Mapping OCL as a Query and Constraint Language

Carolina Inés Dania Flores

PhD defense

Supervisors: Manuel García Clavel - Marina Egea González

Universidad Complutense de Madrid, Madrid, Spain 30th of June, 2017.

Outline

- Motivation
- Background
- Mapping OCL to SQL-PL
- Mapping OCL to MS-FOL
- Application domains:
 - checking model unsatisfiability
 - analysing security and privacy models
 - checking data invariants preservation across states

This research focused on providing methods and tool support which help building complex systems within the Model Driven Architecture framework

MDA (Model Driven Architecture)

• It supports the development of complex systems by generating software from models.

PIM (Platform Independent Model), PSM (Platform Specific Model)

MDA (Model Driven Architecture)

• It supports the development of complex systems by generating software from models.

PIM (Platform Independent Model), PSM (Platform Specific Model)

Motivation Why models?

We always create models

Motivation Why models?

A model can be used in a different ways during the development process:

- for communication purposes to discuss design decisions.
- to provide a detailed specification of the system.
- to develop the system.

Motivation Why UML?

- UML is the de-facto language for Object-Oriented analysis and design of information systems.
- UML is a standard of the Object Management Group (OMG) (1997), and it is also an ISO standard (2005).
- UML sustains many aspects of software engineering, but it does not provide enough level of precision.

Motivation Why OCL?

OCL was born as a constraint language to add precision to UML like models an envolved as a query language. It is a declarative language, and OMG and ISO standard.

A variety of applications arises for OCL as a query language.

OCL as a constraint language helps to add precision to UML like models with detailed formal semantics.

OCL as a query language

The limitations of OCL as a query language can be solved by mapping it to the most commonly used query systems, i.e. databases

OCL as a constraint language

Our goal is provide a formal semantics that support automatic reasoning to a great extent so it can be used by software engineers.

The quality of the generated code depends on the quality of the source models.

- About 90% of security software incidents are caused by known software defects.
- A study of 45 e-business applications showed that 70% of software failures are related to design.
- One million lines of code can have approximately between 1000 and 5000 software defects in production.

We want to prevent, detect, and correct errors as early as possible.

Source: Team Software Process for Secure Systems Development. Software Engineering Institute. Carnegie Mellon

USS Yorktown, smartship

- Crew member entered 0 in a data field and cost a "divide by 0" error
- it down the propulsion
- ship was dead in the water for 2:45mins

Mars Climate Orbiter (MCO)

- NASA lost a \$125 million
- Metric System Mixup (metrix vs imperial)

😓 Microsoft SQL Server Management Studio
File Edit View Tools Window Community Help
🔁 New Query 🕞 📸 😘 😘 🕞 🕼 🖉 🖟 🗿 🚯 🗒 🗸
Microsoft SQL Server Management Studio 🖳 🔀
OK

्रक्षेत्र

Server Management Studio	
File Edit View Tools Window Community	Help
😫 New Query 📑 📸 📸 🔓 🖼 🗐	
Microsoft SQL Server Management Studi	🐄 10559 Days and 20 hours remaining
	Copying 3 items (2.31 GB)
ОК	From: PlainOSImages (\\sqlcl\data\V\PlainOSImages) To: Desktop (Desktop) Time remaining: About 10559 Days and 20 hours Items remaining: 2 (2.05 GB)
	Speed: 1.37 MB/sec
	Cancel

्रक्षेष्ठ

Server Management Studio		Fabrikam
File Edit View Tools Window Community	Help	An error occurred while creating an error report
Microsoft SQL Server Management Studi	🔫 10559 Days and 2	ОК
	Copying 3 iter	ms (2.31 GB)
OK	From: To: Time remaining: Items remaining:	PlainOSImages (\\sqlcl\data\V\PlainOSImages) Desktop (Desktop) About 10559 Days and 20 hours 2 (2.05 GB)
	Speed: 1	L.37 MB/sec
	Less information	on Cancel

्रक्षांख

🍢 Microsoft SQL Server Management Studio		Fabrikam
File Edit View Tools Window Community	Help	An error occurred while creating an error report
Microsoft SQL Server Management Studi	🔫 10559 Days and 2	ОК
NG N	Copying 3 iter	ms (2.31 GB)
OK	From: F To: C	PlainOSImages (\\sqlcl\data\V\PlainOSImages) Desktop (Desktop)
Detecting Primary Master Detecting Primary Slave Detecting Secondary Master Detecting Secondary Slave	WDC WD200EB-00BH None SAMSUNG CDRW/DVD None	5 GB) MB/sec
Keyboard error or no keyboard pres Press F1 to continue, DEL to ente	sent r SETUP	Cancel

٢

्रक्षेष्ठ

This doctoral dissertation aims to help the current status of methodology and tools for building complex software systems

Background

UML (Unified Modeling Language) Ex. Social Network

Class diagram

- classes
- attributes
- associations (association-ends)
- inheritance

Object diagram

- objects
- values
- links

o**ala**.

OCL (Object Constraint Language)

- It is a general-purpose (textual) formal language that allows:
 - retrieve objects and their values
 - navigate through related objects
- It supports a set of types with a set of operations over them, and
 - primitive types (Integer, String, Boolean), and
 - collection types (Set, Bag, OrderedSet, and Sequence), and
 - operators like: +, -, >, <, size, isEmpty, notEmpty, characters, and
 - iterators like: forAll, exists, collect

OCL (Object Constraint Language)

- All instances of Timeline Timeline.allInstances()
- Number of instances
 Timeline.allInstances()->size()

- There isn't any profile older than 18
 Profile.allInstances()->select(p|p.age > 18)->isEmpty()
- Convert the string 'hi' in a sequence of characters 'hi'.characters()

Mapping OCL to SQL-PL

Mapping OCL to SQL-PL

M. Egea, C. Dania, M. Clavel: MySQL4OCL: A Stored Procedure-Based MySQL Code Generator for OCL. ECEASST 36 (2010). M. Egea, C. Dania. SQL-PL4OCL: an automatic code generator from OCL to SQL procedural language. Software & Systems Modeling, 2017, p. 1-23.

्रध्रांख

From OCL to SQL-PL Mapping data/object models.

Data model

- a table with a column for each class
- a column for each attribute
- a table with two columns for each association

Object model

a row for each object in the table associated with the class

14

• a row for each link in the corresponding table

table: Profile

pk	age
1	18
2	10

table: friendship

myFriends	friendsOf
1	2

Bob: Profile

myFriends

Alice: Profile

otita

Every expression is mapped into a stored procedure

create procedure name begin

OCL to SQL-PL expression

end;//
call name()//

Depending on the complexity of the OCL expressions, they are mapped:

15

- into a SQL query
- into a SQL query and need an auxiliary block definition

• Expressions that are mapping into a SQL query

Timeline.allInstances()

select Timeline.pk as val
from Timeline

create procedure name begin

;

end;//
call name();/ /

• Expressions that are mapping into a SQL query

Timeline.allInstances()

create procedure name begin

select Timeline.pk as val
from Timeline ;
end;//
call name();/ /

• Expressions that are mapping into a SQL query

```
Timeline.allInstances()
```

select Timeline.pk as val
from Timeline

```
Timeline.allInstances()—>size()
```

```
select count(t1.val) as val
from
```

```
end;//
call name();//
```

create procedure name **begin**

;

```
) as t1
```

16

• Expressions that are mapping into a SQL query

Timeline.allInstances()

create procedure name **begin**

;

Timeline.allInstances()—>size()

select count(t1.val) as val
from

(select Timeline.pk as val
 from Timeline) as t1

end;//
call name();/ /

• Expressions that are mapping into a SQL query

Timeline.allInstances()

Timeline.allInstances()->size()

create procedure name
begin
select count(t1.val) as val
from
(select Timeline.pk as val
from Timeline) as t1 ;
end;//
call name();/ /

- Expressions that are mapped into a SQL query and need an auxiliary block definition 'hi'.characters()
- create procedure name
- begin
 - begin
 - drop table if exists wchars;
 - create temporary table wchars (pos int not null auto increment,
 - val varchar(250), primary key(pos));
 - **insert into** wchars(val) (**select '**h' **as** val);
 - **insert into** wchars(val) (**select** 'i' **as** val);
 - end;
- **select** val **from** wchars **order by** pos; end;//

pos	val
1	h
2	i

From OCL to SQL-PL

begin

Iterators

src—>it(body)

declare done int default 0;

declare var;

declare crs **cursor for** (*cursor-specific type - src*);

declare continue handler for sqlstate '02000' **set done** = 1;

drop table if exists blq_name;

create temporary table blq_name (*value-specif type*) **open** crs;

repeat

fetch crs into var;

Iterator-specific body query

if not done then

Iterator-specific processing code **end if**;

until done end repeat;

close crs;

end;

18

SQL-PL4OCL

tool component architecture

SQL-PL4OCL Benchmark

- Vendor specific supported: MySQL/MariaDB, PostgreSQL, SQL Server DBMS
- MariaBD works faster in most of the cases

	MUSOL	ManiaDD	DestausCOL	MSSOL
	MySQL	MariaDB	rostgresQL	MISSQL
QI	0.19s	0.13s	0.10s	0.12s
Q2	0.25s	0.20s	0.33s	0.28s
Q3	0.36s	0.35s	0.27s	0.26s
Q4	0.04s	0.04s	0.04s	0.05s
Q5	0.55s	0.40s	0.40s	0.42s
Q6	1.05s	0.55s	1.06s	1.03s
Q7	2.07s	1.56s	1.99s	2.08s
Q8	50.02s	43.08s	57.04s	53.47s
Q9	9.14s	8.00s	8.18s	8.89s
Q10	0.05s	0.04s	0.07s	0.05s
QII	49.56s	40.02s	40.10s	43.46s
Q12	59.58s	51.23s	51.25s	54.82s
Q13	1.67s	1.98s	2.35s	1.90s
Q14	59.52s	54.33s	63.35s	58.33s

19

Related work (comparison with OCL2SQL-DresdenOCL)

OCL pattern context: Class inv: OCL boolean expression

MySQL pattern

select *
from Class
where not OCL2SQL(OCL boolean expression)

OCL2SQL mapping is based on patterns and it does not support iterators.

20

Mapping OCL to MSFOL

Mapping OCL to MSFOL

C. Dania, M. Clavel: OCL2FOL+: Coping with Undefinedness. OCL@MoDELS 2013: 53-62

C. Dania, M. Clavel. OCL2MSFOL: a mapping to many-sorted first-order logic for efficiently checking the satisfiability of OCL constraints. MoDELS 2016: 65-75

From OCL to MSFOL Mapping data models

- sorts: *Int*, *String* and *Classifier*. (null and invalid for each sort)
- a predicate for each class. $Timeline: Classifier \rightarrow Bool$
- a function for each attribute. $age: Classifier \rightarrow Int$
- one/two function(s)/predicate(s) for each association.
 friends: Classifier × Classifier → Bool
- + Set of axioms:
 - $\forall (x: Classifier)(Profile(x) \Rightarrow \neg(Timeline(x) \lor \ldots \lor Post(x)))$
 - $\neg(Profile(nullClassifier) \lor Profile(invalClassifier))$

From OCL to MSFOL Mapping OCL expressions

- (Sub-)expressions of type **Boolean (Integer)** are translated into formulas (terms)
 - not, and, or, implies, =, >, <, forAll, exists, one, isEmpty, notEmpty, includes, excludes, +, -,

$$\mathsf{Profile.allInstances}() \rightarrow \mathsf{forAll}(\mathsf{p}|\mathsf{p.age} > 18)$$

 $\begin{array}{l} \forall (x: \mathit{Classifier})(\mathit{Profile}(x) \land \\ (\mathit{age}(x) > 18 \land \neg(\mathit{nullInt} = \mathit{age}(x) \lor \mathit{invalInt} = \mathit{age}(x)))) \end{array}$

Axiom: $\neg(nullInt = 18 \lor invalInt = 18)$

From OCL to MSFOL Mapping OCL expressions

- (Sub-)expressions of type Set (or Primitive types that require definition) are translated into predicates formulas (functions), whose (fresh) predicate (function) symbols satisfy the corresponding axioms (also generated by the mapping)
 - + select, reject, including, excluding, collect (follow by asSet),
 - any, max, min

 $\frac{\text{Profile.allInstances}() \rightarrow \text{select}(p|p.age > 18) \rightarrow \text{isEmpty}()}{\text{Select}}$

Select : $Classifier \rightarrow Bool$

 $\forall (x: Classifier)(\mathbf{Select}(x) \Leftrightarrow (Profile(x) \land (age(x) > 18 \land \neg(nullInt = age(x) \lor invalInt = age(x)))))$

 $\forall (x: Classifier)(\neg \mathbf{Select}(x))$

Checking unsatisfiability

Data model \mathcal{D} . Set of \mathcal{D} -constraints \mathcal{I} . A Boolean OCL expression **expr**

Then, expr evaluates to true in every valid instance of ${\cal D}$ if and only if :

$$o2f_{data}(\mathcal{D}) \cup \left(\bigcup_{inv\in\mathcal{I}} o2f_{def}(inv)\right) \cup \left(\bigcup_{inv\in\mathcal{I}} \{o2f_{true}(inv)\}\right) \\ \cup o2f_{def}(expr) \cup \{o2f_{false}(expr)\}.$$

is unsatisfiable.

Satisfiability Module theories (SMT) solvers

We can expect: **sat** (there exists at least one valid instance of the model), **unsat** (no valid instance of the model exists), **unknown** (check is inconclusive).

SMT solvers cannot be complete when dealing with quantifiers (undecidability)

OCL2MSFOL tool component architecture

OCL2MSFOL Benchmark

26

		CVC4	Z3	CVC4fm
{1,2}	unsat	161	24	48
{1,3}	unsat	173	13	22
{2,3}	sat		16	25
{4}	unsat	138	15	27
{5}	sat	_	17	22
{5,6}	unsat	172	13	30
{1,7}	unsat	237	14	30
{1,8}	sat	_	18	25
$\{1,6,8\}$	unsat	198	16	26
{1,9}	sat	_	18	25
$\{1,6,9\}$	unsat	200	19	29
{1,10}	unsat	203	18	30
{12}	sat		169	27
$\{11, 12, 13\}$	sat	—	24	174

		CVC4	Z3	CVC4fm
$\{14,20\}$	sat		105	28
$\{16,20\}$	sat	_	466	32
$\{17,20\}$	sat	_	14	22
$\{14, 17, 20\}$	unsat	239	13	26
$\{16,19\}$	unsat	168	16	28
{21}	sat		17	27
{22}	sat	_	199	24
$\{16,22\}$	unsat	149	18	25
$\{16,23\}$	unsat	148	16	26
$\{15,17,18,24\}$	unsat	250	15	35
$\{25\}$	unsat	63	58	24
$\{11, 12, 13, 18\}$	sat			27
$\{6,27\}$	sat	_		26
$\{11, 12, 13, 18, 26\}$	unsat	352	13	25

Undefinedness-related (times in ms)

Generalization-related (times in ms)

Related work Other mappings from UML/OCL to other formalisms

	Mapping	Target formalism	
	FiniteSAT	System of Linear Inequalities	
GI (do not support OCL constraints)	DL	Description Logics, CSP	
(do not support OCE constraints)	MathForm	Mathematical Notation	
	UMLtoCSP	CSP	
	EMFtoCSP	CSP	
	AuRUS	FOL	
	OCL2FOL	FOL	
	OCL-Lite	Description Logics	
G2	BV-SAT	Relation Logic	
	PVS	HOL	
	CDOCL-HOL	HOL	
	KeY	Dynamic Logic	
	Object-Z	Object-Z	
	UML-B	В	
G3	UML2Alloy	Relation Logic	
(support OCL constraints and OCL null)	USE	Relation Logic	
G4	HOL-OCL	HOL	
(support OCL constraints and OCL null and invalid)	OCL2FOL+	FOL	

Application domains

Checking model satisfiability Case study: eHealth Record Management System

Data models

- 9 classes
- 3 generalisations
- 24 attributes
- 10 associations

M.A. García de Dios, C. Dania, D. Basin, M. Clavel: Model-Driven Development of a Secure eHealth Application. Engineering Secure Future Internet Services and Systems 2014: 97-118

Checking model satisfiability Case study: eHealth Record Management System

• 38 invariants

There must be at least one medical center MedicalCenter.allInstances()->notEmpty()

Every medical center should have at least one employee. MedicalCenter.allInstances()—>forAll(m|m.employees—>notEmpty())

Each patient is treated by a doctor who works in the department where the patient is treated. Patient.allInstances()—>forAll(p| p.doctor.departments—>exists(d|d=p.department))

- I. CVC4 Finite Model returns **sat** in 7 seconds.
- 2. If we add I more constraint.

CVC4 Finite Model returns **unsat** in 4 seconds.

Validating and instantiating models A Security Metamodel

Data models

- 24 classes
- 3 generalisations
- 47 attributes
- 22 associations

33 invariants

M. Arjona, C. Dania, M. Egea, A. Maña, Validation of a Security metamodel for Development of Cloud Applications. OCL@MoDELS 2014: 33-42

Validating and instantiating metamodels A Security Metamodel

CVC4 Finite Model returns **sat** + one instance.

32

्रकोख

• SecureUML is a modeling language for specifying fine-grained access control policies for actions on protected resources.

Auth(**Worker,** update(salary)) = false

Auth(**Supervisor**, update(salary)) = self.supervisedBy = caller or false

supervises

0...*

Auth(**Worker**, read(salary)) = caller = self

Auth(**Supervisor**, read(salary)) = caller = self or true

M.A. García de Dios, C. Dania, M. Clavel: Formal Reasoning about Fine-Grained Access Control Policies. APCCM 2015: 91-100

Auth(**Worker**, update(salary) = false Auth(**Supervisor**, update(salary) = self.supervisedBy = caller or false Auth(**Worker**, read(salary)) = caller = self Auth(**Supervisor**, read(salary) = caller = self or true

Can Bob read Alice's salary?

Data model \mathcal{D} . SecureUML model \mathcal{S} . A role r. An action act. $o2f_{data}(\mathcal{D}) \cup \{\exists (caller) \exists (self) \ (o2f_{true}(caller.role = r) \land o2f_{true}(Auth(\mathcal{S}, r, act)))\}$

Auth(Worker, update(salary) = false Auth(Supervisor, update(salary) = self.supervisedBy = caller or false Auth(Worker, read(salary)) = caller = self Auth(Supervisor, read(salary) = caller = self or true

Can Bob read Alice's salary? 🗸

Data model \mathcal{D} . SecureUML model \mathcal{S} . A role r. An action act. $o2f_{data}(\mathcal{D}) \cup \{\exists (caller) \exists (self) \ (o2f_{true}(caller.role = r) \land o2f_{true}(Auth(\mathcal{S}, r, act)))\}$

Auth(Worker, update(salary) = false Auth(Supervisor, update(salary) = self.supervisedBy = caller or false Auth(Worker, read(salary)) = caller = self Auth(Supervisor, read(salary) = caller = self or true Can Bob read Alice's salary?

Can Alice update Bob's salary? X

Data model \mathcal{D} . SecureUML model \mathcal{S} . A role r. An action act. $o2f_{data}(\mathcal{D}) \cup \{\exists (caller) \exists (self) \ (o2f_{true}(caller.role = r) \land o2f_{true}(Auth(\mathcal{S}, r, act)))\}$

Related work Security models

Many proposals exist for reasoning about RBAC policies, each one using a different logic or formalism

Lithium: framework for specifying and reasoning about FGAC policies. It is based on a decidable fragment of (multi-sorted) first-order logic. In contrast to OCL, this logic does not consider undefined values.

Kuhlmann et al: Employing UML and OCL for designing and analysing role-based access control models.

Analysing privacy models Facebook: posting and tagging

- Who owns the timeline where the post is posted?
 - Who are his/her friends?
 - Who are his/her friends' friends?
- Who posted the post?
 - Who is tagged in the post? I Who are his/her friends?
 - Who are his/her friends' friends?
- Audience selected by the timeline's owner for a post that is posted in his/her timeline.

C Dania, M Clavel: Modeling Social Networking Privacy. TASE 2014: 50-57

Analysing privacy models Facebook: posting and tagging

Alice posts a photo of herself, Bob and Ted in her timeline, and sets its audience to Friends. Then, Alice tags Bob in this photo.

Can Bob see the photo in Alice's timeline? \checkmark

Alice has set her default audience to Friends. post.audience= Friends

Bob is a friend of Alice.

self.profile.friends—>includes(caller)

Method: readPost(post)

anybody can read any post that has its audience selected to 'Friends' and was created by the owner of the timeline, if he or she is a friend of somebody tagged on the post, unless he or she is blocked by the owner

(post.audience = 'Friends' and post.creator = self.profile of the timeline. and post.tags.profiling.friends—>includes(caller) and self.profile.blocks—>excludes(caller))

Checking data invariants preservation

Doctor

Department

doctors

Patient

+ doc: Doctor

Preservation of the application's data invariants.

It consists in 3 steps:

Step I: Modelling sequences of states (Film, Project). Patient + st 1: Boolean A filmstrip is a way of encoding a sequence of snapshots of a syst + st_2: Boolean doctor ... Department Doctor + st_3: Boolean doctorDepts 1 + st 1: Boolean + st_1: Boolean doctor_2 + dept_1: Department + st 2: Boolean + st 2: Boolean doctorDepts_2 + dept_2: Department doctor 3 + st_3: Boolean + st_3: Boolean + dept_3: Department doctorDepts 3 + doctor_1: Doctor + doctor_2: Doctor + doctor_3: Doctor

C. Dania, M. Clavel: Model-Based Formal Reasoning about Data-Management Applications. FASE 2015: 218-232

M.A. García de Dios, C. Dania, D. Basin, M. Clavel: Model-Driven Development of a Secure eHealth Application. Eng. Sec. Future Internet Services and Systems 2014: 97-118

It consists in 3 steps:

Step I: Modelling sequences of states (Film, Project). A filmstrip is a way of encoding a sequence of snapshots of a system.

Step 2: Modelling sequences of data actions (Execute)

```
Update(doctor, ol, i+l, 'Bob')
```

```
o1.doctor(i+1) = 'Bob'
```

Step 3: Proving invariants preservation.

C. Dania, M. Clavel: Model-Based Formal Reasoning about Data-Management Applications. FASE 2015: 218-232 M.A. García de Dios, C. Dania, D. Basin, M. Clavel: Model-Driven Development of a Secure eHealth Application. Eng. Sec. Future Internet Services and Systems 2014: 97-118

Checking data invariants preservation

Data model ${\boldsymbol{\mathcal{D}}}$ with invariants Φ

A sequence of actions $\mathcal{A} = \langle act_1, act_2, \dots, act_n \rangle$

We say that ϕ preserves an invariant Υ if and only if:

$$o2f_{data}(Film(\mathcal{D}, n)) \cup \{o2f_{true}(\gamma) \mid \gamma \in \bigcup_{i=1}^{n-1} Execute(\mathcal{D}, act_i, i)\}$$

 $\cup o2f_{true}(not(Project(\mathcal{D}, \bigwedge_{\psi \in \Phi} (\psi), 1) \text{ implies } Project(\mathcal{D}, \phi, n))).$

is unsatisfiable.

Checking data invariants preservation

Case study: eHealth Record Management System

The data model contains I 8 entities, 40 attributes, and 48 association-ends.

				Invariants			Time	
	Acts.	Conds.	affected	preserved	violated	min.	max.	avge.
Create an administrative	8	9	18	18	0	0.03s	0.20s	0.50s
Create a nurse	10	11	22	22	0	0.03s	0.22s	0.06s
Create a doctor		12	25	24	I	0.03s	27.00s	0.07s
Reassing a doctor	2	6	2	2	0	6.88s	11.10s	8.94s
Reassing a nurse	2	6	2	I	I	0.10s	17.01s	8.55s
Register patient	30	6	28	26	2	0.03s	0.20s	0.05s
Move a patient	2	3	3	3	0	0.03s	0.03s	0.03

Related work. Gogolla et al. From Application Models to Filmstrip Models: An Approach to Automatic Validation of Model Dynamics.

Conclusions

- Code-generator from OCL queries to the procedural language extensions of SQL (SQL-PL)
 - each OCL expression is mapped to a single stored procedure
 - temporary tables are used
 - the three-valued evaluation semantics of OCL is considered
- Mapping from OCL to many-sorted FOL
 - our results depend of our formalization of UML/OCL in MSFOL and the heuristics implemented in the SMT solver (finite model finder),
 - the four-valued evaluation semantics of OCL is considered.
- Application domain:
 - checking consistency, analysing security and privacy properties, and checking data invariants preservation across states

Future work

- Look for the integration of developed tools into CASE tools
- Emprirical validation of the usefulness of the approach for a software engineering team.

Questions?

<u>http://software.imdea.org/~dania/</u> publications + tools + case studies

