Mapping OCL as a Query and
Constraint Language

Carolina Inés Dania Flores

PhD defense

Supervisors:
Manuel Garcia Clavel - Marina Egea Gonzilez

Universidad Complutense de Madrid, Madrid, Spain
30th of June, 201 7.

Outline

Motivation

Background

Mapping OCL to SQL-PL
Mapping OCL to MS-FOL

Application domains:
checking model unsatisfiability
analysing security and privacy models

checking data invariants preservation across states

This research focused
on providing methods and tool support
which help building complex systems within

the Model Driven Architecture framework

MDA (Model Driven Architecture)

|t supports the development of complex systems by
generating software from models.

transformation
definiton

language language
1S IS 1S
written used written
in by in
transformation
PIM tool PSM

PIM (Platform Independent Model), PSM (Platform Specific Model)

MDA (Model Driven Architecture)

|t supports the development of complex systems by
generating software from models.

transformation
definiton

language language

IS IS IS
written used written

in by in

Models

Queries
((.‘o]ig’g'r"."i[i&*

—— transformation
PIM tool PSM

PIM (Platform Independent Model), PSM (Platform Specific Model)

Motivation
Why models?

We always create models

 GOOD MORNING, Y o0
&IR; CAN YouU

SWEET HEART.

MAKE ME THE || CAN124EE THE / 1
KEY& OF " T:RtenNAL? A
%’

Motivation
Why models!?

A model can be used in a different ways during the
development process:

for communication purposes to discuss design
decisions.

- to provide a detalled specification of the system.

* to develop the system.

——— —LC

Motivation
Why UML?

- UML is the de-facto language for Object-Oriented
analysis and design of information systems.

- U

G

ML I1s a standard of the Object Management

roup (OMG) (1997),and 1t is also an I1SO standard

(2005).

- UML sustains many aspects of software engineering,

»

out It does not provide enough level of precision.

Motivation
Why OCL!?

OCL was born as a constraint language to add precision
to UML like models an envolved as a query language.

[t Is a declarative language, and OMG and ISO standard.

g

Motivat

lon

A variety of applications arises for OCL as a query
language.

OC
UM

| as a constraint language

g

nelps to add precision to

_ like models with detallec

formal semantics.

OCL as a query language

The limitations of OC

solved by mappl

| as a query language can be

Ng It

0 the most commonly used

query systems, I.e. databases

g

OCL as a constraint language

Our goa

s provide a formal semantics that support

automas

g

[IC reasoning to a great extent so It can be
used by software engineers.

Motivation

The quality of the generated code
depends on the quality of the source models.

-+ About 90% of security software incidents are caused by known
software defects.

- A study of 45 e-business applications showed that /0% of software
fallures are related to design.

» One million lines of code can have approximately between 000 and
5000 software defects in production.

We want to prevent, detect, and correct errors
as early as possible.

Source: Team Software Process for Secure Systems Development. Software Engineering Institute. Carnegie Mellon

&

ol 1 8

oulie

®

Motivation

USS Yorktown, smartship

Crew member entered O In a
data field and cost a "divide by
0" error

't down the propulsion

ship was dead In the water for
2:45mins

Motivation

Mars Climate Orbiter (MCO)

NASA lost 2 $125 million

Metric System Mixup (metrix
Vs Imperial)

g

Motivation

L Server Management Studio

Fle Edt View Tools Window Community Help

A Newouery [y £hih G [&A@ bR ES.

Microsoft SQL Server Management Studio m @

Motivation

¥ Microsoft SQL Server Management Studio
Fle Edt View Tools Window Community Help

ANewouery [y BB [G A B EBES.

=1 10559 Days and 20 hours remainin:

Microsoft SQL Server Management Studi
Copying 3 items (2.31 GB)

From: PlainOSImages (\\sqlcl\data\V...\PlainOSImages)

To: Desktop (Desktop)
[_9(__] Time remaining: About 10559 Days and 20 hours
Items remaining: 2 (2.05 GB)
Speed: 1.37 MB/sec

A Less information

Motivation

F.. Microsoft SQL Server Management Studio .o =
Fle Edt View Tools Window Community Help

5 OB [BB

=1 10559 Days and 2

$%Q An error occurred while creating an error
" report

o NewQuery |3y vy i %5 U

Microsoft SQL Server Management Studi

A\

Copying 3 items (2.31 GB)

From: PlainOSImages (\\sqlcl\data\V...\PlainOSImages)

To: Desktop (Desktop)
[_OK_J Time remaining: About 10559 Days and 20 hours
Items remaining: 2 (2.05 GB)
Speed: 1.37 MB/sec

A Less information [Cancel]

ol

Motivation

'
Fabrikam

=)

File Edt View Tools Window Community Help
. X . \) o om oma n report
- NewQuery |y I g L3 I P vtHE NN

=1 10559 Days and 2

. An error occurred while creating an error

| OK

|

Microsoft SQL Server Management Studi

-

Copying 3 items (2.31 GB)

AN

From: PlainOSImages (\\sqlcl\data\V
To: Desktop (Desktop)

L et s ant 10550 Days and 20 hours
p GB)

Detecting Primary Master --- WDC WD2BBEB-BABH 1B/sec
Detecting Primary Slave ... None

Detecting Secondary Master --- SAMSUNG CDRW/DUD

Detecting Secondary Slave --- None

Keyboard error or no kevyhoard present

Press F1 to continue, DEL to enter SETUP

+\PlainOSImages)

Cancel

‘

Motivation

This doctoral dissertation aims

to help the current status of methodology and tools
for building complex software systems

Background

UML (Unified Modeling Language)

Ex. Social Network

Class diagram Timeline Post

0.1 posts

-age: Integer postedOn . -id: String

e classes o
.. || OWNnS ? ?

e attributes 0..1| belongsTo
Photo Status
Profile
* associations (association-ends) *
e inheritance * friends
. . Phl:Photo
Object diagram 239
. TI:Timeline
* objects Ph2: Photo
e values +id : 2391
e links Ph3: Photo
Alice: Profile +id : 2392
+age :24

=

— Sy 10

OCL (Object Constraint Language)

» It is a general-purpose (textual) formal language that allows:

» retrieve objects and their values

* navigate through related objects

» [t supports a set of types with a set of operations over them, and

- primritive types (Integer, String, Boolean), and
» collection types (Set, Bag, Orderedset, and Sequence), and
» operators like: +, -, >, <, size, IsSEmpty, notEmpty, characters, anad

* [terators like: forAll, exists, collect

3

BE—— sl 11

OCL (Object Constraint Language)

Timeline o . Post
. . . - posts
All instances of Timeline -age: Integer [LoceqOn 4| -id: String
i ; 0..1l owns ? ?
Timeline.alllnstances() 0.1 belongsTo
Photo Status

Profile

*

Number of instances

* friends

Timeline.alllnstances()—>size()

Every profile is older than 18 years old
Profile.alllnstances()—>forAll(p|p.age > 18)

There isn't any profile older than 18

Profile.alllnstances()—>select(p|p.age > 18)—>isEmpty()

Convert the string ‘hi’ in a sequence of characters

'hi".characters()

®

Mapping OCL to SQL-PL

Mapping OCL to SQL-PL

transformation
e definiton 3
Theoretical framework

language - language
IS S S
written used written
in by in

Class/objects
diagrams

Databases
Stored

N procedures

SQL-PL4OCL

Queries
by Bl transformation
tool

M. Egea, C. Dania, M. Clavel: MySQL4OCL.: A Stored Procedure-Based MySQL Code Generator for OCL. ECEASST 36 (2010).
M. Egea, C. Dania. SQL-PL4OCL.: an automatic code generator from OCL to SQL procedural language. Software & Systems Modeling, 2017, p. 1-23.

0}'@: Sk 13

From OCL to SQL-PL

Mapping data/object models.

Data model

e atable with a column for each class

e a column for each attribute

e a table with two columns for each association

Object model

Profile

-age: Integer

Alice: Profile

age: |8

friendsOf

myFriends

Bob: Profile

age: 10

* arow for each object in the table associated with the class

* arow for each link in the corresponding table
table: friendship

table: Profile

pk | age
1 18
2 | 10

myFriends

friendsOf

1

2

14

From OCL to SQL-PL
Mapping OCL expressions

Every expression is mapped Into a stored procedure

create procedure name
begin

OCL to SQL-PL expression
end;/ /

call name()/ /

Depending on the complexity of the OCL expressions, they are mapped:
- Into a SQL query
* Into a SQL query and need an auxiliary block definition

ol

15

From OCL to SQL-PL
Mapping OCL expressions (cont.)

Expressions that are mapping into a SQL query

Timeline.alllnstances()
create procedure name

select Timeline.pk as val begin
from Timeline

end;//

call name();/ /

R NS, 16

From OCL to SQL-PL
Mapping OCL expressions (cont.)

Expressions that are mapping into a SQL query

Timeline.alllnstances()
create procedure name

begin

select Timeline.pk as val
from Timeline ;

end;//

call name();/ /

R NS, 16

From OCL to SQL-PL
Mapping OCL expressions (cont.)

Expressions that are mapping into a SQL query

Timeline.alllnstances()

select Timeline.pk as val
from Timeline

Timeline.alllnstances()—>size()

select count(tl.val) as val
from

(
) as t1

3

—). 16

create procedure name

begin

end;//

call name();/ /

From OCL to SQL-PL
Mapping OCL expressions (cont.)

Expressions that are mapping into a SQL query

Timeline.alllnstances()

Timeline.alllnstances()—>size()

select count(tl.val) as val
from
(select Timeline.pk as val
from Timeline) as t1

3

—). 16

create procedure name

begin

end;//

call name();/ /

From OCL to SQL-PL
Mapping OCL expressions (cont.)

Expressions that are mapping into a SQL query

Timeline.alllnstances()
create procedure name

begin
select count(tl.val) as val

from
Timeline.alllnstances()—>size() (select Timeline.pk as val

from Timeline) as t1

end;//

call name();/ /

J

—). 16

From OCL to SQL-PL
Mapping OCL expressions (cont.)

Expressions that are mapped into a SQL query and need an auxiliary
block definition

pos val
'hi’.characters() 1 h
create procedure name 2 |
begin
begin

drop table if exists wchars;
create temporary table wchars (pos int not null auto increment,
val varchar(250), primary key(pos));
insert into wchars(val) (select "h” as val);
insert into wchars(val) (select ’i’ as val);
end;

select val from wchars order by pos;
end;/ /

&

ol Y O). 17

From OCL to SQL-PL

begin Iterators |
declare done int default O; src—>it(body)

declare var;
declare crs cursor for (|cursor-specific type - src |);
declare continue handler for sqlstate '02000” set done = 1;
drop table if exists blq_name;

create temporary table blg_name (#alue-specif type)
open Crs;

repeat

fetch crs into var;

Iterator-specific body query

if not done then

Iterator-specific processing code
end if;

until done end repeat;

close crs;

end; ®

e P, ‘ﬁn-.‘—. 18

oulie

data model

SQL-PL4OCL

tool component architecture

OCL queries

=}

DM
validator

OCL content

|

=}

DB model
generator

SQL-PL database

vendor id

=

OCL
validator

=

DB engine
selector

EEEEEE—

=}

SQL-PL
generator

SQL-PL stored procedure

®

>

» Vendor specific supported:

SQL-PL4OCL

Benchmark

MySQL/MariaDB, Postgre5SQL,

SQL Server DBMS

MariaBD works faster in most of

the cases

Ql
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
QIO
Qll
Ql2
QI3
Ql4

MySQL
0.19s
0.25s
0.36s
0.04s
0.55s
1.05s
2.07s

50.02s
9.14s
0.05s
49.56s
59.58s
1.67s

59.52s

MariaDB
0.13s
0.20s
0.35s
0.04s
0.40s
0.55s
1.56s
43.08s
8.00s
0.04s
40.02s
51.23s
1.98s
54.33s

PostgreSQL
0.10s
0.33s
0.27s
0.04s
0.40s
|.06s
1.99s
57.04s
8.18s
0.07s
40.10s
51.25s
2.35s
63.35s

MSSQL
0.12s
0.28s

0.26s
0.05s
0.42s
1.03s
2.08s
53.47s
8.89s
0.05s
43.46s
54.82s
1.90s
58.33s

Related work
(comparison with OCL2SQL-DresdenOCL)

OCL pattern
context: Class

inv: OCL boolean expression

MySQL pattern

select *

from Class
where not OCL25QL(OCL boolean expression)

OCL25QL mapping Is based on patterns and it does not
support rterators.

®

P N 20

Mapping OCL to MSFOL

Mapping OCL to MSFOL

transformation
e definiton 3
Theoretical framework

language - language
S IS IS
written used written
in by in

Class/objects
diagrams

MSFOL

OCL2MSFOL theory

Constraints Constraints
transformation D
g " Tesm.

C. Dania, M. Clavel: OCL2FOL+: Coping with Undefinedness. OCL@MoDELS 2013: 53-62
C. Dania, M. Clavel. OCL2MSFOL: a mapping to many-sorted first-order logic for efficiently checking the satisfiability of OCL constraints. MoDELS 2016: 65-75

ool } o 22

From OCL to MSFOL
Mapping data models

» sorts: Int, String and Classifier.

(null and invalid for each sort) Timeline | Post
. posts
_ postedOn .| -id:String
* a predicate for each class. 0. 1[owns
. ‘ . 0..1] belongsTo
Timeline : Classifier — Bool Profile
» a function for each attribute. L2 o e

age : Classifier — Int

e one/two function(s)/predicate(s) for
each association.
friends : Classifier x Classifier — Bool

+ Set of axioms:
V(z : Classifier)(Profile(x) = —(Timeline(x) V ...V Post(x)))
—(Profile(nullClassifier) V Profile(invalClassifier))
g .

— 2N

—

From OCL to MSFOL
Mapping OCL expressions

(Sub-)expressions of type Boolean (Integer) are translated into

formulas (terms)

+ not, and, or, implies, =, >, <, forAll, exists, one, iIsEmpty,
notEmpty, includes, excludes, +, -,

Profile.allInstances()—>forAII‘(p\p.age > 18)

V(z : Classifier)(Profile(x) N
(age(x) > 18 A = (nullint = age(x) V invallnt = age(x))))

Axiom: —(nulllnt = 18 V invallnt = 18)

From OCL to MSFOL
Mapping OCL expressions

(Sub-)expressions of type Set (or Primitive types that require
definition) are translated into predicates formulas (functions), whose
(fresh) predicate (function) symbols satisfy the corresponding axioms

(also generated by the mapping)
+ select, reject, including, excluding, collect (follow by asSet),

+ any, max, min
Profile.alllnstances()—>select(p|p.age > 18)—tisEmpty()
Select

Select : C'lasst fier — Bool

V(z : Classifier)(Select(x) < (Profile(x) A
(age(x) > 18 A =(nulllnt = age(x) V invallnt = age(x)))))

V(z : Classifier)(—Select(x))
ol

Checking unsatisfiability

Data model D. Set of D-constraints 1. A Boolean OCL expression expr

Then, expr evaluates to true in every valid instance of 2 If and only If :

02f data (D) U (g 02fdef(in'v)> U (g {ontme(i'n/u)})

mvEL mMVEL
U 02f ger(expr) U {02fpse (€zpr) }.

IS unsatisfiable.

Satisfiability Module theories (SMT) solvers

VWe can expect: sat (there exists at least one valid instance of the model),
unsat (no valid instance of the model exists),
unknown (check is inconclusive).

SMT solvers cannot be complete when dealing with quantifiers (undecidability)

®

- o Yy e

OCL2MSFOL
tool component architecture

data model % OCL content % MSFOL theory
» > >
DM DB model
validator generator
invariants %
»-
expression OCL
>) |— Ig';ll .
type validator 3| MSFOL constramts)
expression g ‘
MSFOL
% ——> generator
vendor
>
SMT solver
selector

oles - —— D6\ .

OCL2MSFOL

Benchmark

CVC4 | Z3 | CVC4fm CVC4 | Z3 | CVC4fm
{1,2} unsat 161 | 24 48 {14,20} sat — | 105 28
{1,3} unsat 173 | 13 22 {16,20} sat — | 466 32
$2.3} sat 16 25 {17,20} sat — | 14 22
{4} unsat 138 | 15 P {14,17,20} unsat 239 | 13 26
{5} sat — | 17 7, {16,19} unsat 168 | 16 28
{5,6} unsat 172 | 13 30 {21} sat 17 27
{1,7} unsat 237 | 14 30 {22} sat — | 199 24
{1,8} sat — | 18 25 {16,22} unsat 149 | 18 25
{1,6,8} unsat 198 | 16 26 {16,23} unsat 148 | 16 26
{1,9} sat — | 18 25 {15,17,18,24} unsat 250 | 15 35
{1,6,9} unsat 200 | 19 29 {25} unsat 63 | 58 24
{1,10} unsat 203 | 18 30 {11,12,13,18} sat - = 27
(12} sat — 1169 27| [{6.27} sat - 26
{11,12,13} | sat —_ 24 174 {11,12,13,18,26} | unsat 352 13 25

Undefinedness-related (times in ms) Generalization-related (times in ms)

®

-

Related work
Other mappings from UML/OCL to other formalisms

Mapping Target formalism
Gl FiniteSAT System of Linear Inequalities
(do not support OCL constraints) L Descriptioh Logics ;SP
MathForm Mathematical Notation
UMLtoCSP CSP
EMFtoCSP CSP
AuRUS FOL
OCL2FOL FOL
- OCL-Lite Description Logics
(support OCL constraints) SVESAT Relation Logic
PVS HOL
CDOCL-HOL HOL
KeY Dynamic Logic
Object-Z Object-Z
UML-B B
G3 UML2Alloy Relation Logic
(support OCL constraints and OCL null') USE Relation Logic
G4 HOL-OCL HOL
(support OCL constraints and OCL null and invalid) OCL2FOL+ FOL

®

P o N o

Application domains

— 28N

Checking model satisfiability
Case study: eHealth Record Management System

Professional

(D + login: String

+ password: String

Nurse
Director

b + name: String

+ license: String

+ surname: String

ol

nurses
employees
Da_ta Odels 0 J(substututedBy] substitutions departments | - worksin | «
Doctor Department MedicalCenter
9 | || + license: String doctors + name: String departments 0.1| , name: String
°
epartments belongsT
C asses + status: String oy + location: String ongsTto + address: String
. . 0..1| referredBy 0..1] doctor 0..1 |department + zipCode: String
°
3 generalisations © ety S
\ :
\ 0..1 | referringTo + country: String
- 24 attribut
a’ rl u eS + director: Director
. .
| O associations Contactinto
* |ReferralsOut
+ id: String
referralsin | + patients | - patients |-
+ name: String
Referal Patient
referrals 0..1 + surname: String
+ id: String + id: String
patient + yearOfBirth: Integer
+ contactinfo: Contactinfo
+ gender: String
+ address: String

Internet Services and Systems 2014: 97-118

29N

®

T

M.A. Garcia de Dios, C. Dania, D. Basin, M. Clavel: Model-Driven Development of a Secure eHealth Application. Engineering Secure Future

Checking model satisfiability
Case study: eHealth Record Management System

38 Iinvariants

There must be at least one medical center
MedicalCenter.alllnstances()—>notEmpty()

Every medical center should have at least one employee.
MedicalCenter.allInstances()—>forAll(m|m.employees—>notEmpty())

Fach patient Is treated by a doctor who works In the department where
the patient Is treated.

Patient.alllnstances()—>forAll(p|
p.doctor.departments—>exists(d|d=p.department))

. CVC4 Finite Model returns sat in / seconds.

2. If we add | more constraint.
CVC4 Finite Model returns unsat in 4 seconds.

b

oles

Validating and instantiating models
A Security Metamodel

Data models

« 24 classes

3 generalisations
- 47/ attributes

+ 22 associations

33 Invariants

«Metaclass» «Metaciass» 11..° 1..° «Metactass» «Motaclass»
CP_RM _Sec_Requirement CP_RM_Application_Sec_Requirement apples CP_DM_Asset_Element CP_DM_Context_Constraint
+description : String “ 10.1 10 +ype : String +identifier : String
] +description : String +value : String p
1.0 S EO T c"‘"’;"“" ,
fuifils 8.} lo- - «Metaclass»
0.1 pplc "
defined : e a © S «Metaclass» CP_DM_Domain
by ‘ se . CP_DM_Asset_Stereotype 1_* +crealor : Siring
CP_RM_Domain_Sec_Requirement 1. 1. i +authorDomain : String
— +description : String sdescription : String
addressed by 1.+ definedinto |3
0." i T 1 «Melaclass» __provided by T —
0..*| regula y : - 1 «Metaclass»
«Metaclasss | CP_SM_Sec_Pattern 0. 1. CP PM Pr >
«Metaclass» «Metaclass» L _PM_Property
CP_RM_Assumption +URI : String . -
CP_RM_Sec_Policy CP_SM_Sec_Solution ,occrnion String +description : String
Hype : Sirng : - « +abstractCategory : String
- ; < +description : String #ype : String 0.1 . 1.7 String
+description ring o = V.. 1% +context : String
‘v! S +description : String “Tnciodes |0, * ensured by - 9
suscrtz)tble <Motaciasss realized by :' «Metaclass» Y
. CP_RM_Certification_R i t
CP_RM_Attack e _RM_Ce on_Requiremen «Metaclass»
execuled +type : String CP SM Sec Mechanism ‘description : String CP_PM_Attribute
by +assumptions : String -~ — *URI : String 0.* +type : String
0.+ | F9escription : String e o : Sving : sdescription : String
: - . +value : Siring
0.°* 1.+ performedby H - «Metaclass» l realzed by = .
cMestaciasss aMsiacksss CP_AM_Service_Assurance_Profile s?;i':;r, fy aMetaclass» T, 0.1
CP_RM_Threat = CP_RM_Attacker Type :;J'F:: 381:::;) by CP-AM Certificate op oy property
+type : String +type : String i ~ 0" #xmli : String | o.*
+motivation : Sirng +capability : String *version : String . +d : String 0—‘supponed by dc:;ed
Himpact : String +resources : String o . _ \
+objective : String +ability : String «Metaclass» - «Metaclass» «Metaciass»
+description : String | | +information : String CP_AM_Extended_SAP 0.° CP_AM_Attribute CP_SLA_Commitment

M. Arjona, C. Dania, M. Egea, A. Mafia, Validation of a Security metamodel for Development of Cloud Applications. OCL@MoDELS 2014: 33-42

_/3-1\

®

— e, "

ol

Validating and instantiating metamodels
A Security Metamodel

CVC4 Finite Model returns sat + one instance.

«Melaclass» «Metaclass»

AppRequirement_Ins : ~apples AssetElement_Ins . CP_DM_Asset_Element

CP_RM_Application_Sec_Requirement 10

application_sec_requirement = AppRequirement_Ins

«Metaclass»
D in_lns : CP_DM_D -
asset_element = AsselElement_Ins

asset_element = AssetElement_Ins domain = Domain_Ins asset_stereotype = AssetStereotype_Ins
property = Property Ins ‘ 7 property = Property _Ins
sec_pattern = SecPattern_Ins ' Metacle R
threat = Threat_Ins |- e | <defined into
’ AssetStereotype Ins: CP_DM_Asset Stereotype «Meotaclass»
__applies domain = Domain_Ins Property_Ins : CP_PM_Property
: o fA domain_sec_requirement = DomRequirement_Ins certification_requirement = CertificationReq_Ins
‘ - v, domain = Domain_Ins
sMetaciass» _ dmples Cimplies _ sec_pattern = SecPattern_Ins
DomReguirgmant_Ins «Metackass» sec_requirement = DomRequirement_Ins,
CP_RM_Domain_Sec_Requirement AboReaul
- addressed SecPattern_Ins : CP_SM_Sec_Pattern D
assel_slereotype = AssetStereotype_Ins by =
property = Property_Ins ™ eend Cerfification_requirement = CertificationReq_Ins L_ensured by
sec_pattern = SecPattem_Ins by Property = Property_Ins RN «Metaciass»
threat = Threat Ins sec_requirement = DomRequirement_ins, CertificationReq Ins. :
; e ek ———_ CP_RM Cerification Requirement
! sec_solution = Solution_Ins ~inckudes
URI = "uri_to_repository” property = Property_Ins
security_pattern = SecPattern_Ins
. susceptible LSsusceptible ~performed
to 10 «Metaclass» by
) «Metaclass»
| ~execuied atacker type = AttackerType_Ins «Metaclass» - , .
«Metaclass » % threat=Threat_Ins AttackerType_Ins : sec_mechanism = Mechanism_Ins
attack = Attack_Ins1, Attack_Ins2 «Metaclass» aftack = Attack_Ins1, «Metaclass»
sec_requirement = DomRequirement_Ins, _ avecyteq Attack Ins2:CP_RM_Attack Aftack_Ins2 Mechanism_Ins :
AppRequirement_Ins by attacker_type = AttackerType_Ins :] CP_SM_Sec_Mechanism
threat = Threat_Ins mofm sec_solution = Solution_Ins

— 30N

®

—— . L

Analysing security models

supervisedBy

0..1
Employee <<enumeration>>
supervises | "o String Role
-surname : String Worker
-salary : Integer Supervisor
-role : Role

 SecureUML is a modeling language for specitying fine-grained
access control policies for actions on protected resources.

<<PRIMISSION>>
RO L ES ‘.'Jork;:ﬂe[’adsfalary
+ Employee:salary:AtomicRead Caller = sel H
<<role>> x .
Worker .)
PERMISSIONS -
PN <<pPermission>> true é
SupervisorReadSalary 5
+ Employee:salary:AtomicRead :
............................. 1
<<role>> Employee
Supervisor
.. L- > + name: String
--- -4 4+ surname: String
+ salary: Integer
+ role: Role
<<permission>> RESOU RCES

SupervisorReadSalary

+ Employee:salary:AtomicUpdate

sell supervlsésBy = caller %

Auth(Worker, update(salary)) =
false

Auth(Supervisor, update(salary)) =
self.supervisedBy = caller or false

Auth(Worker, read(salary)) =
caller = self

Auth(Supervisor, read(salary)) =
caller = self or true

M.A. Garcia de Dios, C. Dania, M. Clavel: Formal Reasoning about Fine-Grained Access Control Policies. APCCM 2015: 91-100

ool - i, 33N

®

ET -

Analysing security models

Auth(Worker, update(salary)= false

Auth(Supervisor, update(salary) =
self.supervisedBy = caller or false

Auth(Worker, read(salary)) = caller = self

Auth(Supervisor, read(salary) = caller = self or true

Can Bob read Alice’s salary?

Data model 2. SecureUML model S.
A role r. An action act.
02f qata (D) U {3(caller)3(self)
(02f¢ue(caller.role = 1)
A 02f i ue(Auth(S, r, act)))}

— e — ﬂ\

e3:Employee

name = "Alice"
surname = "Smith"
salary = 2000

role = Supervisor

(supervised By)

e2:Employee

name = "Bob"
surname = "Tylor"

salary = 1500

role = Supervisor

|
supervises

supervisedBy

supervises

e1:Employee

name = "Tom"
surname = "Lee"
salary = 1000

role = Worker

ol

Analysing security

Auth(Worker, update(salary)= false

Auth(Supervisor, update(salary) =
self.supervisedBy = caller or false

Auth(Worker, read(salary)) = caller = self

Auth(Supervisor, read(salary) = caller = self or true

Can Bob read Alice’s salary?

models

‘ e3.Employee

surname = "Smith"
salary = 2000

role = Supervisor

(supervisedBy”

e2:Employee

I name = "Bob"

surname = "Tylor"

salary = 1500

role = Supervisg

-
supervises

supervisedBy

Data model 2. SecureUML model S.

A role r. An action act.

02f 4ata (D) U {I(caller)I(self

(02f {yue (caller.role = r

A 02f (rue (Auth(S, 7, act)))}

supervises

e1:Employee

name = "Tom"
surname = "Lee"
salary = 1000

role = Worker

)
)

— 34N

®

—— - =

ool

Analysing security models

Auth(Worker, update(salary)= false

AutthueerVisor, uEdategsalarz) =

self.supervisedBy = caller or false
Auth(Worker, read(salary)) = caller = self

Auth(Supervisor, read(salary) = caller = self or true

Can Bob read Alice’s salary?
Can Alice update Bob'’s salary? X

Data model 2. SecureUML model S.
A role r. An action act.
02f qata (D) U {3(caller)3(self)
(02f¢ue(caller.role = 1)
A 02f i ue(Auth(S, r, act)))}

— 34N

— c— - =

‘ e3:.Employee

surname = "Smith"

salary = 2000

role = Supervisg

(3upervised8y‘

e2:Employee

-
name = "Bob"

surname = "Tylor"

salary = 1500

role = Supervisor

[
supervises

supervisedBy

supervises

e1:Employee

name = "Tom"
surname = "Lee"
salary = 1000

role = Worker

®

Related work
Security models

Many proposals exist for reasoning about RBAC policies, each one using
a different logic or formalism

Lithium: framework for specifying and reasoning about FGAC policies.
[t I1s based on a decidable fragment of (multi-sorted) first-order logic. In

contrast to OCL, this logic does not consider undefined values.

Kuhlmann et al: Employing UML and OCL for designing and analysing
role-based access control models.

ool

Analysing privacy models
Facebook: posting and tagging

Who owns the timeline
where the post is posted?

Who are his/her
friends?

* Who are his/her friends’
friends?

Who posted the post?

- Who Is tagged In the
post! | Who are his/her
friends?

« Who are his/her friends’
friends?

Audience selected by the
timeline’'s owner for a post
that Is posted in his/her
timeline.

friends]

Profile

+ tagReview: Boolean
+ contributors: Audience

+ switchTagReview()

profile

Timeline

+ addPost(@post: Post)
timeline

(+ setContributors(@selection: Audience)

blocks J 1 | profiling torbidens

Tag

tags
+ creator: Profile

post

+ removePost(@post: Post)
1

+ readPost(@post: Post)

1 | posted

posts

' Post
+ creator: Profile

+ audience: Audience

<<gnumeration>>
Audience

OnlyMe
Friends
FriendsOfFriends

Public

C Dania, M Clavel: Modeling Social Networking Privacy. TASE 2014: 50-57

36N

+ setAudience(@selection: Audience)

+ addTag(@profiling: Profile)

+ removeTag(@tag: Tag)

+ forbidTag(@profiling: Profile)

AN

Photo

Analysing privacy models
Facebook: posting and tagging

L —=

Alice posts a photo of herself, Bob and Ted in B e -8ob (N

a1

»
~
——

her timeline, and sets ts audience to Friends.
Then, Alice tags Bob In this photo.

Can Bob see the photo in Alice’s timeline? v

Method:
Alice has set her default audience to Friends. readPost(post)
. . . anybody can read any post
pOSt'aUdlence_ Friends that has its audience selected
to ‘Friends’ and was created
Bob is a friend of Alice. by the owner of the
_) _ timeline, if he or she is a friend
Self. prOfI|e.fr|endS—> | nC|UdeS(Ca”er) of somebody tagged
on the post, unless he or she is
: Y - , .plocked by the owner
(post.audience = 'Friends' and post.creator = self.profile of the timeline.

and post.tags.profiling.friends—>includes(caller)
and self.profile.blocks—>excludes(caller))

®

Doctor Department Patient
doctors

+ doc: Doctor
doctorDepts

+ dept: Department

Checking data invariants preservation
Steps

Preservation of the application’s data invariants.

dl d? d3 aq an_1

Inv Inv 7

[t consists in 3 steps:

Step I: Modelling sequences of states (Film, Project). Patent
c : ' + st_1: Boolean
A filmstrip is a way of encoding a sequence of snapshots of a syst| "~ "™
Department . doctor_1 Doctor |
dociorDepts 1 z + st_3: Boolean
+ SUT Boolean . do"“’"-? # st.1: Boolean + dept_1: Department
+ st 2: :oolean fjoctorDepts_«? I + 8 2: :oo:ean + dept_2: Department
+ st_3: Boolean Socorbents S | * St Boolean + dept_3: Department

+ doctor 1: Doctor
+ doctor 2: Doctor

+ doctor 3: Doctor

C. Dania, M. Clavel: Model-Based Formal Reasoning about Data-Management Applications. FASE 2015: 218-232
M.A. Garcia de Dios, C. Dania, D. Basin, M. Clavel: Model-Driven Development of a Secure eHealth Application. Eng. Sec. Future Internet Services and Systems 2014: 97-118

3

onls R — 38N —a

Doctor Department Patient

doctors D
+ doc: Doctor
doctorDepts .
Patient
([[J [J ([
ecking data invariants preservati(- =
+ st_2: Boolean
Department . doctor_1 Doctor
5 doctorDepts 1 - + st_3: Boolean
+ st_1: Boolean X + st_1: Boolean
doctor_2 + dept_1: Department
+ st_2: Boolean doctorDepts 2 * | +st_2: Boolean
, " , " doctor 3 + dept_2: Department
+ st_3: Boolean W@%—ﬁ + st_3: Boolean
Preservatlon Of ctorDept + dept_3: Department
dl d? d3 dg dn—1 + doctor_1: Doctor
st () (s3) (s2) S—— (s, |
u v U + doctor_2: Doctor
Inv Inv 7 + doctor_3: Doctor

[t consists in 3 steps:

Step |: Modelling sequences of states (Film, Project).
A Tilmstrip I1s a way of encoding a sequence of snapshots of a system.

Step 2: Modelling sequences of data actions (Execute)
Update(doctor, ol, i+, ‘Bob’)
ol.doctor(i+1) = ‘Bob’

Step 3: Proving invariants preservation.

C. Dania, M. Clavel: Model-Based Formal Reasoning about Data-Management Applications. FASE 2015: 218-232
M.A. Garcia de Dios, C. Dania, D. Basin, M. Clavel: Model-Driven Development of a Secure eHealth Application. Eng. Sec. Future Internet Services and Systems 2014: 97-118

3

onls — 38N —a

— — - = —

Checking data invariants preservation

Data model 2 with invariants @

A sequence of actions # = (acty, acta, ..., acty)

We say that ¢ preserves an invariant Y if and only if:

n—1
02f qata (Film(D,n)) U {02f1ue(y) | v € U Execute(D, act;, 1)}
i=1
U 02f e (NOt(Project (D, /\ 1) implies Project(D, ¢, n))).
WweP
s unsatisfiable.
Project(¢,1) +Execute(a:) Execute(ag) Execute(an-1)

Project(¢,n) ?

&

— 30N B - —

Checking data invariants preservation

Case study: eHealth Record Management System

The data model contains | 8 entities, 40 attributes, and 48 association-ends.

Invariants

affected preserved violated min.

Acts. Conds.

Create an administrative 8 9 | 8
Create a nurse 10 | | 22
Create a doctor | | |12 25
Reassing a doctor 2 6 2
Reassing a nurse 2 6 2
Register patient 30 6 28
Move a patient 2 3 3

|8
22

24
2
|

26
3

0
0

0.03s
0.03s

0.03s
6.88s
0.10s
0.03s
0.03s

Time
max.

0.20s
0.22s

2/7.00s

| 1.10s
1 7.01s
0.20s
0.03s

Related work. Gogolla et al. From Application Models to Filmstrip Models: An Approach to

Automatic Validation of Model Dynamics.

——— e ———

A0

avge.

0.50s
0.06s

0.07s
8.94s
8.55s
0.05s
0.03

a’

Conclusions

Code-generator from OCL queries to the procedural language
extensions of SOQOL (SQL-PL)

each OCL expression Is mapped to a single stored procedure
- temporary tables are used
» the three-valued evaluation semantics of OCL is considered

Mapping from OCL to many-sorted FOL

our results depend of our formalization of UML/OCL in MSFOL and the
heuristics iImplemented in the SMT solver (finite model finder),

- the four-valued evaluation semantics of OCL is considered.

Application domain:

- checking consistency, analysing security and privacy properties, and checking data
invariants preservation across states

Future work

Look for the integration of developed tools into CASE tools

Emprirical validation of the usefulness of the approach for a software
engineering team.

——— I —— “_/4—1\ = —— g

Questions?

ttp://software.imdea.org/~dania/

bublications + tools + case studies

. AN

3
B

8@ %

