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Abstract. In this technical report we provide the formal account of our
ActionGUI methodology, including the semantics of the modeling lan-
guages that we use, the definition of our many-models-to-models trans-
formation, and the proof of its correctness.

1 ComponentUML

In this section we first define ComponentUML data models. Then, given a Com-
ponentUML data model D, we define D-object models. Finally, we define the
semantics of a ComponentUML data model D as the set Sem(D) of all the
D-object models.

Notation. Let TP = {Integer,Real,String,Boolean} be the set of Componen-
tUML primitive data types. In what follows, we denote by JtKTP the standard
carrier set of t, for each primitive data type t ∈ TP, e.g., JIntegerKTP = Z.

Let A ⊂ JStringKTP be the set of all finite strings that only contain letters of
the English alphabet.

1.1 ComponentUML data models

Definition. A ComponentUML data model is a tuple 〈C,AT ,AS ,ASO〉 such
that:

– C ⊂ A is a set of class identifiers.
– AT is a set of triples 〈at , c, t〉, also represented as at (c,t), where at ∈ A is

an attribute identifier, c ∈ C, t ∈ C ∪ TP, and c and t are, respectively, the
class and the type of the attribute at .

– AS is a set of triples 〈as, c, c′〉, also denoted as as(c,c′), where as ∈ A is an
association-end identifier, c, c′ ∈ C, and c and c′ are, respectively, the source
and the target classes of as.

– ASO is a symmetric relation, ASO ⊆ AS × AS , where (as(c,c′), as ′(c′,c)) ∈
ASO represents that as ′ is the association-end opposite to as, and vice versa,
and c, c′ ∈ C.



Invariants.

– There is no class whose identifier also belongs to TP.
– Attributes and associations-ends of the same class always have different iden-

tifiers.
– Every association-end is related with exactly another association-end. That

is, for every tuple 〈as, c, c′〉 in AS , there exists exactly one other tuple
〈as ′, c′, c〉 in AS such that (〈as, c, c′〉, 〈as ′, c′, c〉) in ASO .

1.2 ComponentUML object models

Definition. Let D be a ComponentUML data model 〈C,AT ,AS ,ASO〉. Then,
a D-object model is a tuple 〈O,VA,LK 〉, such that:

– O is a set of pairs 〈o, c〉, where o ∈ A is an object identifier and c ∈ C. Each
pair 〈o, c〉, also represented as oc, denotes that the object o is of the class c.

– VA is a set of triples 〈oc, at (c,t), va〉, where at (c,t) ∈ AT , oc ∈ O, t ∈ TP, and
va ∈ JtKTP is a value of type t. Each triple 〈oc, at (c,t), va〉 denotes that va is
the value of the attribute at of the object o.

– LK is a set of triples 〈oc, as(c,c′), o
′
c′〉, where as(c,c′) ∈ AS , and oc, o

′
c′ ∈ O.

Each tuple 〈oc, as(c,c′), o
′
c′〉 denotes that the object o′ is among the objects

that are linked to the object o through the association-end as.

Invariants.

– There are no two different values for the same attribute of the same object.
(However, it is not necessary that every attribute of an object has a value.)

– For every association-end as(c,c′) in AS , such that (as(c,c′), as ′(c′,c)) in ASO , if

there is a link 〈oc, as(c,c′), o
′
c′〉 ∈ LK between two objects oc and o′c′ through

this association-end, then there is also a link 〈o′c′ , as ′(c′,c), oc〉 ∈ LK between
these two objects through the opposite association-end.

1.3 Semantics of ComponentUML data models

Definition. Let D be a ComponentUML data model. The semantics of D, de-
noted by Sem(D), is the set of all the ComponentUML D-object models.

2 SecureUML

In this section we first define SecureUML data actions and SecureUML autho-
rization constraints, both relative to a given ComponentUML data model. Then,
we define SecureUML security models, also relative to a given ComponentUML
model. Next, given a SecureUML security model S, we define S-authorized ac-
tions. Finally, we define the semantics of a SecureUML security model as the set
Sem(S) of all the S-authorized actions and, based on this definition, we define
the notion of a consistent SecureUML security model.



Notation. LetD be a data model, and let I be aD-object model, I = 〈O,VA,LK 〉.
In what follows, we will use the following notation:

– We denote by Typ(D) the set of all the OCL types, given the classes declared
in D. These types are defined in the OCL standard [1].

– We denote by Expr(D) the set of all the OCL expressions that haveD as their
contextual model. These expressions are defined in the OCL standard [1].
Note that, by definition, they do not contain free variables.

– Let X be a set of pairs 〈x, t〉, also written as xt, where x ∈ A is a variable
identifier of type t ∈ Typ(D). Then, we denote by Expr(D,X) the set of
all the OCL expressions that have D as their contextual model but that
may also contain variables in X as free variables. Moreover, for every expr ∈
Expr(D,X), we denote by FVar(expr) ⊆ X the set of all the free variables
contained in expr .

– We denote by Expr(DI) the set of all the OCL expressions that have D as
their contextual model and may also contain as constants the objects oc ∈ O.

– Let expr be an OCL expression in Expr(DI). Then, we denote by JexprKI
the evaluation of the expression expr in the object model I, as defined in the
OCL standard [1]. Note that the evaluation of an OCL expression always
return a literal expression in Expr(DI), which can not be further reduced
and which does not contain any variables.

– Let X be a set of variables xt, where t ∈ Typ(D). Then, a (X, I)-substitution
θ is a function, θ : X → Expr(DI), that assigns to each variable in X an
expression in Expr(DI) of the appropriate type.
Now, let xt ∈ X be a variable and let expr in Expr(DI) be an expres-
sion of type t. Then, we denote by θ ⊕ {xt 7→ expr}, θ ⊕ {xt 7→ expr} :
X → Expr(DI), the overriding of θ by {xt 7→ expr}. That is, θ ⊕ {xt 7→
expr}(xt) = expr , but, for every other x′t′ ∈ X, xt 6= x′t′ , θ ⊕ {xt 7→
expr}(x′t′) = θ(x′t′).

Moreover, for every (X, I)-substitution θ, we denote as θ̂ the homomorphic
extension of θ over the set Expr(D,X). Finally, for expr ∈ Expr(D,X), we

write θ̂(expr) as (expr)θ.

2.1 SecureUML data actions

Definition. Let D be a data model 〈C,AT ,AS ,ASO〉. Then, we denote by
Act(D) the set of all the (atomic) data actions that can be executed on D-
object models. Act(D) is defined as follows: for every class c ∈ C, every attribute
at (c,t) ∈ AT , and every association-end as(c,c′) ∈ AS ,

Create(c),Delete(c) ∈ Act(D).

Read(at (c,t)),Update(at (c,t)) ∈ Act(D).

Read(as(c,c′)),Create(as(c,c′)),Delete(as(c,c′)) ∈ Act(D).

The notation action(resource) reflects that data actions are always upon
resources.



2.2 SecureUML authorization constraints

Definition. Let D be a data model 〈C,AT ,AS ,ASO〉. Let u ∈ C be a class
that represents the users. Let act ∈ Act(D) be a data action. Then, we denote
by AuthExpr(D,u, act) the set of all the authorization constraints that can be
imposed on users of type u for executing the data action act with respect to
the data model D. Informally, an authorization constraint is an (extended) OCL
expression that may contain distinguished keywords (logically interpreted as free
variables) that refer to the user attempting to execute the action (caller), to the
data upon which the action is to be executed (self), or to the data that the action
takes as its arguments (value and target).

More formally, AuthExpr(D,u, act) is defined as follows: for every class c ∈
C, every attribute at (c,t) ∈ AT , and every association-end as(c,c′) ∈ AS :

AuthExpr(D,u,Create(c)) = Expr(D, {calleru}).
AuthExpr(D,u,Delete(c)) = Expr(D, {selfc, calleru}).
AuthExpr(D,u,Read(at (c,t))) = Expr(D, {selfc, calleru}).
AuthExpr(D,u,Update(at (c,t))) = Expr(D, {selfc, valuet, calleru}).
AuthExpr(D,u,Read(as(c,c′))) = Expr(D, {selfc, calleru}).
AuthExpr(D,u,Create(as(c,c′))) = Expr(D, {selfc, targetc′ , calleru}).
AuthExpr(D,u,Delete(as(c,c′))) = Expr(D, {selfc, targetc′ , calleru}).

2.3 SecureUML security models

Definition. Let D be a data model 〈C,AT ,AS ,ASO〉. Then, a SecureUML D-
security model S is a tuple 〈D,R,RH , u, P 〉 such that:

– R ⊂ A is a set of role identifiers.
– RH ⊂ R×R is a partial order representing the role hierarchy.
– u ∈ C is a class that represents the users.
– P is a set of triples 〈r, act , expr〉 representing permissions: namely, that the

role r ∈ R is granted permission for the action act ∈ Act(D) provided the
constraint expr ∈ AuthExpr(D,u, act) is satisfied.

Definition. Let D be a data model 〈C,AT ,AS ,ASO〉. Let S be a D-security
model 〈D,R,RH , u, P 〉. Then, AuthPerm(S, r, act) is the disjunction of all the
authorization constraints controlling the access for users in the role r to execute
the action act , according to S. AuthPerm(S, r, act) is defined as follows: Let
Q = {expr | ∃r′ ∈ R. 〈r′, act , expr〉 ∈ P ∧ (r, r′) ∈ RH }. Then,

AuthPerm(S, r, act) =

{
expr1 or . . . or exprn, if Q = {expr1, . . . , exprn}.
false, if Q = ∅.

Note that, by definition, AuthPerm(S, r, act) ∈ Expr(D,X), where X is the
set containing calleru plus the appropriate instances of self, target, and value,
depending on the type of the action act .



2.4 SecureUML authorized actions

Definition. Let D be a data model 〈C,AT ,AS ,ASO〉. Let S be a D-security
model 〈D,R,RH , u, P 〉. Let I be a D-object model 〈O,VA,LK 〉. Let ou ∈ O be
a user, r ∈ R be a role, and act ∈ Act(D) be a D-data action. Moreover, let θ
be a (FVar(AuthPerm(S, r, act)), I)-substitution.

Then, 〈I, ou, r, act , θ〉 is an S-authorized action if and only if

JAuthPerm(S, r, act)(θ ⊕ {calleru 7→ ou})KI = true.

Note that, given our definition of AuthPerm,

– No permission is granted for executing an action, unless it is explicitly de-
clared.

– All permissions are inherited along the role hierarchy.

2.5 Semantics of SecureUML security models

Definition. Let D be a data model and let S be a D-security model. Then, the
semantics of S, given by Sem(S), is the set of all the S-authorized actions.

3 GUIML

In this section we first define GUIML layout models, which simply model graph-
ical user interfaces without considering their behaviors. Then, we define GUIML
statements, which specify sequences of actions that are possibly conditional and
iterated. Next, we define GUIML behavioral models, which are GUIML layout
models but also with associated behavior, i.e., with statements associated to
each of the widget events. Finally, we define a set of inference rules that will
provide the (operational) semantics of GUIML events as the set Sem(G, ev) of
all the transitions defined by these rules.

Notation. In what follows, let ET be the set of GUIML event types,

ET = {onClick, onCreate}.

Also, let WT be the set of GUIML widget types,

WT = {Window,Table,Combo-box,

Button,Text field, Label,Boolean check}.

3.1 GUIML layout models

Definition. A GUIML layout model H is a tuple 〈W,WC , X,EV 〉 such that:

– W is a set of pairs 〈w,wt〉, also represented as wwt , where w ∈ A is a widget
identifier, and wt ∈WT is the widget’s type.



– WC ⊂W ×W is a relation representing the widget containment.
– X is a set of pairs 〈〈x, t〉, 〈w,wt〉〉, called widget variables, also represented

as 〈xt, wwt〉, where x is a variable identifier, t ∈ Typ(D) is the variable’s
type, and 〈w,wt〉 ∈W is the widget that owns this variable.

– EV is a set of pairs 〈ev , 〈w,wt〉〉, also represented as 〈ev , wwt〉, where ev ∈
ET is an event type and 〈w,wt〉 ∈W is the widget that supports this event
type.

Invariants.

– The containment relation WC defines set of rooted trees. Moreover, at the
root of every tree in WC there is a widget of type Window and, conversely,
every widget in W of type Window is the root of a tree in WC .

– There are no two variables owned by the same widget with the same identi-
fier.

– If two widgets are directly contained in the same widget, then they have
different identifiers.

Notation. Let H be a GUIML layout model 〈W,WC , X,EV 〉. In what follows
we will use the following notation:

– We denote by WC+ the transitive closure of the containment relation defined
in WC .

– Let wwt ∈ W be a widget in W , wt 6= Window. Then, we denote by
Win(H,wwt) the window that contains wwt in W , i.e., (wwt ,Win(H,wwt)) ∈
WC+.

– Let wwt ∈ W be a widget in W . Then, we denote by Var(H,wwt) the set
of variables in X that are owned by wwt , i.e., Var(H,wwt) = {〈xt, w′wt′〉 |
〈xt, w′wt′〉 ∈ X ∧ wwt = w′wt′}.

– Let wwt ∈ W be a widget in W . Then, we denote by Var](H,wwt) the set
of the variables in X that are visible from wwt . Var](H,wwt) is defined as
follows:

Var](H,wwt) = Var(H,wwt) ∪
{〈xt, w′wt′〉 | 〈xt, w′wt′〉 ∈ Var(H,w′wt′) ∧

(w′wt′ ,Win(H,wwt)) ∈WC+}.

Note that, by definition, if two widgets are contained in the same window,
then their sets of visible variables are identical. Also, the set of visible vari-
ables of a widget is the same than the set of visible variables of the widget’s
containing window.

3.2 GUIML statements

Definition. Let D be a data model 〈C,AT ,AS ,ASO〉. Let H be a GUIML layout
model 〈W,WC , X,EV 〉. Let wwt be a window in H, i.e., wWindow ∈ W . Then,
we denote by Stm(D,H,w) the set of all the statements that can be written in
the context of the window w. This set is inductively defined as follows:



Base case (data actions): The building block for statements are the data ac-
tions along with the GUI actions. The GUIML data actions are the SecureUML
data actions introduced before, except that they now take additional arguments
that, depending on the action’s type, either specify, using OCL (extended with
widget variables), the object self upon which the action is to be executed,
or the value and target of this action, or indicate the widget variable where
the action’s outcome is to be stored. To reflect this difference between the
GUIML data actions and their corresponding SecureUML data actions, we use
the notation action(resource)[arguments] for GUIML data actions. Thus, if
action(resource)[arguments] is a GUIML data action, then action(resource) is
its corresponding SecureML data action.

– For every entity create action Create(c) ∈ Act(D) and every variable of type
c in Var](H,wwt), then

Create(c)[variable] ∈ Stm(D,H,w).

– For every entity delete action Delete(c) ∈ Act(D) and every expression self
of type c in Expr(D,Var](H,wwt)), then

Delete(c)[self ] ∈ Stm(D,H,w).

– For every attribute read action Read(at (c,t)) ∈ Act(D), every expression self

of type c in Expr(D,Var](H,wwt)), and every widget variable of type t in
Var](H,wwt), then

Read(at (c,t))[self , variable] ∈ Stm(D,H,w).

– For every attribute update action Update(at (c,t)) ∈ Act(D), every expression

self of type c in Expr(D,Var](H,wwt)), and every expression value of type
t in Expr(D,Var](H,wwt)), then

Update(at (c,t))[self , value] ∈ Stm(D,H,w).

– For every association-end read action Read(as(c,c′)) ∈ Act(D), every ex-

pression self of type c in Expr(D,Var](H,wwt)), and every variable of type
Set(c′) in Var](H,wwt), then

Read(as(c,c′))[self , variable] ∈ Stm(D,H,w).

– For every association-end create action Create(as(c,c′)) ∈ Act(D), every ex-

pression self of type c in Expr(D,Var](H,wwt)), and every expression target
of type c′ in Expr(D,Var](H,wwt)), then

Create(as(c,c′))[self , target ] ∈ Stm(D,H,w).

– For every association-end delete action Delete(as(c,c′)) ∈ Act(D), every ex-

pression self of type c in Expr(D,Var](H,wwt)), and every expression target
of type c′ in Expr(D,Var](H,wwt)), then

Delete(as(c,c′))[self , target ] ∈ Stm(D,H,w).



Base case (GUI actions):

– For every type t ∈ Typ(D), every variable of type t in Var](H,wwt) and
every expression value of type t in Expr(D,Var](H,wwt)), then

Set[variable, value] ∈ Stm(D,H,w).

– For every window 〈w′,Window〉 ∈ W , every list of variables variable1,. . . ,
variablen, such that, for 1 ≤ i ≤ n, variablei is of type ti in Var(H,w′Window),
and every list of expressions value1, . . . , valuen, such that, for 1 ≤ i ≤ n,
valuei is of type ti in Expr(D,Var](H,wwt)), then

Open[w′, (variable, value)] ∈ Stm(D,H,w).

– Finally,
Back,Fail,Skip ∈ Stm(D,H,w).

Inductive case

– For every expression cond of type Boolean in Expr(D,Var](H,wwt)), and
every statements stm1, stm2 ∈ Stm(D,H,w), then

if then else[cond , stm1, stm2] ∈ Stm(D,H,w).

– For every expression source of type Sequence(t) in Expr(D,Var](H,wwt)),
every widget variable variable of type t in Var](H,wwt), and every statement
body ∈ Stm(D,H,w), then

iterator[source, variable, body ] ∈ Stm(D,H,w).

– For all statements stm, stm ′ ∈ Stm(D,H,w), then

stm ; stm ′ ∈ Stm(D,H,w).

3.3 Behavioral GUIML models

Definition. Let D be a data model 〈C,AT ,AS ,ASO〉. Let H be a GUIML
layout model 〈W,WC , X,EV 〉. Then, a GUIML behavioral model G is a tuple
〈D,H,EST 〉 such that:

– EST is a set of pairs 〈〈ev , wwt〉, stm〉, where
• 〈ev , wwt〉 ∈ EV is an event.
• stm ∈ Stm(D,H,Win(H,wwt)) is the statement associated to this event.

Invariants.

– Every event is associated with exactly one statement.
– In every sequence of statement associated to an event, the GUI actions Open

and Back can only appear (if at all) at the last position.5

5 When this last position is occupied by an if-then-else, then Open and Back can only
appear (if at all) at the last position of its then- or else-branches (and recursively in
the case of nested if-then-elses). The situation is similar for iterator statements.



3.4 Operational semantics for events

Notation. Let D be a data model 〈C,AT ,AS ,ASO〉. Let I be a D-object model
〈O,VA,LK 〉. In what follows we will use the following notation:

– Let oc ∈ O be an object. Then, (VA \ oc) denotes the set that results
from deleting from VA every triple that contains oc. That is, (VA \ oc) =
{〈o′c′ , at (c′,t′), va〉 | 〈o′c′ , at (c′,t′), va〉 ∈ VA ∧ o′c′ 6= oc}.

– Let oc ∈ O be an object. Then, (LK \ oc) denotes the set that results
from deleting from LK every triple that contains oc. That is, (LK \ oc) =
{〈o′c′ , as(c′,c′′), o

′′
c′′〉 | 〈o′c′ , as(c′,c′′), o

′′
c′′〉 ∈ LK ∧ o′c′ 6= oc ∧ o′′c′′ 6= oc}.

– Let at (c,t) ∈ AT be an attribute. Let oc ∈ O be an object and let va ∈
JtKTP be a value of type t. Then VA ⊕ 〈oc, at (c,t), va〉 denotes the set that
results from overriding (i.e., updating) in VA the value of the attribute at
of the object oc with va. That is, (VA⊕〈oc, at (c,t), va〉) = {〈oc, at (c,t), va〉}∪
{〈o′c′ , at ′(c′,t′), va ′〉 | 〈o′c′ , at ′(c′,t′), va ′〉 ∈ VA ∧ o′c′ 6= oc ∧ at ′(c′,t′) 6= at (c,t)}.

Definition. Let D be a data model 〈C,AT ,AS ,ASO〉. Let H be a GUIML layout
model 〈W,WC , X,EV 〉. Let G be a GUIML behavioral model 〈D,H,EST 〉. Let
ev ∈ EV be an event in G with 〈ev , stm〉 ∈ EST . Then, Sem(G, ev) is the set
of all the transitions

〈stm, I, θ〉 −→∗ 〈Skip, I ′, θ′〉

where −→∗ is the transitive closure of the small-step transition relation −→ de-
fined by the following inference rules. For every D-object model I = 〈O,VA,LK 〉
and every (X, I)-substitution we have:

Base case (data actions)

oc 6∈ O
〈Create(c)[variable], I, θ〉 −→ 〈Skip, 〈O ∪ {oc},VA,LK 〉, θ ⊕ {variable 7→ oc}〉

.

J(self )θKI = o

〈Delete(c)[self ], I, θ〉 −→ 〈Skip, 〈(O \ oc), (VA \ oc), (LK \ oc)〉, θ〉
.

J(self .at)θKI = va

〈Read(at (c,t))[self , variable], I, θ〉 −→ 〈Skip, I, θ ⊕ {variable 7→ va}〉
.

J(self )θKI = o, J(value)θKI = va

〈Update(at (c,t))[self , value], I, θ〉 −→ 〈Skip, 〈O, (VA⊕ 〈o, at , va〉),LK 〉, θ〉
.

J(self .as)θKI = {o1, . . . , on}
〈Read(as(c,c′))[self , variable], I, θ〉 −→ 〈Skip, I, θ ⊕ {variable 7→ {o1, . . . , on}〉

.



J(self )θKI = o, J(target)θKI = o′, (as(c,c′), as ′(c′,c)) ∈ ASO

〈Create(as(c,c′))[self , target ], I, θ〉 −→
〈Skip, 〈O,VA, (LK ∪ {〈o, as, o′〉, 〈o′, as ′, o〉})〉, θ〉

.

J(self )θKI = o, J(target)θKI = o′, (as(c,c′), as ′(c′,c)) ∈ ASO

〈Delete(as(c,c′))[self , target ], I, θ〉 −→
〈Skip, 〈O,VA, (LK \ {〈o, as, o′〉, 〈o′, as ′, o〉})〉, θ〉

.

Base case (GUI actions)

J(value)θKI = va

〈Set[variable, value], I, θ〉 −→ 〈Skip, I, θ ⊕ {variable 7→ va}〉
.

〈Open[〈w,Window〉, (variable, value)], I, θ〉 −→ 〈Skip, I, θ〉
.

〈Back, I, θ〉 −→ 〈Skip, I, θ〉
.

Inductive case

J(cond)θKI = true

〈If then else[cond , stm1, stm2], I, θ〉 −→ 〈stm1, I, θ〉
.

J(cond)θKI = false

〈If then else[cond , stm1, stm2], I, θ〉 −→ 〈stm2, I, θ〉
.

J(source)θKI = [v1, . . . , vn]

〈Iterator[source, variable, body ], I, θ〉 −→
〈(Set(variable, v1) ; body ; . . . ; Set(variable, vn) ; body), I, θ〉

.

〈stm1, I, θ〉 −→ 〈stm ′1, I
′, θ′〉

〈(stm1 ; stm2), I, θ〉 −→ 〈stm ′1 ; stm2, I
′, θ′〉

.

〈(Skip ; stm2), I, θ〉 −→ 〈stm2, I, θ〉
.



4 Security-aware GUIML

In this section we first characterize security-awareness of GUIML behavior mod-
els in terms of a transition relation defined by a security-aware version of the
inference rules that define the (non security-aware) operational semantics of
GUIML events. Then, we define a model transformation that, given a GUIML
model G and a SecureUML model S, generates a new GUIML model that is se-
curity aware with respect to S. Finally, we formalize and prove the correctness
of our model transformation.

4.1 Operational semantics for security-aware events

Informally, security-aware events are those events where the execution of the
associated actions are conditional on the satisfaction of the corresponding au-
thorization constraints. However, which constraint these are depends, of course,
on the role of the actual user who triggers this event. Thus, in order to be able
to refer to the user’s role (when specifying the aforementioned conditions within
the statement associated to the event), we will explicitly require that:

– The underlying data model D includes a class Role, with an attribute name
of type String.

– Every window in the GUIML model owns two distinguished variables, caller
(of the same type than the users) and role (of type Role), whose intented
values are, respectively, the actual user and its role

Moreover, when discussing security-awareness with respect to a security model
S we will be interested only in D-object models whose objects of type Role are
conformant with the roles declared in S, in the following sense: Let D be a data
model 〈C,AT ,AS ,ASO〉, such that Role ∈ C and 〈name,Role,String〉 ∈ AT . Let
S be a D-security model 〈D,R,RH, u, P 〉. Let I = 〈O,VA,LK 〉 be a D-object
model. Then, we say that I is R-conformant if and only if

R = {va | 〈oRole, name(Role,String), va〉 ∈ VA}.

Definition. Let D be a data model 〈C,AT ,AS ,ASO〉, such that Role ∈ C and
〈name,Role,String〉 ∈ AT . Let S be a D-security model 〈D,R,RH, u, P 〉. Let H
be a GUIML layout model 〈W,WC , X,EV 〉 such that, for every wWindow ∈ W ,
〈roleRole, wWindow〉 ∈ X and 〈calleru, wWindow〉 ∈ X. Let G be a GUIML behavioral
model 〈D,H,EST 〉. Let ev ∈ EV be an event in G whose associated statement
is stm, i.e., 〈ev , stm〉 ∈ EST . Then, the security-aware operational semantics for
the event ev is given by the set of all the transitions

〈stm, I, θ〉 −→∗sec 〈Skip, I ′, θ′〉

such that I is R-conformant and −→∗sec is the transitive closure of the small-step
transition relation −→sec defined by the security-aware versions of the inference
rules that define the operational semantics of GUIML events. Formally, for every



GUIML data action act [arg ], the security-aware version of the corresponding
inference rule includes the following additional condition:

J(AuthPerm(S, J(roleWin(H,ev).name)θKI , act)(Subst(act [arg])))θKI = true,

where Subst(act [arg ]) is the substitution defined below, which depends on the
type of the action act .

Subst(Create(c)[variable]) =

{calleru 7→ 〈calleru, wWindow〉}.
Subst(Delete(c)[self ]) =

{calleru 7→ 〈calleru, wWindow〉, selfc 7→ self }.
Subst(Read(at (c,t))[self , variable]) =

{calleru 7→ 〈calleru, wWindow〉, selfc 7→ self }.
Subst(Update(at (c,t))[self , value]) =

{calleru 7→ 〈calleru, wWindow〉, selfc 7→ self , valuet 7→ value}.
Subst(Read(as(c,c′))[self , variable]) =

{calleru 7→ 〈calleru, wWindow〉, selfc 7→ object}.
Subst(Create(as(c,c′))[self , target ]) =

{calleru 7→ 〈calleru, wWindow〉, selfc 7→ self , targetc′ 7→ target}.
Subst(Delete(as(c,c′))[self , target ]) =

{calleru 7→ 〈calleru, wWindow〉, selfc 7→ self , targetc′ 7→ target}.

The inference rules for GUI actions are not modified in their security-aware
versions. The inference rules for if-then-else statements, iterator statements, or
sequences of statements also remain unmodified.

4.2 Security-aware model transformation

Definition. Let D be a data model 〈C,AT ,AS ,ASO〉, such that Role ∈ C and
〈name,Role,String〉 ∈ AT . Let S be a D-security model 〈D,R,RH, u, P 〉. Let H
be a GUIML layout model 〈W,WC , X,EV 〉 such that, for every wWindow ∈ W ,
〈roleRole, wWindow〉 ∈ X and 〈calleru, wWindow〉 ∈ X. Let G be a GUIML behav-
ioral model 〈D,H,EST 〉. Then, Sec(G,S) is the S-security-aware version of G,
defined as follows:

Sec(G,S) = 〈D,H, {〈ev ,Sec(stm, S)〉 | 〈ev , stm〉 ∈ EST}〉.

Here Sec(stm, S) is the S-security-aware version of the statement stm associated
to the event ev , defined recursively as follows:



Base case (data actions): Let R = {r1, . . . , rn}. Then,

Sec(act [arg], S) =

If then else[r1 = roleWin(H,ev).name,

If then else[AuthPerm(S, r1, act)(Subst(act [arg ])),

act [arg],

Fail],

. . .

If then else[rn = roleWin(H,ev).name,

If then else[AuthPerm(S, rn, act)(Subst(act [arg ])),

act [arg]),

Fail],

Fail] . . . ].

Here Subst(act [arg ]) is the substitution defined above, where wWindow is in this
case the window that contains the widget that supports the event ev .

Base case (GUI actions):

Sec(Set[variable, value], S) = Set[variable, value].

Sec(Back, S) = Back.

Sec(Skip, S) = Skip.

Sec(Open[wWindow, (variable, value)], S) = Open(wWindow, (variable, value)).

Inductive cases.

Sec(if then else[cond , stm1, stm2], S) =

if then else[cond ,Sec(stm1, S),Sec(stm2, S)].

Sec(iterator[source, variable, body ], S) = iterator[source, variable,Sec(body , S)].

Sec((stm1 ; stm2), S) = (Sec(stm1, S) ; Sec(stm2, S)).

4.3 Correctness

The following theorem basically states that the evaluation of a transformed state-
ment following the non-security-aware operational semantics for events returns
the same result than its evaluation using the security-aware version of this seman-
tics and, therefore, that the transformed statement respects the authorization
constraints formalized in the underlying security model.

Theorem. Let D be a data model 〈C,AT ,AS ,ASO〉, such that Role ∈ C and
〈name,Role,String〉 ∈ AT . Let S be a D-security model 〈D,R,RH, u, P 〉. Let H
be a GUIML layout model 〈W,WC , X,EV 〉 such that for every wWindow ∈ W ,



〈roleRole, wWindow〉 ∈ X and 〈calleru, wWindow〉 ∈ X. Let G be a GUIML be-
havioral model 〈D,H,EST 〉. Let wWindow ∈ W be a window and let stm ∈
Stm(D,H,w). Then, for every R-conformant D-object data model I, and every
(X, I)-substitution θ,

〈Sec(stm, S), I, θ〉 −→∗ 〈Skip, I ′, θ′〉.⇐⇒
〈stm, I, θ〉 −→∗sec 〈Skip, I ′, θ′〉.

Proof. By induction on stm.
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