean, Integer, Real and
String. Our code generator maps these types to the fol-
lowing SQL types: Boolean, Int, Real, and Varchar(
250), respectively. When the contextual model for the
OCL expressions is a structural model, like our data
model, the OCL type system also contains one class
type for each class specified in the class diagram. In
this section, we will also explain how our code gener-
ator maps UML class types to SQL tables. Collection
types are also present in OCL, for instance, Set, Bag,
OrderedSet, and Sequence that may take as a parameter
a primitive type, or a class type, e.g., Set(Integer). These
types do not have a direct mapping to SQL since SQL
type system does not have collection types. However,
the result of an OCL query may be a collection of ele-
ments, and the execution of the code generated in SQL
to translate this OCL query will also return a collection
of elements. Collection of collections are also possible
in OCL. These are collection types taking as parame-
ter another collection type, for example, Bag(Set(Car)).
We decided not to map collection of collections to SQL
since the complexity added to our code generator would
be major and, on the other hand, they are di�cult to
use by designers or developers unless they have an ad-
vanced knowledge of the OCL language. In [13] we men-
tioned an strategy that is still valid for the mapping
presented here. Namely, to cover collections of collec-
tions we have to modify our queries codegenq(exp) in
order to obtain more structured result-sets. More con-
cretely, to cope with expressions denoting types, each
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Fig. 3: Example: The Car Company model

element in the result-set of a query produced by our
code generator shall not only hold a value, but also its
type. Then, to cope with expressions defining collec-
tion of collections, the result-set returned by executing
the query produced by our code generator shall take the
form of a left-join, in which all the elements of the same
subcollection are joint together. Like collection types,
OCL tuple types cannot be mapped to SQL types, how-
ever, we could implement the evaluation semantics of
OCL tuples by expanding the strategy that we apply
for sequence types. Namely, we could perform the eval-
uation of each of the n-tuples separatedly and ensure
the allocation of each tuple evaluation result in a dif-
ferent table’s column. Due to the complexity it would
add to our code generator, we leave this discussion out
of the scope of this paper. Last but not least, the OCL
special types, i.e., Invalid, Void, and Any do not have
a counterpart in SQL either. Yet, the null value which
is the unique value of the Void type, is mapped to the

value of SQL. We do not consider the invalid value
in our mapping.

3.2 Guiding example: The Car-Company model

Let us now introduce a Car-Companymodel that we will
use as our guiding example. The Car-Company model
shown in Figure 3 is a data model that contains five
classes: the class Car, the class Company, the class Person,
and two subclasses of the latter: Employees and Customer,
which are used, respectively, to distinguish among em-
ployees and customers of the company. The class Compa-
ny has an association, people, to the class Person to
indicate that objects of type Company are related to
objects of type Person. The classes Car and Person are
related by an association to reflect that cars sold by the
company may be owned by people, either customers or
employees, who may also buy a car. The association is
called ownership, and its association ends are, respec-
tively, ownedCars and owners. The class Company has

the attribute name of type String. The class Car has
the attributes model, and color of type String, and the
attribute price, of type Real. The class Person has the at-
tributes name, surname, of type String, and age, of type
Int. The class Customer inherits the attributes specified
in the class Person. In addition to the attributes inher-
ited from the class Person, the class Employee has the
attribute salary of type Real.

3.3 Mapping Data and Object models to SQL-PL
tables and records

Our code generator maps the underlying data and ob-
ject models (i.e., the ‘context’ and the evaluation sce-
nario of the OCL queries) to SQL-PL tables and records
(resp.) following the next (rather) standard rules.

Let M be a class diagram and let O be an instance
of M . Then,

Class. Each class A in M is mapped to a table nm(A)3,
which contains, by default, a column pk of type Int
as its primary key. Then, each object o in O of class
type A is represented by a row in table nm(A) and
is identified by a unique value placed automatically
in the column pk (> 0 and not null). This value
is also automatically incremented (+1) each time a
new row is inserted.

Class attribute. Given a class A, each attribute W of
A is mapped to a column nm(W ) of table nm(A),
being the type of nm(W ) the corresponding type
of W , according to the rules for mapping types that
we introduced at the beginning of this section. Then,
the value of W for an object o, instance of class A, is
mapped to the value held by the column nm(W ) for
the record that is identified by the pk value assigned
to o in table nm(A)4.

Association. Given two classes A and B, each many-to-
many association P between A and B, with associa-
tion-ends rl A (at the class A) and rl B (at the class
B), is mapped to a junction table nm(P ), which
contains two columns nm(rl A) and nm(rl B), both
of type Int. Then, a P -link between an object o of
class A and an object o0 of class B is represented by
a row in table nm(P ), where nm(rl A) holds the key
denoting o and nm(rl B) holds the key denoting o0

as foreign keys’ references.
For one-to-many associations, we add a foreign key
column on the table corresponding to the class in the
many-side of the relationship. This column holds

3 nm() generates unique names for classes, attributes, and
associations.
4 Fig. 4 shows the resulting table for a simple Car-Company

model.
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the key value referencing the object linked in the
one-side of the association.

Inheritance. Each class C, subclass of a class A, is map-
ped to a table nm(C) together with its direct (i.e.,
not inherited) attributes and associations following
the definitions described above. But, in addition, a
foreign key column, fk, is added to nm(C) referenc-
ing the primary key column of the table nm(A) that
maps class A.
Although it is not completely obvious, this defi-
nition is controlling how tables which correspond
to classes related by inheritance are populated. We
avoid discussing it further here since it would add a
complexity that is not of direct value to the presen-
tation of our code generator. Yet, we provide exam-
ples next that will help to understand the rationale
behind our definition. The interested reader can find
the details in [9].

Remark 2 The above mapping rules assume that source
data models satisfy the following (rather) natural con-
straints:

– Each class has a unique name.
– Each attribute within a class has a unique name.
– A class cannot inherit properties, i.e., association

ends or attributes, that have the same name along
inheritance relationships.

– Each association is a binary relation that is uniquely
characterized by its association-ends. Moreover, the
association-ends in a self-association have di↵erent
names.

Mapping the Car-Company model to a database struc-

ture.

From now on we will choose MariaDB (fully compatible
with MySQL) syntax to illustrate the code generated by
our mapping, both for the definitions and the examples.

The command that is automatically generated to
map the class Person to a SQL table is:

Person (

pk int auto_increment,

name varchar(250),

surname varchar(250),

age int);

Similarly, the classes Car and Company are mapped to
tables.

The command that is automatically generated to
map the class Employee to a SQL table is:

Employee (

pk int auto_increment,

salary int, fkPerson int,

(a)

pk model

(b)

Fig. 4: (a) Simple Car company model. (b) Car company
table.

(fkPerson)

Person(pk));

Similarly, the class Customer is mapped to a table.
The command that is automatically generated to

map the association ownership to a SQL table is:

ownership (

owners int,

ownedCars int,

(owners) Person(pk),

(ownedCar) Car(pk));

Similarly, the association people is mapped to a ta-
ble.

Please, notice that in the structure of the tables that
we create for the subclasses Employee (and Customer),
the subclasses hold an additional column fkPerson as
a foreign key to the primary key of the table Person

that corresponds to their parent class.

4 SQL-PL4OCL : structure of the generated

code in a Nutshell

In this section we briefly introduce the novel structure
of the code produced by our SQL-PL generator for OCL
expressions. This section is intended to help the under-
standing of our mapping definition in the following sec-
tion. For any input OCL expression, our code generator
always produces a stored procedure that can be invoked
using a call statement, as we explain next.

Given an OCL expression exp, our code generator
patternproc(exp) generates the following pattern.

1nm(exp)()
2

3codegenb(exp)
4codegenq(exp);
5;//

6nm(exp)//

The generated code contains the declaration of the
stored procedure (lines 2-5), headed by its creation com-
mand and name (line 1). The main block is enclosed
by the delimiters begin-end. The code contained by
the main block is generated by the auxiliary functions
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codegenb(exp) and codegenq(exp) (lines 3-4). These func-
tions generate code that mirrors the structure of the
OCL expressions. The role of the function codegenb(exp)
is to generate code when the mapping of the expres-
sion, exp, needs of an auxiliary block definition. The
role of the function codegenq(exp) is always to generate
a query that retrieves the values corresponding to the
evaluation of exp. Finally, the function patternproc(exp)
also generates a call-statement to execute the stored
procedure (line 6).5

Simple expressions. There are cases in which the func-
tion codegenb(exp) does not generate any code. It hap-
pens when exp is a kind of expression that does not
need any auxiliary block definition within the stored
procedure to be mapped. Examples of this kind of ex-
pressions are operators over classes, operators between
sets or bags, math operators, etc..

Example 1 The code generated by patternproc(exp) for
the expression exp=Car.allInstances() is:

carallinstances()

codegenq(exp);
;//

carallinstances//

Where codegenq(exp) generates the following specific
code:

Car.pk val Car

Note that when the stored procedure is executed, the
result is a table containing a column called val, which
holds all the values of the column pk (primary key)
from the records of table Car. ut

Example 2 Consider now the expression exp=Car.allIns-
tances().model. The code generated by patternproc(exp)
is:

modelallinstances()

codegenq(exp);
;//

modelallinstances//

Where codegenq(exp) generates the following specific
code:

Car.model val

( pk val Car) t0

Car Car.pk = t0.val

5 Please, note that our delimiter in SQL-PL is set to ‘//’.

Note that when the stored procedure is executed, the
result is a table containing a column called val, which
holds all values of the column model from the records
of the Car table. ut

Example 3 Consider the following OCL expression exp,
exp = exp1�>notEmpty(), where exp1 is an expression
which does not contain any operator subexpression that
requires a block definition, then patternproc(exp) gen-
erates the following code:

exp1notEmpty()

count(*) > 0 val

(codegenq(exp1 )) t1;

;//

exp1notEmpty//

ut

In what follows, we will see how our code generator
can recursively deal with the recursive structure of OCL
expressions.

Complex expressions. There are other cases for which
the function codegenb(exp) does generate code because
mapping a given expression, exp, needs of an auxiliary
block definition. This auxiliary block is required either
for the expression to be properly mapped or because we
have noticed that it brings e�ciency to the execution.
For example, in some cases we noticed that executing
a given sequence of operations within a block required
less time than executing a given SQL query, and we tai-
lored our mapping accordingly. We consider occurrences
of complex expressions to operators over sequences, it-
erators, etc. Next, we sketch the idea of our mapping
in these cases and provide examples.

Sequence Operators.

Let exp be a sequence expression. Let the shape of this
expression be op(exp1 ,. . . ,expn) and consider that the
subexpressions exp1 ,. . . ,expn need to be mapped into
blocks too. Then, codegenb(exp) generates the SQL-PL
blocks:

codegenb(exp1 )
. . .

codegenb(expn)
nm(codegenb(exp));

nm(codegenb(exp))
(pos int auto_increment,

val basictype(exp), (pos));
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nm(codegenb(exp))(val)
(codegenq(exp1 ));

. . .

nm(codegenb(exp))(val)
(codegenq(expn));
;

while, codegenq(exp) generates:

* nm(codegenb(exp));

Note that basictype(tp) is the SQL type associated
to the UML type tp.

Example 4 Consider now the expression exp=’hi’.charac-
ters().union(’ho’.characters()). Then, the code generated
by patternproc(exp) is:

unionLits()

codegenb(exp)
codegenq(exp);

;//

unionLits//

Where codegenb(exp) generates the following specific
code:

-- sub-block ’hi’.sequence()

wchars;

wchars

(pos int auto_increment,

val varchar(250), (pos));

wchars(val)

( ’h’ val);

wchars(val)

( ’i’ val);

;

-- sub-block ’ho’.sequence()

w1chars;

w1chars

(pos int auto_increment,

val varchar(250), (pos));

w1chars(val)

( ’h’ val);

w1chars(val)

( ’o’ val);

;

-- code for operator union

unionLits;

unionLits(val varchar(250));

unionLits(val)

( wchars.val val

wchars t1

wchars.pos asc);

unionLits(val)

( w1chars.val val

w1chars t2

w1chars.pos asc);

;

While codegenq(exp) generates the following specific
code:

* unionLits

Note that when a stored procedure is executed to
evaluate a expression of Sequence type, the result is
stored in a table containing two columns called pos and
val, which holds all values (in the column val) ordered
by the position given in the column pos.

Iterator expressions.

These expressions are of the form src�>iterOp(v |body)
whose top-operator is an iterator operator.6 For each
iterator expression exp, our code generator produces a
stored procedure composed of an iterative block and a
query following the structure introduced at the begining
of the section.

When the stored procedured is called, it

Step 1. creates a temporary table;
Step 2. executes, for each element in the src-collection

that is instantiating the iterator variable v the
body of the iterator expression;

Step 3. processes and stores in the table, created in
Step 1, the result of the query codegenq(body),
according to the semantics of the iterator op-
erator.

The function codegenq(exp) generates a query that
retrieves the values corresponding to the evaluation of
exp from the table that has been created and filled in
during the execution of the iterative block of the stored
procedure. Finally, as we shown before, the function
patternproc(exp) also generates a call-statement to ac-
tually execute the procedure patternproc(exp).

Example 5 Iterator expressions. Consider the expres-
sion exp= Car.allInstances()�>select(u|u.model=’BMW’).
The code generated by patternproc(exp) is:

6 For the sake of simplicity, we will consider here that the
top-operator of src is a simple expression. The case when the
iterator expressions are nested deserve, however, a particular
attention.
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selectproc()

codegenb(exp)
codegenq(exp);

;//

selectproc//

Where codegenb(exp), generates the following especific
code:

2int 0;

var int;

4crs

( pk val Car);

6

’02000’ = 1;

8selectproc;

selectproc(val int);

10crs;

12crs var;

14

( True

16( model = ’BMW’ val

Car pk = var) t1) t2

18

selectproc(val) (var);

20;

;

22crs;

;

The definition of the block (line 1-23) contains the
following declarations: first some variables are declared
(lines 2-7); following Step 1, a new temporary table is
created (note that it is deleted if it exists) (lines 8-9);
following Step 2, for each element of the source (lines
11-12), the value of the result of the execution of the
body is calculated; however, following Step 3, this value
is only inserted into the new table (lines 18-19) if the
condition of the body is satisfied (lines 13-21), accord-
ing to the semantics of the iterator operation.

Finally, codegenq(exp) generates the following spe-
cific code:

val selectproc

Note that, as it happened for Example 1, the result
of the execution of the stored procedure is a table con-
taining a column called val, which holds all records of
the table Car whose model is ’BMW’. ut

To conclude, let us say that the potential complexity
of the OCL expression is mirrored within the stored
procedure by using the function codegenb(exp).

Within such procedure, the general idea that drives
the mapping of OCL complex expressions is that OCL
sequential operators are mapped to sequential blocks,
and OCL nested operators are mapped to nested blocks.
In addition, there will always be an outermost begin-
end enclosing block that contains the query to retrieve
the evaluation result when the procedure is invoked.

Remark 3 Scope.
We do not cover yet completely the whole OCL lan-

guage. However, we cover most of the operators listed in
the OCL standard library [23, Chapter 11]. More con-
cretely, we cover operators on primitive types String,
Boolean, Integer and Real; operators on Set, Bag and
Sequence types; and all iterator operators except orderBy
and closure. Last but not least, we do cover nested it-
erator expressions, i.e., iterator expressions whose body
also contains iterator expressions, for example, Person.allInstances()�>forAll(p | Car.allInstan-
ces()�>exists(c | p.ownedCars�>includes(c))). We will
deal in detail with this type of expression in the fol-
lowing section. Yet, we do not support tuples or nested
collections. Finally, we neither support static collections
of AnyType, and we have to refer the null value explicity,
i.e. null::String.

5 The SQL-PL4OCL code generator

In this section, we take advantage of the explanation
about the structure of the code generated in previous
section. It will allow the reader to understand more eas-
ily the definition of our mapping. Below, we provide the
mapping definition for those operations from the OCL
standard library [22, Chapter 11] that we have consid-
ered more illustrative. The exhaustive definition of the
mapping for all the operations of the OCL standard li-
brary is provided in [10]. We start each definition with
the name of the operator, followed by a brief description
of its semantics, and the definition of its mapping.

5.1 Mapping simple OCL expressions.

In this section we show how we define our mapping
for simple expressions. Recall from the previous section
that these are expressions for which the top operator is
mapped directly to a SQL query without the need of
declaring auxiliary SQL-PL blocks. Fall within this cat-
egory model specific operators, boolean, numeric, and
collection operators for sets and bags.
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Model specific operators.

There are operations in OCL that the language ‘bor-
rows’ from the contextual model. These operations vary
when the contextual model changes and they refer to
association ends, classes’ attributes and classes’ identi-
fiers.
In the following, we consider exp1 to be an OCL ex-
pression of type class, or (not ordered) set or bag.

allInstances(). It returns all the instances of the class
that it receives as argument. Let exp be an expression
of the form C .allInstances(), where C is a class of the
contextual model. Then, codegenq(exp) returns the fol-
lowingSQL query:

nm(C ).pk val nm(C )

Attribute Expression. It retrieves an attribute’s values of
the instances returned by the source expression.

Let exp be an expression of the form exp1 .attr where
attr is an attribute of a class A. Then, codegenq(exp)
returns the followingSQL query:

nm(A).nm(attr) val

(codegenq(exp1 )) al(codegenq(exp1 ))
nm(A)

al(codegenq(exp1 )).val = nm(A).pk

Note that al() generates a unique alias names for
tables.

Association�End Expression. It retrieves the instances
linked to the objects returned by the source expression
through the association end.

Let exp be an expression of the form exp1.rl A

(resp. exp1.rl B), where rl A (resp. rl B) is the A-end
(resp. B-end) of an association P between two classes A
and B. Then, codegenq(exp) returns the followingSQL
query:

nm(P ).nm(rl A) val

(codegenq(exp1 )) al(codegenq(exp1 ))
nm(P )

al(codegenq(exp1 )).val = nm(P ).nm(rl B)
nm(P ).nm(rl A)

In all cases previously described, the top expres-
sion exp does not require any block definition. Thus
codegenb(exp) consists only of the blocks that might be
required by its subexpression:

codegenb(exp1 )

Example 6 Model specific operators. The following ex-
amples do only generate SQL queries. None of them

need blocks for their definition, i.e., codegenb(exp) is
empty in all cases.

Q1. Query the ages of all employees.

Employee.allInstances().age

Person.age val

(

fkEmployee val

( pk val Employee) t0

Employee

t0.val = Employee.pk) t1

Person t1.val = Person.pk

Notice that since Employee is a subclass of Person
that inherits from it the attribute age, we recover with
the SQL query the column age of the table Person,
but only for the rows contained by the table Employee.
This is enforced by the left join used to align the foreign
keys contained by the table Employee with the keys
contained by the table Person.

Q2. Query the cars owned by all persons.

Person.allInstances().ownedCars

ownership.ownedCars val

( pk val Person) t0

ownership

t0.val = ownership.owners

ownership.ownedCars

ut

Boolean value returning operators.

In all cases described below, the top expression exp does
not require any block definition. Thus codegenb(exp)
consists only of the blocks that might be required by
its sub-expression:

codegenb(exp1 )

isEmpty(). It returns ‘true’ if the source collection is
empty, and ‘false’ otherwise. Let exp be an expression
of the form exp1�>isEmpty(). Then, codegenq(exp) is
the following SQL query:

count(*) = 0 val

(codegenq(exp1 )) al(codegenq(exp1 ))

The operator isEmpty() does not require any block def-
inition, thus codegenb(exp) is composed by the blocks
of its subexpression (if any):
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codegenb(exp1 )

For the operator notEmpty(), ‘>’ replaces ‘=’ in the above
SQL query.

includes. It returns ‘true’ if the source collection exp1
contains the element exp.

Let exp be an expression of the form exp1�>inclu-
des(exp2 ). Then, codegenq(exp) returns the following
SQL query:

codegenq(exp2 ) codegenq(exp1 ) val

The operator includes does not require any block def-
inition, thus codegenb(exp) is composed by the blocks
of its subexpressions (if any):

codegenb(exp1 )
codegenb(exp2 )

For the operator excludes, ‘ ’ replaces ‘ ’ in the
above SQL query.

includesAll. It returns ‘true’ if the collection exp1 con-
tains all the elements in the collection exp2 , and ‘false’
otherwise. Let exp be an expression of the form
exp1�>includesAll(exp2 ). Then, codegenq(exp) returns
the following SQL query:

count(al(codegenq(exp2 )).val) = 0 val

(codegenq(exp2 )) al(codegenq(exp2 ))
al(codegenq(exp2 )).val
(codegenq(exp1 ))

The operator excludesAll returns ‘true’ if the collection
exp1 does not contain all the elements in the collection
exp2 , and ‘false’ otherwise. For the operator excludesAll,
‘ ’ replaces ‘ ’ in the above SQL-PL statement.

In all cases previously described, the expression exp

does not require any block definition. Thus codegenb(exp)
consists only of the blocks that might be required by its
subexpressions:

codegenb(exp1 )
codegenb(exp2 )

Example 7 Boolean value returning operators. The fol-
lowing examples only need to generate SQL queries.
None of them require a block definition. codegenb(exp),
in all cases, is empty.

Q3. Query whether there are ‘BMW’ cars in the com-
pany.

Car.allInstances().model�>includes(‘BMW’)

( ’BMW’ val)

( Car.model val

( Car.pk val Car) t0

Car

t0.val = Car.pk) val

ut

Numeric value returning operators.

Again, for all cases described below, the top expres-
sion exp does not require any block definition. Thus
codegenb(exp) consists only of the blocks that might be
required by its sub-expression:

codegenb(exp1 )

size. It returns the size of the source collection. Let
exp be an expression of the form exp1�>size(). Then,
codegenq(exp) is the following SQL query:

count(*) val

(codegenq(exp1 )) al(codegenq(exp1 ))

sum. It returns the sum of the elements in the source
collection that must be of numeric type. Let exp be an
expression of the form exp1�>sum().
Then, codegenq(exp) is the following SQL query:

sum(val) val

(codegenq(exp1 )) al(codegenq(exp1 ))

Example 8 Numeric value returning operators. The fol-
lowing examples do only generate SQL queries. None of
them need blocks for their definition, i.e., codegenb(exp)
is empty in all cases.

Q4. Count the number of customers.

Customer.allInstances()�>size()

count(*) val

( Customer.pk val

Customer) t0

ut

Collection operators for Set and Bag types.

asSet. The set containing all the elements from the
source collection, with duplicates removed (if any). Let
exp be an expression of the form exp1�>asSet(). Then,
codegenq(exp) is the following SQL query:
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al(codegenq(exp1 )).val val

(codegenq(exp1 )) al(codegenq(exp1 ))

union. It returns the set union (resp. multiset union) of
both sets (resp. bags) passed as arguments to the oper-
ation. Let exp be an expression of the form exp1�>un-
ion(exp2 ), where both exp1 and exp2 are sets. Then,
codegenq(exp) returns the followingSQL query:

al(codegenq(exp1 )).val
(codegenq(exp2 ) union codegenq(exp1 ))

al(codegenq(exp1 ))

When exp1 or exp2 are bags, then ‘union all’ will re-
place ‘union’ in the above SQL query. The operator
including that returns the bag containing all elements of
the source collection exp1 plus the element exp2 passed
as argument is mapped exactly as the operator union
is.

excluding. It returns the bag that results from remov-
ing the element exp2 from the source collection exp1 .
Let exp be an expression of the form exp1�>exclu-
ding(exp2 ). Then, codegenq(exp) returns the following
SQL query:

al(codegenq(exp1 )).val
(codegenq(exp1 )) al(codegenq(exp1 ))
al(codegenq(exp1 )).val
codegenq(exp2 )

Example 9 Collection Operators. The following exam-
ples do only generate SQL queries. None of them need
blocks for their definition, i.e., codegenb(exp) is empty
in all cases.

Q5. Query the surnames of all customers but those
whose surname is ‘Smith’.

Customer.allInstances().surname�>excluding(’Smith’)

t2.val

( Person.surname val

( fkCustomer val

( pk val Customer) t0

Customer

t0.val = Customer.pk) t1

Person

t1.val = Person.pk) t2

t2.val ( ’Smith’ val)

5.2 Mapping complex OCL expressions.

In this section we introduce the mapping definition for
those top operators whose definition needs to generate
both SQL queries and blocks. Namely, sequence and
iterator operators.

Sequence Operators.

In OCL there is an operation for building a sequence
from a set or a bag of elements. This operation is asSe-
quence(). Remember that, when we talk about a se-
quence in OCL we talk about a collection of elements
that are assigned a position in a list. Sequences allow
for duplicated elements.

asSequence(). Let exp be an expression of the form
exp1 .asSequence(). Then, codegenb(exp) generates the
SQL-PL blocks:

nm(codegenb(exp));
nm(codegenb(exp));

nm(codegenb(exp))(val)
al(codegenq(exp1 )).val val

(codegenq(exp1 )) al(codegenq(exp1 ));
;

while, codegenq(exp) generates:

pos, val nm(codegenb(exp))

Example 10 Sequence Operators.

Q6. Query the length of a sequence that contains all
instances of Person.

Person.allInstances()�>asSequence()�>size()

personAsSequence;

personAsSequence

(pos int auto_increment,

val int, (pos));

personAsSequence(val)

t0.val val

( pk val Person) t0;

;

count(*) val

( * personAsSequence) t1;

ut
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Mapping OCL iterator expressions.

Since the semantics of each OCL iterator operator can
be defined through a mapping from the iterator to the
iterate construct, we could have decided to translate
the iterate expressions resulting from those mappings
in order to generate code for the iterator operations
like reject, select, forAll, exists, collect, one, sortedBy,
isUnique and any by applying the iterate pattern. In
fact, this was the decision made for the definition of the
OCL2SQL code generator in [28], however they did not
succeed in finding a pattern to map the iterate expres-
sions and therefore the iterator expressions were not
mapped either. Instead, we decided to generate code
specifically for each iterator operator according to its
semantics. In this way, we can generate code that is
less complex and more tailored to the semantics of each
iterator operator. Also this decision allows us, as we ex-
plain below, to end a block at an intermediate iteration
step once the evaluation result of the translated iterator
is clear. For instance, when the execution of the code
generated to map the body of a forAll expression returns
false at one iteration step, the procedure is terminated
returning false.

The basic idea is therefore that, for each iterator
expression exp, our code generator produces a SQL-PL
block that, when it is called creates a table, denoted by
nm(codegenb(exp)), from which we obtain using a sim-
ple -statement the values corresponding to the
evaluation of exp. By now, we assume that the types of
the src-subexpressions are either sets or bags of primi-
tive or class types.

Let exp be an iterator expression of the form src

�>iter op(var |body). Then, codegenq(exp) returns the
followingSQL query:

* nm(codegenb(exp));

While, codegenb(exp) generates the following scheme of
SQL-PL blocks:

codegenb(src)
2

int 0;

4var cursor-specific type ;

crs (codegenq(src));
6

’02000’ = 1;

8nm(codegenb(exp));
nm(codegenb(exp))

10(val value-specific type );

Initialization-specific code

(only for forAll, one, exists and sortedBy)

12crs;

14crs var;

codegenb(body)
16

Iterator-specific processing code

18;

;

20crs;

End-specific code (only for isUnique)

22;

Basically, codegenb(exp) generates a block [lines 2–
22] which creates the table nm(codegenb(exp)) [line 9]
and execute, for each element in the src-collection [lines
5,12-14], the body [line 15] of the iterator expression exp.
More concretely, until all elements in the src-collection
have been considered, codegenb(exp) repeats the fol-
lowing process: (i) it instantiates the iterator variable
var in the body-subexpression, each time with a di↵er-
ent element of the src-collection, which it fetches from
codegenq(src) using a cursor [lines 12–14]; and (ii) us-
ing the so called “iterator-specific processing code”, it
processes in nm(codegenb(exp)) the result of the query
codegenq(body), according to the semantics of the it-
erator iter op [line 17]. In addition, in the case of the
four iterators: forAll, one, exists and sortedBy, the ta-
ble nm(codegenb(exp)) is initialized, using the so called
“initialization-specific code” [line 11], and in the case
of the iterator isUnique, an “end-specific code” is re-
quired. Moreover, for the iterators forAll and exists, the
process described above will also be finished when, for
any element in the src-collection, the result of the query
codegenq(body) contains the value corresponding, in the
case of the iterator forAll, to False or, in the case of the
iterator exists, to True.

In the remaining of this subsection, we specify, for
each case of iterator expression, the corresponding “va-
lue-specific type”, “initialization-specific code” , “ite-
rator-specific processing code” and “end-specific code”
produced by our code generator when instantiating the
general schema. Again, for all cases, the “cursor-specific
type” is the SQL-PL type which represents, according
to our mapping (see section 3.1), the type of the ele-
ments in the src.

forAll-iterator. Let exp be an expression of the form
src�>forAll(var |body). This operation returns ‘true’
if body is ‘true’ for all elements in the source collection
src. The “holes” in the scheme codegenb(exp) will be
filled as follows:

– value-specific type: boolean.
– Initialization code:
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nm(codegenb(exp)) (val)

(True);

– Iteration-processing code:

nm(codegenb(exp)) val = False

(codegenq(body)) = False;

( True nm(codegenb(exp))
val = False)

= 1;

;

exists-iterator. Let exp be an expression of the form
src�>exists(var |body). This operation returns ‘true’
if body is ‘true’ for at least one element in the source
collection src. The “holes” in the scheme codegenb(exp)
will be filled as follows:

– value-specific type: boolean.
– Initialization code:

nm(codegenb(exp)) (val)

(False);

– Iteration-processing code:

nm(codegenb(exp))
val = True

(codegenq(body)) = True;

( True nm(codegenb(exp))
val = True)

= 1;

;

one-iterator. Let exp be an expression of the form src

�>one(var |body). This operation returns ‘true’ if body
is ‘true’ for exactly one element in the source collection
src. The “holes” in the scheme codegenb(exp) will be
filled as follows:

– value-specific type: boolean.
– Initialization code:

nm(codegenb(exp))(val)
(False);

@counter = 0;

– Iteration-processing code:

( nm(codegenb(body)).val
(codegenq(body)) nm(codegenb(body))

nm(codegenb(body)).val = True)

@counter = @counter+1;

nm(codegenb(exp)) val = True;

;

@counter = 2

nm(codegenb(exp)) val = False;

= 1;

;

sortedBy-iterator. According to [23], it results in the
OrderedSet containing all elements of the source collec-
tion ordered in descending order according to the val-
ues returned by the evaluation of the body expression.
The order considered is given by the operation < that
should be defined on the type of the body expression.
We consider instead the order given by the operation 
in order to be able to include in the resulting ordered
set those elements for which the evaluation of the body
returns exactly the same value.

Let exp be an expression of the form src�>sortedBy
(var |body). This operation returns the collection of el-
ements in the src expression ordered by the criterion
specified by body .
The “holes” in the scheme codegenb(exp) will be filled
as follows:

– value-specific type: the SQL type which represents,
according to our mapping, the type of the body .

– Initialization code:

nmseq(codegenb(exp))
(pos int auto_increment,

val value-specific type );

– Iteration-processing code:

nm(codegenb(exp))(val)
codegenq(body);

nmseq(codegenb(exp))(val)
( val nm(codegenb(exp))

val desc);

collect-iterator. Let exp be an expression of the form
src�>collect(var |body). This expression returns the col-
lection of objects that result from evaluating body for
each element in the source collection src. The “holes”
in the scheme codegenb(exp) will be filled as follows:

– value-specific type: the SQL-PL type which repre-
sents, according to our mapping, the type of the
body .

– Iteration-processing code:

nm(codegenb(exp))(val)
codegenq(body);
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select-iterator. Let exp be an expression of the form
src�>select(var |body). This expression returns a sub-
collection of the source collection src containing all el-
ements for which body evaluates to ‘true’. The “holes”
in the scheme codegenb(exp) will be filled as follows:

– value-specific type: the SQL-PL type which repre-
sents, according to our mapping, the type of the
elements in the src.

– Iteration-processing code:

( al(codegenq(body)).val

(codegenq(body)) al(codegenq(body))

al(codegenq(body)).val = True)

nm(codegenb(exp))(val)
(var);

;

reject-iterator. Let exp be an expression of the form
source�>reject(var |body). This expression returns a sub-
collection of the source collection src containing all el-
ements for which body evaluates to false. The “holes”
in the scheme codegenb(exp) will be filled as follows:

– value-specific type: the SQL-PL type which repre-
sents, according to our mapping, the type of the
elements in the src.

– Iteration-processing code:

( True

(codegenq(body)) al(codegenq(body))

val = False)

nm(codegenb(exp))(val)
(var);

;

isUnique-iterator. Let exp be an expression of the form
source�>isUnique(var | body). This expression returns
True if all elements of the collection of objects that re-
sult from evaluating body for each element in the source
collection src, are di↵erent. The “holes” in the scheme
codegenb(exp) will be filled as follows:

– value-specific type: boolean
– Initialization code:

nmacc(codegenb(exp))

(val value-specific type );

where value-specific type: the SQL-PL type which
represents, according to our mapping, the type of
the elements in the body .

– Iteration-processing code:

nmacc(codegenb(exp))(val)
codegenq(body);

– End code:

nm(codegenb(exp))(val)
(

al1(codegenq(exp)).val = al(codegenq(exp)).val

( count(*) val

( val

nmacc(codegenq(exp)))

al(codegenq(body)))

al1(codegenq(body)),

( count(*) val

nmacc(codegenb(exp)))
al(codegenq(body));

Example 11 Nested and sequential iterator expressions.

Q7. Check whether there is a car owner whose surname
is Perez.

Car.allInstances()
�>select(c| c.owners�>exists(p|p.surname=’Perez’))

int 0;

body Boolean false;

var0 int;

crs

pk val Car;

’02000’ = 1;

select0;

select0(val int);

crs;

crs var0;

int 0;

result boolean false;

tResult int 0;

var01 int;

crs

( ownership.owners val

( var0 val) t0

ownership

t0.val = ownership.ownedCars

ownership.owners );

’02000’ = 1;
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exists01;

exists01(val int);

crs;

crs var01;

val tResult

( ( Person.name val

( var01 val) t1

Person

t1.val = Person.pk) =

( ’Perez’ val) val) t;

tResult

= 1;

result = 1;

;

;

;

exists01(val) (result);

crs;

;

val body

( * exists01) t;

body

select0(val) (var0);

; ;

;

crs;

;

* select0;

Q8. Check whether exists a person, who owner a car,
with surname Perez.

Car.allInstances()
�>collect(p|p.owners)
�>exists(q|q.surname=’Perez’)

int 0;

var1 int;

crs

pk val Car;

’02000’ = 1;

collect0;

collect0(val boolean);

crs;

crs var1;

collect0(val)

( ownership.owners val

( var1 val) tbl1

ownership

tbl1.val = ownership.ownedCars

ownership.owners

tbl1.val );

;

;

crs;

;

int 0 ;

result boolean false;

tempResult boolean false;

var2 int;

crs

val collect0;

’02000’ = 1;

exists0;

exists0(val bool);

crs;

crs var2;

val tempResult

( tbl5.val = tbl6.val val

( Person.surname val

Person,

( var2 val) tbl4

pk = tbl4.val) tbl5,

( ’Perez’ val)

tbl6) tbl8;

tempResult

= 1;

result = True;

;

;

;

exists0(val)

( result val);

crs;

;

val exists0;

;

ut
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To conclude this section, we would like to remark,
some general invariants in our mappings:

– nested operators, which require blocks definitions,
are mapped into nested blocks, while sequential op-
erators are mapped into sequential blocks.

– the results of expressions with simple types and sets
are mapped into tables with a column called val;
while expressions with sequence types are mapped
into tables with two columns, one for the values (i.e.
val) and the another for the positions (i.e. pos).

– when we talk about iterators, the statement:

crs (codegenq(src));

defined when the src-collection is a sequence has the
following format:

crs

( al(codegenq(src)).val
(codegenq(src))) al(codegenq(src))

al(codegenq(src)).pos;

6 The SQL-PL4OCL tool

The SQL-PL4OCL tool rewrites the tool introduced
in [13] to target not just MySQL (or MariaDB) but
also PostgreSQL and SQL Server DBMS. The new im-
plementation does not comply to the mapping we in-
troduced in [9,13] but to the one defined in section 5.
Please, recall Remark 1 (Section 1) for a summary of
the di↵erences.

Essentially, SQL-PL4OCL is a code generator tool
that using as input a data model (as specified in Section
3), a list of OCL queries, and a vendor identifier, it gen-
erates a set of statements ready to create the database
with the tables that correspond to the data model (fol-
lowing the mapping introduced in Section 3), and a
list of stored procedures (one per OCL query, following
the definition specified in section 5). Figure 7 shows
two screenshots of the tool interface. Of course, the re-
sulting code is produced adapted to the syntax of each
target RDBMS.

Figure 5 shows the main components of the tool
architecture. These are:

– DM validator: This component checks whether the
input data model fulfills the restrictions about well-
formedness that we explain in Section 3 (Remark 2),
so as to serve as a valid context for OCL queries.

– OCL validator: This component parses each OCL
query of input in the context of the data model.
Only if a query parses correctly (and our mapping
covers it), it is used as input to produce code.

– DB engine selector: This component receives as in-
put the vendor identifier so as the code generated is
syntactically adapted to the selected RDBMS.

– DB model generator: This component generates the
engine-specific statements to create the database
and corresponding tables.

– SQL-PL generator: This component generates the
engine-specific statements to create the SQL-PL sto-
red procedures corresponding to the input OCL que-
ries.

The complexity of supporting multiple RDBMS is
brought by their implementation di↵erences. Perhaps
the most noticeable di↵erence is the language they parse.
Even though all engines use some flavor of SQL, these
all di↵er in how variables, stored procedures, and built-
in functions are declared in their procedural extensions.
Also, PostgreSQL supports di↵erent procedural langua-
ges (we targeted at PL/pgSQL), MS SQL Server uses
Transact SQL and MySQL uses yet another dialect
(fully compatible with MariaDB’s).

As implementation strategy, we avoided the burden
of dealing with the subtleties of each SQL dialect within
the mapping algorithm by defining a plugin-based ar-
chitecture. In this architecture, each plugin component
is responsible for performing the apropriate translation
for the RDBMS it targets. In [32], the reader can find a
comparison that gives idea of the variations among the
di↵erents SQL dialects. We encourage the interested
reader to use our tool, which is available at [10], to in-
vestigate them.

6.1 A benchmark to explore the e�ciency of the code
generated

Figure 6 shows a benchmark to test the performance
(in terms of the evaluation time) of a sample of OCL
mapped queries into the di↵erent DBMS. In this sam-
ple, we included both simple expressions (Q1-Q7), and
complex expressions (Q8-Q14), including iterator and
sequence operators. All the expressions in the bench-
mark were evaluated on an artificial scenario that we
created. The scenario is an instance of the Car-Company
data model depicted in Figure 3. This instance contains
106 instances of class Car, 105 instances of class Person
(all of them are Employees), and 102 instances of class
Company, where each company is associated to 102 in-
stances of Person, and each person owns 10 di↵erent
cars. All car instances have a color di↵erent from black.

We used bold font to highlight the lowest evaluation
time of each query in Figure 6. By just taking a look, it
turns apparent that MariaDB, an open source database,
achieves the fastest evaluation times for the majority
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Fig. 5: SQL-PL4OCL tool component architecture

of the queries and, most importantly, for almost the
totality of complex expressions.7

In our view, a dedicated experimentation would be
needed in order to outline a function that may relate
an OCL expression evaluation over an scenario with the
time that the evaluation of the translated query takes
over a database. Yet, we have identified three parame-
ters which seem to correlate directly to the increase in
the evaluation time of an expression translated by our
mapping. More concretely,

i. The OCL expression contains access to attributes or
association-ends. Their translation into left joins (of
size n ⇥ m) makes them expensive in time. Also,
the materialization of a left join performed between
di↵erent tables (i.e., for translating an association, as
in Q3 and Q7) is more expensive than one performed
by a table with itself (i.e., for translating access to
an attribute, as in Q2 and Q6). The time gets worse
when the source table is larger, i.e., with a high n.
For example, compare evaluation times for queries
Q3 and Q4 where the size of the source collection
is 106 and 105 (resp.), or queries Q2 and Q12 for
which the size of the left join (owners.ownedCars) is
106 ⇥ 10 and 1⇥ 10 (resp.).

ii. The size of the outermost source collection in an
OCL iterator expression (if there is no stop criterion
applied). For example, to evaluate Q9 the cursor has
to fetch values from a table of size 106, however, to
evaluate Q10 the cursor only fetches one value and
the procedure stops. Notice also the di↵erent evalu-

7 We ran the benchmark in a laptop with an Intel Core
m7, 1.3 GHz, 8 GB RAM, and 500 GB Flash Storage. The
RDBMS versions used were MySQL 5.7, MariaDB 10.1, SQL
Server 2016 Express, and PostgreSQL 9.6.1.

ation time between Q2 and Q11 (which are similar
expressions in semantics) since the last is shaped as
an iterator expression.

iii. The number of insertions to a table when this is re-
quired by the mapping to translate a query. In par-
ticular, insertions to a table are always required for
evaluating sequence expressions. As an example we
compare queries Q8 and Q9. The size of the source
expression for both queries is the same (106). How-
ever, the evaluation of Q8 requires the insertion of
intermediate values into a table while Q9 evaluation
does not. Similarly happens with Q2 and Q13. The
di↵erent evaluation time between Q8 and Q14 seems
to be due to the generation of the autoincremented
position value for the latter.

7 Related Work

The work [29] is concerned about the translation of
OCL to SQL and viceversa. This translation supports
only OCL class invariants and, partially, the operators
forAll, select, and exists. Because of this clear limita-
tion many of the problems discussed in previous sec-
tions are not considered. Another limited translation is
presented in [30]. Its main result is the implementation
of a solution that generates SQL code from OCL simple
expressions as a part of Enterprise Architect. However,
this solution cannot deal with OCL iterator expressions
or sequences.

To the best of our knowledge the idea of mapping
OCL iterators to stored procedures was first proposed
in [28], however the idea was not fully developed:



SQL-PL4OCL : An automatic code generator from OCL to SQL Procedural Language 19

Queries MySQL MariaDB PostgreSQL MSSQL

Q1 p1->size() 0.19s 0.13s 0.10s 0.12s
Q2 p1.model->size() 0.25s 0.20s 0.33s 0.28s
Q3 p1.owners->size() 0.36s 0.35s 0.27s 0.26s
Q4 Employee.allInstances().company->size() 0.04s 0.04s 0.04s 0.05s
Q5 p1.owners.name->size() 0.55s 0.40s 0.40s 0.42s
Q6 p1.owners->oclAsType(Employee).salary->size() 1.05s 0.55s 1.06s 1.03s
Q7 p1.owners->oclAsType(Employee).ownedCars->size() 2.07s 1.56s 1.99s 2.08s
Q8 p1->select(c|c.color<>"black")->size() 50.02s 43.08s 57.04s 53.47s
Q9 p1->forAll(c|c.color<>"black") 9.14s 8.00s 8.18s 8.89s
Q10 p1->exists(c|c.color<>’black") 0.05s 0.04s 0.07s 0.05s
Q11 p1->collect(x|x.color)->size() 49.56s 40.02s 40.10s 43.46s
Q12 p1->collect(x|x.owners.ownedCars)->size() 59.58s 51.23s 51.25s 54.82s
Q13 p1.model->asSequence()->size() 1.67s 1.98s 2.35s 1.90s
Q14 p1->asSequence()->select(c|c.color<>"black")->size() 59.52s 54.33s 63.35s 58.33s
where: p1 = Car.allInstances()

Fig. 6: Evaluation times.

‘Das Ergebnis des hier vorgestellten Abbildungsmusters

kann für einen Teilausdruck nicht direkt in das Ab-

bildungsergebnis eines anderen Teilausdrucks eingesetzt

werden. Die Kombinationstechnik wird nicht formal

beschrieben.’ [28, pag.59] [. . . ]
‘Es ist in dieser Arbeit nicht gelungen, eine übersich-

tliche und vollständig formale Darstellung für die proze-

duralen Abbildungsmuster zu finden.’ [28, pag.112] 8

Neither have we found any other development of it
afterwards. Since we are concerned with query evalua-
tion, it is cruzial for the mapping to preserve evaluation
semantics, in particular for navigation expressions. For
instance, the expression p.ownedCars.owners where p is
an object, returns a bag where some elements may be
repeated. However, the translation proposed in [28,11]
removes duplicates because it relies on the SQL in op-
erator. Thus, to preserve the evaluation semantics of
navigations expressions we decided to employ SQL left

joins instead of the in operator.
There are other much less relevant di↵erences be-

tween both mappings that we do not treat here due
to space limitations. In [12] they present the architec-
ture of the Dresden OCL2SQL tool where they intro-
duce views to hold those elements which do not ful-
fill a constraint mapped using the patterns in [28,11].
They also propose some pattern refinements to ease
the implementation and tailor the results for di↵erent
DBMS. In [15] they propose a novel architecture for a
query code generation framework where di↵erent trans-
formation patterns, e.g., OCL2SQL or OCL2XQuery

8 ‘The result of the mapping model presented here may not

apply a part of the expression directly into the result of an-
other subexpression.The combination technique is not formally

described.’

[. . . ]
‘This work did not succeed to find a concise and complete formal

representation for procedural mapping patterns.’

could be integrated. The patterns to perform the map-
ping OCL2SQL are those already reviewed. In [26] they
model geographical information systems with UML and
OCL but they also propose an extension to the OCL
type system to represent some basic geometric elements.
Their final aim is to implement the modeled systems
and to evaluate their constraints in the relational da-
tabase which contains the actual spatial data so they
intend to study whether the tool OCL2SQL would fit
their needs. Most of the OCL constraints handled in
this work contain iterators so, in principle, we could
cover their generation. However, we need to study fur-
ther how well we could deal with their extension to the
OCL type system. In [1] they explore a model trans-
formation approach from UML to CWM [21] and from
OCL to a patterns metamodel. This is a feasible ap-
proach but as far as we know, it did not have further
development. In any case, we do not use model trans-
formations as the mapping technique.

The work in [5] introduces a di↵erent strategy for
query translation to ours. Instead of a compile time
translation, they propose a runtime query translation
from model level languages like EOL, to persistent query
languages like SQL. Each EOL query is splitted up into
subexpresions that are handled by the apropriate imple-
mentation classes. We expect to obtain an interesting
comparison when this runtime implementation strategy
is applied to translate OCL to SQL.

In [4] authors explore how participation constraints
defined on binary associations, e.g. ‘xor’ constraint, can
be expressed at two di↵erent levels, in OCL as a con-
straint language, and as SQL triggers. No mapping from
OCL to SQL expressions is proposed.

In [7] the author proposes OCL transformations rules
to SQL standard for some simple OCL expressions.
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Fig. 7: SQL-PL4OCL tool: screenshots

However, complex expressions 9 are not covered, neither
the recursive nature of the OCL language. We could not
test their tool since it does not seem to be publically
available.

In [25] the authors propose an approach to reduce
the problem of the satisfiability of an OCL constraint to
check the emptiness of some SQL query in an RDBMS.
This evaluation can be performed incrementally if some

9 Notice that here we employ the terminology ‘simple ex-
pressions’ and ‘complex expressions’ following our definition
in Section 4.

update is applied to the data stored. In their paper, the
mapping from OCL constraints does not directly tar-
get SQL. In contrast, it translates OCL to a logic called
Event-Dependency Constraints (EDC). From EDC they
generate SQL statements with a pattern-based approach.
The coverage of OCL supported by their mapping is not
detailed. However, they report about an experiment us-
ing four examples for which they reach lower evaluation
times in SQL than the times returned by evaluating the
code produced with MySQL4OCL. In our view, a de-
tailed comparison in terms of e�ciency and in terms of
OCL language coverage is needed.

The work in [8] is motivated by the concern of ex-
pressing database integrity constraints as business rules
in a more abstract language. In the process of business
rules identification, it describes the mapping between
SQL SELECT statements, certain type of PL blocks
and the equivalent OCL expressions. Although very in-
teresting, this mapping that is based in the structure
of SQL expressions, is focused in covering the mapping
for SQL projections, joins, conditions, functions, group
by and having clauses. To the best of our knowledge
this is the only work dealing with the translation from
SQL to OCL up to date.

8 Conclusions and Future Work

In this work we have detailed a novel mapping from
OCL expressions to SQL-PL stored procedures. The
seminal work of our mapping was introduced in [13,9].
However, the definition provided here is improved with
respect to the previous one, being the most remarkable
di↵erences the following: 1) each OCL expression (no
matter its complexity) is mapped to just one stored
procedure that is executed by just one call-statement;
2) we employ temporary tables in the stored procedures
which help improve evaluation time of resulting code;
3) we consider the three-valued evaluation semantics of
OCL. Moreover, while our original work met only the
procedural extension of MySQL, our new definition has
eased the implementation task and we managed to tar-
get several relational database management systems,
both open source and proprietary. This fact allowed us
to compare the evaluation time of the resulting code
into the di↵erent RDBMS. Finally, we implemented and
made available our SQL-PL4OCL tool at [10].

Since OCL is a language created to be used at de-
sign time of the software engineering lifecycle, we would
like, as a matter of primary objective for future work,
to integrate our code generator with CASE (Computer-
Aided Software Engineering) tools which support de-
sign of systems. As part of this work we will extend
our mapping to cover Aggregation and Composition
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relationships which are frequently used by software ar-
chitects and developers to indicate a part-whole rela-
tionship. Both types of relationships are binary associ-
ations. Since the semantics of Aggregation (i.e., shared
aggregation) varies by application area and modeler [24,
page 110], we will study its mapping case by case. How-
ever, since the semantics of Composition (i.e., compos-
ite aggregation) states that the composite object has
the responsibility for the existence and storage of the
composed objects [24, page 110], Composition will be
mapped as a one-to-many relationship (as we explained
in section 3.3). Moreover, when the instance at the ‘one’
side of the Composition is removed, all instances linked
to it through this relation will also be removed.

Regarding evaluation times, we would like to imple-
ment a lazy evaluation strategy for our SQL-PL4OCL
tool to optimize OCL expressions’ evaluation times, as
we identified in [6]. Nevertheless, without using a lazy
strategy we have improved resulting evaluation times
with respect to previous versions of our mapping [13].

Of course, as a priority in our roadmap is removing
current limitations of our mapping.

Also, we noticed that very few works deal with the
translation of SQL to OCL. The lessons learned by
defining the presented mapping appear to us as a good
starting point to address the backwards traceability
from SQL to OCL.

Other interesting future lines of work are, on the
one hand, adapting our mapping to mobile embedded
databases, i.e., SQLite. On the other hand is to study
the feasibility of mapping OCL to NoSQL databases.
Yet, we are aware of the di�culty of the mapping defi-
nition and the implementation e↵orts from one NoSQL
database to another, since they lack of standarization.

A Guideline to implementation

This annex is intended to provide a high-level overview, ab-
stracting away the details, of how OCL operators are trans-
lated to SQL and its procedural extension. This overview is
presented in Tables 2, 3, and 1.
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Collection Operations
union union
union (between bags) union all

= (between sets)
sort the elements and
check one by one that el-
ements are equals

intersection (between sets)

check the elements one by
one and save in temp ta-
ble the minimum size of
the common ones

- not in
including union
excluding not in
symmetricDi↵erence union all + not in
count count
asBag project over column val

asSequence, asOrderedSet
temp table + creation of
index

asSet
project over column val
using distinct

Bag Operations

=
sort and check elements
one by one

union union all

intersection (between sets or
bags)

check elements one by
one and add only one
value if it exists in both
collections

intersection (between sets)

check elements one by
one and make an union of
the minimum of the val-
ues

including union
excluding not in
count count
asBag -
asSet distinct

asOrderedSet, asSequence
temp table + creation of
the index

Set Operations ⇡ Bag operations
Sequence Operations

count count

=
idem than bag, but order-
ing by pos

union, append, prepend, in-
sertAt

idem than bags, but cre-
ating a new index

subOrderedSet
projection with restric-
cions over pos. Recre-
ation of pos

at
projection over val with
restriction

indexOf
projection over val, pos is
equals to the given

first
projection over val, pos =
min position

last
projection over val, pos =
max position

including, excluding
adding/removing ele-
ment and change of the
index for the rest

reverse
sorted by pos desc and
changing index

sum sum

asBag
projection over column
val

asSequence, asOrderedSet -

asSet
projection over column
val (using distinct)

Table 3: Guideline of the mapping of OCL Collection opera-
tors to SQL-PL


