
Mapping OCL as a Query and
Constraint Language

Carolina Inés Dania Flores

Universidad Complutense de Madrid, Madrid, Spain
30th of June, 2017.

PhD defense

Supervisors:
Manuel García Clavel - Marina Egea González

Outline

• Motivation

• Background

• Mapping OCL to SQL-PL

• Mapping OCL to MS-FOL

• Application domains:
• checking model unsatisfiability
• analysing security and privacy models
• checking data invariants preservation across states

This research focused
on providing methods and tool support

which help building complex systems within
the Model Driven Architecture framework

MDA (Model Driven Architecture)

PIM PSM
transformation

tool

transformation
definiton

language

is
written

in

language

is
written

in

is
used
by

• It supports the development of complex systems by
generating software from models.

PIM (Platform Independent Model), PSM (Platform Specific Model)

MDA (Model Driven Architecture)

PIM PSM
transformation

tool

transformation
definiton

language

is
written

in

language

is
written

in

is
used
by

UML/OCL

• It supports the development of complex systems by
generating software from models.

PIM (Platform Independent Model), PSM (Platform Specific Model)

Models
Queries

Constraints

Motivation
Why models?

We always create models

Motivation
Why models?

A model can be used in a different ways during the
development process:

• for communication purposes to discuss design
decisions.

• to provide a detailed specification of the system.
• to develop the system.

Motivation
Why UML?

• UML is the de-facto language for Object-Oriented
analysis and design of information systems.

• UML is a standard of the Object Management
Group (OMG) (1997), and it is also an ISO standard
(2005).

• UML sustains many aspects of software engineering,
but it does not provide enough level of precision.

Motivation
Why OCL?

OCL was born as a constraint language to add precision
to UML like models an envolved as a query language.

It is a declarative language, and OMG and ISO standard.

Motivation

A variety of applications arises for OCL as a query
language.

OCL as a constraint language helps to add precision to
UML like models with detailed formal semantics.

OCL as a query language

The limitations of OCL as a query language can be
solved by mapping it to the most commonly used

query systems, i.e. databases

OCL as a constraint language

Our goal is provide a formal semantics that support
automatic reasoning to a great extent so it can be

used by software engineers.

Motivation

We want to prevent, detect, and correct errors  
as early as possible.

The quality of the generated code  
depends on the quality of the source models.

• About 90% of security software incidents are caused by known
software defects.

• A study of 45 e-business applications showed that 70% of software
failures are related to design.

• One million lines of code can have approximately between1000 and
5000 software defects in production.

Source: Team Software Process for Secure Systems Development. Software Engineering Institute. Carnegie Mellon

Motivation

USS Yorktown, smartship
• Crew member entered 0 in a

data field and cost a “divide by
0” error

• it down the propulsion
• ship was dead in the water for

2:45mins

Motivation

• NASA lost a $125 million
• Metric System Mixup (metrix

vs imperial)

Mars Climate Orbiter (MCO)

Motivation

Motivation

Motivation

Motivation

Motivation

This doctoral dissertation aims

to help the current status of methodology and tools
for building complex software systems

Background

• objects

Alice: Profile

T1: Timeline

Ph1: Photo

Ph2: Photo

Ph3: Photo

+age : 24

+id : 2390

+id : 2391

+id : 2392

• values

friends

*

*

owns
belongsTo

0..1

0..1

0..1
postedOn

posts

*

• associations (association-ends)

• classes

Status

Timeline

Photo
Profile

Post

UML (Unified Modeling Language)
Ex. Social Network

Class diagram

Object diagram

• links

-id: String-age: Integer

• attributes

• inheritance

OCL (Object Constraint Language)

• It is a general-purpose (textual) formal language that allows:
• retrieve objects and their values
• navigate through related objects

• It supports a set of types with a set of operations over them, and
• primitive types (Integer, String, Boolean), and
• collection types (Set, Bag, OrderedSet, and Sequence), and
• operators like: +, -, >, <, size, isEmpty, notEmpty, characters, and
• iterators like: forAll, exists, collect

OCL (Object Constraint Language)

Timeline.allInstances()

• All instances of Timeline

• Number of instances
Timeline.allInstances()�>size()

’hi’.characters()

• Convert the string ‘hi’ in a sequence of characters

Profile.allInstances()�>forAll(p|p.age > 18)

• Every profile is older than 18 years old

Profile.allInstances()�>select(p|p.age > 18)�>isEmpty()

• There isn’t any profile older than 18

friends

*

*

owns
belongsTo

0..1

0..1

0..1
postedOn

posts

*

Status

Timeline

Photo
Profile

Post

-id: String-age: Integer

Mapping OCL to SQL-PL

transformation
tool

transformation
definiton

PIM PSM

languagelanguage

is
written

in

is
written

in

is
used
by

UML/OCL

Class/objects
diagrams
Queries

Mapping OCL to SQL-PL

SQL/PL

SQL-PL4OCL

Theoretical framework

Databases
Stored

procedures

Formal definition

Implementation

M. Egea, C. Dania, M. Clavel: MySQL4OCL: A Stored Procedure-Based MySQL Code Generator for OCL. ECEASST 36 (2010).
M. Egea, C. Dania. SQL-PL4OCL: an automatic code generator from OCL to SQL procedural language. Software & Systems Modeling, 2017, p. 1-23.

From OCL to SQL-PL
Mapping data/object models.

• a table with a column for each class
• a column for each attribute

pk

table: Profile
age

• a table with two columns for each association

friendsOf

*
Profile

-age: Integer

*
myFriends

Data model

Object model
Alice: Profile

age: 18

Bob: Profile

age: 10

• a row for each object in the table associated with the class
• a row for each link in the corresponding table

pk age
1 18
2 10

myFriends friendsOf
1 2

table: friendship
myFriends friendsOf

From OCL to SQL-PL
Mapping OCL expressions

Every expression is mapped into a stored procedure

create procedure name
begin

end;//

call name()//

OCL to SQL-PL expression

Depending on the complexity of the OCL expressions, they are mapped:
• into a SQL query
• into a SQL query and need an auxiliary block definition

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapping into a SQL query

Timeline.allInstances()
create procedure name
begin

 ;
end;//
call name();//

select Timeline.pk as val
from Timeline

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapping into a SQL query

Timeline.allInstances()
create procedure name
begin

 ;
end;//
call name();//

select Timeline.pk as val
from Timeline

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapping into a SQL query

Timeline.allInstances()

Timeline.allInstances()�>size()

create procedure name
begin

 ;
end;//
call name();//

select Timeline.pk as val
from Timeline

select count(t1.val) as val
from
 (
) as t1

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapping into a SQL query

Timeline.allInstances()

Timeline.allInstances()�>size()

create procedure name
begin

 ;
end;//
call name();//select Timeline.pk as val

from Timeline

select count(t1.val) as val
from
 (
) as t1

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapping into a SQL query

Timeline.allInstances()

Timeline.allInstances()�>size()

create procedure name
begin

 ;
end;//
call name();//

select Timeline.pk as val
from Timeline

select count(t1.val) as val
from
 (
) as t1

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapped into a SQL query and need an auxiliary
block definition

create procedure name
begin

end;//

’hi’.characters()

begin

end;

insert into wchars(val) (select ’h’ as val);
insert into wchars(val) (select ’i’ as val);

create temporary table wchars (pos int not null auto increment,  
 val varchar(250), primary key(pos));

drop table if exists wchars;

select val from wchars order by pos;

pos val
1 h
2 i

begin

end;

From OCL to SQL-PL  
Iterators

src�>it(body)

 drop table if exists blq_name;
 create temporary table blq_name (value-specif type)

 declare done int default 0;
 declare var;
 declare crs cursor for (cursor-specific type - src);
 declare continue handler for sqlstate ’02000’ set done = 1;

open crs;
repeat

 fetch crs into var;
 Iterator-specific body query
 if not done then
 Iterator-specific processing code
 end if; 
 until done end repeat;
 close crs;

SQL-PL4OCL  
tool component architecture

SQL-PL4OCL
Benchmark

• Vendor specific supported:  
MySQL/MariaDB, PostgreSQL,
SQL Server DBMS

• MariaBD works faster in most of
the cases

MySQL MariaDB PostgreSQL MSSQL

Q1 0.19s 0.13s 0.10s 0.12s

Q2 0.25s 0.20s 0.33s 0.28s

Q3 0.36s 0.35s 0.27s 0.26s

Q4 0.04s 0.04s 0.04s 0.05s

Q5 0.55s 0.40s 0.40s 0.42s

Q6 1.05s 0.55s 1.06s 1.03s

Q7 2.07s 1.56s 1.99s 2.08s

Q8 50.02s 43.08s 57.04s 53.47s

Q9 9.14s 8.00s 8.18s 8.89s

Q10 0.05s 0.04s 0.07s 0.05s

Q11 49.56s 40.02s 40.10s 43.46s

Q12 59.58s 51.23s 51.25s 54.82s

Q13 1.67s 1.98s 2.35s 1.90s

Q14 59.52s 54.33s 63.35s 58.33s

Related work
(comparison with OCL2SQL-DresdenOCL)

OCL pattern

context: Class

inv: OCL boolean expression

MySQL pattern

select *  
from Class 
where not OCL2SQL(OCL boolean expression)

OCL2SQL mapping is based on patterns and it does not
support iterators.

Mapping OCL to MSFOL

Mapping OCL to MSFOL

transformation
tool

transformation
definiton

PIM PSM

languagelanguage

is
written

in

UML/OCL

Class/objects
diagrams

Constraints

is
written

in

is
used
by

MSFOL

OCL2MSFOL

Theoretical framework

MSFOL
theory

Constraints

Formal definition

Implementation

SMT
solvers

is
checked

using

Z3
CVC4

C. Dania, M. Clavel: OCL2FOL+: Coping with Undefinedness. OCL@MoDELS 2013: 53-62
C. Dania, M. Clavel. OCL2MSFOL: a mapping to many-sorted first-order logic for efficiently checking the satisfiability of OCL constraints. MoDELS 2016: 65-75

• sorts: , and .  
(null and invalid for each sort)

From OCL to MSFOL
Mapping data models

Timeline
0..1
postedOn

posts

*
owns
belongsTo

0..1

0..1

friends

*

Post

-id: String

Profile

-age: Integer

*

+ Set of axioms:
8(x : Classifier)(Profile(x)) ¬(Timeline(x) _ . . . _ Post(x)))

¬(Profile(nullClassifier) _ Profile(invalClassifier))

Int String Classifier

• a function for each attribute.
age : Classifier ! Int

• a predicate for each class.
Timeline : Classifier ! Bool

• one/two function(s)/predicate(s) for
each association.
friends : Classifier⇥ Classifier ! Bool

From OCL to MSFOL
Mapping OCL expressions

• (Sub-)expressions of type Boolean (Integer) are translated into
formulas (terms)
✦ not, and, or, implies, =, >, <, forAll, exists, one, isEmpty,

notEmpty, includes, excludes, +, -, ….

(age(x) > 18 ^ ¬(nullInt = age(x) _ invalInt = age(x))))

¬(nullInt = 18 _ invalInt = 18)Axiom:

8(x : Classifier)(Profile(x) ^

Profile.allInstances()�>forAll(p|p.age > 18)

From OCL to MSFOL
Mapping OCL expressions

8(x : Classifier)(¬Select(x))

Profile.allInstances()�>select(p|p.age > 18)�>isEmpty()

8(x : Classifier)(Select(x) ,

• (Sub-)expressions of type Set (or Primitive types that require
definition) are translated into predicates formulas (functions), whose
(fresh) predicate (function) symbols satisfy the corresponding axioms
(also generated by the mapping)
✦ select, reject, including, excluding, collect (follow by asSet),
✦ any, max, min

(Profile(x) ^
(age(x) > 18 ^ ¬(nullInt = age(x) _ invalInt = age(x)))))

Select : Classifier ! Bool

Select

Checking unsatisfiability

We can expect: sat (there exists at least one valid instance of the model),  
 unsat (no valid instance of the model exists),  
 unknown (check is inconclusive).
SMT solvers cannot be complete when dealing with quantifiers (undecidability)

Data model D. Set of D-constraints I. A Boolean OCL expression expr

Then, expr evaluates to true in every valid instance of D if and only if :

is unsatisfiable.

Satisfiability Module theories (SMT) solvers

OCL2MSFOL
tool component architecture

OCL2MSFOL
Benchmark

Undefinedness-related (times in ms) Generalization-related (times in ms)

Related work
Other mappings from UML/OCL to other formalisms

Mapping Target formalism

G4
(support OCL constraints and OCL null and invalid)

HOL-OCL HOL
OCL2FOL+ FOL

G1
(do not support OCL constraints)

FiniteSAT System of Linear Inequalities
DL Description Logics, CSP

MathForm Mathematical Notation

G2
(support OCL constraints)

UMLtoCSP CSP
EMFtoCSP CSP

AuRUS FOL
FOOCL2FOL FOL

OCL-Lite Description Logics
BV-SAT Relation Logic

PVS HOL
CDOCL-HOL HOL

KeY Dynamic Logic
Object-Z Object-Z
UML-B
UML

B
G3

(support OCL constraints and OCL null)
UML2Alloy Relation Logic

USE Relation Logic

Application domains

Checking model satisfiability
Case study: eHealth Record Management System

Data models
• 9 classes
• 3 generalisations
• 24 attributes
• 10 associations

M.A. García de Dios, C. Dania, D. Basin, M. Clavel: Model-Driven Development of a Secure eHealth Application. Engineering Secure Future
Internet Services and Systems 2014: 97-118

Checking model satisfiability
Case study: eHealth Record Management System

1. CVC4 Finite Model returns sat in 7 seconds.
2. If we add 1 more constraint.  

CVC4 Finite Model returns unsat in 4 seconds.

• 38 invariants

Every medical center should have at least one employee.
MedicalCenter.allInstances()�>forAll(m|m.employees�>notEmpty())

Each patient is treated by a doctor who works in the department where
the patient is treated.
Patient.allInstances()�>forAll(p|

p.doctor.departments�>exists(d|d=p.department))

There must be at least one medical center
MedicalCenter.allInstances()�>notEmpty()

Validating and instantiating models
A Security Metamodel

M. Arjona, C. Dania, M. Egea, A. Maña, Validation of a Security metamodel for Development of Cloud Applications. OCL@MoDELS 2014: 33-42

Data models
• 24 classes
• 3 generalisations
• 47 attributes
• 22 associations
33 invariants

Validating and instantiating metamodels
A Security Metamodel

CVC4 Finite Model returns sat + one instance.

Analysing security models
• SecureUML is a modeling language for specifying fine-grained

access control policies for actions on protected resources.

M.A. García de Dios, C. Dania, M. Clavel: Formal Reasoning about Fine-Grained Access Control Policies. APCCM 2015: 91-100

Auth(Worker, update(salary)) =  
 false
Auth(Supervisor, update(salary)) =  
 self.supervisedBy = caller or false
Auth(Worker, read(salary)) =  
 caller = self
Auth(Supervisor, read(salary)) =  
 caller = self or true

ROLES

RESOURCES

PERMISSIONS

Analysing security models

Auth(Worker, update(salary)= false

Auth(Supervisor, update(salary) =  
 self.supervisedBy = caller or false

Auth(Worker, read(salary)) = caller = self

Auth(Supervisor, read(salary) = caller = self or true

Can Bob read Alice’s salary?

o2fdata(D) [{9(caller)9(self)
(o2ftrue(caller .role = r)

^ o2ftrue(Auth(S, r , act)))}

Data model D. SecureUML model S.
A role r. An action act.

Analysing security models

Auth(Worker, update(salary)= false

Auth(Supervisor, update(salary) =  
 self.supervisedBy = caller or false

Auth(Worker, read(salary)) = caller = self

Auth(Supervisor, read(salary) = caller = self or true

Can Bob read Alice’s salary? X

o2fdata(D) [{9(caller)9(self)
(o2ftrue(caller .role = r)

^ o2ftrue(Auth(S, r , act)))}

Data model D. SecureUML model S.
A role r. An action act.

Analysing security models

Auth(Worker, update(salary)= false

Auth(Supervisor, update(salary) =  
 self.supervisedBy = caller or false

Auth(Worker, read(salary)) = caller = self

Auth(Supervisor, read(salary) = caller = self or true

Can Bob read Alice’s salary?

Can Alice update Bob’s salary?
X
X

o2fdata(D) [{9(caller)9(self)
(o2ftrue(caller .role = r)

^ o2ftrue(Auth(S, r , act)))}

Data model D. SecureUML model S.
A role r. An action act.

Related work
Security models

Lithium: framework for specifying and reasoning about FGAC policies.
It is based on a decidable fragment of (multi-sorted) first-order logic. In
contrast to OCL, this logic does not consider undefined values.

Kuhlmann et al: Employing UML and OCL for designing and analysing
role-based access control models.

Many proposals exist for reasoning about RBAC policies, each one using
a different logic or formalism

Analysing privacy models
Facebook: posting and tagging

• Who owns the timeline
where the post is posted?
• Who are his/her

friends?
• Who are his/her friends’

friends?
• Who posted the post?

• Who is tagged in the
post? I Who are his/her
friends?

• Who are his/her friends’
friends?

• Audience selected by the
timeline’s owner for a post
that is posted in his/her
timeline.

C Dania, M Clavel: Modeling Social Networking Privacy. TASE 2014: 50-57

Analysing privacy models
Facebook: posting and tagging

Alice posts a photo of herself, Bob and Ted in
her timeline, and sets its audience to Friends.
Then, Alice tags Bob in this photo.

Can Bob see the photo in Alice’s timeline? X
Alice has set her default audience to Friends.
post.audience= Friends

Bob is a friend of Alice.
self.profile.friends�>includes(caller)

Method:
readPost(post)

anybody can read any post
that has its audience selected
to ‘Friends’ and was created

by the owner of the
timeline, if he or she is a friend

of somebody tagged
on the post, unless he or she is

blocked by the owner
of the timeline.

and self.profile.blocks�>excludes(caller))
and post.tags.profiling.friends�>includes(caller)
(post.audience = ’Friends’ and post.creator = self.profile

Checking data invariants preservation
Steps

Preservation of the application’s data invariants.

C. Dania, M. Clavel: Model-Based Formal Reasoning about Data-Management Applications. FASE 2015: 218-232
M.A. García de Dios, C. Dania, D. Basin, M. Clavel: Model-Driven Development of a Secure eHealth Application. Eng. Sec. Future Internet Services and Systems 2014: 97-118

It consists in 3 steps:
Step 1: Modelling sequences of states (Film, Project).  
A filmstrip is a way of encoding a sequence of snapshots of a system.

Checking data invariants preservation
Steps

Preservation of the application’s data invariants.

C. Dania, M. Clavel: Model-Based Formal Reasoning about Data-Management Applications. FASE 2015: 218-232
M.A. García de Dios, C. Dania, D. Basin, M. Clavel: Model-Driven Development of a Secure eHealth Application. Eng. Sec. Future Internet Services and Systems 2014: 97-118

It consists in 3 steps:
Step 1: Modelling sequences of states (Film, Project).  
A filmstrip is a way of encoding a sequence of snapshots of a system.

Step 2: Modelling sequences of data actions (Execute)
 Update(doctor, o1, i+1, ‘Bob’)

 o1.doctor(i+1) = ‘Bob’
Step 3: Proving invariants preservation.

Checking data invariants preservation

Data model D with invariants
A sequence of actions =

We say that preserves an invariant Y if and only if:

hact1, act2, . . . , actni
�

�

is unsatisfiable.

Checking data invariants preservation

Acts. Conds.
Invariants Time

affected preserved violated min. max. avge.

Create an administrative 8 9 18 18 0 0.03s 0.20s 0.50s

Create a nurse 10 11 22 22 0 0.03s 0.22s 0.06s

Create a doctor 11 12 25 24 1 0.03s 27.00s 0.07s

Reassing a doctor 2 6 2 2 0 6.88s 11.10s 8.94s

Reassing a nurse 2 6 2 1 1 0.10s 17.01s 8.55s

Register patient 30 6 28 26 2 0.03s 0.20s 0.05s

Move a patient 2 3 3 3 0 0.03s 0.03s 0.03

Case study: eHealth Record Management System
The data model contains18 entities, 40 attributes, and 48 association-ends.

Related work. Gogolla et al. From Application Models to Filmstrip Models: An Approach to
Automatic Validation of Model Dynamics.

Conclusions
• Code-generator from OCL queries to the procedural language

extensions of SQL (SQL-PL)
• each OCL expression is mapped to a single stored procedure
• temporary tables are used
• the three-valued evaluation semantics of OCL is considered

• Mapping from OCL to many-sorted FOL
• our results depend of our formalization of UML/OCL in MSFOL and the

heuristics implemented in the SMT solver (finite model finder),
• the four-valued evaluation semantics of OCL is considered.

• Application domain:
• checking consistency, analysing security and privacy properties, and checking data

invariants preservation across states

• Look for the integration of developed tools into CASE tools
• Emprirical validation of the usefulness of the approach for a software

engineering team.

Future work

http://software.imdea.org/~dania/
publications + tools + case studies

Questions?

