
Modeling Social Networking Privacy

Carolina Dania⇤†, Manuel Clavel⇤
⇤IMDEA Software Institute

†Universidad Complutense de Madrid
carolina.dania@imdea.org, manuel.clavel@imdea.org

Abstract—In this paper we propose to use a formal lan-

guage, called SecureUML, to model social networking privacy.

SecureUML is a language for specifying role-based static and

dynamic access control policies, the latter being policies that

depend on the run-time satisfaction of specific constraints (e.g.,

the privacy settings in social networking sites). By using a

formal language for modeling social networking privacy, we

provide a rigorous, unambiguous description of the policies,

and a solid, much-needed formal foundations for tools to

validate them and to perform change impact analysis. To

illustrate our proposal, as well as its benefits, we use Facebook

as a case study; in particular, the latest two versions of

Facebook’s policy for posting and tagging.

I. INTRODUCTION

Nowdays many people consider themselves as “Internet
natives” (and many others are happy “Internet immigrants”):
when they need information, they naturally open a browser
and search for it; when they want to share information, they
naturally post it on a social network. At the same time,
privacy-related issues are a growing concern among users of
social networking sites [10], [1], [21], [22], [13], [20], and
among their regulators. On December 21, 2011, the Office
of the Irish Data Protection Commissioner (DPC) announced
the results of its “thorough and detailed audit of Facebook’s
practices and policies” [23], which includes, among many
others, the following recommendations and findings [11]
(see [12] for the latest DPC’s follow-up review):

Facebook must work towards:(i) simpler explana-
tions of its privacy policies; (ii) easier accessibility
and prominence of these policies during registra-
tion and subsequently; (iii) an enhanced ability for
users to make their own informed choices based
on the available information.
Many policies and procedures that are in opera-
tion are not formally documented. This should be
remedy.
We recommend that Facebook introduce increased
functionality to allow a poster to be informed prior
to posting how broad an audience will be to view
their post and that they be notified should the
setting on that profile be subsequently change to
make a post that was initially restricted available
to a broader audience.

To Facebook’s credit, over the past 4 years, users have
been equipped with new tools and resources which are
designed to give them more control over their so-called
Facebook experience, including: an easier way to select your
audience when making a new post; inline privacy control on
all your existing posts; the ability to review tags made by
others before they appear on your profile; a tool to view
your profile as someone else would see it; and more privacy
education resources. Despite all these efforts, many users are
still concerned about how to maintain their privacy or —in
Mark Zuckerberg’s own words— “rightfully questions how
their information was protected” [24]. In our opinion, there
are at least three reasons for this:

• Facebook’s privacy policy is hardly trivial to under-
stand. For example, when default policies and privacy
settings for posting and tagging conflict to each other
(which happens very often) the solution will depend
(sometimes in a convoluted way) on the existing rela-
tionships among all the users involved: the owner of
the timeline, the creator of the post, the creators of the
tags, and the reader of the post.

• Facebook’s privacy policy has been in a constant state
of flux over the past few years [17], and it is prompted
to change again in the future.

• Facebook’s privacy policy is only informally and par-
tially described in a collection of privacy education
resources and blogs, which cannot provide a coherent
and complete account of this policy.

As a consequence, even advanced Facebook users may
find difficult to understand the actual visibility of a post.
To illustrate our point, we recall first the answers given
in Facebook’s 2013 Frequently Asked Questions (FAQ) [7]
regarding the policy for posting and tagging:

• If I post something on my friend’s timeline, who gets
to see it?
When you post something on a friend’s timeline, who
else gets to see it will depend on the privacy settings
your friend has selected. If you want to write something
to your friend privately, don’t post it.

• What does the ‘Only Me’ privacy setting mean?
Sometimes you might want certain posts visible only
to you. Post with the ‘Only Me’ audience will appear
on your timeline and in your news feed but won’t be



visible to anyone else. If you tag someone in an ‘Only
Me’ post, they will be able to see the post.

• When I share something, how do I choose can see it?
Before you post, look at the audience selector. Use the
dropdown menu to choose who want to share a post
with.

- Public
- Friends (+ friends of anyone tagged)
- Only Me
- Custom (Includes specific groups, friends lists or

people you’ve specified to include or exclude)
Remember: anyone you tag in a post, along their friends
may see the post. (...)
Note: When you post to another person’s timeline, that
person controls what audience can view your post.

• What is tagging and how does it work?
A tag is a special kind of link. When you tag someone,
you create a link to their timeline. The post you tag
the person in is also added to the person’s timeline.
For example, you can tag a photo to show who’s in the
photo or post status update and say who you’re with.
(..) When you tag someone, they’ll be notified. Also,
if you or a friend tags someone in your post and it’s
set to ‘Friends’ or more, the post could be visible to
the audience you selected plus friends of the tagged
person.
When someone adds a tag of you to a post, your friends
may be able to see this. The tagged post also goes on
your timeline.

Now, suppose that Bob, Alice, Ted, and Peter have Face-
book profiles: Bob is a friend of Alice and Ted; Ted is a
friend of Peter; Ted is not a friend of Alice; Peter is not a
friend of Alice or Bob; and none of them has blocked to
another. To appreciate the challenge of understanding the
actual visibility of a post, consider the scenarios S1–S4
below and try to justify (based on the previously recalled
Facebook’s policy) our answers to the given questions.1

S1 Alice posts a photo of herself, Bob and Ted in her
timeline, and sets its audience to ‘Friends’. Then, Alice
tags Bob in this photo. Question: Can Bob see the photo
in Alice’s timeline? The answer is Yes.

S2 Alice has set to ‘Only Me’ the default audience for
posts made by her friends in her timeline. Bob posts a
photo in Alice’s timeline. Question: Can Bob see this
photo in Alice’s timeline? The answer is Yes.

S3 Alice posts a photo of herself, Bob and Ted in her
timeline, and set its audience to ‘Friends’. Then, Bob
tags Ted in this photo. Question: Can Peter see this
photo in Alice’s timeline? The answer is Yes.

S4 Bob posts a photo of himself, Ted and Alice in Alice’s
timeline. Alice has setting by default ‘Only Me’. Then,

1These answers were obtained in 2013 on real Facebook scenarios.

Bob tags Ted in this photo. Question: Can Peter see
this photo in Alice’s timeline? The answer is No.

Clearly, as was explicitly requested in the DPC audit,
Facebook should provide simpler explanations of its privacy
policies. Even better, it should formally document these
policies. But, which formal language is up to the task
of modeling social networking privacy? In this paper, we
propose to use SecureUML [2] for this task. In a nutshell,
SecureUML is a formal language for modeling role-based
static and dynamic access control policies, the latter being
policies that depend on the run-time satisfaction of specific
constraints.

Organization.

In Section II we provide background information about
SecureUML. Next, in Sections III and IV, we introduce,
respectively, our data and SecureUML models for posting
and tagging, as these actions are described in Facebook’s
2013 FAQ. Afterwards, in Section V, we discuss how these
models shall be changed to reflect the changes introduced
in 2014 in Facebook’s policy for posting and tagging. Then,
in Section VI, we briefly discuss how to formally reason
about SecureUML models, using as an example our model
for Facebook posting and tagging. Finally, in Sections VII
and VIII we discuss related work and draw conclusions.

II. SECUREUML
SecureUML [2] is a modeling language for formalizing

access control requirements that is based on RBAC [9].
In RBAC, permissions specify which roles are allowed to
perform given operations. These roles typically represent job
functions within an organization. Users are granted permis-
sions by being assigned to the appropriate roles, based on
their competencies and responsibilities in the organization.
RBAC additionally allows one to organize the roles in a
hierarchy, where roles can inherit permissions along the
hierarchy. In this way, the security policy can be described
in terms of the hierarchical structure of an organization.

It is not possible, however, to specify in RBAC policies
that depend on dynamic properties of the system state. For
example, to allow a user in a role to execute a method only
if she satisfies specific constraints with respect to the actual
resource on which the method is executed and/or the actual
arguments that are passed to the method. To overcome this
limitation, SecureUML extends RBAC with authorization
constraints, which are formalized in SecureUML using the
Object Constraint Language (OCL) [16].

OCL is a textual language for specifying constraints and
queries. As part of the UML standard, it was originally
intended for modeling properties that could not be easily
expressed using graphical notation, such as class invariants
in a UML class diagram. Every OCL expression is written
in the context of a model (called the contextual model), and
is evaluated on an object model (also called the instance or



scenario) of the contextual model. This evaluation returns a
value but does not alter the given object model, since OCL’s
evaluation is side-effect free.

OCL is a strongly typed language. Expressions either have
a primitive type, a class type, a tuple type, or a collection
type. OCL provides standard operators on primitive data, tu-
ples, and collections. For example, the operator �>includes
checks whether an object is part of a collection. OCL also
provides a dot-operator to access the values of the objects’
properties (e.g., the attributes and association-ends in UML
class diagrams) in the given scenario. For example, suppose
that the contextual model includes a class c with an attribute
at and an association-end as . Then, if o is an object of
the class c in the given scenario, the expression o.at refers
to the value of the attribute at for the object o in this
scenario, and o.as refers to the objects linked to the object
o through the association-end as . Finally, OCL provides
operators to iterate over collections. For example, �>forAll,
�>exists, �>select, �>reject, �>collect, and �>iterate. In
the following section we will provide examples of OCL
expressions whose context is precisely our data model for
Facebook.

III. MODELING FACEBOOK’S DATA STRUCTURE

Facebook is a social network that “helps you connect
and share with the people in your life.” Each user has a
profile that, basically, contains his/her personal information
(name, surname, email, birthday, gender, and relationship
status) and preferences (about music, television, movies, and
games). Moreover, each user’s timeline can displays posts
or stories, status updates, tags on status updates, comments
to posts or stories, photos, comments to photos, and tags
on photos. In this section we introduce our data model for
Facebook’s profiles, timelines, posts, and tags. We do not
intend to model these features in full, but rather those aspects
that will play a role when modeling Facebook’s policy for
posting and tagging.

In Figure 1 we show how we can model, using a UML
class diagram, profiles, timelines, posts, and tags. The fol-
lowing explanations highlight our main modeling decisions.

• Each profile, timeline, post, and tag, is modeled, re-
spectively, as an instance of the classes Profile,
Timeline, Post, and Tag.

• The method addPost(@post) adds the post @post
to the given timeline.

• The method removePost(@post) removes the post
@post from the given timeline.

• The method readPost(@post) read the post
@post in the given timeline.

• Each photo is a type of post.
• Each profile is linked to exactly one timeline via
timeline. This is the profile’s timeline.

• Each profile is linked to those who are friends of him
or her via friends.

• Each profile is linked to those that he or she has blocked
via blocks.

• Each profile has two attributes, namely, tagReview
and contributors. The attribute tagReview

holds the setting chosen by the profile’s owner for
Tag Review. The attribute contributors holds the
setting chosen by the profile’s owner for posting on its
timeline.

• The method switchTagReview() switches on/off
the Tag Review on the given profile.

• The method setContributors(@selection)

set to @selection the intended post contributors to
a given profile’s timeline.

• Each post is linked to exactly one timeline via posted.
This is the timeline on which the post is posted.

• Each post has two attributes, namely, creator and
audience. These attributes hold, respectively, the
post’s creator and the post’s selected audience.

• The method setAudience(@selection) set to
@selection the intended audience for a given post.

• The method addTag(@profiling) adds a tag of a
profile @profiling to a given post.

• The method removeTag(@tag) removes a tag @tag
from a given post.

• The method forbidTag(@profiling) adds a pro-
file @profiling to the list of profiles that can not be
tagged on a given post.

• Each tag is linked to exactly one post via post. This
is the post on which the tag appears.

• Each tag is linked to exactly one profile via
profiling. This is the tag’s target.

• Each tag has one attribute, namely, creator, that
holds the tag’s creator.

• Each post is linked to those profiles that can not be
tagged in the post via forbidens.

We show in Figure 2 an instance of our data model for
Facebook. It represents the following Facebook scenario:
Bob, Alice and Ted have Facebook profiles. Bob is a friend
of Alice, and Ted is a friend of Bob but not a friend of
Alice. Alice’s timeline has a photo that was posted by Bob
in her timeline. Bob has tagged Ted in this photo.

We conclude this section showing how we can formalize
queries about the Facebook scenario represented in Figure 2
using OCL. In particular,

• To query about Bob’s friends, we can use the OCL
expression:
Bob.friends.

This expression evaluates to Set{Alice, Ted} in
our sample scenario.

• To query about friends of Alice’s friends, we can use
the OCL expression:
Alice.friends.friends�>asSet().

This expression evaluates to Set{Ted, Alice} in



+switchTagReview()
+setContributors(@selection : Audience)

-tagReview : Boolean
-contributors : Audience

Profile
+addPost(@post : Post)
+removePost(@post : Post)
+readPost(@post : Post)

Timeline

+setAudience(@selection : Audience)
+addTag(@profiling : Profile)
+removeTag(@tag : Tag)
+forbidTag(@profiling : Profile)

-creator : Profile
-audience: Audience

Post

-creator : Profile
Tag Photo

forbidens

friends posted postsprofile timeline 111

-onlyMe
-Friends
-FriendsOfFriends
-Public

<<enumeration>>
Audience

blocks

tags

post 1

profiling1

Figure 1. Modeling Facebook’s data structure (partial).

tags

timeline

profile

-creator = Bob
Tag 1

profiling
friends friends

posted
posts

post -creator = Bob
-audience = Friends

Photo A

 
Bob

timeline

profile

timeline

profile
 

Ted
 

Alice

 
Timeline Alice

 
Timeline Ted

 
Timeline Bob

Figure 2. Modeling a Facebook scenario.

our sample scenario (Alice is certainly a friend of any
of her friends).

• To query about friends of Alice and their friends,
but not including Alice herself, we can use the OCL
expression:
Alice.friends�>union(Alice.friends.friends)
�>excluding(Alice).

This expression evaluates to Set{Bob, Ted} in our
sample scenario.

• To query about whether Ted is tagged in any of the
posts appearing on Alice’s timeline, we can use the
OCL expression:
Alice.timeline.posts.tags.profiling�>includes(Ted).

This expression evaluates to true in our sample sce-
nario.

IV. MODELING FACEBOOK’S PRIVACY POLICY

In this section we model, using SecureUML, the Face-
book’s 2013 policy for posting and tagging.2 A word of
caution: given the lack of a formal documentation, our
understanding of this policy is based not only on the official

2Understandably, for the sake of space limitation, we have to omit some
interesting features, including: who is notified (and how) when a tag is
added to a post; how (and by whom) a post’s audience can be customized;
how (and by whom) a post on which someone is tagged can be reviewed
before it appears on his or her profile; how (and by whom) the maximum
audience for posts appearing in someone’s profile because he or she is
tagged on them can be selected by default; how (and by whom) a tag can
be added to a post different from a photo; how (and by whom) something
different from a user can be tagged.

information available at [7] (which is not always complete or
coherent) but also on our own experiments using Facebook
on “precooked” scenarios.

In what follows, for each method in our data model
for Facebook, after describing the policy for executing
this method, we will formally specified, using OCL, the
corresponding authorization constraint. Please, be aware of
the following SecureUML’s conventions regarding variables
in authorization constraints:

• The variable @caller refers to the user asking per-
mission for executing a method. In our model, this
variable has type Profile since we assume that the
users participate in the social network through their
profiles.

• The variable @self refers to the object on which the
method will be executed, if permission is granted.

• The method’s parameters can appear as variables in the
method’s authorization constraint.

Method: switchTagReview()

The following clause describes the policy for executing
the method switchTagReview:

• anybody can turn on/off the option of reviewing any tag
that anybody else wants to add to any post published in
his or her timeline before they are actually published.

More formally, the permission to execute the method
switchTagReview() has the following authorization
constraint: @caller=@self.



Method: setContributors(@audience)

The following clause describes the policy for executing
the method setContributors:

• anybody can choose between not allowing anybody
(except him or herself) to post on his or her timeline or
allowing also their friends to post on his or her timeline.

More formally, the permission to execute the method
setContributors(@audience) has the following au-
thorization constraint: @caller=@self.

Method: setAudience(@audience)

The following clause describes the policy for executing
the method setAudience:

• anybody can select the audience for any post that is
posted on his or her timeline.

More formally, the permission to execute the method
setAudience(@audience) has the following autho-
rization constraint: @caller=@self.posted.profile.

Method: addPost(@post)

The following clauses describe the policy for executing
the method addPost:

• anybody can add a post on his or her timeline.
• anybody can add a post on any of his or her friends’

timelines, if the owner of this timeline has its prefer-
ences for posting set to ‘Friends’.

More formally, the permission to execute the method
addPost(@post) has the following authorization con-
straint:
@caller=@self.profile or
(@self.profile.contributors=’Friends’
and @self.profile.friends�>includes(@caller)).

Method: removePost(@post)

The following clause describes the policy for executing
the method removePost:

• anybody can remove a post that he or she has posted
on a timeline.

More formally, the permission to execute the method
removePost(@post) has the following authorization
constraint: @caller=@post.creator.

Method: addTag(@profiling)

The following clauses describe the policy for executing
the method addTag:

• anybody can add a tag of him or herself, or of any of
his or her friends, on a post that is posted on his or
her timeline, unless this friend has previously untagged
him or herself from this post.

• anybody can add a tag of him or herself, or of any of
his or her friends, on a post that is posted on a timeline,
unless the owner of the timeline has switched ‘On’ the
tag review preferences and he or she is not the owner

of the timeline, or unless this friend has previously
untagged him or herself from this post.

More formally, the permission to execute the method
addTag(@profiling) has the following authorization
constraint:
((@caller=@profiling or @caller.friends�>includes(@profiling))
and @caller=@self.posted.profile
and @self.forbidens�>excludes(@profiling))

or ((@caller=@profiling
or @caller.friends�>includes(@profiling))

and @self.posted.profile.tagReview=false
and @self.forbidens�>excludes(@profiling)).

Method: removeTag(@tag)

The following clauses describe the policy for executing
the method removeTag:

• anybody can remove any tag of him or her on a post.
• anybody can remove any tag from a post that he or she

has posted on a timeline.
• anybody can remove any tag that he or she has added

to a post.
More formally, the permission to execute the method
removeTag(@tag) has the following authorization con-
straint:
@caller=@tag.profiling or @caller=@tag.post.creator
or @caller=@tag.creator.

Method: forbidTag(@profiling)

The following clause describes the policy for executing
the method forbidTag:

• anybody can forbid anybody else to tag him or her
again on a post.

More formally, the permission to execute the method
forbidTag(@profiling) has the following authoriza-
tion constraint: @caller=@profiling.

Method: readPost(@post)

The following clauses describe the policy for executing
the method readPost:

• anybody can read any post that is posted on his or her
timeline.

• anybody can read any post that was posted by him or
her on a timeline, unless he or she is blocked by the
owner of the timeline.

• anybody can read any post that has its audience selected
to ‘Friends’, if he or she is a friend of the owner of the
timeline.

• anybody can read any post that has its audience selected
to ‘FriendsOfFriends’, if he or she is a friend of the
owner of the timeline, or a friend of a friend of the
owner of the timeline, unless he or she is blocked by
the owner of the timeline.



• anybody can read any post that has its audience selected
to ‘Public’, unless he or she is blocked by the owner
of the timeline.

• anybody can read any post, if he or she is tagged on
this post, unless he or she is blocked by the owner of
the timeline.

• anybody can read any post that has its audience selected
to ‘Friends’ and was created by the owner of the
timeline, if he or she is a friend of somebody tagged
on the post, unless he or she is blocked by the owner
of the timeline.

More formally, the permission to execute the method
readPost(@post) has the following authorization con-
straint:
@caller=@self.profile
or (@caller=@post.creator
and @self.profile.blocks�>excludes(@caller))

or (@post.audience = ’Friends’
and @self.profile.friends�>includes(@caller))

or (@post.audience = ’FriendsOfFriends’
and (@self.profile.friends�>includes(@caller)
or @self.profile.friends.friends�>includes(@caller))

and @self.profile.blocks�>excludes(@caller))
or (@post.audience = ’Public’
and @self.profile.blocks�>excludes(@caller))

or (@post.tags.profiling�>includes(@caller)
and @self.profile.blocks�>excludes(@caller))

or (@post.audience = ’Friends’
and @post.creator=@self.profile
and @post.tags.profiling.friends�>includes(@caller)
and @self.profile.blocks�>excludes(@caller)).

To end this section, we can validate our modeling of
the policy for executing the method readPost, using the
scenarios S1–S4 that we introduced in Section I. Clearly, if
our model is correct, the answers obtained in our real ex-
periments about the visibility of the posts in these scenarios
should correspond to the results of evaluating the method
readPost’s authorization constraint on the corresponding
instances of our data model for Facebook.

Recall that Bob is a friend of Alice and Ted; Ted is a
friend of Peter; Ted is not a friend of Alice; Peter is not a
friend of Alice or Bob; and none of them has blocked to
another.
S1 Alice posts a photo of herself, Bob and Ted in her

timeline, and sets its audience to ‘Friends’. Then, Alice
tags Bob in this photo. Question: Can Bob see the photo
in Alice’s timeline? The answer is Yes, because Alice
has set her default audience to ‘Friends’ and Bob is a
friend of Alice. Indeed, the readPost’s authorization
constraint evaluates to true in this scenario, since
(@post.audience= ’Friends’
and @self.profile.friends�>includes(@caller))

evaluates to true when replacing @post by Alice’s
photo, @caller by Bob, and @self by Alice’s timeline.

S2 Alice has set to ‘Only Me’ the default audience for
posts made by her friends in her timeline. Bob posts a

photo in Alice’s timeline. Question: Can Bob see this
photo in Alice’s timeline? The answer is Yes, because
Bob is the person who posted the photo and Bob is not
blocked by Alice. Indeed, the readPost’s authoriza-
tion constraint evaluates to true in this scenario, since
(@caller=@post.creator
and @self.profile.blocks�>excludes(@caller))

evaluates to true when replacing @post by Alice’s
photo, @caller by Bob, and @self by Alice’s timeline.

S3 Alice posts a photo of herself, Bob and Ted in her
timeline, and set its audience to ‘Friends’. Then, Bob
tags Ted in this photo. Question: Can Peter see this
photo in Alice’s timeline? The answer is Yes. because
the audience selected by Alice is ‘Friends’ and, there-
fore, after Bob tags Ted the audience is extended to Ted
and his friends. Indeed, the readPost’s authorization
constraint evaluates to true in this scenario, since
(@post.audience = ’Friends’
and @post.creator=@self.profile
and @post.tags.profiling.friends�>includes(@caller)
and @self.profile.blocks�>excludes(@caller)).

evaluates to true when replacing @post by Alice’s
photo, @caller by Peter, and @self by Alice’s timeline.

S4 Bob posts a photo of himself, Ted and Alice in Alice’s
timeline. Alice has setting by default ‘Only Me’. Then,
Bob tags Ted in this photo Question: Can Peter see this
photo in Alice’s timeline? The answer is No, because
the audience selected by Alice by default is ‘Only Me’,
and Peter is neither the person who posted the photo,
nor the person who is tagged in the photo. Indeed,
the readPost’s authorization constraint evaluates to
false in this scenario, when replacing @post by Alice’s
photo, @caller by Peter, and @self by Alice’s timeline.

V. ADJUSTING TO CHANGES

Facebook’s privacy policy has been in a constant state of
flux over the past years [17]. This is certainly the case for
Facebook’s policy for tagging and posting, which is now
explained in its 2014 FAQ [8] as follows:

• When someone adds a tag to a photo or post I shared,
who can see it?
When someone adds a tag to something you shared,
it’s visible to: 1. The audience you chose for the post
or photo. 2. The person tagged in the post, and their
friends. If you’d like, you can adjust this visibility. You
can select Custom, and uncheck the Friends of those
tagged box.

Clearly, the possibility of not sharing a post with friends
of those tagged in the post was not an option in 2013. In
fact, if we consider again the scenarios S1–S4, we notice
that our answers to the questions about the visibility of the
posts in these scenarios remain valid, except for scenario S3:
according to the new Facebook’s policy for tagging and
posting, the question about whether Peter can see or not



the photo in Alice’s timeline depends on whether Alice has
checked or not the box ‘Friends of those tagged’ in her
photo.

To adjust our SecureUML model of Facebook’s privacy
policy to this latest change, we need first to modify our
data model for Facebook in order to represent whether
or not a post will be visible also to the tagged profile’s
friends. We do so by adding to the class Post a new
Boolean attribute audExt. Then, we modify accordingly
the readPost(@post)’s authorization constraint. In par-
ticular, we need to replace the last clause in the previous de-
scription of the policy for executing the method readPost
by the following clause:

• anybody can read any post that has its audience selected
to ‘Friends’ and was created by the owner of the
timeline, if he or she is a friend of somebody tagged
on the post, unless he or she is blocked by the owner
of the timeline or the owner has unchecked the box
‘Friends of those tagged’.

More formally, the permission to execute the method
readPost(@post) will now have the following autho-
rization constraint:
@caller=@self.profile
or (@caller=@post.creator
and @self.profile.blocks�>excludes(@caller))

or (@post.audience = ’Friends’
and @self.profile.friends�>includes(@caller))

or (@post.audience = ’FriendsOfFriends’
and (@self.profile.friends�>includes(@caller)
or @self.profile.friends.friends�>includes(@caller))
and @self.profile.blocks�>excludes(@caller))

or (@post.audience = ’Public’
and @self.profile.blocks�>excludes(@caller))

or (@post.tags.profiling�>includes(@caller)
and @self.profile.blocks�>excludes(@caller))

or (@post.audience = ’Friends’
and @post.creator=@self.profile
and @post.tags.profiling.friends�>includes(@caller)
and @self.profile.blocks�>excludes(@caller)
// the following conjunct is new
and @post.audExt).

VI. ANALYZING FACEBOOK PRIVACY POLICY

SecureUML has a well-defined semantics that supports
formal reasoning about its models. In particular, given a
SecureUML model M , we can check that nobody, for which
a given property P holds, will be allowed to execute a
certain method X . Notice that this corresponds to proving
that there is no valid instance of the underlying data model
for which both the method X’s authorization constraint and
the property P evaluate to true. Crucially, as explained
in [4], [5], we can automatically transform this type of
problems into first-order satisfiability problems, and then use
automated theorem-proving tools to attempt to solve them.

We have applied this methodology to prove, as an exam-
ple, that nobody will be allowed to read a post in a timeline

if this person is blocked by the timeline’s owner. First, we
have formalized, using OCL, the properties that every valid
instance of our data model for Facebook will have to satisfy,
for example:

• If someone is blocked by someone else, then the former
can not remain friend of the latter. Formally,
Profile.allInstances()�>forAll(p, q|
p.blocks�>includes(q) implies p.friends�>excludes(q)).

• Nobody can be blocked by itself. Formally,
Profile.allInstances()�>forAll(p|p.blocks�>excludes(p)).

Second, we have formalized, using OCL, the property of
being blocked by the timeline’s owner as follows:
@self.profile.blocks�>includes(@caller),

where @caller refers to the person who wants to read the
post and @self refers to the timeline where the posted is
posted. Finally, after generating the corresponding satisfi-
ability problem, we have used the SMT solver Z3 [6] to
automatically prove the desired property, i.e., that nobody
will be allowed to read a post in a timeline if this person is
blocked by the timeline’s owner.

VII. RELATED WORK

To the best of our knowledge, no previous attempts have
been made to rigorously formalize the Facebook privacy
policy and, in particular, its policies for posting and tagging.
There are, at least, two good reasons for this. First, as
the DPC audit [11] has pointed out, “many policies and
procedures that are in operation [in Facebook] are not
formally documented.” Second, the Facebook privacy policy
has significantly changed over the past few years [17], in
ways not always well-explained, as Zuckerberg has to admit
in his blog [24]: “I’m the first to admit that we’ve made a
bunch of mistakes. In particular (...) poor execution as we
transitioned our privacy model two years ago.”

Now, assuming that the Facebook privacy policy is for-
mally documented, what will be the challenges for modeling
this policy? Basically, as [18] discussed in detail, for model-
ing social networking privacy it is crucial to use a language
able to formalize fine-grained access control policies. In
other words, a basic role-based access control language, as
proposed in [14], will only do part of the job. Thanks to its
tight-integration with OCL, the language SecureUML [2]
can deal with fine-grained access control policies, as we
have shown in our case study. Of course, there are other
options, but not many when having a formal semantics
becomes a hard requirement. For example, XACML [15],
which can be considered the standard choice for describ-
ing privacy policies, lacks of a formal semantics. In fact,
due to this limitation, [18] uses the language Z [19] for
specifying fine-grained access control policies. Although an
interesting option, we prefer to use SecureUML instead of
Z because SecureUML already has “built-in” the notions
of role, permission, methods, resources, and authorization



constraints, which, would have to be “encoded” (more or
less, naturally) along with the policies, if we were to use
Z. Furthermore, SecureUML is designed to support model-
driven security [3].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how to use SecureUML [2]
to formally model social networking privacy. In particular,
we have modeled, using SecureUML, the Facebook policies
for posting and tagging. The key feature that makes Se-
cureUML up to this task is its ability to formalize both static
and dynamic access control policies, the latter being policies
that depend on the run-time satisfaction of authorization
constraints. We have also explained how to formally reason
about SecureUML models, using as an example our model
of the Facebook policy for posting and tagging. In fact, this
is one of the main benefits of using a formal language,
such as SecureUML, to model social networking privacy.
Based on this formal foundation, we envision the design and
development of new, more powerful privacy tools which,
as requested by the DPC audit[11], will provide an “en-
hanced ability for users to make their own informed choices
based on the available information.” Furthermore, this formal
foundation opens the path for more rigorous comparisons
between privacy policies of different social networking sites.

ACKNOWLEDGEMENTS

This work is partially supported by the Spanish Min-
istry of Economy and Competitiveness Project “StrongSoft”
(TIN2012-39391-C04-04) and by the EU FP7-ICT Project
“NESSoS: Network of Excellence on Engineering Secure
Future Internet Software Services and Systems” (256980).

REFERENCES

[1] A. Acquisti and R. Gross. Imagined Communities: Aware-
ness, Information Sharing, and Privacy on the Facebook.
In G. Danezis and P. Golle, editors, Privacy Enhancing
Technologies, volume 4258 of LNCS, pages 36–58. Springer,
2006.

[2] D. Basin, J. Doser, and T. Lodderstedt. Model driven security:
From UML models to access control infrastructures. ACM
ToSEM, 15(1):39–91, 2006.

[3] D. A. Basin, M. Clavel, and M. Egea. A decade of model-
driven security. In R. Breu, J. Crampton, and J. Lobo, editors,
SACMAT, pages 1–10. ACM, 2011.

[4] M. Clavel, M. Egea, and M. A. G. de Dios. Checking unsat-
isfiability for OCL constraints. Electronic Communications
of the EASST, 24, 2009.

[5] C. Dania and M. Clavel. OCL2FOL+: Coping with Unde-
finedness. In J. Cabot, M. Gogolla, I. Ráth, and E. D. Willink,
editors, OCL@MoDELS, volume 1092 of CEUR Workshop
Proceedings, pages 53–62. CEUR-WS.org, 2013.

[6] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver.
In C. R. Ramakrishnan and J. Rehof, editors, TACAS, volume
4963 of LNCS, pages 337–340. Springer, 2008.

[7] Facebook. Facebook Help Center. 2013. http://www.
facebook.com/help.

[8] Facebook. Facebook Help Center. 2014. http://www.
facebook.com/help.

[9] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chan-
dramouli. Proposed NIST standard for role-based access
control. ACM TISSEC, 4(3):224–274, 2001.

[10] R. Gross, A. Acquisti, and H. J. Heinz. Information Reve-
lation and Privacy in Online Social Networks. In V. Atluri,
S. D. C. di Vimercati, and R. Dingledine, editors, WPES,
pages 71–80. ACM, 2005.

[11] Irish Data Protection Commissioner. Facebook Ireland Ltd.
Report of Audit, December 2011. http://www.dataprotection.
ie/documents/facebook%20report/final%20report/report.pdf.

[12] Irish Data Protection Commissioner. Facebook
Ireland Re-Audit Report, September 2012. http:
//www.dataprotection.ie/documents/press/Facebook Ireland
Audit Review Report 21 Sept 2012.pdf.

[13] M. L. Johnson, S. Egelman, and S. M. Bellovin. Facebook
and privacy: it’s complicated. In L. F. Cranor, editor, SOUPS,
page 9. ACM, 2012.

[14] J. Li, Y. Tang, C. Mao, H. Lai, and J. Zhu. Role based access
control for social network sites. In Pervasive Computing
(JCPC), 2009 Joint Conferences on, pages 389 –394, dec.
2009.

[15] OASIS. eXtensible Access Control Markup Language
(XACML), 2010. http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-cs-01-en.pdf.

[16] Object Management Group. Object constraint language
specification version 2.3.1. Technical report, OMG, 2012.
http://www.omg.org/spec/OCL/2.3.1.

[17] N. O’Neill. Infographic: The History of Facebook’s Default
Privacy Settings. http://www.allfacebook.com.

[18] A. Simpson. On the Need for User-Defined Fine-Grained
Access Control Policies for Social Networking Applications.
In Proceedings of the workshop on Security in Opportunistic
and SOCial networks, SOSOC ’08, pages 1:1–1:8, New York,
NY, USA, 2008. ACM.

[19] J. M. Spivey. The Z notation: a reference manual. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[20] Y. Wang, P. G. Leon, K. Scott, X. Chen, A. Acquisti, and L. F.
Cranor. Privacy nudges for social media: an exploratory face-
book study. In L. Carr, A. H. F. Laender, B. F. Lóscio, I. King,
M. Fontoura, D. Vrandecic, L. Aroyo, J. P. M. de Oliveira,
F. Lima, and E. Wilde, editors, WWW (Companion Volume),
pages 763–770. International World Wide Web Conferences
Steering Committee / ACM, 2013.

[21] A. Young and A. Quan-Haase. Information Revelation and
Internet Privacy Concerns on Social Network Sites: A Case
Study of Facebook. In Proceedings of the fourth international
conference on Communities and technologies, pages 265–274,
New York, NY, USA, 2009. ACM.

[22] E. Zheleva and L. Getoor. To join or not to join: the illusion
of privacy in social networks with mixed public and private
user profiles. In J. Quemada, G. León, Y. S. Maarek, and
W. Nejdl, editors, WWW, pages 531–540. ACM, 2009.

[23] M. Zuckerberg. Facebook and the Irish Data Protection
Commission. The Facebook Blog, Dec. 2011. https://blog.
facebook.com.

[24] M. Zuckerberg. Our Commitment to the Facebook Commu-
nity. The Facebook Blog, Nov. 2011. https://blog.facebook.
com.


