
Carolina Inés D
ania Flores

M
apping OCL as a Query and Constraint Language

M
apping OCL as a Query and Constraint Language

© Joaquín S. Lavado, QUINO. Toda Mafalda, Penguin Random House, España.

Mapping OCL as a Query
and Constraint Language

Carolina Inés Dania Flores

Traduciendo OCL como
Lenguaje de Consultas y Restricciones

Supervisors:
Manuel García Clavel
Marina Egea González

Facultad de Informática
Universidad Complutense de Madrid

Tesis Doctoral

© Joaquín S. Lavado, QUINO. Toda Mafalda, Penguin Random House, España.

Mapping OCL as a
Query and Constraint Language

Traduciendo OCL como
Lenguaje de Consultas y Restricciones

PhD Thesis

Carolina Inés Dania Flores

Advisors

Manuel Garćıa Clavel
Marina Egea González

Departamento de Sistemas Informáticos y Computación

Facultad de Informática

Universidad Complutense de Madrid

2017

A mi familia de allá.
Mi mamá Estela, mi papá Héctor

y mis hermanos Flor, Marcos y Leila.

A mi familia de acá.
Mi esposo Israel, mi perro Yiyo

y mis suegros Marinieves y Jacinto.

A mi gran amigo de allá,
mi querido Julio.

A mi gran amigo de acá,
mi querido Juli.

Acknowledgments

Undertaking this PhD has been a truly life-changing experience for me,
and it would not have been possible without the support and guidance that
I received from many people.

I would like to express my sincere gratitude to my supervisors, Manuel
Garćıa Clavel and Marina Egea, for their support during these years. To
Manuel, not only for being my advisor, but mainly for believing in me. He
is responsible for giving me this great opportunity that is to pursue a PhD,
letting me grow as a researcher and get to this final point. To Marina,
because she has been present in every hard stage of my journey, always
ready to help. It has also been an honor to be her first PhD student. Both
are great advisors and friends.

I would like to thank Martin Gogolla because he was (and remains to
be) my best role model of a scientist. He has been helpful in providing
advice many times during my career, being always available to talk and to
o↵er guidance. Today, I am here thanks to him.

My sincere appreciation and gratitude to Pedro R. D’Argenio for his
guidance during my research. His support and inspiring suggestions have
been precious for the development of this thesis.

A thank you to Nazareno Aguirre for teaching me how to become a
researcher and inducing me on this path.

Thanks to David Basin for those six-months in his team at ETH Zurich.
It became a very enriching experience and contributed tremendously to-
wards my professional development.

I thank César Sánchez for adopting me as his PhD student in all those
uncountable times he stepped in the o�ce, asking me how everything was
going and encouraging me to move on.

A special thanks to the IMDEA Software Institute. In particular, to

vi

Maria Alcaraz, Manuel Hermegildo, Manuel Carro and Begonia Moreno
for all their support. To Juan Céspedes, Roberto Lumbreras and Gabriel
Trujillo for their technical support, and to Paola Huertas, Tania Rodriguez,
Carlota Gill, Andrea Iannetta, and Silvia Dı́az-Plaza for all their day-to-
day support in administrative tasks. Finally, to my colleagues Miriam
Garćıa, Germán del Bianco, Joaqúın Arias, Goran Doychev, Juan Manuel
Crespo and Platon Kotzias for all those great and enjoyable lunches we had
together.

Thanks to the Universidad Complutense de Madrid. In special, to Nar-
ciso Mart́ı Oliet and Miguel Palomino Tarjuelo for their advice and for their
support in all administrative tasks related to the doctoral process.

I would like to say thank to my thesis committee members for all of
their guidance through this process; your discussion, ideas, and feedback
have been absolutely invaluable.

I am very grateful to all the people I have met along the way and have
contributed to the development of my research.

Por último, y no por ello menos importante, a todas esas personas que
han estado junto a mı́ durante todo este tiempo:

A mı́ familia de allá, por quienes yo soy lo que soy. A mis viejos, por su
apoyo incondicional, consejos, comprensión y amor. Me han dado todo lo
que soy como persona, mis valores, mis principios, mi perseverancia y mi
coraje para conseguir mis objetivos. A Marcos, Flor y a mi cuñada Leila,
por estar siempre. Han estado en cada momento que los necesité y siempre
me han apoyado en todas mis decisiones.

A mi familia de acá. A mi esposo Israel, que es la persona con quien
comparto mi d́ıa a d́ıa, me hace feĺız al despertar cada d́ıa a su lado, quien
aguanta todos mis malhumores y me apoya incondicionalmente. A mis
suegros, por adoptarme como un hija más, o mejor aún, como la hija que
nunca hab́ıan tenido. A mi perro Yiyo quien en este úlitmo año ha estado
junto a mı́, hora tras hora, sentado a mi lado terminando la tesis. A mis
otros suegros (por las dudas dos no fueran suficientes), Carlos y Marimar,
porque ellos también me han adoptado como a una hija y están siempre
alentándome con todas las decisiones que he tomado.

Al resto de la familia de allá: mi abuela Negrita, mis t́ıos Laly, Ricardo,
Amalia, Vivian, Cacho y Cristina; mis primos hermanos Stefi, Maxi, Nico,
Mili, Cande, Guillermo y Diego, porque siempre preguntan como va todo
y ¡cuándo voy a terminar esta tesis! ¡He aqúı la tesis! =)

A toda la familia Marguatti, por estar siempre!

A Olga y Osvaldo, los vecinos de mis abuelos; dos personas que me

vii

criaron dándome todo lo que teńıan a su alcance. Su amor incondicional
no se puede describir.

A Pedro y su familia, porque jugaron un rol muy importante en mi vida
por mucho tiempo y sin su ayuda no hubiese comenzado esta tesis.

A mis amigos de allá. Los de la universidad: Julio, Caro G., el Flaco,
Caro M., Waldo, Guille K. y Juli I. Mi gran amiga de la infancia: la Juli. A
mis amigos que vienieron más de una vez a visitarme, Naty y Mati. Gracias
a todos por estar cada vez que anduve por allá y estar siempre disponible
via Skype y/o whatsapp.

A mis amigas de acá: Andie, Paola, Bego, Tania y Carlota. ¡Gracias a
todas! Gracias por todos esos momentos que compartimos.

Ni de acá y ni de allá. A Javi, gracias por esos años compartidos en
el equipo, todos esos viajes por Suiza, y por tantas horas de charla. A
Ale (yo si te cito [86]), gracias por aguantarme en la oficina y en casa sin
quejarte. A César K. por las esporádicas cenas de viernes y esas largas
horas de reflexión. A Belén, mi guardavidas favorita, gracias por compartir
el verano del 2011 conmigo y, de ah́ı en adelante, tu vida. Finalmente, a
Juli, simplemente gracias. Gracias por estar siempre, en los buenos, en los
malos, en los mejores y en los peores momentos.

Carolina Dania.
Amsterdam, Netherlands, 2017.

© Joaquı́n S. Lavado, QUINO.
Toda Mafalda, Penguin Random House, España.

ix

Contents

Contents ix

List of Figures xiii

List of Tables xv

Abstract xvii

Resumen xxi

1 Introduction 1
1.1 Model Driven Architecture (MDA) 2
1.2 Unified Modeling Language (UML) 4

1.2.1 Data models . 4
1.2.2 Object models . 5

1.3 Object Constraint Language (OCL) 6
1.4 Outline . 7

2 Mapping OCL as a query language 9
2.1 Procedural extensions of SQL 9
2.2 From OCL to SQL-PL . 10

2.2.1 Mapping data models 12
2.2.2 Mapping OCL expressions 16
2.2.3 The SQL-PL4OCL tool 40

2.3 Benchmark . 42
2.3.1 Description . 42
2.3.2 Results . 43

x CONTENTS

3 Mapping OCL as a constraint language 47
3.1 From OCL to many-sorted first-order logic 47

3.1.1 Mapping data models 49
3.1.2 Mapping OCL expressions 53
3.1.3 Checking satisfiability 72
3.1.4 The OCL2MSFOL tool 73

3.2 Benchmark . 76
3.2.1 Description . 78
3.2.2 Results . 82

4 Application domains 89
4.1 Checking model satisfiability 90

4.1.1 The eHealth record management system 90
4.1.2 Checking data model satisfiability 94
4.1.3 Concluding remarks 96

4.2 Validating and instantiating metamodels 96
4.2.1 The Core Security Metamodel (CSM) 96
4.2.2 Validating the Core Security metamodel 100
4.2.3 Security enhanced CSM instances 102
4.2.4 Concluding remarks 104

4.3 Analyzing security models 104
4.3.1 SecureUML . 104
4.3.2 A running example 106
4.3.3 Analyzing fine-grained access control policies 111
4.3.4 Concluding remarks 118

4.4 Analyzing privacy models 118
4.4.1 Facebook: posting and tagging 118
4.4.2 Modeling Facebook privacy policy 121
4.4.3 Analyzing Facebook privacy policy 132
4.4.4 Concluding remarks 133

4.5 Checking data invariants preservation 133
4.5.1 Modeling sequences of states 134
4.5.2 Modeling sequences of data actions 139
4.5.3 Checking data invariants preservation 142
4.5.4 Concluding remarks 145

5 Related work 147
5.1 Mapping OCL as a query language 147
5.2 Mapping OCL as a constraint language 150
5.3 Analizing security models 152

CONTENTS xi

5.4 Checking data invariants preservation 154

6 Conclusions and future work 155

Bibliography 159

xiii

List of Figures

1.1 MDA: Models and languages 3
1.2 Overview of the basic structure of MDA 3

2.1 Car-Company: A data model for a car company 13
2.2 (a) Simple Car company model. (b) Car company table. . . 15
2.3 Nested blocks structure in Stored Procedures 17
2.4 Sequential blocks structure in Stored Procedures 17
2.5 SQL-PL4OCL tool component architecture 40
2.6 SQL-PL4OCL tool: screen-shots 41

3.1 BasicSocNet: A data model for a basic social network. . . . 50
3.2 OCL2MSFOL tool component architecture 73
3.3 OCL2MSFOL tool: screenshots 75
3.4 CivilStatus: A civil status model 78
3.5 WritesReviews: A writes reviews model 80
3.6 DisjointSubclasses: A disjoint subclasses datamodel 82

4.1 EHR: a data model for a basic eHealth Record Management
System. 90

4.2 Automatically generated instance of the case study’s data
model satisfying all the invariants. 95

4.3 Core Security Metamodel 98
4.4 Automatically generated instance of the security metamodel

presented in the Figure 4.3. 101
4.5 Domain Security Metamodel 103
4.6 EmplBasic: a data model for employees’ information. 107
4.7 Two instances of EmplBasic 108

xiv LIST OF FIGURES

4.8 Empl: a SecureUML model for accessing employees’ infor-
mation. 109

4.9 Modeling Facebook’s data model (partial). 122
4.10 Modeling a Facebook scenario. 123
4.11 EHR: a sample data model. 134
4.12 Inst EHR: a sample object model. 135
4.13 Film(EHR,3): a filmstrip model of length 3 of EHR. 137
4.14 Three instances of EHR. 138
4.15 An instance of Film(EHR, 3). 139
4.16 EHRM case study: summary. 144

xv

List of Tables

2.1 SQL-PL4OCL. Evaluation times. 43

3.1 Checking satisfiability of OCL constraints. 77
3.2 Analyzing CivilStatus with OCL2MSFOL 84
3.3 Analyzing WritesReviews with OCL2MSFOL 85
3.4 Analyzing DisjointSubclasses with OCL2MSFOL 86

4.1 Automatic reasoning over the examples 21-29 introduced in
Section 4.3.3. 117

5.1 Support of OCL2SQL for primitive operators 149
5.2 Support of OCL2FOL for operators over collections 149
5.3 Other mappings from UML/OCL to other formalism. . . . 151

xvii

Abstract

This doctoral dissertation owes a great deal of its initial motivation and
final focus to the very lively and insightful discussion that took place during
the Dagstuhl Seminar “Automated Reasoning on Conceptual Schemas” (19-
24 May, 2013) [18], which we have the fortune to participate in.

Even before attending the seminar, based on our own experience ap-
plying the model-driven development methodology within the ActionGUI
project [1], we were already convinced of the truthfulness and importance
of three key statements contained in the seminar’s presentation, which sum-
marize very well this dissertation’s ultimate motivations:

“The quality of an information system is largely determined early
in the development cycle, i.e., during requirements specification and
conceptual modeling, since errors introduced at these stages are usu-
ally much more expensive to correct than errors made during design
or implementation.”

“Thus, it is desirable to prevent, detect, and correct errors as early
as possible in the development process by assessing the correctness of
the conceptual schemas built.”

“The high expressivity of conceptual schemas requires to adopt auto-
mated reasoning techniques to support the designer in this important
task.”

Among the research questions that were pursued during the seminar,
we were particularly intrigued —based again on our experience within the
ActionGUI project— by the following one:

“Are the existing techniques and tools ready to be used in an indus-
trial environment?”

xviii

The question was specifically addressed by a working group, which we were
invited to join, focused “on the practical applicability of current techniques
for reasoning on the structural schema”. The other research questions
discussed during the seminar included:

“Does it make sense to renounce to decidability to be able to han-
dle the full expressive power of the language used with and without
textual integrity constraints?”

“Which is the current state of the achievements as far as reasoning
on the behavioral part is concerned?”

“Which are the new challenges for automated reasoning on conceptual
schemas?”

All these questions, but specially the first one, have had also an impact, in
one way or another, on the shaping of our own research agenda.

The conclusions of the aforementioned working group were clear-cut:
“there is still a lot of things to do for convincing the industry about the
practical applicability of current techniques for reasoning on the structural
schema. (...) Having practical tools to show that all of this works was
agreed to be a necessary condition for this purpose.” The conclusions ended
with an optimistic view about the future: “the promising results achieved
so far and the existence of several prototype tools that can be applied in
practice allow us to be optimistic about the achievement of this ambitious
goal.” Unfortunately, this view has so far proven to be overoptimistic. As
it has been recently reported [76]: “Although a variety of tools exists for
this purpose [model verification], the majority are academic —used as a
proof of concept for the theory behind it. (...) implementations are mostly
applicable to subsets of model verification tasks only. (...) the model under
verification has to be manually prepared for each tool. (...) the manual work
requires expert knowledge and is a source for errors.” Thus, [76] continues:
“most [of the tools are] far too often poorly maintained and updated (...)
are using only strategies resulting in a feasibility only for few classes of
problems (...) this may leave the user with a very unpleasant tool-chain.
(...) additionally, most verification tools su↵er from certain limitations, due
to a limited focus, and out-dated underlying modeling language version or
simply bugs.” Finally, [76] also reports that “the long duration of the
solving process remains a limiting factor in most cases.”

In many ways, this doctoral dissertation is an attempt to address, the
best we could and within our limited resources, the “things to do for con-
vincing the industry about the practical applicability of current techniques

xix

for reasoning on the structural schemas”, which, according to the afore-
mentioned Dagstuhl seminar’s working group, included:

Explanations: “In addition to being able to check these properties,
these tools should also explain the results of performing automated
reasoning on the conceptual schema. (...) explanations should ab-
stract away from whatever logic is used underneath and they should
be given regarding to the model the user is referred to.”

Benchmarks: “Benchmarks are very important for industry. How-
ever, little attention has been paid to them in the area.”

Scalability : “There was a clear agreement that scalability has to be
necessarily addressed to convince the industry.”

In this attempt, our focus has been on creating well-founded, rigorous
tools that (i) could be used by the ordinary model-driven software devel-
opers (with knowledge of UML and OCL), (ii) could seamlessly integrate
with their usual modeling activities and environments, and (iii) could e↵ec-
tively contribute to their development of high-quality models. Notice that
(i) rules out, as valid solutions in this case, tools that would require, on
the part of the users, learning a new modeling languages or a new logical
formalism to interact with the tool. Secondly, (ii) rules out also tools that
would require, on the part of the users, manually creating new artifacts
(e.g., input models, proofs, tactics) to interact with the tools. Finally, (iii)
rules out as well tools that would not provide: universal (or, at least, very
wide) coverage of the class of problems the tools are designed for; immediate
(or, at least, very quick) response time; and clear and useful responses.

More constructively, as for the challenges of explanations and scalability
highlighted by the Dagstuhl seminar’s working group, this doctoral disser-
tation provides tools that cover a very wide class of the problems they were
designed for. The greatest challenge here was to define an SMT-based auto-
mated reasoning tool that could handle the OCL 4-valued logic. Secondly,
it provides tools with very quick response time. The challenge here was to
understand su�ciently well the heuristics of the di↵erent SMT solvers so
as to define a translation from OCL to first-order logic that would bene-
fit the most, in terms of response time, from the heuristics implemented
in each solver. Thirdly, it provides tools with clear and useful responses
for the users. The challenge here was to understand su�ciently well the
finite model finding capabilities of the di↵erent SMT solvers so as to de-
fine a translation from OCL to first-order logic that would authorize us

xx

to use these capabilities when reasoning about models, avoiding in this
way useless responses of the type “unknown” from the part of the SMT
solvers. Finally, as for the challenge of benchmark, this doctoral disserta-
tion passes the aforementioned tools from di↵erent benchmarking exercises,
using whenever possible available benchmarks, or creating new benchmarks
when they were not available.

xxi

Resumen

Esta tesis doctoral debe gran parte de su motivación inicial y enfoque
final a la discusión muy animada y perspicaz que tuvo lugar durante el
seminario “Automated Reasoning on Conceptual Schemas” en Dagstuhl
(19-24 Mayo, 2013) [18], en el cual tuvimos la fortuna de participar.

Incluso antes de asistir al seminario, sobre la base de nuestra propia
experiencia aplicando la metodoloǵıa de desarrollo dirigida por modelos en
el proyecto ActionGUI [1], ya estábamos convencidos de la veracidad y la
importancia de tres declaraciones claves contenidas en la presentación del
mismo, que resumen muy bien las motivaciones finales de esta tesis:

“La calidad de un sistema de información se determina en gran me-
dida a principios del ciclo de desarrollo, es decir, durante la especifi-
cación de los requisitos y el modelado conceptual, ya que los errores
introducidos en estas etapas suelen ser mucho más costosos de corregir
que los errores cometidos durante el diseño o la implementación.”

“Por lo tanto, es deseable prevenir, detectar y corregir errores tan
pronto como sea posible en el proceso de desarrollo evaluando la cor-
rección de los esquemas conceptuales construidos.”

“La alta expresividad de los esquemas conceptuales requiere adoptar
técnicas de razonamiento automatizadas para apoyar al diseñador en
esta importante tarea.”

Entre las preguntas de investigación que se siguieron durante el sem-
inario, nos quedamos particularmente intrigados, basados nuevamente en
nuestra experiencia dentro del proyecto ActionGUI, por la siguiente:

“Las técnicas existentes y herramienta disponibles, están preparadas
para ser utilizadas en un entorno industrial?”

xxii

La pregunta fue abordada espećıficamente por un grupo de trabajo al que
se nos invitó a unirnos. Este se centró en la aplicación práctica de las
técnicas actuales de razonamiento sobre el esquema estructural”. Las otras
preguntas de investigación discutidas durante el seminario incluyeron:

“Tiene sentido renunciar a la capacidad de decisión para]manejar
todo el poder expresivo del lenguaje utilizado con y sin restricciones
de integridad textual?”

“Cuál es el estado actual de los logros en lo que concierne aL razon-
amiento sobre el comportamiento”

“Cuáles son los nuevos desaf́ıos para el razonamiento automatizado
en esquemas conceptuales?”

Todas estas cuestiones, pero especialmente la primera, han tenido también
un impacto, de una manera u otra, en la configuración de nuestra propia
agenda de investigación.

Las conclusiones del mencionado grupo de trabajo fueron claras: “to-
dav́ıa hay muchas cosas por hacer para convencer a la industria sobre la
aplicación práctica de las técnicas actuales para el razonamiento sobre es-
quemas estructurales. (...) Se concluyó que tener herramientas prácticas
es una condición necesaria para demostrar que todo esto funciona.”

Las conclusiones finalizaron con una visión optimista acerca del futuro:
“Los prometedores resultados alcanzados hasta la fecha y la existencia de
varios prototipos que pueden ser aplicados en la práctica nos permiten ser
optimistas sobre la posibilidad de alcanzar este objetivo tan ambicioso”.
Desafortunadamente, esta visión ha demostrado hasta ahora ser demasiado
optimista. Como recientemente ha sido reportado [76]: “Aunque existe una
variedad de herramientas para este propósito [verificación de modelos], la
mayoŕıa son académicas —utilizado como prueba de concepto para la teoŕıa
detrás de ella. (...) En general estas implementaciones se aplican princi-
palmente a un subconjunto de las tareas llevadas a cabo de la verificación
de modelos. (...) el modelo a verificar debe ser manualmente preparado
para cada herramienta. (...) el trabajo manual requiere conocimiento ex-
perto y es fuente de errores ”. Por tanto, [76] continúa: ”la mayoŕıa de
las herramientas no suelen ser mantenidas ni actualizadas (...) sólo utilizan
estrategias que resultan en la viabilidad en un número reducido de clases
de problemas (...) esto puede dejar al usuario con un poco conveniente
cadena de herramientas. (...) Además, la mayoŕıa de las herramientas
de verificación sufren ciertas limitaciones, debido a un enfoque limitado, y

xxiii

versión de lenguaje de modelado subyacente desactualizado o simplemente
con errores.” Por último, [76] también informa que “la larga duración del
proceso de resolución sigue siendo un factor limitante en la mayoŕıa de los
casos”.

En muchos sentidos, esta tesis doctoral es un intento para tratar, lo
mejor posible y dentro de nuestros limitados recursos, las “cosas que hay
que hacer para convencer a la industria sobre la aplicación práctica de las
técnicas actuales de razonamiento sobre esquemas estructurales”, que según
el grupo de trabajo del seminario Dagstuhl, incluyen:

Explicaciones:

“Además de poder comprobar estas propiedades, estas herramien-
tas también deben explicar los resultados de realizar el razonamiento
automatizado sobre esquemas conceptuales. (...) Las explicaciones
deben abstraerse de cualquier lógica que se utilice por debajo y deben
darse relacionadas con ell modelo al que el usuario es referido”.

Puntos de referencia: “Los estándates comparativos son muy im-
portantes para la industria. Sin embargo, se ha prestado muy poca
atención en esta área.”

Escalabilidad : “Hubo un claro acuerdo de que la escalabilidad debe
ser necesariamente dirigida a convencer a la industria.”

En este intento, nuestro enfoque ha sido crear herramientas bien funda-
mentadas y rigurosas que: (i) que puede ser utilizado por desarrolladores
de software guiado por modelos (con conocimientos de UML and OCL) ,
(ii) que pueda integrarse perfectamente con sus actividades habituales de
modelado y entornos, y (iii) que puedan contribuir eficazmente al desar-
rollo de modelos de alta calidad. Observemos que: (i) esto descarta, como
soluciones válidad en este caso, herramientas que requiriesen , por parte
del usuario, el aprendizajelearning de nuevos lenguajes de modelado o un
nuevo formalismo lógico con el fin de interactuar con la herramienta. Se-
gundo, (ii) esto descarta también herramientas que requiriesen, por parte
del usuario, la construcción manual de nuevos artefactos (por ejemplo.,
modelos de entrada, demostraciones, tácticas) para interactuar con las her-
ramientas. Finalmente, (iii) esto descarta también herramientas que no
provean: cobertura universal de las clases de problemas para los cuales las
herramientas están diseñadas; tiempos de respuesta rápido; y respuestas
claras y útiles.

xxiv

De manera más constructiva, en cuanto a los desaf́ıos de explicaciones
y escalabilidad destacados por el grupo de trabajo del seminario Dagstuhl,
esta tesis doctoral proporciona herramientas que cubren una clase muy am-
plia de los problemas para los que fueron diseñados. El mayor reto aqúı
fue definir una herramienta de razonamiento automatizado basada en SMT
que pudiera manejar la lógica OCL de 4 valores. En segundo lugar, provee
herramientas con tiempo de respuesta rápidos. El reto aqúı fue comprender
suficientemente bien la heuŕıstica de los diferentes SMT solvers para definir
una traducción de OCL a lógica de primer orden que pudiese beneficiarse
lo máximo posible, en términos de tiempo de respuesta, de las heuŕısticas
implementadas en cada resolutor. En tercer lugar, era proporcionar her-
ramientas con respuestas claras y útiles para los usuarios. El reto aqúı
fue entender suficientemente bien la capacidad de encontrar modelos fini-
tos en los diferentes resolutores SMT para definir una traducción de OCL
a lógica de primer orden que nos permitiese utilizar estas capacidades al
razonar sobre modelos, evitando aśı respuestas inútiles del tipo ”descono-
cido” por parte de los SMT solvers. Por último, en cuanto al desaf́ıo de
los puntos de referencia, esta tesis doctoral evalúa las herramientas ante-
riormente citadas con diferentes puntos de referencia, utilizando siempre
que sea posible puntos de referencia existentes, y creando nuevos cuando
no estaban disponibles.

1

Chapter 1
Introduction

© Joaqúın S. Lavado, QUINO. Toda Mafalda, Penguin Random House, España

Model building is at the heart of system design. This is true in many
engineering disciplines and is increasingly the case in software engineer-
ing. Model Driven Architecture (MDA) is a methodology for software de-
velopment. It supports the development of complex software systems by
generating software from models.

Software modeling has traditionally been synonymous with producing
diagrams, consisting of “arrows and bubbles” with some explanatory text.
But a diagram simply can not express the statements that should be part of
a detailed specification. To provide the Unified Modeling Language (UML)
—the ‘de facto’ industrial standard for software and system modeling—
with the level of conciseness and expressiveness that are needed for certain
aspects of system design, the UML language was extended with the Object
Constraint Language (OCL).

Experience shows that even when using powerful, high-level modeling
languages, like UML/OCL, it is easy to make logical errors and omissions.

2 Chapter 1. Introduction

It is then critical not only that the modeling language has a well-defined
semantics, so one can know what one is doing, but also that there is tool
support for analyzing the modeled systems’ properties. Within the MDA
methodology, if the models do not properly specify the system’s intended
behavior, one should not expect the generated system to do so either.

Our research focuses on providing tool support for building complex
system following the MDA methodology. In this line, the doctoral disser-
tation presented here provides two novel mappings for dealing with UML
models (or UML-like models) that use OCL. Moreover, it discusses the
applicability and benefits of these mappings with a number of non-trivial
benchmarks and case studies. In a nutshell, the first mapping is a code-
generator from OCL queries to the procedural language extensions of SQL
(SQL-PL), which generates code that can be e�ciently executed in the tar-
get language. The second mapping is a translation from OCL constraints
to many-sorted first-order logic, which generates theories whose satisfiabil-
ity can be e�ciently checked using Satisfiability Module Theories (SMT)
solvers.

Next we provide the background and discuss the outline for this doctoral
dissertion.

1.1 Model Driven Architecture (MDA)

Model Driven Architecture (MDA) [66] is a methodology for software
development, defined by the Object Management Group (OMG) [71]. The
key to MDA is the importance given to models in software development.
MDA supports the development of complex software systems by generating
software from models.

The MDA specification [66, Chapter 2] defines a model of a system as:

A description or specification of both the system and its environment,

in a well-defined language (graphic and/or textual),

for a particular purpose.

Figure 1.1 describes the relationship between a model, the system that
it describes, and the language in which this model is written. For MDA,
the software development process consists, ultimately, in the successive
transformation of models until reaching the final product. Traditionally,
this process distinguishes between PIM and PSM models:

1.1. Model Driven Architecture (MDA) 3

Figure 1.1: MDA: Models and languages

A PIM is an independent platform model: that is, it is a model that
describes a system without reference to a final concrete platform for
its deployment or implantation.

A PSM is a platform-specific model: that is, it is a model that de-
scribes a system taking into account its concrete final platform of
deployment or implantation.

As in the case of models, MDA transformations between models are also
written in a well-defined language, typically supported by transformation
tools. Figure 1.2 describes the general process of model transformation in
this methodology.

Figure 1.2: Overview of the basic structure of MDA

4 Chapter 1. Introduction

1.2 Unified Modeling Language (UML)

The Unified Modeling Language (UML) [67] is a visual, general-purpose
language for specifying, constructing, and documenting a system’s models.
UML o↵ers di↵erent types of diagrams to model di↵erent aspects or views
of a system. Here we will only deal with two types of UML diagrams,
namely: class diagrams, to specify data models, and object diagrams to
specify object models.

1.2.1 Data models

Data models are used to model the structural view of a system. This
view is static, that is, it does not describe the behavior of the system. A
data model is composed of:

Classes. They are used to model the objects having the same prop-
erties, relations and methods. Objects belonging to a class are caller
their instances.

Attributes. They are used to model the structural properties of
the objects of a class. Each attribute has a name and a type, which
specifies the domain of the attribute values.

Associations. They are used to model the structural relationships
between classes. Each connection of an association is called an associa-
tion-end.

Multiplicities. They are used to indicate how many instances of the
class connected to an association-end can be related to an instance
of the class connected to the other end of the association. In par-
ticular, multiplicity * means 0 or more instances; this is the default
multiplicity for an association-end. Multiplicities can also be defined
by intervals.

Generalizations. They are used to model a taxonomic relationship
between two classes. A generalization specializes one general class
in a more specific one. Each instance of the specific class is also an
instance of the general class. Thus, it has the characteristics of the
general class in addition to those of its own class.

More formally,

1.2. Unified Modeling Language (UML) 5

Definition 1 A data model D is a tuple hC,CH ,AT ,AS ,ASO ,MU i such
that:

C is a set of class identifiers.

CH is a binary relation, CH ✓ C ⇥C, where (c, c0) 2 CH represents
that c is a subclass of c0, also denoted as c � c0.

AT is a set of triples hat , c, ti, also denoted as at
(c,t), where at is an

attribute identifier, c 2 C, t 2 C [{Integer, String, Real}, and c and
t are, respectively, the class and the type of the attribute at.

AS is a set of tuples has, c, c0i, also denoted as as
(c,c0), where as is

an association-end identifier, c, c0 2 C, and c and c0 are, respectively,
the source and the target classes of as.

ASO is a symmetric relation, ASO ✓ AS⇥AS, where (as
(c,c0), as

0
(c0,c))

2 ASO represents that as 0 is the association-end opposite to as, and
vice versa.

MU is a set of tuples has
(c,c0),mui, where as

(c,c0) 2 AS, and mu 2
{0..1, ⇤} represents the multiplicity of the association-end as

(c,c0).

We assume that data models satisfy the following properties: there is no
class whose identifier is Integer or String; attributes and associations-ends
have di↵erent identifiers; there are no cycles in the class hierarchy; and
association-ends are related with exactly another association-end and with
exactly one multiplicity.

1.2.2 Object models

An object model specifies the state of a system at a particular time.
The object models are mainly used for the analysis and validation of the
corresponding data model.

An object model is composed of:

Objects. They are instances of classes. They can have values as-
signed to their attributes (both their own and ”inherited”).

Links. They are instances of associations between classes.

More formally,

Definition 2 Let D be a data model hC,CH ,AT ,AS ,ASO ,MU i. Then,
a D-object model is a tuple hO,VA,LK i, such that:

6 Chapter 1. Introduction

O is a set of pairs ho, ci, where o is an object identifier and c 2 C.
Each pair ho, ci, also represented as oc, denotes that the object o is of
the class c.

VA is a set of triples hoc, at
(c,t), vai, where at

(c,t) 2 AT, oc 2 O,
t 2 C [{Integer,Real, String}, and va is a value of type t. Each
triple hoc, at

(c,t), vai denotes that va is the value of the attribute at of
the object o.

LK is a set of triples hoc, as
(c,c0), o

0
c0i, where as(c,c0) 2 AS, and oc, o

0
c0 2

O. Each tuple hoc, as
(c,c0), o

0
c0i denotes that the object o0 is among the

objects that are linked to the object o through the association-end as.

Let D be a data model. In what follows, we denote by JDK the set of
all instances of D, i.e., the set of all the objects models of D.

To provide UML with the level of conciseness and expressiveness that
are needed for certain aspects of system design, the standard was extended
with the specification of the Object Constraint Language (OCL).

1.3 Object Constraint Language (OCL)

Object Constraint Language (OCL) [68] is a textual language with a
notational style similar to that of object-oriented languages. In UML 1.1,
OCL appears as the standard for specifying invariants, preconditions, and
postconditions. However, as of UML 2.0 the use assigned to OCL is much
broader: currently, OCL is used, for example, in the definition of specific
domain metamodels, model transformations, and testing and validation
models.

OCL is a pure specification language: when an expression is evaluated,
it simply returns a value without changing anything in the model. It is
also a contextualized language: its expressions are written in a context
provided by a (data) model, called the contextual model. Finally, OCL is
a strongly typed language. Every OCL expression has an associated type
that describes the domain of the result of that expression. OCL types can
be organized into the following categories:

Primitive types. They are the basic types Integer, Real, String,
Boolean.

Class types. They are the classes of the contextual model.

1.4. Outline 7

Types collection. They are the parametrized types Set, Bag, Or-
deredSet and Sequence. Its parameters can be any other type, in-
cluding collection types.

Special types. They are Invalid, Void and Any types. Invalid con-
forms to all types except Void: the only instance of type Invalid is the
value oclInvalid. Void represents a type that conforms to all types:
the only instance of Void is undefined (or null). Any is the type that
all other types make up.

OCL provides two constants, null and invalid, to represent undefined-
ness. Intuitively, null represents an unknown or undefined value, whereas
invalid represents an error or exception. It also provides predefined op-
erations on its di↵erent types. In particular, OCL includes operations to
manipulate collections, to check properties and to generate new collections
from existing collections.

Let exp be an OCL expression and I be an D-object model. In what
follows, we denote by JexprKI the result of evaluating expr in I. Also, let
� be a set of data invariants over D. Then, we denote by JD,�K ✓ JDK the
set of all the valid instances of D with respect to �. More formally,

JD,�K = {I 2 JDK | J�KI = true, for every � 2 �}.

1.4 Outline

Chapter 2. We introduce a mapping from OCL to stored procedural
SQL. In Section 2.1 we explain the basics about the target language of
our mapping, namely, SQL and its procedural language extension. In Sec-
tion 2.2, we provide the definitions of the mappping from OCL to SQL
expressions and explain the architecture of the SQL-PL4OCL tool and how
syntactic variations among the DBMS are tackled. Finally, in Section 2.3
we introduce a benchmark with the running-times obtained from evaluating
examples on the di↵erent engines, and we draw conclusions.

Chapter 3. We introduce a mapping from OCL to Many-Sorted First
Order Logic. In Section 3.1 we introduce our mapping from UML class
diagrams and OCL constraints to MSFOL theories. Also, we discuss how
to check the satisfiability of OCL constraints using SMT solvers, present a
tool, called OC2MSFOL, that supports our methodology, and provide a pre-
liminary benchmark. Finally, in Section 3.2 we use an existing benchmark

8 Chapter 1. Introduction

to assess OCL2MSFOL and to compare it with other tools for verifying
UML/OCL models, and we draw conclusions.

Chapter 4. We propose a set of application domains. In Section 4.1 we
check model satisfiability in an eHealth record management system, while
in Section 4.2 we validate and instantiate a Core Security Metamodel. In
Section 4.3 we analyze security models and, in Section 4.4, privacy models.
In the first case we analyze fine-grained access control policies and, in the
second, we analyze Facebook posting and tagging privacy policies. Finally,
in Section 4.5 we check data invariants preservation, for which we introduce
the notions of sequences of states and sequences of data actions.

Chapter 5. We discuss the related work. In Section 5.1 we discuss related
work related to OCL as a query language while in Section 5.2 we discuss
related work for OCL as a constraint language.

Chapter 6. We draw conclusions and discuss future work.

9

Chapter 2
Mapping OCL as a query language

© Joaqúın S. Lavado, QUINO. Toda Mafalda, Penguin Random House, España

2.1 Procedural extensions of SQL

The Structured Query Language (SQL) is a special-purpose program-
ming language designed for managing data in relational database man-
agement systems (RDBMS). Originally based upon relational algebra and
tuple relational calculus, its scope includes data insert, query, update and
delete, schema creation and modification, and data access control. Ac-
cordingly, SQL commands can be divided into two: the Data Definition
Language (DDL) that contains the commands used to create and destroy
databases and database objects; and the Data Manipulation Language
(DML) that can be used to insert, delete, retrieve and modify the data
stored in databases.

10 Chapter 2. Mapping OCL as a query language

Procedural extensions Although SQL is to a great extent a declarative
language, it also includes procedural elements. In particular, the procedural
extensions to SQL support stored procedures which are routines (like a sub-
program in a regular computing language) that are stored in the database.

Currently, SQL corresponds to an ISO standard [37]. However, issues of
SQL code portability between major RDBMS products still exist due to lack
of full compliance with, or di↵erent interpretations of, the standard. Among
the reasons mentioned are the large size and incomplete specification of
the standard, as well as vendor lock-in. For our current purposes, we use
as target language a procedural extension of SQL originally developed by
Oracle Corporation in the early 90’s, but later adopted by other RDBMS
with di↵erent realizations: PL/pgSQL in PostgreSQL, stored procedures
in MySQL and MariaDB, or TransactSQL (T-SQL) in SQL Server.

Stored procedures Stored procedures provide a special syntax for local
variables, error handling, loop control, if-conditions and cursors, and flow
control which allow the definition of iterative structures. Within stored
programs, begin-end blocks are used to enclose multiple SQL statements,
namely, to write compound statements. A block consists of various types
of declarations (e.g., variables, cursors, handlers) and program code (e.g.,
assignments, conditional statements, loops). The order in which these can
occur in a routine body is the following:

variable and condition declarations;

cursor declarations;

handler declarations;

program code.

2.2 From OCL to SQL-PL

SQL is an ISO standard [37]. However, SQL full standard is divided into
several parts dealing with di↵erent aspects of the language or its process-
ing. Also, di↵erent RDBMS implement certain syntactic variations to the
standard SQL notation. Therefore, we had to adapt the implementation
of our mapping to each of them. As implementation targets we selected
MariaDB [58], PostgreSQL [75], and MS SQL Server [60]. Also, we kept
MySQL [61] which was our first target. MariaDB and PostgreSQL were

2.2. From OCL to SQL-PL 11

selected because they are open source and widely used by developers. MS
SQL server was selected to be able to compare evaluation time from open
source to commercial RDBMS. Yet, it is in our road-map to implement
our mapping into other commercial engines like Oracle 12c or the Adap-
tive Server Enterprise/Anywhere RDBMS by Sybase, among others. Our
code generator is defined recursively over the structure of OCL expressions
and it is implemented in the SQL-PL4OCL tool that is publicly available
at [28].

The seminal work of the mapping presented here can be found in [34, 25].
The key idea that enables the mapping from OCL iterator expressions to
iterative stored procedures remains the same, but the work detailed in
this chapter introduces a novel mapping from OCL expressions to SQL-PL
stored procedures. The most remarkable di↵erences are the following:

i. Each OCL expression, both non-iterator and (nested) iterator expres-
sion, is mapped into just one stored procedure.

ii. The evaluation of the source OCL expression once mapped is retrieved
by executing exactly one call-statement. This call-statement provokes
the execution of the procedure and, in particular, the execution of an
SQL query written in the last part of the outermost block of the
procedure that retrieves the evaluation of the OCL expression.

iii. We use temporary tables for intermediate and final values’ storage.
Final values’ tables hold the resulting value of a query execution.

iv. We have adapted our mapping to deal with the three-valued semantics
of OCL.

Decisions (i) and (ii) have facilitated the recursive definition of the code
generator and simplifies its definition. Decision (iii) has significantly de-
creased the time required for the evaluation of the code generated. Feature
(iv) enables to deal properly with the three-valued evaluation semantics of
OCL. In addition, our original work and implementation was intended only
for the procedural extension of MySQL, while our new definition eased the
implementation of the mapping into other relational database management
systems. In turn, we can now evaluate the resulting code using di↵erent
RDBMS, which permits us to widen our discussion regarding e�ciency in
terms of evaluation-time of the code produced by SQL-PL4OCL tool.

12 Chapter 2. Mapping OCL as a query language

2.2.1 Mapping data models

We will introduce first how we map OCL types to SQL-PL types. Sec-
ond, we will detail the definition of our code generator.

OCL and SQL type systems

OCL is a contextual language which takes syntactic constructs from its
contextual model. But, independently of the contextual model, the OCL
type system contains the primitive types Boolean, Integer, Real and String.
Our code generator maps these types to the following SQL types: Boolean,
Int, Real, and Varchar(250), respectively. When the contextual model
for the OCL expressions is a structural model, like our data model, the
OCL type system also contains one class type for each class specified in the
class diagram.

Collection types are also present in OCL, for instance, Set, Bag, Or-
deredSet, and Sequence that may take as a parameter a primitive type, or
a class type, e.g., Set(Integer). These types do not have a direct mapping
to SQL since SQL type system does not have collection types. However, the
result of an OCL query may be a collection of elements, and the execution
of the code generated in SQL to translate this OCL query will also return
a collection of elements. Collection of collections are also possible in OCL.
These are collection types taking as parameter another collection type, for
example, Bag(Set(Car)). We decided not to map collection of collections
to SQL since the complexity added to our code generator would increase
substantially. Also, we doubt about their utility since they are not com-
monly used by designers or developers. Like collection types, OCL tuple
types cannot be mapped to SQL types, however, we could implement the
evaluation semantics of OCL tuples by expanding the strategy that we will
apply for sequence types. Namely, we could perform the evaluation of each
of the n-tuples separately and ensure the allocation of each tuple evaluation
result in a di↵erent table’s column. Yet, we leave this discussion out of the
scope of this work. Last but not least, the OCL special types, i.e., Invalid,
Void, and Any do not have a counterpart in SQL either. Yet, the null value
which is the unique value of the Void type, is mapped to the null value of
SQL.

A running example

Let us now introduce a Car-Company model that we will use as our
guiding example. The Car-Company model shown in Figure 3 is a data

2.2. From OCL to SQL-PL 13

Figure 2.1: Car-Company: A data model for a car company

model that contains five classes: the class Car, the class Company, the class
Person, and two subclasses of the latter: Employees and Customer, which
are used, respectively, to distinguish among employees and customers of
the company. The class Company has an association, people, to the class
Person to indicate that objects of type Company are related to objects
of type Person. The classes Car and Person are related by an associa-
tion to reflect that cars sold by the company may be owned by people,
either customers or employees, who may also buy a car. The association
is called ownership, and its association ends are, respectively, ownedCars
and owner. The class Company has the attribute name of type String.
The class Car has the attributes model, and color of type String, and the
attribute price, of type Real. The class Person has the attributes name,
surname, of type String, and age, of type Int. The class Customer inherits
the attributes specified in the class Person. In addition to the attributes in-
herited from the class Person, the class Employee has the attribute salary
of type Real.

Mapping data models and object models

Our code generator maps the underlying data and object models (i.e.,
the ‘context’ and the evaluation scenario of the OCL queries) to SQL-PL ta-
bles and records (resp.) following the next rules. Let D = hC,CH ,AT ,AS ,
ASO ,MU i be a data model and let O be a object D-object model. Then,

Classes. Each class c in C is mapped to a table nm(c)1, which
contains, by default, a column pk of type Int as its primary key.

1
nm() generates unique names for classes, attributes, and associations.

14 Chapter 2. Mapping OCL as a query language

Then, each object o in O of class type c is represented by a row in
table nm(c) and is identified by a unique value placed automatically
in the column pk (> 0 and not null). This value is also automatically
incremented (+1) each time a new row is inserted.

Class attribute. Each attribute hat , c, ti 2 AT is mapped to a
column nm(at) of table nm(c), being the type t, according to the
rules for mapping types that we introduced at the beginning of this
section. Then, the value of at for an object o, instance of class c, is
mapped to the value held by the column nm(at) for the record that
is identified by the pk value assigned to o in table nm(c).

Association. Each association has, c, c0i 2 AS is mapped to a
junction table nm(as), which contains two columns nm(rl c) and
nm(rl c0), both of type Int. Then, each link ho, as, o0i 2 LK is rep-
resented by a row in table nm(as), where nm(rl c) holds the key
denoting o and nm(rl c0) holds the key denoting o0 as foreign keys’
references.

For one-to-many associations, we add a foreign key column on the
table corresponding to the class in the many-side of the relationship.
This column holds the key value referencing the object linked in the
one-side of the association.

Inheritance. Each class c, subclass of a class c0, is mapped to a
table nm(c) together with its direct (i.e., not inherited) attributes
and associations following the definitions described above. But, in
addition, a foreign key column, fk, is added to nm(c) referencing the
primary key column of the table nm(c0) that maps class c0.

Although it is not completely obvious, this definition is controlling
how tables which correspond to classes related by inheritance are
populated. We avoid discussing it further here since it would add a
complexity that is not of direct value to the presentation of our code
generator. Yet, we provide examples next that will help to understand
the rationale behind our definition. The interested reader can find the
details in [25].

Mapping our running example

From now on we will choose MariaDB (fully compatible with MySQL)
syntax to illustrate the code generated by our mapping, both for the defi-
nitions and the examples.

2.2. From OCL to SQL-PL 15

(a)

pk model

(b)

Figure 2.2: (a) Simple Car company model. (b) Car company table.

The command that is automatically generated to map the class Person
to a SQL table is:

create table Person (
pk int not null primary key auto increment,
name varchar(250),
surname varchar(250),
age int);

Similarly, the classes Car and Company are mapped to tables.
The command that is automatically generated to map the class Employee

to a SQL table is:

create table Employee (
pk int not null primary key auto increment,
salary int,
fkPerson int,
foreign key (fkPerson) references Person(pk));

Similarly, the class Customer is mapped to a table.
The command that is automatically generated to map the association

ownership to a SQL table is:

create table ownership (
owner int,
ownedCars int,
foreign key (owner) references Person(pk),
foreign key (ownedCar) references Car(pk));

Similarly, the association people is mapped to a table.
Please, notice that in the structure of the tables that we create for the

subclasses Employee (and Customer), the subclasses hold an additional
column fkPerson as a foreign key to the primary key of the table Person

that corresponds to their parent class.

16 Chapter 2. Mapping OCL as a query language

2.2.2 Mapping OCL expressions

In what follow, we briefly introduce the novel structure of the code
produced by our SQL-PL generator for OCL expressions. This section
is intended to help the understanding of our mapping definition in the
following section. For any input OCL expression, our code generator always
produces a stored procedure that can be invoked using a call statement, as
we explain next.

Given an OCL expression exp, our code generator patternproc(exp) gen-
erates the following pattern.

1create procedure nm(exp)()
2begin

3codegenb(exp)
4codegenq(exp);
5end;//
6call nm(exp)//

The generated code contains the declaration of the stored procedure
(lines 2-5), headed by its creation command and name (line 1). The main
block is enclosed by the delimiters begin-end. The code contained by
the main block is generated by the auxiliary functions codegenb(exp) and
codegenq(exp) (lines 3-4). These functions generate code that mirrors the
structure of the OCL expressions. Finally, the function patternproc(exp)
also generates a call-statement to execute the stored procedure (line 6).2

In what follow, we will explain two kind of expressions: Simple and
Complex. Simple expressions are the expressions that does not need any
auxiliary block definition within the stored procedure to be mapped. While
complex expressions need an auxiliary block definition within the stored
procedure to be mapped.

In particular, begin-end blocks have the features that are particularly
useful for our work:

begin-end blocks can be nested;

variables declared in outer begin-end blocks are visible in the inner
blocks at any level of depth.

Both of these features are crucial in our mapping to easily and recursively
map OCL expressions that contain nested operators expressions. Figure 2.3

2Please, note that our delimiter in SQL-PL is set to ‘//’.

2.2. From OCL to SQL-PL 17

create procedure program name()
begin

begin

begin

...
end;

end;
...

end;

Figure 2.3: Nested blocks structure in Stored Procedures

create procedure program name()
begin

begin

...
end;
...
begin

...
end;
...

end;

Figure 2.4: Sequential blocks structure in Stored Procedures

gives an idea of the structure that nested blocks adopt within stored pro-
cedures. Another case is OCL sequential operators; in such case, these are
mapped into sequential blocks. Figure 2.4 gives an idea of the structure
that sequential blocks adopt within stored procedures. Furthermore, we can
have a combination of sequential and nested operators, in that case, the
stored procedure will have a combination of sequential and nested blocks.
Finally, to invoke a stored procedure, we use the call statement; i.e. the
routines showed in the Figure 2.3 or Figure 2.4, are invoked by the following
statement:

call program name

18 Chapter 2. Mapping OCL as a query language

Simple expressions. In this case, the function codegenb(exp) does not
generate any code. Examples of this kind of expressions are operators over
classes, operators between sets or bags, math operators, etc.

Example 1 The code generated by patternproc(exp) for the expression exp
= Car.allInstan- ces() is:

create procedure carallinstances()
begin

codegenq(exp);
end;//
call carallinstances//

Where codegenq(exp) generates the following specific code:

select Car.pk as val from Car

Note that when the stored procedure is executed, the result is a table
containing a column called val, which holds all the values of the column pk

(primary key) from the records of table Car. ut

Example 2 Consider now the expression exp = Car.allInstances().model.
The code generated by patternproc(exp) is:

create procedure modelallinstances()
begin

codegenq(exp);
end;//
call modelallinstances//

Where codegenq(exp) generates the following specific code:

select Car.model as val
from (select pk as val from Car) as t0
left join Car on Car.pk = t0.val

Note that when the stored procedure is executed, the result is a table
containing a column called val, which holds all values of the column model
from the records of the Car table. ut

Example 3 Consider the following OCL expression exp, exp = exp1�>not-
Empty(), where exp1 is an expression which does not contain any operator
subexpression that requires a block definition, then patternproc(exp) gener-
ates the following code:

2.2. From OCL to SQL-PL 19

create procedure exp1notEmpty()
begin

select count(*) > 0 as val from (codegenq(exp1)) as t1;
end;//
call exp1notEmpty//

ut

In what follows, we will see how our code generator can recursively deal
with the recursive structure of OCL expressions.

Complex expressions. For the other cases which the function code-
genb(exp) does generate code because mapping a given expression, exp,
needs of an auxiliary block definition. This auxiliary block is required
either for the expression to be properly mapped or because we have no-
ticed that it brings e�ciency to the execution. For example, in some cases
we noticed that executing a given sequence of operations within a block
required less time than executing a given SQL query, and we tailored our
mapping accordingly. We consider occurrences of complex expressions to
operators over sequences, iterators, etc. Next, we sketch the idea of our
mapping in these cases and provide examples.

Sequence Operators. Let exp be a sequence expression. Let the
shape of this expression be op(exp1 , . . . , expn) and consider that the subex-
pressions exp1 ,. . . ,expn need to be mapped into blocks too. Then, code-
genb(exp) generates the SQL-PL blocks:

begin

codegenb(exp1)
. . .
codegenb(expn)
drop table if exists nm(codegenb(exp));
create temporary table nm(codegenb(exp))
(pos int not null auto increment, val basictype(exp), primary key(pos));

insert into nm(codegenb(exp))(val) (codegenq(exp1));
. . .
insert into nm(codegenb(exp))(val) (codegenq(expn));
end;

while, codegenq(exp) generates:

20 Chapter 2. Mapping OCL as a query language

select * from nm(codegenb(exp));

Note that basictype(tp) is the SQL type associated to the UML type tp.

Example 4 Consider now the expression exp = ’hi’.characters().union-
(’ho’.characters()). Then, the code generated by patternproc(exp) is:

create procedure unionLits()
begin

codegenb(exp)
codegenq(exp);

end;//
call unionLits//

Where codegenb(exp) generates the following specific code:

begin

�� sub�block ’hi’.sequence()

begin

drop table if exists wchars;
create temporary table wchars

(pos int not null auto increment, val varchar(250), primary key(pos));
insert into wchars(val) (select ’h’ as val);
insert into wchars(val) (select ’i’ as val);
end;
�� sub�block ’ho’.sequence()

begin

drop table if exists w1chars;
create temporary table w1chars

(pos int not null auto increment, val varchar(250), primary key(pos));
insert into w1chars(val) (select ’h’ as val);
insert into w1chars(val) (select ’o’ as val);

end;
�� code for operator union

drop table if exists unionLits;
create temporary table unionLits(val varchar(250));
insert into unionLits(val)

(select wchars.val as val from wchars as t1
order by wchars.pos asc);

insert into unionLits(val)
(select w1chars.val as val from w1chars as t2

2.2. From OCL to SQL-PL 21

order by w1chars.pos asc);
end;

While codegenq(exp) generates the following specific code:

select * from unionLits

ut

Note that when a stored procedure is executed to evaluate an expres-
sion of Sequence type, the result is stored in a table containing two columns
called pos and val, which holds all values (in the column val) ordered by
the position given in the column pos.

Iterator expressions. These expressions are of the form src�>iter -
Op(v |body) whose top-operator is an iterator operator.3 For each iterator
expression exp, our code generator produces a stored procedure composed
of an iterative block and a query following the structure introduced at the
beginning of the section.

When the stored procedure is called, it

1. creates a temporary table;

2. executes, for each element in the src-collection that is instantiating
the iterator variable v the body of the iterator expression;

3. processes and stores in the temporary table, created in Step 1, the
result of the query codegenq(body), according to the semantics of the
iterator operator.

The function codegenq(exp) generates a query that retrieves the values
corresponding to the evaluation of exp from the table that has been created
and filled in during the execution of the iterative block of the stored proce-
dure. Finally, as we shown before, the function patternproc(exp) also gener-
ates a call-statement to actually execute the procedure patternproc(exp).

Example 5 Iterator expressions. Consider the expression exp = Car.all-
tances()�>select(u | u.model = ’BMW’). The code generated by pattern-
proc(exp) is:

3For the sake of simplicity, we will consider here that the top-operator of src is a
simple expression. The case when the iterator expressions are nested deserve, however,
a particular attention.

22 Chapter 2. Mapping OCL as a query language

create procedure selectproc()
begin

codegenb(exp)
codegenq(exp);

end;//
call selectproc//

Where codegenb(exp), generates the following specific code:

begin

2declare done int default 0;
declare var int;

4declare crs cursor for (select pk as val from Car);
declare continue handler for sqlstate ’02000’ set done = 1;

6drop table if exists selectproc;
create temporary table selectproc(val int);

8open crs;
repeat

10fetch crs into var;
if not done then

12if exists

(select True from

14(select model = ’BMW’ as val
from Car where pk = var) as t1) as t2

16then

insert into selectproc(val) values (var);
18end if;

until done end repeat;
20close crs;

end;

The definition of the block (line 1-21) contains the following declara-
tions: first some variables are declared (lines 2-5); following Step 1, a new
temporary table is created (note that it is deleted if it exists) (lines 6-7);
following Step 2, for each element of the source (lines 9-10), the value of
the result of the execution of the body is calculated; however, following Step
3, this value is only inserted into the new table (line 17) if the condition of
the body is satisfied (lines 11-20), according to the semantics of the iterator
operation.

Finally, codegenq(exp) generates the following specific code:

2.2. From OCL to SQL-PL 23

select val from selectproc

Note that, as it happened for Example 1, the result of the execution of
the stored procedure is a table containing a column called val, which holds
all records of the table Car whose model is ’BMW’. ut

To conclude, let us say that the potential complexity of the OCL ex-
pression is mirrored within the stored procedure by using the function
codegenb(exp). Within such procedure, the general idea that drives the
mapping of OCL complex expressions is that OCL sequential operators are
mapped to sequential blocks, and OCL nested operators are mapped to
nested blocks. In addition, there will always be an outermost begin-end
enclosing block that contains the query to retrieve the evaluation result
when the procedure is invoked.

Scope

We do not cover yet completely the whole OCL language. However,
we cover most of the operators listed in the OCL standard library [68,
Chapter 11]. More concretely, we cover operators on primitive types String,
Boolean, Integer and Real; operators on Set, Bag and Sequence types;
and all iterator operators except orderBy and closure. Last but not least,
we do cover nested iterator expressions, i.e., iterator expressions whose
body also contains iterator expressions, for example, Person.allInstances()-
�>forAll(p|Car.allInstances()�>exists(c|p.ownedCars�>includes(c))). We
will deal in detail with this type of expression in the following section. Yet,
we do not support tuples or nested collections. Finally, we neither support
static collections of AnyType, and we have to refer the null value explicitly,
i.e. null::String.

In the following two subsections, we take advantage of the explanation
about the structure of the code generated in this subsection that will allow
the reader to understand more easily the definition of our mapping. Be-
low, we provide the mapping definition for those operations from the OCL
standard library [68, Chapter 11] that we have considered more illustra-
tive. The exhaustive definition of the mapping for all the operations of the
OCL standard library is provided in [28]. We start each definition with the
name of the operator, followed by a brief description of its semantics, and
the definition of its mapping.

24 Chapter 2. Mapping OCL as a query language

Mapping simple OCL expressions

In this section we show how we define our mapping for simple expres-
sions. Recall from the previous section that these are expressions for which
the top operator is mapped directly to a SQL query without the need of
declaring auxiliary SQL-PL blocks. Fall within this category model specific
operators, boolean, numeric, and collection operators for sets and bags.

Model specific operators There are operations in OCL that the lan-
guage ‘borrows’ from the contextual model. These operations vary when
the contextual model changes and they refer to association ends, classes’
attributes and classes’ identifiers.
In the following, we consider exp1 to be an OCL expression of type class,
or (not ordered) set or bag.

allInstances(). It returns all the instances of the class that it receives as
argument. Let exp be an expression of the form C .allInstances(), where
C is a class of the contextual model. Then, codegenq(exp) is the following
SQL query:

select nm(C).pk as val from nm(C)

Attribute Expression. It retrieves an attribute’s values of the instances re-
turned by the source expression.

Let exp be an expression of the form exp1 .attr where attr is an attribute
of a class A. Then, codegenq(exp) is the following SQL query:

select nm(A).nm(attr) as val
from (codegenq(exp1)) as al(codegenq(exp1))
left join nm(A) on al(codegenq(exp1)).val = nm(A).pk

Note that al() generates a unique alias names for tables.

Association-End Expression. It retrieves the instances linked to the objects
returned by the source expression through the association end.

Let exp be an expression of the form exp1.rl A (resp. exp1.rl B),
where rl A (resp. rl B) is the A-end (resp. B-end) of an association as
between two classes A and B. Then, codegenq(exp) is the following SQL
query:

select nm(at).nm(rl A) as val
from (codegenq(exp1)) as al(codegenq(exp1))
left join nm(as) on al(codegenq(exp1)).val = nm(as).nm(rl B)

2.2. From OCL to SQL-PL 25

where nm(as).nm(rl A) is not null

In all cases previously described, the top expression exp does not require
any block definition. Thus codegenb(exp) consists only of the blocks that
might be required by its subexpression:

codegenb(exp1)

Example 6 Model specific operators The following examples do only gen-
erate SQL queries. None of them need blocks for their definition, i.e.,
codegenb(exp) is empty in all cases.

Q1. Query the ages of all employees.
Employee.allInstances().age

select Person.age as val
from (
select fkEmployee as val
from (select pk as val from Employee) as t0
left join Employee on t0.val = Employee.pk) as t1

left join Person on t1.val = Person.pk

Notice that since Employee is a subclass of Person that inherits from
it the attribute age, we recover with the SQL query the column age of the
table Person, but only for the rows contained by the table Employee. This
is enforced by the left join used to align the foreign keys contained by the
table Employee with the keys contained by the table Person.

Q2. Query the cars owned by all persons.
Person.allInstances().ownedCars

select ownership.ownedCars as val
from (select pk as val from Person) as t0
left join ownership on t0.val = ownership.owner
where ownership.ownedCars is not null

ut

Boolean Operators In all cases described below, the top expression exp
does not require any block definition. Thus codegenb(exp) consists only of
the blocks that might be required by its sub-expression:

26 Chapter 2. Mapping OCL as a query language

codegenb(exp1)

isEmpty(). It returns ‘true’ if the source collection is empty, and ‘false’
otherwise. Let exp be an expression of the form exp1�>isEmpty(). Then,
codegenq(exp) is the following SQL query:

select count(*) = 0 as val
from (codegenq(exp1)) as al(codegenq(exp1))

The operator isEmpty does not require any block definition, thus code-
genb(exp) is composed by the blocks of its subexpression (if any):

codegenb(exp1)

For the operator notEmpty, ‘>’ replaces ‘=’ in the above SQL query.

includes. It returns ‘true’ if the source collection exp1 contains the element
exp.

Let exp be an expression of the form exp1�>includes(exp2). Then,
codegenq(exp) is the following SQL query:

select codegenq(exp2) in codegenq(exp1) as val

The operator includes does not require any block definition, thus code-
genb(exp) is composed by the blocks of its subexpressions (if any):

codegenb(exp1)
codegenb(exp2)

For the operator excludes, ‘not in’ replaces ‘in’ in the above SQL query.

Example 7 Boolean operators. The following examples only need to gen-
erate SQL queries. None of them require any block definition, i.e., code-
genb(exp), in all cases, is empty.

Q3. Query whether there are ‘BMW’ cars in the company.
Car.allInstances().model�>includes(‘BMW’)

select (select ’BMW’ as val) in

(select Car.model as val
from (select Car.pk as val from Car) as t0
left join Car on t0.val = Car.pk) as val

ut

2.2. From OCL to SQL-PL 27

Numeric operators Again, for all cases described below, the top expres-
sion exp does not require any block definition. Thus codegenb(exp) consists
only of the blocks that might be required by its sub-expression:

codegenb(exp1)

size. It returns the size of the source collection. Let exp be an expression
of the form exp1�>size(). Then, codegenq(exp) is the following SQL query:

select count(*) as val
from (codegenq(exp1)) as al(codegenq(exp1))

sum. It returns the sum of the elements in the source collection that must
be of numeric type. Let exp be an expression of the form exp1�>sum().
Then, codegenq(exp) is the following SQL query:

select sum(*) as val
from (codegenq(exp1)) as al(codegenq(exp1))

Example 8 Numeric operators. The following examples do only generate
SQL queries. None of them need blocks for their definition, i.e., code-
genb(exp) is empty in all cases.

Q4. Count the number of customers.
Customer.allInstances()�>size()

select count(*) as val
from (select Customer.pk as val from Customer) as t0

ut

Collection operators for Set and Bag types

asSet. The set containing all the elements from the source collection,
with duplicates removed (if any). Let exp be an expression of the form
exp1�>asSet(). Then, codegenq(exp) is the following SQL query:

select distinct al(codegenq(exp1)).val as val
from (codegenq(exp1)) as al(codegenq(exp1))

union. It returns the set union (resp. multiset union) of both sets (resp.
bags) passed as arguments to the operation. Let exp be an expression of

28 Chapter 2. Mapping OCL as a query language

the form exp1�>union(exp2), where both exp1 and exp2 are sets. Then,
codegenq(exp) is the following SQL query:

select al(codegenq(exp1)).val
from (codegenq(exp2) union codegenq(exp1)) as al(codegenq(exp1))

When exp1 or exp2 are bags, then ‘union all’ will replace ‘union’ in the
above SQL query. The operator including that returns the bag containing
all elements of the source collection exp1 plus the element exp2 passed as
argument is mapped exactly as the operator union is.

excluding. It returns the bag that results from removing the element exp2
from the source collection exp1 . Let exp be an expression of the form
exp1�>excluding(exp2). Then, codegenq(exp) is the following SQL query:

select al(codegenq(exp1)).val
from (codegenq(exp1)) as al(codegenq(exp1))
where al(codegenq(exp1)).val not in codegenq(exp2)

includesAll. It returns ‘true’ if the collection exp1 contains all the elements
in the collection exp2 , and ‘false’ otherwise. Let exp be an expression of the
form exp1�>includesAll(exp2). Then, codegenq(exp) is the following SQL
query:

select count(al(codegenq(exp2)).val) = 0 as val
from (codegenq(exp2)) as al(codegenq(exp2))
where al(codegenq(exp2)).val in (codegenq(exp1))

The operator excludesAll returns ‘true’ if the collection exp1 does not con-
tain all the elements in the collection exp2 , and ‘false’ otherwise. For the
operator excludesAll, ‘not in’ replaces ‘in’ in the above SQL-PL state-
ment.

In all cases previously described, the expression exp does not require
any block definition. Thus codegenb(exp) consists only of the blocks that
might be required by its subexpressions:

codegenb(exp1)
codegenb(exp2)

Example 9 Collection Operators. The following examples do only gen-
erate SQL queries. None of them need blocks for their definition, i.e.,
codegenb(exp) is empty in all cases.

2.2. From OCL to SQL-PL 29

Q5. Query the surnames of all customers but those whose surname is
‘Smith’.
Customer.allInstances().surname�>excluding(’Smith’)

select t2.val
from

(select Person.surname as val
from

(select fkCustomer as val
from (select pk as val from Customer) as t0
left join Customer on t0.val = Customer.pk) as t1

left join Person on t1.val = Person.pk) as t2
where t2.val not in (select ’Smith’ as val)

ut

Mapping complex OCL expressions.

In this section we introduce the mapping definition for those top op-
erators whose definition needs to generate both SQL queries and blocks.
Namely, sequence and iterator operators.

Sequence Operators In OCL there is an operation for building a se-
quence from a set or a bag of elements. This operation is asSequence().
Remember that, when we talk about a sequence in OCL we talk about a
collection of elements that are assigned a position in a list. Sequences allow
for duplicated elements.

asSequence(). Let exp be an expression of the form exp1 .asSequence().
Then, codegenb(exp) generates the SQL-PL blocks:

begin

drop table if exists nm(codegenb(exp));
create temporary table nm(codegenb(exp)) (val varchar(250));
insert into nm(codegenb(exp))(val)
select al(codegenq(exp1)).val as val as

from (codegenq(exp1)) as al(codegenq(exp1));
end;

while, codegenq(exp) generates:

select pos, val from nm(codegenb(exp))

30 Chapter 2. Mapping OCL as a query language

Example 10 Sequence Operators.

Q6. Query the length of a sequence that contains all instances of Person.
Person.allInstances()�>asSequence()�>size()

begin

drop table if exists personAsSequence;
create temporary table personAsSequence
(pos int not null auto increment, val int, primary key(pos));

insert into personAsSequence(val)
select t0.val as val as from (select pk as val from Person) as t0;

end;
select count(*) as val from (select * from personAsSequence) as t1;

ut

Mapping OCL iterator expressions Since the semantics of each OCL
iterator operator can be defined through a mapping from the iterator to the
iterate construct, we could have decided to translate the iterate expressions
resulting from those mappings in order to generate code for the iterator
operations like reject, select, forAll, exists, collect, one, sortedBy, isUnique
and any by applying the iterate pattern. In fact, this was the decision made
for the definition of the SQL-PL4OCL code generator in [87], however they
did not succeed in finding a pattern to map the iterate expressions and
therefore the iterator expressions were not mapped either. Instead, we
decided to generate code specifically for each iterator operator according
to its semantics. In this way, we can generate code that is less complex
and more tailored to the semantics of each iterator operator. Also this
decision allows us, as we explain below, to end a block at an intermediate
iteration step once the evaluation result of the translated iterator is clear.
For instance, when the execution of the code generated to map the body
of a forAll expression returns false at one iteration step, the procedure is
terminated returning false.

The basic idea is therefore that, for each iterator expression exp, our
code generator produces a SQL-PL block that, when it is called creates
a temporary table, denoted by nm(codegenb(exp)), from which we obtain
using a simple select-statement the values corresponding to the evaluation
of exp. For now, we assume that the types of the src-subexpressions are
either sets or bags of primitive or class types.

2.2. From OCL to SQL-PL 31

Let exp = src�>iter op(var |body) be an iterator expression. Then,
codegenq(exp) is the following SQL query:

select * from nm(codegenb(exp));

While, codegenb(exp) generates the following scheme of SQL-PL blocks:

codegenb(src)
2begin

declare done int default 0;
4declare var cursor-specific type ;

declare crs cursor for (codegenq(src));
6declare continue handler for sqlstate ’02000’ set done = 1;

drop table if exists nm(codegenb(exp));
8create temporary table nm(codegenb(exp)) (val value-specific type);

Initialization-specific code (only for forAll, one, exists and sortedBy)

10open crs;
repeat

12fetch crs into var;
codegenb(body)

14if not done then

Iterator-specific processing code

16end if;
until done end repeat;

18close crs;
End-specific code (only for isUnique)

20end;

Basically, codegenb(exp) generates a block [lines 2–20] which creates
the temporary table nm(codegenb(exp)) [line 8] and execute, for each ele-
ment in the src-collection [lines 5,10-12], the body [line 13] of the iterator
expression exp. More concretely, until all elements in the src-collection
have been considered, codegenb(exp) repeats the following process: (i)
it instantiates the iterator variable var in the body-subexpression, each
time with a di↵erent element of the src-collection, which it fetches from
codegenq(src) using a cursor [lines 12–14]; and (ii) using the so called
“iterator-specific processing code”, it processes in nm(codegenb(exp)) the
result of the query codegenq(body), according to the semantics of the iter-
ator iter op [line 15]. In addition, in the case of the four iterators: forAll,
one, exists and sortedBy, the table nm(codegenb(exp)) is initialized, us-
ing the so called “initialization-specific code” [line 9], and in the case of

32 Chapter 2. Mapping OCL as a query language

the iterator isUnique, an “end-specific code” is required. Moreover, for
the iterators forAll and exists, the process described above will also be fin-
ished when, for any element in the src-collection, the result of the query
codegenq(body) contains the corresponding value, in the case of the iterator
forAll, to False or, in the case of the iterator exists, to True.

In the remaining of this subsection, we specify, for each case of it-
erator expression, the corresponding “value-specific type”, “initialization-
specific code”, “iterator-specific processing code”, and “end-specific code”
produced by our code generator when instantiating the general schema.
Again, for all cases, the “cursor-specific type” is the SQL-PL type which
represents, according to our mapping (see section 2.2.1), the type of the
elements in the src.

forAll-iterator. Let exp be an expression of the form src�>forAll(var |
body). This operation returns ‘true’ if body is ‘true’ for all elements in the
source collection src. The “holes” in the scheme codegenb(exp) will be filled
as follows:

value-specific type: boolean.

Initialization code:

insert into nm(codegenb(exp)) (val) values (True);

Iteration-processing code:

update nm(codegenb(exp)) set val = False
where (codegenq(body)) = False;
if exists

(select True from nm(codegenb(exp)) where val = False)
then set done = 1;
end if;

exists-iterator. Let exp be an expression of the form src�>exists(var |
body). This operation returns ‘true’ if body is ‘true’ for at least one element
in the source collection src. The “holes” in the scheme codegenb(exp) will
be filled as follows:

value-specific type: boolean.

Initialization code:

2.2. From OCL to SQL-PL 33

insert into nm(codegenb(exp)) (val) values (False);

Iteration-processing code:

update nm(codegenb(exp)) set val = True
where (codegenq(body)) = True;

if exists (select True from nm(codegenb(exp)) where val = True)
then set done = 1;

end if;

one-iterator. Let exp be an expression of the form src �>one(var |body).
This operation returns ‘true’ if body is ‘true’ for exactly one element in the
source collection src. The “holes” in the scheme codegenb(exp) will be filled
as follows:

value-specific type: boolean.

Initialization code:

insert into nm(codegenb(exp))(val) values (False);
set @counter = 0;

Iteration-processing code:

if exists

(select nm(codegenb(body)).val
from (codegenq(body)) as nm(codegenb(body))

where nm(codegenb(body)).val = True)
then

set @counter = @counter+1;
update nm(codegenb(exp)) set val = True;

end if;
if @counter = 2 then

update nm(codegenb(exp)) set val = False;
set done = 1;

end if;

sortedBy-iterator. According to [68], it results in the OrderedSet con-
taining all elements of the source collection ordered in descending order
according to the values returned by the evaluation of the body expression.
The order considered is given by the operation < that should be defined

34 Chapter 2. Mapping OCL as a query language

on the type of the body expression. We consider instead the order given
by the operation in order to be able to include in the resulting ordered
set those elements for which the evaluation of the body returns exactly the
same value.

Let exp be an expression of the form src�>sortedBy (var |body). This
operation returns the collection of elements in the src expression ordered
by the criterion specified by body . The “holes” in the scheme codegenb(exp)
will be filled as follows:

value-specific type: the SQL type which represents, according to our
mapping, the type of the body .

Initialization code:

create temporary table nmseq(codegenb(exp))

(pos int not null auto increment, val value-specific type);

Iteration-processing code:

insert into nm(codegenb(exp))(val) codegenq(body);
insert into nmseq(codegenb(exp))(val)
(select val from nm(codegenb(exp)) order by val desc);

collect-iterator. Let exp be an expression of the form src�>collect(var |
body). This expression returns the collection of objects that result from
evaluating body for each element in the source collection src. The “holes”
in the scheme codegenb(exp) will be filled as follows:

value-specific type: the SQL-PL type which represents, according to
our mapping, the type of the body .

Iteration-processing code:

insert into nm(codegenb(exp))(val) codegenq(body);

select-iterator. Let exp be an expression of the form src�>select(var |
body). This expression returns a subcollection of the source collection src
containing all elements for which body evaluates to ‘true’. The “holes” in
the scheme codegenb(exp) will be filled as follows:

value-specific type: the SQL-PL type which represents, according to
our mapping, the type of the elements in the src.

2.2. From OCL to SQL-PL 35

Iteration-processing code:

if exists

(select al(codegenq(body)).val
from (codegenq(body)) as al(codegenq(body))

where al(codegenq(body)).val = True)
then

insert into nm(codegenb(exp))(val) values (var);
end if;

reject-iterator. Let exp be an expression of the form source�>reject(var |
body). This expression returns a subcollection of the source collection src
containing all elements for which body evaluates to false. The “holes” in
the scheme codegenb(exp) will be filled as follows:

value-specific type: the SQL-PL type which represents, according to
our mapping, the type of the elements in the src.

Iteration-processing code:

if exists

(select True
from (codegenq(body)) as al(codegenq(body))

where val = False)
then

insert into nm(codegenb(exp))(val) values (var);
end if;

isUnique-iterator. Let exp be an expression of the form source�>isUni-
que(var | body). This expression returns True if all elements of the collection
of objects that result from evaluating body for each element in the source
collection src, are di↵erent. The “holes” in the scheme codegenb(exp) will
be filled as follows:

value-specific type: boolean

Initialization code:

create temporary table

nmacc(codegenb(exp))(val value-specific type);

36 Chapter 2. Mapping OCL as a query language

where value-specific type: the SQL-PL type which represents, accord-
ing to our mapping, the type of the elements in the body .

Iteration-processing code:

insert into nmacc(codegenb(exp))(val) codegenq(body);

End code:

insert into nm(codegenb(exp))(val)
(select al

1

(codegenq(exp)).val = al(codegenq(exp)).val
from

(select count(*) as val
from

(select distinct val
from nmacc(codegenq(exp))) as al(codegenq(body)))

as al
1

(codegenq(body)),
(select count(*) as val
from nmacc(codegenb(exp))) as al(codegenq(body));

Example 11 Nested and sequential iterator expressions

Q7. Check whether there is a car owner whose surname is Perez.
Car.allInstances()�>select(c|c.owner�>exists(p|p.surname=’Perez’))

begin

declare done int default 0;
declare body Boolean default false;
declare var0 int;
declare crs cursor for select pk as val from Car;
declare continue handler for sqlstate ’02000’ set done = 1;
drop table if exists select0;
create temporary table select0(val int);
open crs;
repeat

fetch crs into var0;
begin

declare done int default 0;
declare result boolean default false;
declare tResult int default 0;
declare var01 int;

2.2. From OCL to SQL-PL 37

declare crs cursor for

(select ownership.owner as val
from (select var0 as val) as t0
left join ownership on t0.val = ownership.ownedCars
where ownership.owner is not null);

declare continue handler for sqlstate ’02000’ set done = 1;
drop table if exists exists01;
create temporary table exists01(val int);
open crs;
repeat

fetch crs into var01;
if not done then

select val into tResult
from

(select (select Person.name as val
from (select var01 as val) as t1
left join Person on t1.val = Person.pk)

= (select ’Perez’ as val) as val) as t;
if tResult then

set done = 1;
set result = 1;

end if;
end if;
until done end repeat;
insert into exists01(val) values (result);
close crs;

end;
if not done then

select val into body from (select * from exists01) as t;
if body then

insert into select0(val) values (var0);
end if;
end if;
until done end repeat;
close crs;
end;
select * from select0;

38 Chapter 2. Mapping OCL as a query language

Q8. Check whether exists a person, who owner a car, with surname Perez.
Car.allInstances()�>collect(p|p.owner)�>exists(q|q.surname=’Perez’)

begin

begin

declare done int default 0;
declare var1 int;
declare crs cursor for select pk as val from Car;
declare continue handler for sqlstate ’02000’ set done = 1;
drop table if exists collect0;
create temporary table collect0(val boolean);
open crs;
repeat

fetch crs into var1;
if not done then

insert into collect0(val)
(select ownership.owner as val
from (select var1 as val) as tbl1
left join ownership on tbl1.val = ownership.ownedCars
where ownership.owner is not null or tbl1.val is null);

end if;
until done end repeat;
close crs;

end;
begin

declare done int default 0 ;
declare result boolean default false;
declare tempResult boolean default false;
declare var2 int;
declare crs cursor for select val from collect0;
declare continue handler for sqlstate ’02000’ set done = 1;

drop table if exists exists0;
create temporary table exists0(val bool);
open crs;
repeat

fetch crs into var2;
if not done then

select val into tempResult
from

(select tbl5.val = tbl6.val as val

2.2. From OCL to SQL-PL 39

from

(select Person.surname as val
from Person, (select var2 as val) as tbl4
where pk = tbl4.val) as tbl5,
(select ’Perez’ as val) as tbl6) as tbl8;

if tempResult then

set done = 1;
set result = True;

end if;
end if;
until done end repeat;
insert into exists0(val) (select result as val);
close crs;

end;
select val from exists0;
end;

ut

To conclude this section, we would like to remark, some general invari-
ants in our mappings:

nested operators, which requires blocks definitions, are mapped into
nested blocks, while sequential operators are mapped into sequential
blocks.

the results of expressions with simple types and sets are mapped into
tables with a column called val; while expressions with sequence types
are mapped into tables with two columns, one for the values (i.e. val)
and the another for the positions (i.e. pos).

when we talk about iterators, the statement:

declare crs cursor for (codegenq(src));

defined when the src-collection is a set or bag, is changed to:

declare crs cursor for

(select al(codegenq(src)).val
from (codegenq(src))) as al(codegenq(src))
order by al(codegenq(src)).pos;

to deal with src-collection ordered.

40 Chapter 2. Mapping OCL as a query language

Figure 2.5: SQL-PL4OCL tool component architecture

2.2.3 The SQL-PL4OCL tool

The SQL-PL4OCL tool rewrites the tool introduced in [34] to target not
just MySQL (or MariaDB) but also PostgreSQL and SQL Server DBMS.
The new implementation does not comply to the mapping we introduced
in [25, 34] but to the one defined in section 2.2.2.

Essentially, SQL-PL4OCL is a Java Web Application tool that using as
input a data model (as specified in Section 2.2.1), a list of OCL queries,
and a vendor identifier, it generates a set of statements ready to create
the database with the tables that correspond to the data model (following
the mapping introduced in Section 2.2.1), and a list of stored procedures
(one per OCL query, following the definition specified in Section 2.2.2).
Figure 2.6 shows two screen-shots of the tool interface. Of course, the
resulting code is produced adapted to the syntax of each target RDBMS.

Figure 2.5 shows the main components of the tool architecture. These
are:

DM validator: This component checks whether the input data model
fulfills the restrictions about well-formedness that we explain in Sec-
tion 2.2.1, so as to serve as a valid context for OCL queries.

OCL validator: This component parses each OCL query of input in
the context of the data model. Only if a query parses correctly (and
our mapping covers it), it is used as input to produce code.

2.2. From OCL to SQL-PL 41

Figure 2.6: SQL-PL4OCL tool: screen-shots

42 Chapter 2. Mapping OCL as a query language

DB engine selector: This component receives as input the vendor
identifier so as the code generated is syntactically adapted to the
selected RDBMS.

DB model generator: This component generates the engine-specific
statements to create the database and corresponding tables.

SQL-PL generator: This component generates the engine-specific
statements to create the SQL-PL stored procedures corresponding
to the input OCL queries.

The complexity of supporting multiple RDBMS is brought by their
implementation di↵erences. Perhaps the most noticeable di↵erence is the
language they parse. Even though all engines use some flavor of SQL,
these all di↵er in how variables, stored procedures, and built-in functions
are declared in their procedural extensions. Also, PostgreSQL supports
di↵erent procedural languages (we targeted at PL/pgSQL), MS SQL Server
uses Transact SQL and MySQL uses yet another dialect (fully compatible
with MariaDB’s).

As implementation strategy, we avoided the burden of dealing with the
subtleties of each SQL dialect within the mapping algorithm by defining
a plugin-based architecture. In this architecture, each plugin component
is responsible for performing the appropriate translation for the RDBMS
it targets. In [98], the reader can find a comparison that gives idea of the
variations among the di↵erent SQL dialects. We do not discuss the di↵er-
ences here since, in our view, they do not add to our discussion. Instead, we
encourage the interested reader to use our tool, which is available at [28].

2.3 Benchmark

2.3.1 Description

The data model for our benchmark is the Car-Company model shown
in Figure 2.1. The expressions that we consider in our benchmark are the
following:

Q1. Car.allInstances()�>size()
Q2. Car.allInstances().model�>size()
Q3. Car.allInstances().owner�>size()

2.3. Benchmark 43

MySQL MariaDB PostgreSQL MSSQL
Q1 0.19s 0.13s 0.10s 0.12s
Q2 0.25s 0.20s 0.33s 0.28s
Q3 0.36s 0.35s 0.27s 0.26s
Q4 0.04s 0.04s 0.04s 0.05s
Q5 0.55s 0.40s 0.40s 0.42s
Q6 1.05s 0.55s 1.06s 1.03s
Q7 2.07s 1.56s 1.99s 2.08s
Q8 50.02s 43.08s 57.04s 53.47s
Q9 9.14s 8.00s 8.18s 8.89s
Q10 0.05s 0.04s 0.07s 0.05s
Q11 49.56s 40.02s 40.10s 43.46s
Q12 59.58s 51.23s 51.25s 54.82s
Q13 1.67s 1.98s 2.35s 1.90s
Q14 59.52s 54.33s 63.35s 58.33s

Table 2.1: SQL-PL4OCL. Evaluation times.

Q4. Employee.allInstances().company�>size()
Q5. Car.allInstances().owner.name�>size()
Q6. Car.allInstances().owner�>oclAsType(Employee).salary�>size()
Q7. Car.allInstances().owner

�>oclAsType(Employee).ownedCars�>size()
Q8. Car.allInstances()�>select(c|c.color<>”black”)�>size()
Q9. Car.allInstances()�>forAll(c|c.color<>”black”)
Q10. Car.allInstances()�>exists(c|c.color<>’black”)
Q11. Car.allInstances()�>collect(x|x.color)�>size()
Q12. Car.allInstances()�>collect(x|x.owner.ownedCars)�>size()
Q13. Car.allInstances().model�>asSequence()�>size()
Q14. Car.allInstances()�>asSequence()

�>select(c|c.color<>”black”)�>size()

2.3.2 Results

Table 2.1 shows a benchmark to test the performance (in terms of the
evaluation time) of a sample of OCL queries mapped into the di↵erent
DBMS. In this sample, we included both simple expressions (Q1-Q7), and

44 Chapter 2. Mapping OCL as a query language

complex expressions (Q8-Q14), including iterator and sequence operators.
All the expressions in the benchmark were evaluated on an artificial scenario
that we created. The scenario is an instance of the Car-Company data
model depicted in 2.1. This instance contains 106 instances of class Car,
105 instances of class Person (all of them are Employees), and 102 instances
of class Company, where each company is associated to 102 instances of
Person, and each person owns 10 di↵erent cars. All car instances have a
color di↵erent from black.

We used bold font to highlight the lowest evaluation time of each query
in Table 2.1. By just taking a look, it is clear that MariaDB, an open
source database, achieves the fastest evaluation times for the majority of
the queries and, most importantly, for almost the totality of complex ex-
pressions.4

Based on our experiments, we can identify three parameters which seem
to correlate directly to the increase in the evaluation time of an expression
translated by our mapping. More concretely,

i. The OCL expression contains access to attributes or association-ends.
Their translation into left joins (of size n ⇥ m) makes them expensive
in time. Also, the materialization of a left join performed between
di↵erent tables (i.e., for translating an association, as in Q3 and Q7)
is more expensive than one performed by a table with itself (i.e.,
for translating access to an attribute, as in Q2 and Q6). The time
gets worse when the source table is larger, i.e., with a high n. For
example, compare evaluation times for queries Q3 and Q4 where the
size of the source collection is 106 and 105 (resp.), or queries Q2 and
Q12 for which the size of the left join (owner.ownedCars) is 106 ⇥ 10
and 1⇥ 10 (resp.).

ii. The size of the outermost source collection in an OCL iterator expres-
sion (if there is no stop criterion applied). For example, to evaluate
Q9 the cursor has to fetch values from a table of size 106, however,
to evaluate Q10 the cursor only fetches one value and the procedure
stops. Notice also the di↵erent evaluation time between Q2 and Q11
(which are similar expressions in semantics) since the last is shaped
as an iterator expression.

iii. The number of insertions to a table when this is required by the

4We ran the benchmark in a laptop with an Intel Core m7, 1.3 GHz, 8 GB RAM,
and 500 GB Flash Storage. The RDBMS versions used were MySQL 5.7, MariaDB 10.1,
SQL Server 2016 Express, and PostgreSQL 9.6.1.

2.3. Benchmark 45

mapping to translate a query. In particular, insertions to a table are
always required for evaluating sequence expressions. As an example
we compare queries Q8 and Q9. The size of the source expression
for both queries is the same (106). However, the evaluation of Q8
requires the insertion of intermediate values into a table while Q9
evaluation does not. Similarly happens with Q2 and Q13. The dif-
ferent evaluation time between Q8 and Q14 seems to be due to the
generation of the auto-incremented position value for the latter.

47

Chapter 3
Mapping OCL as a constraint
language

© Joaqúın S. Lavado, QUINO. Toda
Mafalda, Penguin Random House, España

3.1 From OCL to many-sorted first-order logic

We introduce here a mapping from OCL to MSFOL, which supports the
use of Satisfiability Modulo Theories (SMT) solvers for checking UML/OCL
satisfiability problems.1 This mapping is the result of an evolution of dif-
ferent mappings, which we briefly discussed below.

1SMT solvers generalize Boolean satisfiability (SAT) by incorporating equality reason-
ing, arithmetic, fixed-size bit-vectors, arrays, quantifiers, and other first-order theories.

48 Chapter 3. Mapping OCL as a constraint language

In [20] we proposed a first mapping from UML/OCL to first-order logic,
called OCL2FOL, which did not support UML generalization or OCL un-
definedness. In [26] we proposed a second mapping, called OCL2FOL+,
which did take into account OCL undefinedness, but did not support UML
generalization. Moreover, OCL2FOL+ turned out to be rather ine�cient in
practice, since SMT solvers would often return unknown, as a consequence
of two facts: first, that non-trivial OCL constraints contain expressions that
are naturally mapped to quantified formulas (since they refer to all the ob-
jects in a class, for example), and, secondly, that techniques for dealing
with quantified formulas in SMT are generally incomplete.

To overcome this limitation, we decided to use SMT solvers along with
finite model finding methods for checking the satisfiability of the formulas
resulting from our mapping. In particular, we opted for using the SMT
solver CVC4 [10], which has a finite model finding method [81] fully inte-
grated with its SMT solver architecture. The finite model finding method
implemented in CVC4 requires, however, that quantified variables in the
input problem always range over finite domains. OCL2FOL+ could not
satisfy this requirement, since its target formalism was unsorted FOL: vari-
ables in quantified formulas generated by OCL2FOL+ range over a sin-
gle, infinite domain that includes the integer numbers. By switching to
many-sorted FOL (MSFOL), we were able to satisfy the aforementioned
requirement: variables in quantified formulas range now over the domain
of a distinguished sort, called Classifier, which essentially contains the ob-
jects in an object diagram and the undefined values (but not the integer
numbers or the strings), and which, for the purpose of UML/OCL veri-
fication, can be considered as finite (object diagrams can be assumed to
contain only a finite number of objects). Finally, many-sorted FOL pro-
vides a more adequate target formalism than unsorted FOL for mapping
UML generalization and generalization-related OCL operations.

Hence, we propose here a mapping from OCL to many-sorted first-
order logic [27] which successfully overcomes the limitations of our previous
mappings. First, it accepts as input a significantly larger subset of the
UML/OCL language; in particular, it supports UML generalization, along
with the generalization-related OCL operators. Secondly, it generates as
output a class of satisfiability problems that are amenable to checking by
using SMT solvers with finite model finding capabilities.

3.1. From OCL to many-sorted first-order logic 49

3.1.1 Mapping data models

Our mapping from OCL to MSFOL builds upon a base mapping from
data models to MSFOL theories, called o2f

data

.
Let D = hC,CH ,AT ,AS ,ASO ,MU i be a data model. In a nutshell,

o2f
data

(D) contains:

The sorts Int and String, whose intended meaning is to represent the
integer numbers and the strings.

The constants nullInt, nullString, invalInt, and invalString, whose
intended meaning is to represent null and invalid for integers and
strings.

The sort Classifier, whose intended meaning is to represent all the
objects in an instance of D, as well as null and invalid for objects.

The sort Type, whose intended meaning is to represent the type iden-
tifiers declared in D.

For each class c 2 C, a unary predicate c, whose intended meaning is
to define the objects of the class c in an instance of D

For each attribute hat , c, ti 2 AT , a function at, whose intended mean-
ing is to define the values of the attribute at in the objects in an
instance of D.

For each binary association, (as
(c,c0), as(c0,c)) 2 ASO , with multi-

plicity, has
(c,c0), ⇤i, has

(c0,c), ⇤i 2 ASO . A binary predicate as as 0,
whose intended meaning is to define the links through the association
has

(c,c0), as(c0,c)i between the objects.2

The axioms that constrain the meaning of the aforementioned sorts,
constants, predicates, and functions.

Formally, o2f
data

is defined as follow:

Definition 3 Let D = hC,CH ,AT ,AS ,ASO ,MU i be a data model. Then,
o2f

data

(D) is an MSFOL theory, which is defined below.

2 For associations with both association-ends with multiplicities 0..1, our mapping
declares a function for each association-end, instead of a predicate for the association.
Then, for associations with one association-end with multiplicity * and the other with
multiplicity 0..1, our mapping declares a binary predicate for the association-end with
multiplicity * and a function for the one with multiplicity 0..1.

50 Chapter 3. Mapping OCL as a constraint language

Figure 3.1: BasicSocNet: A data model for a basic social network.

It declares two sorts, Classifier and Type, to represent the OCL types
Classifier and Type. It also declares two sorts, Int and String, to
represent the integer numbers and the strings. 3

It declares two constants of sort Classifier, nullClassifier and inval-
Classifier, to represent, the values null and invalid of type Classifier.
In addition, it includes the following axiom: ysql

¬(nullClassifier = invalClassifier).

Similarly for the type Type.

It declares two constants of sort Int, nullInt and invalInt, to repre-
sent, respectively, the values null and invalid of the primitive data-type
Integer. In addition, it includes the following axiom:

¬(nullInt = invalInt).

Similarly for the primitive data-type String.

For each class c 2 C, it declares a predicate c: Classifier ! Bool, to
represent the objects of type c. In addition, it includes the following
axioms:

8(x:Classifier)(c(x)) ¬(
W

c02(C\{c}) c
0(x))).

¬(c(nullClassifier) _ c(invalClassifier)).

For each attribute at
(c,Integer), it declares a function at : Classifier !

Int. In addition, it includes the following axioms:

3We assume that Int and String are declared with the standard operations and se-
mantics.

3.1. From OCL to many-sorted first-order logic 51

8(x:Classifier)((
W

s�c(s(x)))) at(x) 6= InvalInt).
at(nullClassifier) = InvalInt.
at(invalClassifier) = InvalInt.

For each association between two classes c and c0, with association-
ends as

(c,c0) and as 0
(c0,c), such that has

(c,c0), ⇤i, has 0(c0,c), ⇤i 2 MU, it
declares a predicate as as 0: Classifier⇥Classifier ! Bool. In addition,
it includes the following axiom:

8(x:Classifier, y:Classifier)
(as as 0(x, y)) ((

W
s�c(s(x))) ^ (

W
s0�c0(s

0(y))))).

For each association as between two classes c and c0, with association-
ends as

(c,c0) and as 0
(c0,c), such that has, 0..1i, has 0, 0..1i 2 MU it de-

clares two functions, as, as 0: Classifier ! Classifier. In addition, it
includes the following axioms:

8(x:Classifier, y:Classifier)
(((as(x) = y) ^ (

W
s�c(s(x))) ^ (

W
s0�c0(s

0(y))))) as 0(y) = x).
8(x:Classifier)((

W
s�c(s(x)))

) (as(x) = nullClassifier _ (
W

s0�c0(s
0(as(x)))))).

as(nullClassifier) = invalClassifier.
as(invalClassifier) = invalClassifier.

8(x:Classifier, y:Classifier)
(((as 0(y) = x) ^ (

W
s�c(s(x))) ^ (

W
s0�c0(s

0(y))))) as(x) = y).
8(y:Classifier)((

W
s0�c0(s

0(y)))
) (as 0(y) = nullClassifier _ (

W
s�c(s(as

0(y)))))).
as 0(nullClassifier) = invalClassifier.
as 0(invalClassifier) = invalClassifier.

For each association as between two classes c and c0, with association-
ends as

(c,c0) and as 0
(c0,c), such that has, 0..1i, has 0, ⇤i 2 MU, it declares

a function as: Classifier ! Classifier and a predicate as 0: Classifier
⇥Classifier ! Bool. In addition, it includes the following axioms:

8(x:Classifier, y:Classifier)
(((as(x) = y) ^ (

W
s�c(s(x))) ^ (

W
s0�c0(s

0(y))))) as 0(y, x)).
8(x:Classifier)((

W
s�c(s(x)))

52 Chapter 3. Mapping OCL as a constraint language

) (as(x) = nullClassifier _ (
W

s0�c0(s
0(as(x)))))).

as(nullClassifier) = invalClassifier.
as(invalClassifier) = invalClassifier.

8(x:Classifier, y:Classifier)(as 0(y, x)) as(x) = y).
8(x:Classifier, y:Classifier)(as 0(y, x)

) ((
W

s�c(s(x))) ^ (
W

s0�c0(s
0(y))))).

For each class c 2 C, it declares a constant c
type

of sort Type. In
addition, it includes the following axiom:

V
c02C\{c} ¬(ctype = c0

type

).

It declares two predicates OclIsTypeOf, OclIsKindOf: Classifier ⇥
Type�>Bool. In addition, for each class c 2 C, it includes the fol-
lowing axioms:

8(x:Classifier)(OclIsTypeOf(x, c
type

) , c(x)).
8(x:Classifier)(OclIsKindOf(x, c

type

) ,
W

s�c(s(x))).

In the following example we illustrate the mapping o2f
data

.

Example 12 Consider the data model SSN shown in Figure 3.1, which
models a basic social network. Then, the MSFOL theory o2f

data

(SSN) con-
tains, among other elements:

The constants nullClassifier and invalClassifier of sort Classifier, along
with the axiom:

¬(nullClassifier = invalClassifier).

The constants nullInt and invalInt of sort Int, along with the axiom:

¬(nullInt = invalInt).

The predicate Profile:Classifier ! Bool, along with the axioms:

8(x)(Profile(x)) ¬(Photo(x) _ Status(x) _ Timeline(x) _ Post(x))).
¬(Profile(nullClassifier) _ Profile(invalClassifier)).

The function age: Classifier ! Int, along with the axioms:

3.1. From OCL to many-sorted first-order logic 53

age(nullClassifier) = invalInt.
age(invalClassifier) = invalInt.
8(x)(Profile(x)) ¬(age(x) = invalInt)).

The predicate myFriends friendsOf : Classifier ⇥ Classifier ! Bool,
along with the axioms:

8(x, y)(myFriends friendsOf(x, y) , (Profile(x) ^ Profile(y))).

The constants Post
type

, Photo
type

, and Status
type

of sort Type, along
with the axioms:

¬(Post
type

= Photo
type

).
¬(Post

type

= Status
type

).
¬(Photo

type

= Status
type

).

The predicate oclIsKindOf : Classifier⇥ Type ! Bool, along with the
axioms:

8(x)(oclIsKindOf(x,Post
type

) , (Post(x) _ Photo(x) _ Status(x))).
8(x)(oclIsKindOf(x,Photo

type

) , Photo(x)).
8(x)(oclIsKindOf(x,Status

type

) , Status(x)).

3.1.2 Mapping OCL expressions

OCL2MSFOL is designed for checking the satisfiability of OCL con-
straints: it accepts as input OCL Boolean expressions, and only deals
with non-Boolean expressions inasmuch as they appear as subexpressions
of Boolean expressions.

The mappings o2f
true

, o2f
false

, o2f
null

, and o2f
inval

In the presence of undefinedness, OCL Boolean expressions can evaluate
not only to true and false but also to null or invalid. To cope with four
Boolean values in a two-valued logic like MSFOL, we define four mappings,
namely, o2f

true

, o2f
false

, o2f
null

, and o2f
inval

, which formalize when a Bool-
ean expression evaluates to true, when to false, when to null, and when to
invalid. We define these mappings by structural recursion. In the recursive
case, when the subexpression is a non-Boolean type, we call an auxiliary
mapping, o2f

eval

, which we will discuss below. For now, it is su�cient to

54 Chapter 3. Mapping OCL as a constraint language

know that o2f
eval

returns a term when its argument is an expression of a
class type or of type Integer or String, and that it returns a predicate when
its argument is an expression of a set type.4

Let expr be an expression we assume, without loss of generality, that
each iterator in expr introduces a di↵erent iterator variable. Moreover, we
denote by fVars(expr) the sequence formed by the free variables in expr ,
sorted alphabetically. Finally, we denote by App(P, (x

1

, . . . , xn), y) the
atomic formula P (x

1

, ..., xn, y), and we denote by App(f, (x
1

, . . . , xn)) the
term f(x

1

, ..., xn).

Definition 4 Let expr, expr
1

, expr
2

be boolean expressions, and src be
expression of the appropriate type, we define the mappings o2f

true

, o2f
false

, o2f
null

, and o2f
inval

as follow:

oclIsUndefined-expressions:

o2f
true

(expr .oclIsUndefined()) = o2f
null

(expr) _ o2f
inval

(expr).

o2f
false

(expr .oclIsUndefined()) = ¬(o2f
null

(expr) _ o2f
inval

(expr)).

o2f
null

(expr .oclIsUndefined()) = ?.

o2f
inval

(expr .oclIsUndefined()) = ?.

oclIsInvalid-expressions:

o2f
true

(expr .oclIsInvalid()) = o2f
inval

(expr).

o2f
false

(expr .oclIsInvalid()) = ¬(o2f
inval

(expr)).

o2f
null

(expr .oclIsInvalid()) = ?.

o2f
inval

(expr .oclIsInvalid()) = ?.

oclIsTypeOf-expressions:

o2f
true

(expr .oclIsTypeOf(c)) = OclIsTypeOf(o2f
eval

(expr), c).

o2f
false

(expr .oclIsTypeOf(c)) = ¬(OclIsTypeOf(o2f
eval

(expr), c)).

o2f
null

(expr .oclIsTypeOf(c)) = ?.

o2f
inval

(expr .oclIsTypeOf(c)) = ?.

4We assume that all non-Boolean subexpressions have either a class type, a primitive
type (either Integer or String), or a set type.

3.1. From OCL to many-sorted first-order logic 55

oclIsKindOf-expressions:

o2f
true

(expr .OclIsKindOf(c)) = OclIsKindOf(o2f
eval

(expr), c).

o2f
false

(expr .OclIsKindOf(c)) = ¬(OclIsKindOf(o2f
eval

(expr), c)).

o2f
null

(expr .OclIsKindOf(c)) = ?.

o2f
inval

(expr .OclIsKindOf(c)) = ?.

equality-expressions:

o2f
true

(expr
1

= expr
2

) = (o2f
null

(expr
1

) ^ o2f
null

(expr
2

)) _
(o2f

eval

(expr
1

) = o2f
eval

(expr
2

)
^ ¬(o2f

null

(expr
1

) _ o2f
inval

(expr
1

)
_ o2f

null

(expr
2

) _ o2f
inval

(expr
2

))).

o2f
false

(expr
1

= expr
2

) = (¬(o2f
eval

(expr
1

) = o2f
eval

(expr
2

))
^ ¬(o2f

null

(expr
1

) _ o2f
inval

(expr
1

)
_o2f

null

(expr
2

) _ o2f
inval

(expr
2

))).

o2f
null

(expr
1

=expr
2

) = ?.

o2f
inval

(expr
1

=expr
2

) = o2f
inval

(expr
1

) _ o2f
inval

(expr
2

)
_ (o2f

null

(expr
1

) ^ ¬o2f
null

(expr
2

))
_ (¬o2f

null

(expr
1

) ^ o2f
null

(expr
2

)).

inequality-expressions:

o2f
true

(expr
1

<> expr
2

) = (¬(o2f
eval

(expr
1

) = o2f
eval

(expr
2

))
^ ¬(o2f

null

(expr
1

) _ o2f
inval

(expr
1

)
_ o2f

null

(expr
2

) _ o2f
inval

(expr
2

))).

o2f
false

(expr
1

<> expr
2

) = (o2f
null

(expr
1

) ^ o2f
null

(expr
2

)) _
(o2f

eval

(expr
1

) = o2f
eval

(expr
2

)
^ ¬(o2f

null

(expr
1

) _ o2f
inval

(expr
1

)
_ o2f

null

(expr
2

) _ o2f
inval

(expr
2

))).

o2f
null

(expr
1

<> expr
2

) = ?.

o2f
inval

(expr
1

<> expr
2

) = o2f
inval

(expr
1

) _ o2f
inval

(expr
2

)
_ (o2f

null

(expr
1

) ^ ¬o2f
null

(expr
2

))
_ (¬o2f

null

(expr
1

) ^ o2f
null

(expr
2

)).

56 Chapter 3. Mapping OCL as a constraint language

not-expressions:

o2f
true

(not(expr)) = o2f
false

(expr).

o2f
false

(not(expr)) = o2f
true

(expr).

o2f
null

(not(expr)) = o2f
null

(expr).

o2f
inval

(not(expr)) = o2f
inval

(expr).

and-expressions:

o2f
true

((expr
1

and expr
2

)) = o2f
true

(expr
1

) ^ o2f
true

(expr
2

).

o2f
false

((expr
1

and expr
2

)) = o2f
false

(expr
1

) _ o2f
false

(expr
2

).

o2f
null

(expr
1

and expr
2

) = o2f
null

(expr
1

) ^ o2f
null

(expr
2

)
_ (o2f

null

(expr
1

) ^ o2f
true

(expr
2

)) _ (o2f
true

(expr
1

) ^ o2f
null

(expr
2

)).

o2f
inval

(expr
1

and expr
2

) =
(o2f

inval

(expr
1

) ^ (o2f
true

(expr
2

) _ o2f
null

(expr
2

) _ o2f
inval

(expr
2

)))
_ (o2f

inval

(expr
2

) ^ (o2f
true

(expr
1

) _ o2f
null

(expr
1

) _ o2f
inval

(expr
1

))).

or-expressions:

o2f
true

((expr
1

or expr
2

)) = o2f
true

(expr
1

) _ o2f
true

(expr
2

).

o2f
false

((expr
1

or expr
2

)) = o2f
false

(expr
1

) ^ o2f
false

(expr
2

).

o2f
null

((expr
1

or expr
2

) = o2f
null

(expr
1

)) ^ o2f
null

(expr
2

)
_ (o2f

null

(expr
1

) ^ o2f
false

(expr
2

)) _ (o2f
false

(expr
1

) ^ o2f
null

(expr
2

)).

o2f
inval

(expr
1

or expr
2

) =
(o2f

inval

(expr
1

) ^ (o2f
false

(expr
2

) _ o2f
null

(expr
2

) _ o2f
inval

(expr
2

)))
_ (o2f

inval

(expr
2

) ^ (o2f
false

(expr
1

) _ o2f
null

(expr
1

) _ o2f
inval

(expr
1

))).

implies-expressions:

o2f
true

((expr
1

implies expr
2

)) = o2f
false

(expr
1

) _ o2f
true

(expr
2

).

o2f
false

((expr
1

implies expr
2

)) = o2f
true

(expr
1

) ^ o2f
false

(expr
2

).

o2f
null

(expr
1

implies expr
2

) =
(o2f

null

(expr
1

) ^ (o2f
true

(expr
2

) _ o2f
null

(expr
2

) _ o2f
false

(expr
2

)))
_ (o2f

null

(expr
2

) ^ (o2f
true

(expr
1

) _ o2f
null

(expr
1

) _ o2f
false

(expr
1

))).

o2f
inval

(expr
1

implies expr
2

) = (o2f
inval

(expr
1

) _ o2f
inval

(expr
1

)).

3.1. From OCL to many-sorted first-order logic 57

isEmpty-expressions:

o2f
true

(expr�>isEmpty()) =
8(x)(¬(App(o2f

eval

(expr), fVars(expr), x)) ^ ¬(o2f
inval

(expr))).

o2f
false

(expr�>isEmpty()) =
9(x)(App(o2f

eval

(expr), fVars(expr), x)) ^ ¬(o2f
inval

(expr)).

o2f
null

(expr�>isEmpty()) = ?.

o2f
inval

(expr�>isEmpty()) = o2f
inval

(expr).

notEmpty-expressions:

o2f
true

(expr�>notEmpty()) =
9(x)(App(o2f

eval

(expr), fVars(expr), x)) ^ ¬(o2f
inval

(expr)).

o2f
false

(expr�>notEmpty()) =
8(x)(¬(App(o2f

eval

(expr), fVars(expr), x)) ^ ¬(o2f
inval

(expr)).

o2f
null

(expr�>notEmpty()) = ?.

o2f
inval

(expr�>notEmpty()) = o2f
inval

(expr).

forAll-expressions:

o2f
true

(src�>forall(x | body)) =
8(x)(App(o2f

eval

(src), fVars(src), x)) o2f
true

(body)) ^ ¬(o2f
inval

(src)).

o2f
false

(src�>forall(x | body)) =
9(x)(App(o2f

eval

(src), fVars(src), x) ^ o2f
false

(body)) ^ ¬(o2f
inval

(src)).

o2f
null

(src�>forAll(x | body)) = ¬ o2f
inval

(src)
^ 9(x)(App(o2f

eval

(src), fVars(src), x) ^ o2f
null

(body))
^ 8(x)(App(o2f

eval

(src), fVars(src), x)) (o2f
true

(body) _ o2f
null

(body).

o2f
inval

(src�>forAll(x | body),~v) =
o2f

inval

(src,~v) _ 9(x)([src][(~v, x) ^ o2f
inval

(body [x 7! x],~v))
^ 8(x)([src][(~v, x)) (o2f

true

(body [x 7! x],~v)_
o2f

null

(body [x 7! x],~v) _ o2f
inval

(body [x 7! x],~v))).

58 Chapter 3. Mapping OCL as a constraint language

exists-expressions:

o2f
true

(src�>exists(x | body)) =
9(x)(App(o2f

eval

(src), fVars(src), x) ^ o2f
true

(body)) ^ ¬(o2f
inval

(src)).

o2f
false

(src�>exists(x | body)) =
8(x)(App(o2f

eval

(src), fVars(src), x)) o2f
false

(body)) ^ ¬(o2f
inval

(src)).

o2f
null

(src�>exists(x | body)) = ¬(o2f
inval

(src))
^ 9(x)(App(o2f

eval

(src), fVars(src), x) ^ o2f
null

(body))
^ 8(x)(App(o2f

eval

(src), fVars(src), x)) (o2f
false

(body) _ o2f
null

(body).

o2f
inval

(src�>exists(x | body)) = o2f
inval

(src)
_ 9(x)(App(o2f

eval

(src), fVars(src), x) ^ o2f
inval

(body))
^ 8(x)(App(o2f

eval

(src), fVars(src), x)
) (o2f

false

(body) _ o2f
null

(body) _ o2f
inval

(body))).

excludes-expressions:

o2f
true

(expr
1

�>excludes(expr
2

)) =
8(x)(App(o2f

eval

(expr
1

), fVars(expr
1

), x)
) x 6= App(o2f

eval

(expr
2

), fVars(expr
2

), []))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

).

o2f
false

(expr
1

�>excludes(expr
2

)) =
9(x)(App(o2f

eval

(expr
1

), fVars(expr
1

), x)
^ x = App(o2f

eval

(expr
2

), fVars(expr
2

), []))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

).

o2f
null

(expr
1

�>excludes(expr
2

)) = ?.

o2f
inval

(expr
1

�>excludes(expr
2

))) = o2f
inval

(expr
1

) _ o2f
inval

(expr
2

).

includes-expressions:

o2f
true

(expr
1

�>includes(expr
2

)) =
9(x)(App(o2f

eval

(expr
1

), fVars(expr
1

), x)
^ x = App(o2f

eval

(expr
2

), fVars(expr
2

), []))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

).

3.1. From OCL to many-sorted first-order logic 59

o2f
false

(expr
1

�>includes(expr
2

)) =
8(x)(App(o2f

eval

(expr
1

), fVars(expr
1

), x)
) x 6= App(o2f

eval

(expr
2

), fVars(expr
2

), []))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

).

o2f
null

(expr
1

�>includes(expr
2

)) = ?.

o2f
inval

(expr
1

�>includes(expr
2

)) = o2f
inval

(expr
1

) _ o2f
inval

(expr
2

).

=-expressions (between sets):

o2f
true

((expr
1

= expr
2

)) =
8(x)(App(o2f

eval

(expr
1

), fVars(expr
1

), x)
, App(o2f

eval

(expr
2

), fVars(expr
2

), x))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

).

o2f
false

((expr
1

= expr
2

)) =
9(x)((App(o2f

eval

(expr
1

), fVars(expr
1

), x)
^ ¬(App(o2f

eval

(expr
2

), fVars(expr
2

), x)))
_ (¬(App(o2f

eval

(expr
1

), fVars(expr
1

), x)
^ App(o2f

eval

(expr
2

), fVars(expr
2

), x))))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

)).

o2f
null

((expr
1

= expr
2

)) = ?.

o2f
inval

((expr
1

= expr
2

)) = o2f
inval

(expr
1

) _ o2f
inval

(expr
2

).

<>-expressions (between sets):

o2f
true

((expr
1

<> expr
2

)) =
9(x)((App(o2f

eval

(expr
1

), fVars(expr
1

), x)
^ ¬(App(o2f

eval

(expr
2

), fVars(expr
2

), x)))
_ (¬(App(o2f

eval

(expr
1

), fVars(expr
1

), x)
^ App(o2f

eval

(expr
2

), fVars(expr
2

), x))))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

)).

o2f
false

((expr
1

<> expr
2

)) =
8(x)(App(o2f

eval

(expr
1

), fVars(expr
1

), x)
, App(o2f

eval

(expr
2

), fVars(expr
2

), x))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

).

o2f
null

((expr
1

<> expr
2

)) = ?.

o2f
inval

((expr
1

<> expr
2

)) = o2f
inval

(expr
1

) _ o2f
inval

(expr
2

).

60 Chapter 3. Mapping OCL as a constraint language

includesAll-expressions:

o2f
true

(expr
1

�>includesAll(expr
2

)) =
8(x)(App(o2f

eval

(expr
2

), fVars(expr
2

), x)
) App(o2f

eval

(expr
1

), fVars(expr
1

), x))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

).

o2f
false

(expr
1

�>includesAll(expr
2

)) =
9(x)(App([expr

2

][, fVars(expr
2

), x)
^¬(App(o2f

eval

(expr
1

), fVars(expr
1

), x)))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

).

o2f
null

(expr
1

�>includesAll(expr
2

)) = ?.

o2f
inval

(expr
1

�>includesAll(expr
2

)) = o2f
inval

(expr
1

) _ o2f
inval

(expr
2

).

excludesAll-expressions:

o2f
true

(expr
1

�>excludesAll(expr
2

)) =
8(x)(App(o2f

eval

(expr
2

), fVars(expr
2

), x)
) ¬(App(o2f

eval

(expr
1

), fVars(expr
1

), x)))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

).

o2f
false

(expr
1

�>excludesAll(expr
2

)) =
9(x)(App(o2f

eval

(expr
2

), fVars(expr
2

), x)
^ App(o2f

eval

(expr
1

), fVars(expr
1

), x))
^ ¬o2f

inval

(expr
1

) ^ ¬o2f
inval

(expr
2

).

o2f
null

(expr
1

�>excludesAll(expr
2

)) = ?.

o2f
inval

(expr
1

�>excludesAll(expr
2

)) = o2f
inval

(expr
1

) _ o2f
inval

(expr
2

).

oclIsUndefined-expressions (over sets):

o2f
true

(src�>oclIsUndefined()) = ?.

o2f
false

(src�>oclIsUndefined()) = >.

o2f
null

(expr�>oclIsUndefined()) = ?.

o2f
inval

(expr�>oclIsUndefined()) = ?.

3.1. From OCL to many-sorted first-order logic 61

oclIsInvalid-expressions (over sets):

o2f
true

(src�>oclIsInvalid()) = o2f
inval

(src).

o2f
false

(src�>oclIsInvalid()) = ¬(o2f
inval

(src)).

o2f
null

(expr�>oclIsInvalid()) = ?.

o2f
inval

(expr�>oclIsInvalid()) = ?.

Now, consider expr, expr
1

, expr
2

be non boolean expressions, and src
be expression of the appropriate type. We define the mappings o2f

true

,
o2f

false

to evaluate always to > (because these expressions are non-Boolean
expressions), and o2f

null

, and o2f
inval

as follow:

integer-expressions (literals):

o2f
null

(i) = ?.

o2f
inval

(i) = ?.

variable-expressions:

o2f
null

(vt) = (vt = nullt).

o2f
inval

(vt) = (vt = invalt).

--expressions (unary):

o2f
null

(-(expr)) = ?.

o2f
inval

(-(expr)) = o2f
inval

(expr) _ o2f
null

(expr).

op 2 {+, -, *, div, concat, indexOf, at}-expressions:

o2f
null

(expr
1

op expr
2

,~v) = ?.

o2f
inval

(expr op expr 0,~v) =
o2f

null

(expr
1

,~v) _ o2f
inval

(expr
1

,~v)x
_ o2f

null

(expr
2

,~v) _ o2f
inval

(expr
2

,~v).
for op 2 {+, -, *, div}.

62 Chapter 3. Mapping OCL as a constraint language

size-expressions:

o2f
null

(expr .size(),~v) = ?.

o2f
inval

(expr .size(),~v) = o2f
null

(expr ,~v) _ o2f
inval

(expr).

substring-expressions:

o2f
null

(expr
1

.substring(expr
2

, expr
3

)),~v) = ?.

o2f
inval

(expr .substring(expr 0, expr 00),~v) =
o2f

null

(expr
1

,~v) _ o2f
inval

(expr
1

,~v)
_ o2f

null

(expr
2

,~v) _ o2f
inval

(expr
2

,~v)
_ o2f

null

(expr
3

,~v) _ o2f
inval

(expr
3

,~v).

allInstances-expressions:

o2f
null

(c.allInstances()) = ?.

o2f
inval

(c.allInstances()) = ?.

attribute-expressions:

o2f
null

(expr .at) = (o2f
eval

(expr .at) = nullt).
where t 2 Integer, String or t is a class type.

o2f
inval

(expr .at) = o2f
null

(expr) _ o2f
inval

(expr).

association-end-expressions (arity 0..1):

o2f
null

(expr .as) = (o2f
eval

(expr .as) = nullt).

o2f
inval

(expr .as) = o2f
null

(expr) _ o2f
inval

(expr).
where t 2 Integer, String or t is a class type.

o2f
null

(expr .as()) = ?.

o2f
inval

(expr .as()) = o2f
inval

(exp) _ o2f
null

(exp).

3.1. From OCL to many-sorted first-order logic 63

max-expressions:

o2f
null

(src�>max()) =
(App(o2f

eval

(src�>max()), fVars(src), []) = nullInt).

o2f
inval

(src�>max()) =
(App(o2f

eval

(src�>max()), fVars(src), []) = invalInt)).

min-expressions:

o2f
null

(src�>min()) =
(App(o2f

eval

(src�>min()), fVars(src), []) = nullInt).

o2f
inval

(src�>min()) =
(App(o2f

eval

(src�>min()), fVars(src), []) = invalInt).

any-expressions:

o2f
null

(src�>any(xt|body)) =
(App(o2f

eval

(src�>any(xt|body)), fVars(src), xt) = null(t)).

o2f
inval

(src�>any(xt|body)) =
(App(o2f

eval

(src�>any(xt|body)), fVars(src), xt) = inval(t)).

op 2 {select, reject}-expressions:

o2f
null

(src�>op(p | body)) = ?.

o2f
inval

(src�>op(p | body)) = o2f
inval

(src).

op 2 {including, excluding, union}-expressions:

o2f
null

(expr
1

)�>op(expr
2

) = o2f
null

(expr
1

) _ o2f
null

(expr
2

).

o2f
inval

(expr
1

)�>op(expr
2

) = o2f
inval

(expr
1

) _ o2f
inval

(expr
2

).

64 Chapter 3. Mapping OCL as a constraint language

collect-expressions:

o2f
null

(src�>collect(x|body)) = ?.

o2f
inval

(src�>collect(x|body)) =
o2f

inval

(src) _ 9(x)(App(o2f
eval

(src), fVars(src), x) ^ o2f
inval

(body)).

Finally, we illustrate the recursive definitions of the mappings o2f
true

,
o2f

false

, o2f
null

, and o2f
inval

with some examples:

Example 13 Consider the Boolean expression:

Profile.allInstances()�>notEmpty().

Then,

o2f
true

(Profile.allInstances()�>notEmpty())
= 9(x:Classifier)(o2f

eval

(Profile.allInstances())(x))
^ ¬(o2f

inval

(Profile.allInstances()))
= 9(x:Classifier)(o2f

eval

(Profile.allInstances())(x)) ^ ¬(?).

Example 14 Consider the Boolean expression:

Profile.allInstances()�>forAll(p|not(p.age.oclIsUndefined())).

Then,

o2f
false

(Profile.allInstances()�>forAll(p|not(p.age.oclIsUndefined())))
= 9(p:Classifier)(o2f

eval

(Profile.allInstances())(p)
^ o2f

false

(not(p.age.oclIsUndefined()))
^ ¬(o2f

inval

(Profile.allInstances()))),

where

o2f
false

(not(p.age.oclIsUndefined()))
= o2f

true

(p.age.oclIsUndefined())
= o2f

null

(p.age) _ o2f
inval

(p.age)
= o2f

eval

(p.age) = nullClassifier _ (o2f
null

(p) _ o2f
inval

(p))
= o2f

eval

(p.age) = nullClassifier
_ (p = nullClassifier _ p = invalClassifier).

Example 15 Consider the Boolean expression:

3.1. From OCL to many-sorted first-order logic 65

Profile.allInstances()�>select(p|p.age.oclIsUndefined())�>notEmpty().

Then,

o2f
true

(Profile.allInstances()
�>select(p|p.age.oclIsUndefined())�>notEmpty())

= 9(x:Classifier)(o2f
eval

(Profile.allInstances()
�>select(p|p.age.oclIsUndefined()))(x))

^ ¬(o2f
inval

(Profile.allInstances()
�>select(p|p.age.oclIsUndefined())))

= 9(x:Classifier)(o2f
eval

(Profile.allInstances()
�>select(p|p.age.oclIsUndefined()))(x))

^ ¬(o2f
inval

(Profile.allInstances()))
= 9(x:Classifier)(o2f

eval

(Profile.allInstances()
�>select(p|p.age.oclIsUndefined()))(x))

^ ¬(?).

The mapping o2f
eval

, o2f
def c

, and o2f
def o

In the definition of the mapping o2f
eval

we distinguish three classes
of non-Boolean expressions. In a nutshell, the di↵erences between these
classes are the followings:

The first class is formed by variables and by expressions that denote
primitive values and objects. Expressions denoting primitive values
and objects are basically the literals (integers or strings), the arith-
metic expressions, the expressions denoting operations on strings, and
the dot-expressions for attributes or association-ends with multiplic-
ity 0..1. Variables are mapped to MSFOL variables of the appropriate
sort. Expressions denoting primitive values and objects are mapped
by o2f

eval

following the definition of the mapping o2f
data

. The output
of the mapping o2f

eval

for this first class of non-Boolean expressions
is always an MSFOL term.

The second class of non-Boolean expressions is formed by the expres-
sions that define sets. These expressions are basically the allInstances-
expressions, the select and reject-expressions, the including and ex-
cluding-expressions, the intersection and union-expressions, and the
collect-expressions. Each expression expr in this class is mapped by
o2f

eval

to a new predicate, denoted as [expr]. This predicate for-
malizes the set defined by the expression expr and its definition is

66 Chapter 3. Mapping OCL as a constraint language

generated by calling another mapping, o2f
def c

, over the expression
expr .

Finally, the third class of non-Boolean expressions is formed by the
expressions that distinguish an element from a set. These expressions
are, basically, the any, max, and min-expressions. Each expression
expr in this class is mapped by o2f

eval

to a new function, denoted as
[expr], which represents the element referred to by expr . To generate
the axioms defining [expr], we call another mapping, o2f

def o

, over
expr .

Definition 5 Let expr, expr
1

, expr
2

, and src be expression of the appro-
priate type, we define the mappings o2f

eval

, as follow:

integer-expressions (literals):

o2f
eval

(i) = i.

variable-expressions:

o2f
eval

(vt) = vt.

allInstances-expressions:

o2f
eval

(c.allInstances()) = [c].

association-end-expressions (multiplicity 0..1 or 1):

o2f
eval

(expr .as) = as(o2f
eval

(expr), as).

attribute-expressions:

o2f
eval

(expr .at) = at(o2f
eval

(expr), at).

it 2 {select, reject, collect}-expressions:

o2f
eval

(src�>it(x|body)) = [src�>it(x|body)].

op 2 {including, excluding, union, intersection, set-di↵erence, symmetric-
Difference}-expressions:

o2f
eval

(expr
1

�>op(expr
2

)) = [src�>op()].

3.1. From OCL to many-sorted first-order logic 67

op 2 {max, min}-expressions:
o2f

eval

(src�>op()) = [src�>op()].

any-expressions:

o2f
eval

(src�>any(x|body)) = [src�>any(x|body)].

--expressions (unary):

o2f
eval

(-(expr)) = �(o2f
eval

(expr)).

op 2 {+, -, *, div}-expressions:
o2f

eval

(expr
1

op expr
2

) = o2f
eval

(expr
1

) op o2f
eval

(expr
2

).

op 2 {+, concat}-expressions:
o2f

eval

(expr
1

op expr
2

) = str.concat o2f
eval

(expr
1

) o2f
eval

(expr
2

).

op 2 {size}-expressions:
o2f

eval

(expr�>size()) = str.len o2f
eval

(expr
1

) o2f
eval

(expr
2

).

op 2 {at}-expressions:
o2f

eval

(expr
1

.at(expr
2

)) = str.at o2f
eval

(expr
1

) o2f
eval

(expr
2

).

op 2 {indexOf}-expressions:
o2f

eval

(expr
1

op expr
2

) = str.indexOf o2f
eval

(expr
1

) o2f
eval

(expr
2

) 0.

substring-expressions:

o2f
eval

(expr
1

.substring(expr
2

, expr
3

)) =
str.substr o2f

eval

(expr
1

) o2f
eval

(expr
2

)(o2f
eval

(expr
2

) + o2f
eval

(expr
3

)).

Example 16 Consider the non-Boolean expression: p.age, where p is a
variable of type Profile. Then,

o2f
eval

(p.age) = (age(o2f
eval

(p)) = age(p)),

where p is a variable of sort Classifier. ut

Definition 6 Let expr, expr
1

, expr
2

, and src be expression of the appro-
priate type, we define the mappings o2f

def c

, as follow:

68 Chapter 3. Mapping OCL as a constraint language

allInstances-expressions:

o2f
def c

(c.allInstances()) = {8(x)(App([c], ;, x) , (
W

s�c(s(x))))}.

association-end-expressions (multiplicity *):

o2f
dfn c

(expr .as()) =
{8(Y)8(x)(App(o2f

eval

(expr .as()), Y, x) , as(o2f
eval

(expr), x))}.

where Y = fVars(expr) and x 62 Y .

select-expressions:

o2f
dfn c

(src�>select(x | body)) =
{8(Y)8(x)(App(o2f

eval

(src�>select(x | body)), Y, x)
, (App(o2f

eval

(src), fVars(src), x) ^ o2f
true

(body)))}.

where Y = fVars(src�>select(x | body)).

reject-expressions:

o2f
dfn c

(src�>reject(x | body)) =
{8(Y)8(x)(App(o2f

eval

(src�>reject(x | body)), Y, x)
, (App(o2f

eval

(src), fVars(src), x) ^ o2f
false

(body)))}.

where Y = fVars(src�>reject(x | body)).

including-expressions:

o2f
dfn c

(src�>including(expr)) =
{8(Y)8(x)(App([src�>including(expr)], Y, x)

, (App(o2f
eval

(src), fVars(src), x) _ o2f
eval

(expr) = x))}.

where Y = fVars(src�>including(expr)).

excluding-expressions:

o2f
dfn c

(src�>excluding(expr)) =
{8(Y)8(x)(App(o2f

eval

(src�>excluding(expr)), Y, x)
, (App(o2f

eval

(src), fVars(src), x) ^ o2f
eval

(expr) 6= x))}.

where Y = fVars(src�>excluding(expr)).

3.1. From OCL to many-sorted first-order logic 69

union-expressions:

o2f
dfn c

(expr
1

�>union(expr
2

)) =
{8(Y)8(x)(App(o2f

eval

(expr
1

�>union(expr
2

)), Y, x)
, (App(o2f

eval

(expr
1

), fVars(expr
1

), x)
_ App(o2f

eval

(expr
2

), fVars(expr
2

), x)))}.
where Y = fVars(expr

1

�>union(expr
2

)).

intersection-expressions:

o2f
dfn c

(expr
1

�>intersection(expr
2

)) =
{8(Y)8(x)(App(o2f

eval

(expr
1

�>intersection(expr
2

)), Y, x)
, (App(o2f

eval

(expr
1

), fVars(expr
1

), x)
^ App(o2f

eval

(expr
2

), fVars(expr
2

), x)))}.
where Y = fVars(expr

1

�>intersection(expr
2

)).

set-di↵erence-expressions:

o2f
dfn c

(expr
1

�>-(expr
2

)) =
{8(Y)8(x)(App(o2f

eval

(expr
1

�>-(expr
2

)), Y, x)
, (App(o2f

eval

(expr
1

), fVars(expr
1

), x)
^ ¬(App(o2f

eval

(expr
2

), fVars(expr
2

), x))))}.
where Y = fVars(expr

1

�>-(expr
2

)).

symmetricDifference-expressions:

o2f
dfn c

(expr
1

�>symmetricDifference(expr
2

)) =
{8(Y)8(x)(App(o2f

eval

(expr
1

�>symmetricDifference(expr
2

)), Y, x)
, ((App(o2f

eval

(expr
1

), fVars(expr
1

), x)
^ ¬(App(o2f

eval

(expr
2

), fVars(expr
2

), x)))
_ (App(o2f

eval

(expr
2

), fVars(expr
2

), x)
^ ¬(App(o2f

eval

(expr
1

), fVars(expr
1

), x))))}.
where Y = fVars(expr

1

�>symmetricDifference(expr
2

)).

collect-expressions (with body of type set):

o2f
dfn c

(src�>collect(x |body)�>asSet(),~v) =
{8(Y)8(x)(App([src�>collect(x |body)�>asSet()], Y, x)

, 9(z)(App(o2f
eval

(src), fVars(src), z)
^App(o2f

eval

(body [x 7! z]), fVars(body), x)))}.
where Y = fVars(src�>collect(x |body)�>asSet()) and z 62 Y .

70 Chapter 3. Mapping OCL as a constraint language

collect-expressions (with body of class or primitive type):

o2f
dfn c

(src�>collect(x |body)�>asSet()) =
{8(Y)8(x)(App(o2f

eval

(src�>collect(x |body)�>asSet()), Y, x)
, 9(z)(App(o2f

eval

(src), fVars(src), z) ^ o2f
eval

(body [x 7! z]) = x))}.

where Y = fVars(src�>collect(x |body)�>asSet()) and z 62 Y .

Example 17 Consider the non-Boolean expression:

Post.allInstances().

Then, o2f
eval

(Post.allInstances()) = [Post.allInstances()], where the new
predicate
[Post.allInstances()] is defined by o2f

def c

as follows:

8(x:Classifier)([Post.allInstances()] , (Post(x) _ Photo(x) _ Status(x))).
ut

Example 18 Consider the non-Boolean expression:

Profile.allInstances()�>select(p|p.age.oclIsUndefined).

Then,

o2f
eval

(Profile.allInstances()�>select(p|p.age.oclIsUndefined())) =
[Profile.allInstances()�>select(p|p.age.oclIsUndefined())],

where the new predicate

[Profile.allInstances()�>select(p|p.age.oclIsUndefined())]

is defined by o2f
def c

as follows:

8(p:Classifier)([Profile.allInstances()
�>select(p|p.age.oclIsUndefined())](p)

, (o2f
eval

(Profile.allInstances())(p) ^ o2f
true

(p.age.oclIsUndefined())))
= 8(p:Classifier)([Profile.allInstances()

�>select(p|p.age.oclIsUndefined())](p)
, [Profile.allInstances()](p) ^ (o2f

eval

(p.age) = nullClassifier
_ (p = nullClassifier _ p = invalClassifier))

= 8(p:Classifier)([Profile.allInstances()
�>select(p|p.age.oclIsUndefined())](p)

, [Profile.allInstances()](p) ^ (age(p) = nullClassifier
_ (p = nullClassifier _ p = invalClassifier)).

3.1. From OCL to many-sorted first-order logic 71

and where the new predicate [Profile.allInstances()] is defined by o2f
def c

as
follows:

8(x:Classifier)([Profile.allInstances()] , Profile(x)).

ut

Definition 7 Let expr, expr
1

, expr
2

, and src be expression of the appro-
priate type, we define the mappings o2f

def o

, as follow:

max-expressions:

o2f
dfn o

(src�>max()) =
{App(o2f

eval

(src�>max()), fVars(src)) = invalInt) , o2f
inval

(src),
App(o2f

eval

(src�>max()), fVars(src)) = nullInt
, (¬(o2f

inval

(src))
^ 8(x)(App(o2f

eval

(src), fVars(src), x)) x = nullInt)),
((App(o2f

eval

(src�>max()), fVars(src)) 6= nullInt
^ App(o2f

eval

(src�>max()), fVars(src)) 6= invalInt))
, (¬(o2f

inval

(src))
^ App(o2f

eval

(src), fVars(src),
App(o2f

eval

(src�>max()), fVars(src)))
^ 8(y)(App(o2f

eval

(src), fVars(src), y)
) App(o2f

eval

(src�>max()), fVars(src)) � y)))}.

min-expressions:

o2f
dfn o

(src�>min()) =
{App(o2f

eval

(src�>min()), fVars(src)) = invalInt) , o2f
inval

(src),
App(o2f

eval

(src�>min()), fVars(src)) = nullInt
, (¬(o2f

inval

(src))
^ 8(x)(App(o2f

eval

(src), fVars(src), x)) x = nullInt)),
((App(o2f

eval

(src�>min()), fVars(src)) 6= nullInt
^ App(o2f

eval

(src�>min()), fVars(src)) 6= invalInt))
, (¬(o2f

inval

(src))
^ App(o2f

eval

(src), fVars(src),
App(o2f

eval

(src�>min()), fVars(src)))
^ 8(y)(App(o2f

eval

(src), fVars(src), y)
) App(o2f

eval

(src�>min()), fVars(src)) y)))}.

72 Chapter 3. Mapping OCL as a constraint language

any-expressions:

o2f
dfn o

(src�>any(xt|body)) =
{App(o2f

eval

(src�>any(x|body)), Y) = invalt , o2f
inval

(src),
App(o2f

eval

(src�>any(x|body)), fVars(src)) = nullOf(t)
, (¬(o2f

inval

(src))
^ 8(x)(App(o2f

eval

(src), fVars(src), x)) ¬(o2f
true

(body)))),
((App(o2f

eval

(src�>any(x|body)), Y) 6= nullt
^ App(o2f

eval

(src�>any(x|body)), Y) 6= invalt)
, (¬(o2f

inval

(src))
^ App(o2f

eval

(src), fVars(src),
App(o2f

eval

(src�>any(x|body)), Y))
^ o2f

true

(body [x 7! x]App(o2f
eval

(src�>any(x|body)), Y)))))}.

where Y = fVars(src�>any(x|body)), and invalt is the invalid value for the
type t.

In what follows we denote by o2f
def

(expr) the set of axioms that re-
sult from applying o2f

def c

and o2f
def o

to the corresponding non-Boolean
subexpression in expr . Notice that, in particular, for each literal integer i
and literal string st in expr , o2f

def o

generates the following axioms:

o2f
dfn o

(i) = {¬(i = nullInt) ^ ¬(i = invalInt)}.
o2f

dfn o

(st) = {¬(i = nullString) ^ ¬(i = invalString)}

3.1.3 Checking satisfiability

The mapping from OCL into MSFOL generates as output a class of
satisfiability problems that can be e�ciently handled by SMT solvers with
finite model finding capabilities.

The following remark formalizes the main property of our mapping from
OCL to many-sorted first-order logic.

Remark 1 Let D be a data model, let and I be a set of D-constraints, and
let expr be a Boolean OCL expression. Then, expr evaluates to true in
every valid instance of D if and only if

o2f
data

(D) [

[

inv2I
o2f

def

(inv)

!
[

[

inv2I
{o2f

true

(inv)}
!

[o2f
def

(expr) [{o2f
false

(expr)}.

is unsatisfiable.

3.1. From OCL to many-sorted first-order logic 73

3.1.4 The OCL2MSFOL tool

OCL2MSFOL [70] is a Java Web Application that implements the map-
ping. More specifically, it takes as input a data model D, a set of D-
constraints I. Also, the user can introduce a D-expression expr and re-
quest to OCL2MSFOL to map expr to MSFOL using either o2f

true

, o2f
false

,
o2f

null

, or o2f
inval

. The result will be a file containing the MSFOL theory,
described before.

Figure 3.2: OCL2MSFOL tool component architecture

Figure 3.2 shows the main components of the tool architecture. These
are:

DM validator: This component checks whether the input data model
fulfills the restrictions about well-formedness that we explain in Sec-
tion 2.2.1, so as to serve as a valid context for OCL queries.

OCL validator: This component parses each OCL query of input in
the context of the data model. Only if a constraint parses correctly
(and our mapping covers it), it is used as input to produce code.

SMT engine selector: This component receives as input the vendor
identifier so as the code generated is syntactically adapted to the
selected SMT solver.

MSFOL model generator: This component generates the engine-
specific statements to create the MSFOL theory.

74 Chapter 3. Mapping OCL as a constraint language

MSFOL generator: This component generates the SMT solver-specific
statements to create the MSFOL contraints (hypothesis and asser-
tion) corresponding to the input OCL.

The typical use case for OCLMSFOL is as follows. Suppose a data-
model D, with invariants I, and a Boolean D-expression expr . Then, to
check whether there exists a valid instance of D in which expr evaluates
to true, we do the following: i) we input in OCL2MSFOL the data model
D, the set of invariants I, and the expression expr ; ii) we select the option
true; and iii) we input the file generated by OCL2MSFOL into our SMT
solver of choice.

Figure 3.3 shows two screen-shots of the tool interface. If the SMT
solver returns sat, then we know that such an instance of D exists; if the
SMT solver returns unsat then we know that no such an instance of D
exists; and, finally, if the SMT solver returns unknown, then we know that
it remains unknown whether such an instance of D exists. The process is
entirely similar if we want to know whether there exists a valid instance of
D in which an expression expr evaluates to false, null, or inval; the only
di↵erence is that, instead of true, we will select, respectively, false, null, or
inval.

We introduce below a benchmark for checking the satisfiability of OCL
constraints, and report on our results. All checks are ran on a laptop
computer, with an Intel Core i7 processor running at 3.1GHz with 8Gb
of RAM. As back-end theorem-provers, we use Z3 [30] (version 4.4.1), and
CVC4 [10] (version 1.5-prerelease). In the case of Z3, we use its default
setting, but in the case of CVC4, we use two di↵erent settings, namely,
with and without the option finite-model-find. In what follows, we refer to
the latter as CVC4 Finite Model (or CVC4fm, for short).

The data model for our benchmark is the basic social network model
shown in Figure 3.1. The Boolean expressions that we consider in our
benchmark are the following:

1. Profile.allInstances()�>forAll(p|p.age>18)
2. Profile.allInstances()�>exists(p|p.age<=18)
3. Profile.allInstances()�>exists(p|p.age.oclIsUndefined())
4. Profile.allInstances()�>exists(p|p.oclIsUndefined())
5. Profile.allInstances()�>forAll(p|p.oclIsUndefined())
6. Profile.allInstances()�>notEmpty()
7. Profile.allInstances()

�>collect(p|p.age)�>asSet()�>exists(a|a.oclIsUndefined())
8. Profile.allInstances()�>any(p|p.age>16).oclIsUndefined()

3.1. From OCL to many-sorted first-order logic 75

Figure 3.3: OCL2MSFOL tool: screenshots

76 Chapter 3. Mapping OCL as a constraint language

9. Profile.allInstances()�>any(p|p.age>16).age.oclIsInvalid()
10. not(Profile.allInstances()�>any(p|p.age<16).age.oclIsInvalid())
11. Status.allInstances()�>notEmpty()
12. Post.allInstances()�>forAll(p|

Photo.allInstances()�>exists(q|p.id=q.id))
13. Post.allInstances()�>forAll(p|not(p.id.oclIsUndefined()))
14. Status.allInstances()�>notEmpty()
15. Status.allInstances()�>isEmpty()
16. Photo.allInstances()�>notEmpty()
17. Photo.allInstances()�>isEmpty()
18. Post.allInstances()�>notEmpty()
19. Post.allInstances()�>isEmpty()
20. Post.allInstances()�>forAll(p|

Photo.allInstances()�>exists(q|p.id=q.id))
21. Photo.allInstances()�>forAll(p|p.oclIsKindOf(Post))
22. Photo.allInstances()�>forAll(p|p.oclIsKindOf(Timeline))
23. Post.allInstances()�>forAll(p|p.oclIsTypeOf(Timeline))
24. Post.allInstances()�>forAll(p|not(p.oclIsTypeOf(Post)))
25. 2.oclIsUndefined()
26. Post.allInstances()�>forAll(p|

Post.allInstances()�>forAll(q|p<>q implies p.id<>q.id)
27. Profile.allInstances()�>forAll(p|p.myFriends�>notEmpty())

In Table 3.1 we show the result of checking, using OCL2MSFOL, the
satisfiability of di↵erent subsets of our benchmark’s Boolean expressions.

We have grouped all our checks in two tables: (3.1a) contains the checks
related to undefinedness, while (3.1b) contains the checks related to UML
generalization. In both cases, the first column indicates the set of Boolean
expressions to be checked for satisfiability; the second column indicates the
expected result, according to our understanding of the semantics of OCL;
and the third, fourth, and fifth column indicate, respectively, the time (in
milliseconds) taken by CVC4, Z3, and CVC4 Finite Model to return the
expected result, or ‘—’, in the case they return unknown. Notice that
CVC4 Finite Model is able to return the expected result in all cases, while
Z3 and CVC4 return unknown in some cases.

3.2 Benchmark

With the intention of helping developers to choose the UML/OCL tool
more appropriate for their projects, [38] has proposed a benchmark for

3.2. Benchmark 77

CVC4 Z3 CVC4fm
{1,2} unsat 161 24 48

{1,3} unsat 173 13 22

{2,3} sat — 16 25

{4} unsat 138 15 27

{5} sat — 17 22

{5,6} unsat 172 13 30

{1,7} unsat 237 14 30

{1,8} sat — 18 25

{1,6,8} unsat 198 16 26

{1,9} sat — 18 25

{1,6,9} unsat 200 19 29

{1,10} unsat 203 18 30

{12} sat — 169 27

{11,12,13} sat — 24 174

(a) Undefinedness-related (times in ms)

CVC4 Z3 CVC4fm
{14,20} sat — 105 28

{16,20} sat — 466 32

{17,20} sat — 14 22

{14,17,20} unsat 239 13 26

{16,19} unsat 168 16 28

{21} sat — 17 27

{22} sat — 199 24

{16,22} unsat 149 18 25

{16,23} unsat 148 16 26

{15,17,18,24} unsat 250 15 35

{25} unsat 63 58 24

{11,12,13,18} sat — — 27

{6,27} sat — — 26

{11,12,13,18,26} unsat 352 13 25

(b) Generalization-related (times in ms)

Table 3.1: Checking satisfiability of OCL constraints.

78 Chapter 3. Mapping OCL as a constraint language

Figure 3.4: CivilStatus: A civil status model

assessing validation and verification techniques on UML/OCL models. It
includes four models each posing di↵erent computational challenges. We
use this benchmark to assess OCL2MSFOL and to compare it with other
tools for verifying UML/OCL models.

3.2.1 Description

The benchmark proposed in [38] includes four UML/OCLmodels, name-
ly, CivilStatus, WritesReviews, DisjointSubclasses, and ObjectsAsIntegers,
together with a set of questions for each of these models. It is su�cient for
our purpose to consider only the first three models: CivilStatus, WritesRe-
views, and DisjointSubclasses.5

CivilStatus

Figure 3.4 shows the first UML class diagram considered in the bench-
mark. Basically, it models that a person has a name, a gender (either female
or male), a civil status (either single, married, divorced, or widowed), and
possibly a spouse, and that a person has a husband or a wife or none. The
following OCL invariants further constrain this model.6

attributesDefined: A person has a defined name, civil status and
gender.

5The fourth model, ObjectAsIntegers, is definitely more “artificial”; furthermore, it
requires inductive reasoning, which is out of the scope of both our analysis tool and the
tools we are comparing to in this benchmarking exercise.

6 The benchmark includes an additional constraint about the format of a person’s
name, which for our present purpose we omit here since it plays no significant role in
answering the questions later posed about the model.

3.2. Benchmark 79

Person.allInstances()�>forAll(p|not(p.name.oclIsUndefined()
and not(p.civStat.oclIsUndefined())
and not(p.gender.oclIsUndefined())).

nameIsUnique: A person has a unique name.

Person.allInstances()�>forAll(p1|Person.allInstances()
�>forAll(p2|p1 <> p2 implies p1.name <> p2.name)).

femaleHasNoWife: A female person does not possess a wife.

Person.allInstances()�>forAll(p|p.gender = Gender::female
implies p.wife.oclIsUndefined()).

maleHasNoHusband: A male person does not possess a husband.

Person.allInstances()�>forAll(p|p.gender = Gender::male
implies p.husband.oclIsUndefined()).

hasSpouse EQ civstatMarried: A person has a spouse, if and
only if his/her civil status is married.

Person.allInstances()�>forAll(p|
(not(p.spouse.oclIsUndefined())

implies p.civStat = CivilStatus::married)
and (p.civStat = CivilStatus::married

implies not(p.spouse.oclIsUndefined()))).

In the benchmark the following questions are posed about this model:

1. Consistent Invariants: Is the model consistent? That is, is there
at least one instance of the model satisfying all the stated invariants?

2. Independence: Are all the invariants independent? Or, on the con-
trary, is there at least one invariant which is a consequence of the
conditions imposed by the model and the other invariants?

3. Consequences: Is the model bigamy-free? Or, on the contrary, is it
possible for a person to have both a wife and a husband?

80 Chapter 3. Mapping OCL as a constraint language

Figure 3.5: WritesReviews: A writes reviews model

WritesReviews

Figure 3.5 shows the second UML class diagram considered in the bench-
mark. Basically, it models a simple conference review system. There are
papers and researchers. A paper has a title and a number of words, and
can be a studentPaper. A researcher has a name and can be a student.
A researcher can be assigned at most one submission to review it and can
submit at most one manuscript. A paper can have one or two authors and
must be assigned exactly three referees. The following invariants further
constrain this model:

oneManuscript: A researcher must submit one manuscript.

Researcher.allInstances()
�>forAll(r|not(r.manuscript.oclIsUndefined())).

oneSubmission: A research must be assigned one submission.

Researcher.allInstances()
�>forAll(r|not(r.submission.oclIsUndefined())).

noSelfReviews: A paper cannot be refereed by one of its authors.

Researcher.allInstances()�>
forAll(r| not(r.submission.oclIsUndefined())

and r.submission.author�>forAll(a|a<>r))).

paperLength: A paper must have at most 10000 words.

Paper.allInstances()�>forAll(p|p.wordCount < 10000).

authorsOfStudentPaper: One of the authors of a student paper
must be a student.

3.2. Benchmark 81

Paper.allInstances()�>forAll(p|(p.studentPaper = 1) and
p.author�>exists(x|x.isStudent = 1))).

Paper.allInstances()�>forAll(p| (p.author�>exists(x|x.isStudent = 1))
and p.studentPaper = 1)).

noStudentReviewers: Students are not allowed to review any pa-
per.

Paper.allInstances()�>forAll(p|
p.referee�>forAll(r|r.isStudent <> 1)).

limitsOnStudentPapers: There must be at least one student pa-
per.7

Paper.allInstances()�>exists(p|p.studentPaper = 1).

In the benchmark the following questions are posed about this model:

1. InstantiateNonemptyClass: Can the model be instantiated with
non-empty populations for all classes? That is, is there at least one
instance of this model with at least one paper and one researcher?

2. InstantiateNonemptyAssoc: Can the model be instantiated with
non-empty populations for all classes and all associations? That is, is
there at least one instance of this model with at least one paper, one
researcher, one instance of the manuscript-author association, and
one instance of the submission-referee association?

3. InstantiateInvariantIgnore: Can the model be instantiated if the
invariants oneManuscript and oneSubmission are ignored?

DisjointSubclasses

Figure 3.6 shows the third UML class diagram considered in the bench-
mark. There are four classes: A, B, C, and D. Class B and C inherit from
class A, while class D inherits from both class B and class C. The following
invariant further constrains this model:

7The benchmark requires also that the number of student papers should be less than
5. For the sake of simplicity, we only consider here the first part of the constraint since
the second one plays no significant role in answering the questions later posed about the
model.

82 Chapter 3. Mapping OCL as a constraint language

Figure 3.6: DisjointSubclasses: A disjoint subclasses datamodel

disjointBC: Class B and class C are disjoint.

C.allInstances()�>forAll(x|B.allInstances()�>forAll(y|x<>y))

In the benchmark the following questions are posed about this model:

1. InstantiateDisjointInheritance: Can all classes be populated?
That is, is there at least one instance of this model with at least
one element of each class? In particular, is there at least one instance
of this model with at least one element of class D?

2. InstantiateMultipleInheritance: Can class D be populated if the
constraint disjointBC is ignored?

3.2.2 Results

Comparison with USE and EMFtoCSP

USE [39] and EMFtoCSP [41] are two di↵erent tools for automatically
verifying and validating UML/OCL models. While USE checks UML/OCL
consistency using enumeration and SAT-based techniques, EMFtoCSP turns
a UML/OCL consistency problem into a constraint satisfaction problem
(CSP) and uses constraint solvers to solve it. In both cases, the user is
required to specify ranges for the class and association extents and for the
attribute domains. The fact that both USE and OCL2MSFOL operate on

3.2. Benchmark 83

bounded search state spaces implies, on the one hand, that, when there
is a valid instance of a given UML/OCL model within the selected range,
both USE and EMFtoCSP will find it —assuming that the selected range
is su�ciently small, of course. But, on the other hand, it also means that,
when either USE or EMFtoCSP communicates to the user that no valid
instance of a model has been found, this answer is inconclusive, since a
valid instance may still exist outside of the the selected range.

In what follows we use the benchmark to assess OCL2MSFOL. The
results of USE and EMFtoCSP on this same benchmark were reported
in [38]. For the sake of comparison with OCL2MSFOL, the results obtained
by USE and EMFtoCSP are entirely analogous, and we will draw explicit
comparisons only with the former.

All OCL2MSFOL checks were run on a laptop computer, with an In-
tel Core i7 processor running at 1.8GHz with 4Gb of RAM. As back-
end SMT solver, we use CVC4 (version 1.5-prerelease) with the option
finite-model-find. We denote this configuration as CVC4fmf .

CivilStatus

In Table 3.2 we show the results of analysing, using OCL2MSFOL, the
questions posed in the benchmark about CivilStatus. In particular,

ConsistentInvariants:. CVC4fmf finds a valid instance of Civil-
Status and returns sat. Thus, we can conclude that the model is
consistent.

Independence: For each of the five invariants, CVC4fmf finds a
valid instance of a modified version of CivilStatus, where the given
invariant is negated while the other are still a�rmed, returning sat in
each case. Thus, we can conclude that the invariants are independent.

Consequences: CVC4fmf returns unsat when the following invari-
ant is added to CivilStatus:

Person.allInstances()�>exists(p|
not(p.husband.oclIsUndefined()) and not(p.wife.oclIsUndefined())).

Thus, we can conclude that the model is bigamy-free.

We can now compare these results with the ones obtained by analyzing
CivilStatus using USE, as reported in [38]. In particular,

84 Chapter 3. Mapping OCL as a constraint language

Question Answer Time (in secs) Remarks
ConsistentInvariants sat 0.08

Independence sat

0.29 For invariant 1
0.40 For invariant 2
0.32 For invariant 3
0.34 For invariant 4
0.16 For invariant 5

Consequences unsat 0.24

Table 3.2: Analyzing CivilStatus with OCL2MSFOL

ConsistentInvariants: Selecting as search state space the instances
of CivilStatus with exactly one male person and one female person,
USE finds a valid instance of CivilStatus. Thus, as with OCL2MSFOL,
we can conclude that the model is consistent.

Independence: Selecting as search state space the instances of Civil-
Status with exactly one male person and one female person, for each
of the five invariants, USE finds an instance of CivilStatus such that
this invariant is not satisfied while the others are satisfied. Thus, as
with OCL2MSFOL, we can conclude that the invariants are indepen-
dent.

Consequences: Selecting as search state space the instances of Civil-
Status with at most three persons, USE is not able to find an instance
of CivilStatus which is bigamy-free. Notice that this answer is incon-
clusive, since a bigamy instance of CivilStatus may still exist out-
side of the selected range. On the contrary, the answer provided by
OCL2MSFOL guarantees that CivilStatus is bigamy-free.

WritesReviews

In Table 3.3 we show the results of analysing, using OCL2MSFOL, the
questions posed in the benchmark about WritesReviews. In particular,

InstantiateNonemptyClass: CVC4fmf returns unsat when the fol-
lowing invariants are added to WritesReviews:

Paper.allInstances()�>notEmpty().
Researcher.allInstances()�>notEmpty().

3.2. Benchmark 85

Question Answer Time (in secs) Remarks
InstantiateNonemptyClass unsat 0.66
InstantiateNonemptyAssoc unsat 1.70
InstantiateInvariantIgnore sat 0.22

Table 3.3: Analyzing WritesReviews with OCL2MSFOL

Thus, we can conclude that there is no valid instance of WritesRe-
views with at least one paper and one researcher.

InstantiateNonemptyAssoc: As expected, CVC4fmf also returns
unsat when the following invariants are added to WritesReviews:

Paper.allInstances()�>notEmpty().
Researcher.allInstances()�>notEmpty().
Paper.allInstances()�>exists(p|p.author�>notEmpty()).
Paper.allInstances()�>exists(p|p.referee�>notEmpty()).

Thus, we can conclude that there is no valid instance of WritesRe-
views with at least one paper, one researcher, one instance of the
manuscript-author association, and one instance of the submission-
referee association.

InstantiateInvariantIgnore: CVC4fmf returns sat when the in-
variants oneManuscript and oneSubmission are removed from
WritesReviews. Thus, we can conclude that, if the invariants one-
Manuscript and oneSubmission are ignored, there exists at least
one valid instance of WritesReviews.

We can now compare these results with the ones obtained by analyzing
WritesReviews using USE, as reported in [38]. In particular,

InstantiateNonemptyClass: Selecting as search state space the
instances of WritesReviews with at most four researchers and four
papers, USE is not able to find a valid instance of WritesReviews
with at least one researcher and one paper. Again, notice that this
answer is inconclusive, since a valid instance of WritesReviews with at
least one researcher and one paper may still exist outside the selected
range. On the contrary, the answer provided by OCL2MSFOL guar-
antees that no valid instance of WritesReviews exists with at least
one researcher and one paper.

86 Chapter 3. Mapping OCL as a constraint language

Question Answer Time (in secs)
InstantiateDisjointInheritance unsat 0.08
InstantiateMultipleInheritance sat 0.06

Table 3.4: Analyzing DisjointSubclasses with OCL2MSFOL

InstantiateNonemptyAssoc: The result is exactly as in the case
of InstantiateNonemptyClass.

InstantiateInvariantIgnore: Having removed from WritesReviews
the constraints oneManuscript and oneSubmission, and selecting
as search state space the instances of WritesReviews with exactly one
paper and at most four researchers, USE finds a valid instance of
WritesReviews. Thus, as with OCL2MSFOL, we can conclude that,
if the constraints oneManuscript and oneSubmission are ignored,
there is at least one valid instance of WritesReviews.

DisjointSubclasses

In Table 3.4 we show the results of analysing, using OCL2MSFOL, the
questions posed in the benchmark about DisjointSubclasses. In particular,

InstantiateDisjointInheritance: CVC4fmf returns unsat when the
following invariant is added to DisjointSubclasses:

D.allInstances()�>notEmpty()

Thus, we can conclude that there is no valid instance of DisjointSub-
classes with at least one element of class D.

InstantiateMultipleInheritance: CVC4fmf returns sat when the
following invariant is added to DisjointSubclasses

D.allInstances()�>notEmpty()

and at the same time the invariant disjointBC is removed from Dis-
jointSubclasses. Thus, we can conclude that, if the constraint dis-
jointBC is ignored, there is at least one instance of DisjointSub-
classes with at least one element of class D.

We can now compare these results with the ones obtained by analyzing
DisjointSubclasses using USE, as reported in [38]. In particular,

3.2. Benchmark 87

InstantiateDisjointInheritance: Selecting as search state space
the instances of DisjointSubclasses with exactly one element of class
A, one of class B, one of class C, and one of class D, USE is not able
to find a valid instance of DisjointSubclasses. Notice that this answer
is again inconclusive, since a valid instance of DisjointSubclasses may
still exist outside of the selected range. On the contrary, the an-
swer provided by OCL2MSFOL guarantees that no valid instance of
DisjointSubclasses exists at all with at least one element of class D.

InstantiateMultipleInheritance: Having eliminated from Disjoint-
Subclasses the constraint disjointBC, and selecting as search state
space the instances of DisjointSubclasses with exactly one element of
class A, one of class B, one of class C, and one of class D, and remov-
ing from DisjointSubclasses the constraint DisjointBC, USE finds
an instance of DisjointSubclasses. Therefore, as with OCL2MSFOL,
we can conclude that, if the constraint DisjointBC is ignored, there
is at least one instance of DisjointSubclasses with at least one element
of class D.

89

Chapter 4
Application domains

© Joaqúın S. Lavado, QUINO. Toda Mafalda, Penguin Random House, España

In this chapter we report on a number of non-trivial case studies that
we carried out, at di↵erent stages in our work, in order to validate the
applicability (e�ciency, usability) of our mapping(s) from OCL to (many-
sorted) first-order logic. Following the evolution of our research, and, in
particular, of our growing understanding of the di↵erent available SMT
solvers and of their heuristics, each case study used a di↵erent version
of our mapping and (in some cases also) a di↵erent SMT solver. In this
regard, the actual figures reported here regarding execution times are not
as relevant as the fact that the case studies cover a wide range of di↵erent
application domains of practical interest, and that they were successfully
completed even using (in some cases) rather preliminary versions of our
mapping and SMT solvers.

90 Chapter 4. Application domains

Figure 4.1: EHR: a data model for a basic eHealth Record Management
System.

4.1 Checking model satisfiability

4.1.1 The eHealth record management system

This case study was proposed within NESSoS, the European Network
of Excellence on Engineering Secure Future Internet Software Services and
Systems [62]. It consists of a electronic health record management (EHRM).
Electronic health records (EHR) record information created by, or on behalf
of, a health professional in the context of the care of a patient. Electronic
health records are highly sensitive. Here we check satisfiability over data
model and a set of OCL invariants, using OCL2MSFOL.

4.1. Checking model satisfiability 91

Data model

The data model for our case study, shown in Figure 4.1, models a basic
eHealth management system. It contains 9 classes, 3 generalizations, 24
attributes, and 10 associations.

We discuss below just the entities, attributes, and association-ends that
are required for our case study.

Professional. This class represents the EHRM’s users. The medical cen-
ters where a user works are linked to the user through the association-end
worksIn.

MedicalCenter. This class represents medical centers. The departments
belonging to a medical center are linked to the medical center through the
association-end departments. The professionals working for a medical cen-
ter are linked to the medical center through the association-end employees.

Doctor. This class represents doctor information. Doctor is a subclass
of Professional. The departments where a doctor works are linked to the
doctor’s information through the association-end departments. The pa-
tients treated by a doctor are linked to the doctor’s information through
the association-end patients. Doctors can be substituted by another doctor
through the association-end substitutedby.

Director. This class represents director information. Director is a sub-
class of Professional.

Nurse. This class represents nurse information. Nurse is a subclass of
Professional. The departments where a nurse works are linked to the
nurse’s information through the association-end departments.

Department. This class represents departments. The medical center
to which a department belongs is linked to the department through the
association-end belongsTo. The doctors working in a department are linked
to the department through the association-end doctors. The patients treated
in a department are linked to the department through the association-end
patients.

92 Chapter 4. Application domains

Patient. This class represents patients. The doctor treating a patient is
linked to the patient through the association-end doctor. The department
where a patient is treated is linked to the patient through the association-
end department.

Referral. This class represents referrals. The doctor can by referred by
a referral through the association-end referredBy. And a patient can be
also referred by a referral through the association-end patient.

ContactInfo. This class contain the contact information.

OCL invariants

The data model for our case study also contains 38 invariants, which
can be grouped in the 5 categories:1

G1. Invariants stating the non-emptiness of certain classes. For example,
There must be at least one medical center.

MedicalCenter.allInstances()�>notEmpty().

There are 9 invariants in this category, one for each class in the data
model: namely, MedicalCenter, Department, Professional, Director,
Doctor, Nurse, Referral, Patient, and ContactInfo.

G2. Invariants stating the definedness of certain attributes. For example,
The name of a professional cannot be undefined.

Professional.allInstances()�>forAll(p|not(p.name.oclIsUndefined())).

There are 11 invariants in this category, stating the definedness of
the attributes name (MedicalCenter), city (MedicalCenter), country
(MedicalCenter), director (MedicalCenter), name (Department), na-
me (Professional), surname (Professional), login (Professional), pa-
ssword (Professional), contactInfo (Patient), and license (Nurse),

G3. Invariants stating the uniqueness of certain data with respect to cer-
tain attributes. For example, There cannot be two di↵erent doctors
with the same medical license number.

1Notice that the given set of invariants is not intended to be complete.

4.1. Checking model satisfiability 93

Doctor.allInstances()�>forAll(d1|Doctor.allInstances()�>forAll(d2|
not(d1=d2) implies not(d1.license=d2.license)).

There are 5 invariants in this category, stating the uniqueness of cer-
tain data with respect to di↵erent attributes. In particular, data of
the class MedicalCenter, when considering together address, zipCode,
city, and country; data of the class Professional, with respect to login;
data of the class Doctor, with respect to license; data of the class
Nurse, with respect to license; and data of the class Referral, when
considering together patient, referringTo, and referredBy.

G4. Invariants stating the non-emptiness of certain association-ends. For
example, Every medical center should have at least one employee.

MedicalCenter.allInstances()�>forAll(m|m.employees�>notEmpty()).

There are in total 6 invariants in this category, stating the non-
emptiness of the association-ends employees (MedicalCenter), be-
longsTo (Department), doctors (Department), nurses (Department),
patient (Referral), referredBy (Referral), doctor (Patient), and depart-
ment (Patient).

G5. Other invariants: namely,

A patient should be treated in a department where his/her doctor
works.

Patient.allInstances()�>forAll(p|
p.doctor.departments�>exists(d|d=p.department))

A professional cannot have an empty string as password.

Professional.allInstances()�>forAll(p|not(p.password = ‘’))

A professional cannot have an empty string as login.

Professional.allInstances()�>forAll(p|not(p.login = ‘’))

If a doctor’s status is ‘unavailable’, then he/she should have a sub-
stitute di↵erent from him/herself.

Doctor.allInstances()�>forAll(d|d.status=‘unavailable’ implies
(not(d.substitutedBy.oclIsUndefined() or d.substitutedBy = d)))

If doctor’s status is ‘available’, then he/she should not have any
substitute.

94 Chapter 4. Application domains

Doctor.allInstances()�>forAll(d|
d.status=‘available’ implies d.substitutedBy.oclIsUndefined())

If a doctor is a substitute of other doctors, his/her status should be
‘available’.

Doctor.allInstances()�>forAll(d|
d.substitutions�>notEmpty() implies d.status=“available”)

If a referral indicates both the patient and the doctor whom the
patient is referred to, then the doctor who is referring the patient
cannot be the same than the doctor whom the patient is referred to.

Referral.allInstances()�>forAll(r|
not(r.patient.oclIsUndefined() and r.referringTo.oclIsUndefined())

implies not(r.referringTo = r.referredBy))

4.1.2 Checking data model satisfiability

In what follows we report on the results obtained in our case study. We
use our mapping OCL2MSFOL, and we check the generated theories using
the SMT solver CVC4fmf . Finally, we ran the code generated on a machine
with an Intel Core2 processor running at 2.83 GHz with 8GB of RAM. The
code generated by the mapping is available in [70].

The first experiment we carried out was to check whether there exists an
instance of the case study’s data model satisfying all the given invariants.
Using CVC4fmf we obtained the answer in 6 seconds. In particular, we show
in Figure 4.2 the valid instance of the case study’s data-model automatically
generated by CVC4fmf .

The second experiment consisted in checking whether there exists a
valid instance of the case study’s data model for which the following also
holds:

There exists only one doctor and his/her status is “unavailable”.

Doctor.allInstances()�>exists(d1|d1.status=’unavailable’
and Doctor.allInstances()�>forAll(d1|d1=d2)).

Using CVC4fmf we obtained unsat in about 4 seconds. This is the ex-
pected result, since there is an invariant stating that “if a doctor’s status is
‘unavailable’, then he/she should have a substitute di↵erent from him/her-
self.”

4.1. Checking model satisfiability 95

Figure 4.2: Automatically generated instance of the case study’s data model
satisfying all the invariants.

Finally, the third experiment consisted in checking whether there exists
a valid instance of the case study’s data model for which the following
holds:

There exists only one doctor

Doctor.allInstances�>exists(d1|
Doctor.allInstances�>forAll(d2|d1=d2)).

In this experiment, we obtained sat in 6 seconds. This may be an
unexpected result, since there is an invariant stating that “that there must
be at least one referral” and there is another invariant stating that “if a
referral has defined both the patient and the doctor to whom the patient
is referred to, then the doctor referring the patient cannot be the same
than the doctor the patient is referred to”. However, the result returned

96 Chapter 4. Application domains

by CVC4fmf is correct, since there is no invariant stating that every referral
has defined the doctor to whom the patient is referred to. Therefore, it is
certainly possibly a valid instance of the case study’s data model basically
containing only one doctor and only one referral in which the doctor to
whom the patient is referred to is not defined. This is in fact the instance
automatically generated by CVC4fmf when returning sat in this experiment.
Of course, if we want to “correct” this, we can simply add to the case study’s
data model the following invariant:

Referral.allInstances()�>forAll(r|not(r.referringTo.oclIsUndefined()))

Then, if we run again the experiment, the answer returned by CVC4fmf , in
about 4 seconds, is unsat.

4.1.3 Concluding remarks

We have reported here on a non-trivial case study, which shows that our
mapping can be used for e�ciently checking the satisfiability of non-trivial
UML/OCL models using SMT solvers with finite model finding capabilities.

However, the reader should not forget that our results ultimately depend
on the (hard-won) positive logical interaction between (i) our formalization
of UML/OCL in MSFOL, and (ii) the heuristics implemented in the SMT
solver.

This means, in particular, that changes in the SMT solver’s heuris-
tics may have consequences (hopefully positive) in the applicability of
OCL2MSFOL. It also means that a deeper understanding from our part
of the SMT solver’s heuristics may lead us to redefine OCL2MSFOL.

4.2 Validating and instantiating metamodels

4.2.1 The Core Security Metamodel (CSM)

Development of secure applications is a challenging task due to the
evolvable risks that threaten any system under design. Nowadays, the ex-
posure of systems to cloud environments claims for a stronger development
approach able to support a large number of complex security requirements
and interplay in the creation of cloud applications. Most of the proposed
approaches agree in the necessity to sit a solid and a↵ordable engineering
process that can prevent, from design time, non-secure states due to wrong
security mechanisms used as a late solution [43]. In line with this approach,

4.2. Validating and instantiating metamodels 97

the CluUMULUS [23] and the PARIS [74] EU projects have proposed a se-
curity engineering process to develop secure applications. It includes a
complete Model Based System Engineering (MBSE) methodology to ad-
dress the di↵erent stages involved in the development of secure and privacy
preserving applications. We focus here on the first stage of the correspond-
ing work flow: the Core Security metamodel (CSM), designed to gather
and represent the security knowledge. The CSM and the OCL validation
rules imposed on it establish a language that supports, validates and drives
instance creation and subsequent steps of the engineering process.

Data model

Reflecting the complexity of the security field, the CSM is a compo-
sition of 6 sub-models that address di↵erent security expertise sub-areas.
Thus, CSM instantiation is facilitated by these groups of related elements
which are displayed in the metamodel with di↵erent colors, as shown in
Figure 4.3.2 Next we describe these sub-models, also to understand how
they fit together.

Requirement sub-model (green): it is used to qualify security and
certification requirements by means of security valuators, mechanisms
and certified services.

Property sub-model (yellow): it is used to describe abstract security
properties involved in a security requirement, specifying its attributes
and values.

Domain sub-model (brown): it is used to describe the domain or
context of the CSM instance, identifying the assets to be protected.

Solution sub-model (pink): it is used to show how the security re-
quirements will be achieved by means of solutions and security mech-
anisms.

Assurance sub-model (blue): it is used to specify the assurance profile
and the certification-related elements that would fulfill the certifica-
tion requirements.

2CSM has been already proved its use for real applications to integrate security mecha-
nisms in high risk environments [83, 84], but using a di↵erent security engineering process
in the context of the SecFutur Project [88].

98 Chapter 4. Application domains

«Metaclass»
CP_RM_Application_Sec_Requirement

+URI : String
+xml : String
+version : String

«Metaclass»
CP_AM_Service_Assurance_Profile

«Metaclass»
CP_RM_Domain_Sec_Requirement

+description : String
+URI : String
+xml : String

«Metaclass»
CP_RM_Certification_Requirement

+identifier : String
+value : String

«Metaclass»
CP_DM_Context_Constraint

+description : String

«Metaclass»
CP_RM_Sec_Requirement

+description : String

«Metaclass»
CP_DM_Asset_Stereotype

+description : String
+abstractCategory : String
+context : String

«Metaclass»
CP_PM_Property

+description : String

«Metaclass»
CP_SM_Sec_Mechanism

+type : String
+description : String

«Metaclass»
CP_DM_Asset_Element

«Metaclass»
CP_AM_Extended_SAP

+type : String
+capability : String
+resources : String
+ability : String
+information : String

«Metaclass»
CP_RM_Attacker_Type

«Metaclass»
CP_SLA_Commitment

+type : String
+description : String

«Metaclass»
CP_SM_Sec_Solution

+creator : String
+authorDomain : String
+description : String

«Metaclass»
CP_DM_Domain

+type : String
+description : String

«Metaclass»
CP_RM_Assumption +URI : String

+description : String

«Metaclass»
CP_SM_Sec_Pattern

+type : String
+assumptions : String
+description : String

«Metaclass»
CP_RM_Attack

+type : String
+motivation : String
+impact : String
+objective : String
+description : String

«Metaclass»
CP_RM_Threat

+description : String

«Metaclass»
CP_RM_Sec_Policy

+xml : String
+id : String

«Metaclass»
CP_AM_Certificate

+type : String
+description : String
+value : String

«Metaclass»
CP_PM_Attribute

«Metaclass»
CP_AM_Attribute

«Metaclass»
CP_AM_Property

implies

1..*

1..*

susceptible
to

0..*

1..*

addressed by
1..*

1..*

regulated by0..*

1..*

defined
by

0..*

1..*
0..*

defined
by

0..1

provided by
0..* 1..*

correspond
to

0..1

0..1

applies
to

1..*1..*

executed
by

1..*

0..*

applies
to

1..*1..*

0..*

1..*

satisfy
by

0..*

includes
0..1

realized by1..*

0..*

*

fulfills
0..1
0..1

1..*
0..* ensured by

1..*

0..*

realized by
1..*
1..* *

defined into 0..1
1..*

performedby 1..*
1..*

supported by
0..1

0..*

Figure 4.3: Core Security Metamodel

Service Level Agreement sub-model (light blue): it is used to specify
SLA agreements that may a↵ect the security properties.

The CUMULUS engineering process aims not only at supporting ex-
perts to express their expertise into a model, but also to orchestrate an
automated sorting and processing of that information to make it accessi-
ble and useful for non security experts. The e↵ectiveness of this approach
heavily relies on the OCL validation system which supports three goals in
the CSM instantiation activity:

1. Perform an active validation of the modeling process. This validation
raises a warning if the instance does not conform to the metamodel.
It also highlights the pieces of information that are missing or wrong.
This validation helps experts to avoid wrong specifications that would
impact the run time of the system.

2. Check that required information is present. It validates whether a
valid CSM instance lacks information that is needed by the engineer-
ing activities. E.g., transitive association between specific compo-
nents, empty attributes, etc..

4.2. Validating and instantiating metamodels 99

3. Guide experts during the creation of the CSM instance. They are
guided towards the next piece of information that is needed and its
goal in the engineering process.

Therefore the list of OCL constraints is expected to be consistent and
reactive enough to support constant interaction with it. Our rules drive
an incremental validation system that is gradually triggered within the
MagicDraw modelling framework [55].

OCL Invariants.

The OCL validation package is composed of 33 invariants. Out of these,
27 are structural constraints restraining metamodel associations. Next, we
introduce those OCL invariants that do not deal directly with multiplicities.

1. A domain instance must exist and be unique.

CP DM Domain.allInstances()�>size() = 1

2. A certification requirement needs to be associated with a service as-
surance profile.

CP RM Certification Requirement.allInstances()�>forAll(c|
not c.URI.oclIsUndefined())

implies c.service assurance profile�>notEmpty())

3. A certification requirement must be linked directly and through a
security pattern to a security requirement and a property

CP PM Property.allInstances()�>forAll(c|
c.certification requirement�>notEmpty() implies

c.certification requirement.sec pattern.sec requirement
�>intersection(c.sec requirement)�>notEmpty())

4. A certification requirement should be directly linked to a property
and a security pattern for that property

CP RM Certification Requirement�>forAll(c|
c.property�>intersection(c.sec pattern.property)�>notEmpty())

100 Chapter 4. Application domains

5. An asset stereotype is set up over an asset element that must be con-
sidered by an application security requirement of that asset stereotype
domain

CP DM Asset Stereotype.allInstances()�>forAll(c|
(not c.asset element.oclIsUndefined()) implies

c.domain sec requirement.application sec requirement.
asset element�>includes(c.asset element))

6. A security pattern must display a security solution

CP SM Sec Pattern.allInstances()�>forAll(c|
(not c.URI.oclIsUndefined())

implies (not c.sec solution.oclIsUndefined()))

4.2.2 Validating the Core Security metamodel

We explain now the analysis that we perform on the OCL constrained
CSM metamodel once it is translated to FOL. We use the mapping OCL2-
FOL+ and we check the generated theories using the SMT solver CVC4fmf .
Finally, we ran the code generated on a machine with an Intel Core2 pro-
cessor running at 2.83 GHz with 8GB of RAM. The code generated by
the mapping is available in [69]. We first tried to check whether the OCL
constraints imposed on the CSM were or not unsatisfiable (and generate an
example in the latter case) by feeding them to the SMT solvers Z3 [30] and
CVC4 [10]. However, after more than 3 hours running, they did not return
any result, and we decided to stop them. We know that this lack of result
from Z3 and CVC4 is due to the fact that current techniques for dealing
with quantified formulas in SMT are generally incomplete. In particular,
they usually have problems to prove the unsatisfiability of a formula with
universal quantifiers. Then, we decided to employ CVC4 as a finite model
finder on our specification to check its satisfiability because the input re-
quired by it is the same input for the SMT solvers. CVC4 performed a
bounded checking and succeeded by returning sat and automatically pro-
ducing finite instances that conform to the OCL constrained CSM. Let us
note that to work with the finite model finder CVC4, since the output of
our tool [70] is SMT-LIB, we only needed to change in our mapping the
sorts Int by a finite sort U. CVC4 run less than 30 seconds to answer SAT
and return a simple CSM instance.

4.2. Validating and instantiating metamodels 101

application_sec_requirement = AppRequirement_Ins
domain = Domain_Ins

«Metaclass»
AssetElement_Ins : CP_DM_Asset_Element

domain = Domain_Ins
domain_sec_requirement = DomRequirement_Ins

«Metaclass»
AssetStereotype_Ins : CP_DM_Asset_Stereotype

certification_requirement = CertificationReq_Ins
property = Property_Ins
sec_requirement = DomRequirement_Ins,
AppRequirement_Ins
sec_solution = Solution_Ins
URI = "uri_to_repository"

«Metaclass»
SecPattern_Ins : CP_SM_Sec_Pattern

certification_requirement = CertificationReq_Ins
domain = Domain_Ins
sec_pattern = SecPattern_Ins
sec_requirement = DomRequirement_Ins,
AppRequirement_Ins

«Metaclass»
Property_Ins : CP_PM_Property

attack = Attack_Ins1, Attack_Ins2
sec_requirement = DomRequirement_Ins,
AppRequirement_Ins

«Metaclass»
Threat_Ins : CP_RM_Threat

asset_stereotype = AssetStereotype_Ins
property = Property_Ins
sec_pattern = SecPattern_Ins
threat = Threat_Ins

«Metaclass»
DomRequirement_Ins :

CP_RM_Domain_Sec_Requirement

asset_element = AssetElement_Ins
asset_stereotype = AssetStereotype_Ins
property = Property_Ins

«Metaclass»
Domain_Ins : CP_DM_Domain

asset_element = AssetElement_Ins
property = Property_Ins
sec_pattern = SecPattern_Ins
threat = Threat_Ins

«Metaclass»
AppRequirement_Ins :

CP_RM_Application_Sec_Requirement

sec_mechanism = Mechanism_Ins

«Metaclass»
Solution_Ins : CP_SM_Sec_Solution

property = Property_Ins
security_pattern = SecPattern_Ins

«Metaclass»
CertificationReq_Ins :

CP_RM_Certification_Requirement

attacker_type = AttackerType_Ins
threat = Threat_Ins

«Metaclass»
Attack_Ins2 : CP_RM_Attack

attacker_type = AttackerType_Ins
threat = Threat_Ins

«Metaclass»
Attack_Ins1 : CP_RM_Attack

sec_solution = Solution_Ins

«Metaclass»
Mechanism_Ins :

CP_SM_Sec_Mechanism

attack = Attack_Ins1,
Attack_Ins2

«Metaclass»
AttackerType_Ins :

CP_RM_Attacker_Type

 : implies : implies

 : susceptible
to

 : applies
to

 : addressed
by

 : susceptible
to

 : includes

 : performed
by

 : performed
by

 : provided by

 : applies
to

 : addressed
by

 : executed
by

 : executed
by

 : defined into

 : ensured by

 : realized by

Figure 4.4: Automatically generated instance of the security metamodel
presented in the Figure 4.3.

Then, we included additional OCL constraints to require a defined
URI for all instances of CP SM Sec Pattern, to contain a minimum of two
CP RM Attack instances, and at least one instance of each of the next classes:
CP RM Attack Type, CP RM Certification Require- ment, CP SM Sec Solution
and CP SM Sec Mechanism.
They ensure that generated instances contain at least a minimum amount
of information that makes them meaningful for a security expert. Then,
we run CVC4 again with these additional constraints, and after less than
1 minute, the instance that we depict in Figure 4.4 was returned. The
instances so obtained with CVC4 match structurally those obtained follow-
ing the security engineering process and would allow to skip some of its
steps (provided that we could automatically tailor the instances obtained
by CVC4 to serve as inputs for the modeling framework). As we show
next, these instances can be enhanced with knowledge (semantics) from
the security domain so as they can serve as input for subsequent steps of
the security engineering process.

102 Chapter 4. Application domains

4.2.3 Security enhanced CSM instances

As we already mentioned, the CSM is part of an assisted methodology,
supported by the CUMULUS modelling tool [24], that has been initially
conceived to take advantage of the multiple capabilities provided by the
MagicDraw framework [55], particularly of its OCL validation engine. This
methodology aims at supporting security experts to specify and commu-
nicate to system engineers how to solve security issues for cloud applica-
tions. When security experts design their models, i.e., CSM instances, the
CUMULUS framework guides the construction of these instances (Domain
Security Metamodels-DSMs) with the OCL rules that are continuously val-
idated over them, raising warnings that claim for mandatory elements that
are not yet present or errors. This process establishes a common format for
the knowledge modeled, ensuring its applicability later on. The resulting
instance (i.e., a DSM) is a validated artifact ready to transform security
requirements into certification requirements and links to the solutions and
mechanisms able to assure local system architectures and their interaction
with cloud platforms [6].

For example, the rule 1 in Section 4.2.1 requires a unique domain in-
stance. Experts dealing with security knowledge in the EHealth domain in
cloud environments may describe a model for non security experts so as to
improve a health care process (we follow Figure 4.5). Domain specification
is critical to upload DSMs into the appropriate repository, to classify the
DSM content adequately. Once a valid domain instance has been created,
the validation system triggers those rules that are not yet satisfied so as
the model has to be extended to fulfill them.

Here we do not describe in full the DSM creation process. But we
further describe the DSM instance in Figure 4.5. It contains as security
requirements EHealth data protection and Secure cloud storage communi-
cations, both associated to the threat Data Disclosure. In addition, we have
created an additional asset patient record, potential attacks as Cracking or
Man in the middle and, finally, a common attacker type Malicious User.
Probably, the most important part of a DSM is the selection of security
patterns and certification requirements. The issue to be solved is described
in the pattern, in our example, means to locally enforce data protection with
remote certification to securely enable data transmission. How it should be
guaranteed is specified by the certification requirement, in our example,
the usage of certified services for confidentiality and in compliance with
data access level 3 or above. Both plain descriptions have consequences
in the security engineering process because they limit the solutions to be

4.2. Validating and instantiating metamodels 103

description = "The cloud storage service, with or without support from the
underlying operating system, must provide the means of protecting patient data
from disclosure while data remains in the persistent medium."

«Metaclass»
Data protection in Storage : CP_SM_Sec_Solution

assumptions = "Transmitted message is send with authorization"
description = "Communication between two ends is monitored and
modified by an unauthorized party"

«Metaclass»
Man in the middle : CP_RM_Attack

description = "An attacker discover the used password in the
solutions mechanism through the use of common terms in a
dictionary designed for that purpose or by using brute force "

«Metaclass»
Cracking : CP_RM_Attack

description = "It represents any patient record(s) or personal
data elements to be uploaded to remote locations"
type = "table, file"

«Metaclass»
patient Record : CP_DM_Asset_Element

description = "It represents all the elements containing
o referring private data about the patients"

«Metaclass»
private Data : CP_DM_Asset_Stereotype

impact = "High"
motivation = "Gain access to unauthorized patient data"
objective = "Expose sensitive data "
type = "Active"

«Metaclass»
Data Disclosure : CP_RM_Threat

abstractCategory = "Confidentiality"
context = "InStorage, InTransit"
description = "To ensure that information is
accessible only to those authorized to have access"

«Metaclass»
Data Confidentiality : CP_PM_Property

description = "It describes means to locally
enforce data protection with remote certification
to securely enable data transmission."
security_solution = Data protection in Storage
URI = "http://repo.uma.es/Conf.InStorage-1.1.xml"

«Metaclass»
SecPattern_Ins : CP_SM_Sec_Pattern

description = "High-grade symmetric encryption
using standardized NIST approved algorithm
AES with an allowed cryptographic key size (FIPS
PUB 197)"

«Metaclass»
AES : CP_SM_Sec_Mechanism

description = "Providers must to guarantee
certified services for confidentiality and in
compliance with data access level 3 or above"

«Metaclass»
Confidentiality data-access-level :
CP_RM_Certification_Requirement

description = "All output operations to send
and store data in cloud servers should avoid
the exposure of private patient information"

«Metaclass»
Secure cloud storage communications :

CP_RM_Application_Sec_Requirement

description = "The EHealth data laws and
policies enforces the protection and non
disclosure of all the patient accounts and
private data in ICT systems"

«Metaclass»
EHealth data protection :

CP_RM_Domain_Sec_Requirement

description = "eHealth is the use of
emerging information and
communications technology (ICT), to
improve or enable health and healthcare"

«Metaclass»
EHealth : CP_DM_Domain

capability = "Intercept Message
transmission"
resources = "High"
type = "External"

«Metaclass»
Malicious User :

CP_RM_Attacker_Type

 : implies

 : implies

 : susceptible
to

 : addressed
by

 : provided by

 : executed by

 : applies
to

 : addressed
by

 : performed
by

 : performed
by

 : applies
to

 : susceptible
to

 : executed by

 : includes

 : ensured
by

 : defined
into

 : realized by

Figure 4.5: Domain Security Metamodel

deployed for cloud applications. Recalling subsection 4.2.1, the last con-
straint requires that for a security pattern and a solution to be linked, the
URI attribute of the pattern must be defined. This constraint demands
intervention of the security expert since they search and select from ex-
isting repositories, through an API provided by the framework, a suitable
pattern that also links a target solution, e.g., Data protection in Storage
and a security mechanism, e.g., AES. As a result of the modeling process,
security experts provide a complete artifact ready to fulfill security require-
ments addressing both the local mechanisms and the remote certification
requirements.

Finally, we remark that both instances shown in Figures 4.4 and 4.5
resp., are structurally identical. Thus, the engineering process receive a
shortcut from the use of automatic finite model finders that ease the path
and reduce the time required to build instances since they can automatically
generate them. Then, instances can be enhanced with security domain
specific knowledge and trigger subsequent engineering activities.

104 Chapter 4. Application domains

4.2.4 Concluding remarks

We have introduced here a security metamodel constrained by 33 OCL
rules. We have formally analyzed this metamodel, which is both complex
and large, and its constraints, using our mapping to automatically map the
metamodel and its constraints to first order logic. Then, we have success-
fully employed a finite model finder, CVC4, for checking the satisfiability of
the resulting specification. Moreover, we have illustrated how the instances
automatically generated by CVC4 conform to the aforementioned security
metamodel and its constraints.

4.3 Analyzing security models

Nowadays, most of the main database management systems o↵er, in
one way or another, the possibility of protecting data using fine-grained
access control policies, i.e., policies that depend on dynamic properties
of the system state. Reasoning about these policies typically amounts to
answering questions about whether a security-related property holds in a
(possibly infinite) set of system states.

In this section we discuss how to carry out formal reasoning about fine-
grained access control policies using our mapping OCL2MSFOL.

4.3.1 SecureUML

SecureUML [11] is a modeling language for specifying fine-grained access
control policies (FGAC) for actions on protected resources.

Using SecureUML, one can then model access control decisions that
depend on two kinds of information:

1. static information, namely the assignments of users and permissions
to roles, and the role hierarchy, and

2. dynamic information, namely the satisfaction of authorization con-
straints in the given system state.

Resources and Actions

In SecureUML the protected resources are the entities (classes), along
with their attributes and association-ends (but not the associations as
such), and the actions that they o↵er to the actors are those shown in
the following table:

4.3. Analyzing security models 105

Resource Actions
Entity create, delete
Attribute read, update
Association-end read, create, delete

Authorization Constraints

In SecureUML, authorization constraints specify the conditions that
need to be satisfied for a permission being granted to an actor (user) who
requests it to perform an action. They are formalized using OCL, but they
can also contain the following keywords:

self: it refers to the root resource upon which the action will be
performed, if the permission is granted. The root resource of an
attribute or an association-end is the entity to which it belongs.

caller: it refers to the actor that will perform the action, if the per-
mission is granted.

value: it refers to the value that will be used to update an attribute,
if the permission is granted.

target: it refers to the object that will be linked at the end of an
association, if the permission is granted.

Permissions

SecureUML provides various syntactic sugar constructs for expressing
FGAC policies in a more compact way. Basically, in the ‘sweeter’ presenta-
tion of a model, some roles may not have explicitly assigned any permission
for some actions, while the following always holds in the de-sugared pre-
sentation of the model: every role has assigned exactly one permission for
every action, and this permission has assigned exactly one authorization
constraint. The rules for de-sugaring a SecureUML model are the follow-
ing:

Role hierarchies. Let act be an action and let r and r0 be two roles.
Suppose that r is a subrole of r0 in S, and that there is a permission
in S for r0 to execute act under the constraint auth. Then, when
de-sugaring S, we add a new permission to S for the role r to execute
act under the same constraint auth.

106 Chapter 4. Application domains

Delete actions. Let entity be an entity. Let act be the action de-
lete(entity). Suppose that there is a permission in S for a role r to
execute act under the constraint auth. Then, when de-sugaring S,
for every association-end assoc owned by entity , we add to S a new
permission for r to execute delete(assoc) under the same constraint
auth.

Opposite association-ends. Let assoc and assoc0 be two opposite
association-ends. Let act be the action create(assoc). Suppose that
there is a permission in S for a role r to execute act under the con-
straint auth. Then, when de-sugaring S, we add to S a new per-
mission for the role r to execute create(assoc0) under the constraint
that results from replacing in auth the variable self by target and the
variable target by self. De-sugaring is done similarly when act is the
action delete(assoc).

Denying by default. Let r be a role and let act be an action. Suppose
that there is no permission in S for the role r to execute act . When
de-sugaring S, we add to S a new permission for the role r to execute
act under the constraint false.

Disjunction of authorization constraints. Let r be a role and let act
be an action. Suppose that there are n permissions in S for the role r
to execute act . When de-sugaring S, we replace these n permissions
by a new permission and assign to it the authorization constraint
that results from disjoining together all the authorization constraints
of the original n individual permissions.

In what follows, we will denote by Auth(S, r, act) the authorization con-
straint assigned, in the de-sugared presentation of the SecureUML model
S, to the role r’s permission for performing the action act .

4.3.2 A running example

In Figure 4.6 we show a data model, named EmplBasic. This model
specifies that every employee may have a name, a surname, and a salary;
that every employee may have a supervisor and may in turn supervise other
employees; and that every employee may take one of two roles: Worker or
Supervisor. Notice that the association-end supervises has multiplicity
0..*, meaning that an employee may supervise zero or more employees,
while the association-end supervisedBy has multiplicity 0..1 meaning that
an employee may have at most one supervisor.

4.3. Analyzing security models 107

Figure 4.6: EmplBasic: a data model for employees’ information.

In Figure 4.7 we show two di↵erent instances of EmplBasic. In In-
stance 4.7a there are three employees, e

1

, e
2

and e
3

, and e
1

is supervised
by e

2

, e
2

is supervised by e
3

, and e
3

has no supervisor at all. Moreover, e
1

has role Worker and both e
2

and e
3

have role Supervisor. Instance 4.7b
has also three employees, e

1

, e
2

and e
3

, but this time e
1

is supervised by
e
2

, e
2

is supervised by itself, and e
3

has no supervisor at all. As before, e
1

has role Worker and both e
2

and e
3

have role Supervisor.
We can refine the model EmplBasic (Figure 4.6) by adding invariants

to this model. In particular, consider the following constraints:

1. There is exactly one employee who has no supervisor.

2. Nobody is its own supervisor.

3. An employee has role Supervisor if and only if it has at least one
supervisee.

4. Every employee has one role.

These constraints can be formalized in OCL as follows:

(1) Employee.allInstances()�>one(e|e.supervisedBy.oclIsUndefined())
(2) Employee.allInstances()�>forAll(e|not(e.supervisedBy = e))
(3) Employee.allInstances()�>forAll(e|

(e.role = Supervisor implies e.supervises�>notEmpty())
and (e.supervises�>notEmpty() implies e.role = Supervisor))

(4) Employee.allInstances()�>forAll(e|not(e.role.oclIsUndefined())

In what follows, we will refer to the constraint (1) as oneBoss, (2) as
noSelf- Super, (3) as roleSuper, and (4) as allRole. Also, we will denote

108 Chapter 4. Application domains

(a) Instance 1 (b) Instance 2

Figure 4.7: Two instances of EmplBasic

4.3. Analyzing security models 109

Figure 4.8: Empl: a SecureUML model for accessing employees’ informa-
tion.

by Empl1 the refined version of EmplBasic that includes as invariants the
constraints oneBoss, noSelfSuper, roleSuper, and allRole. Notice that
these four constraints evaluate to true in Instance 4.7a of EmplBasic (Fig-
ure 4.7), and therefore we say that this instance is a valid instance of Empl1.
On the other hand, since noSelfSuper and roleSuper evaluate to false in
Instance 4.7b of EmplBasic (Figure 4.7), we say that this other instance is
a not a valid instance of Empl1.

In Figure 4.8 we show a SecureUML model, named Empl. This model
specifies a basic FGAC policy for accessing the employees’ information mod-
eled in Empl1. Permissions are assigned to users depending on their roles,
which can be Worker or Supervisor. Also, users with role Supervisor in-
herit all the permissions granted to users with role Worker, since Supervisor

110 Chapter 4. Application domains

is a subrole of Worker. Finally, permissions are constrained by authoriza-
tion constraints : namely,

1. A worker is granted permission to read an employee’s salary, provided
that it is its own salary, as specified by the authorization constraint
caller = self.

2. A supervisor is granted unrestricted permission to read an employee’s
salary, as specified by the authorization constraint true.

3. A supervisor is granted permission to update an employee’s salary,
provided that it supervises this employee, as specified by the autho-
rization constraint self.supervisedBy = caller.

Example 19 Consider the value of Auth(S, r, act) in the following cases:

Auth(Empl, Worker, update(salary)) = false,

by the rule “denying by default”.

Auth(Empl, Supervisor, update(salary)) =
(self.supervisedBy = caller or false),

by the combination of the rules “denying by default”, “role hierarchies”,
and “disjunction of authorization constraints”.

Auth(Empl, Worker, read(salary)) = (caller = self).

Auth(Empl, Supervisor, read(salary)) = (caller = self or true),

by the combination of the rules “denying by default”, “role hierarchies”,
and “disjunction of authorization constraints”. ut

In what follows, when a data modelD contains invariants expr
1

, .., exprn,
we will consider that o2f

data

(D) includes also the formulas
Sn

i=1

o2f
true

(expr i).

Example 20 Consider the following question about the model Empl1: Is
there a valid instance in which someone is supervised by one of its own
supervisees? Let us formalize the property that no employee is supervised
by their own supervisees as follows:

Employee.allInstances()
�>forAll(e|e.supervises�>excludes(e.supervisedBy)).

4.3. Analyzing security models 111

We will refer to this expression as noMixSuper. Then, according to Re-
mark 1, the answer to our question is ‘Yes’ since

o2f
data

(Empl1) [{¬(o2f
true

(noMixSuper))}.

is satisfiable. Indeed, consider, for example, an instance of Empl1 with
just four employees, e

1

, e
2

, e
3

, and e
4

, such that e
1

is linked through the
association-end supervisedBy with e

4

, and similarly e
3

with e
2

, and e
2

with
e
3

. Suppose also that e
1

is of role Worker, and e
2

, e
3

, and e
4

are of role
Supervisor. This instance is certainly a valid one, since all the invariants
evaluate to true. However, the expression noMixSuper evaluates to false
because e

2

is linked through supervisedBy with e
3

, but at the same time e
2

is also linked through the association-end supervises with e
3

(since e
3

is
linked through supervisedBy with e

2

). ut

4.3.3 Analyzing fine-grained access control policies

As discussed by [13], SecureUML models have a rigorous semantics. In
particular, let S be a SecureUML model and let I be an instance of its un-
derlying data model. Also, let u be a user, with role r, and let act be an ac-
tion, with arguments args. Then, according to the semantics of SecureUML,
S authorizes u to execute act in I if and only if [Auth(S, r, act)](u,args)
evaluates to true in I, where [Auth(S, r, act)](u,args) is the expression that
results from replacing in Auth(S, r, act) the keyword caller by u, and the
keywords self, value, and target by the corresponding values in args.

In what follows, given a SecureUML model S, we use the term scenario
to refer to any valid instance of S’s underlying data model in which a user
requests permission to execute an action. For the sake of simplicity, we will
assume that neither the user requesting permission nor the resource upon
which the action will be executed can be undefined.

Next, we will explain, and illustrate with examples, how one can use our
mapping from OCL to MSFOL to reason about SecureUML models. Unless
stated otherwise, all our examples refer to the SecureUML model Empl
Recall that this model’s underlying data model is the model Empl1, which
includes the invariants oneBoss, noSelfSuper, roleSuper, and allRole.

We organize our examples in blocks or categories. In the first block, we
are interested in knowing if there is any scenario in which someone with
role r will be allowed to execute an action act . Notice that, by Remark 1,
the answer will be ‘No’ if and only if the following set of formulas is unsat-

112 Chapter 4. Application domains

isfiable:

o2f
data

(D) [{9(caller)9(self)9(target)9(value)
(o2f

true

(caller .role = r) ^ o2f
true

(Auth(S, r, act)))}.

Example 21 Consider the following question: Is there any scenario in
which someone with role Worker is allowed to change the salary of someone
else (including itself)? Recall that

Auth(Empl, Worker, update(salary))= false.

According to Remark 1, the answer to this question is ‘No’, since the fol-
lowing set of formulas is clearly unsatisfiable:

o2f
data

(Empl1) [{9(caller)9(self)
(o2f

true

(caller .role = Worker) ^ o2f
true

(false))},

(Note that o2f
true

(false) returns ?.) Indeed, there is no scenario in which
the expression false can evaluate to true. ut

Example 22 Consider the following question: Is there any scenario in
which someone with role Supervisor is allowed to change the salary of
someone else (including itself)? Recall that

Auth(Empl, Supervisor, update(salary)) =
(self.supervisedBy = caller or false).

According to Remark 1, the answer to this question is ‘Yes’, since the fol-
lowing set of formulas is satisfiable:

o2f
data

(Empl1) [{9(caller)9(self)(o2f
true

(caller .role = Supervisor)
^ o2f

true

(self .supervisedBy =caller or false))}.

(Note: o2f
true

(self .supervisedBy = caller) returns supervisedBy(self) = ca-
ller). Consider, for example, a scenario with just two employees, e

1

and
e
2

, such that e
1

is linked with e
2

through the association-end supervisedBy.
Suppose also that e

1

has role Worker and e
2

has role Supervisor. Clearly,
for caller = e

2

and self = e
1

, the expression self .supervisedBy = caller
evaluates to true in this scenario. ut

Example 23 Consider the following question: Is there any scenario in
which someone with role Supervisor is allowed to change its own salary?

4.3. Analyzing security models 113

Notice that in any scenario in which someone is requesting to change its
own salary, the values of self (i.e., the employee whose salary is to be up-
dated) and caller (i.e., the employee who is updating this salary) are the
same. According to Remark 1, the answer to this question is ‘No’, since
the following set of formulas is unsatisfiable:

o2f
data

(Empl1) [{9(caller)9(self)(o2f
true

(caller .role = Supervisor)
^ o2f

true

(self = caller and (self .supervisedBy = caller or false)))}.

Indeed, notice that, in every valid scenario the invariant noSelfSuper eval-
uates to true, which implies that there are no values for caller and self
such that the expressions self = caller and self .supervisedBy = caller both
evaluate to true. ut

Example 24 Consider the following question: Is there any scenario in
which someone with role Supervisor is allowed to change the salary of some-
one who has no supervisor at all? Notice that in any scenario in which
someone (caller) is requesting to change the salary of someone (self) who
has no supervisor at all, the value of self.supervisedBy must be null. Ac-
cording to Remark 1, the answer to this question is ‘No’, since the following
set of formulas is unsatisfiable:

o2f
data

(Empl1) [
{9(caller)9(self)(o2f

true

(caller .role = Supervisor)
^ o2f

true

(self .supervisedBy = null and
(self .supervisedBy = caller or false)))}.

ut

Indeed, notice that, by assumption, caller is always a defined object, i.e.,
it can not be null, and therefore, if the expression self .supervisedBy = null
evaluates to true, then the expression self .supervisedBy = caller evaluates
to false.

In our second block of examples, we are interested in knowing if there
is any scenario in which someone with role r will not be allowed to execute
an action act . Notice that, by Remark 1, the answer will be ‘No’ if and
only if the following set of formulas is unsatisfiable:

o2f
data

(D) [{9(caller)9(self)9(target)9(value)
(o2f

true

(caller .role = r) ^ o2f
true

(¬(Auth(S, r, act))))}.

114 Chapter 4. Application domains

Example 25 Consider the following question: Is there any scenario in
which someone with role Supervisor is not allowed to change the salary of
someone else (including itself)? According to Remark 1, the answer to this
question is ‘Yes’, since the following set of formulas is satisfiable:

o2f
data

(Empl1) [{9(caller)9(self)(o2f
true

(caller .role = Supervisor) ^
¬(o2f

true

(self .supervisedBy = caller or false)))}.

Consider, for example, a scenario with just three employees, e
1

, e
2

, and e
3

such that e
1

is linked with e
2

through the association-end supervisedBy, and
similarly e

2

with e
3

; but e
1

is not linked with e
3

through the association-
end supervisedBy. Suppose that e

2

and e
3

have role Supervisor and e
1

has role Worker. Clearly, for caller = e
3

and self = e
1

, the expression
self .supervisedBy = caller evaluates to false in this scenario. ut

In our third block of examples, we are interested in knowing if there
is any scenario in which nobody with role r will be allowed to execute an
action act. Notice that, by Remark 1, the answer will be ‘No’ if and only
if the following set of formulas is unsatisfiable:

o2f
data

(D) [{9(self)9(target)9(value)8(caller)
(o2f

true

(caller .role = r)) ¬(o2f
true

(Auth(S, r, act))))}.

Example 26 Consider the following question: Is there any scenario in
which nobody with role Supervisor is allowed to change the salary of some-
one else (including itself)? According to Remark 1, the answer to this ques-
tion is ‘Yes’, since the following set of formulas, is satisfiable:

o2f
data

(Empl1) [{9(self)8(caller)(o2f
true

(caller .role = Supervisor))
¬(o2f

true

(self .supervisedBy = caller or false)))}.

Indeed, consider, for example, a scenario with just two employees, e
1

and
e
2

, such that e
1

is linked with e
2

through the association-end supervisedBy.
Suppose that e

1

has role Worker and e
2

has role Supervisor. Clearly, for
self = e

2

, for every value for caller , the expression self .supervisedBy =
caller evaluates to false. ut

In our fourth block of examples, we are interested in knowing if, in every
scenario, there is at least one object upon which nobody with role r will

4.3. Analyzing security models 115

be allowed to execute an action act. Notice that, by Remark 1, the answer
will be ‘Yes’ if and only if the following set of formulas is unsatisfiable:

o2f
data

(D) [{8(self)9(target)9(value)9(caller)
(o2f

true

(caller .role = r) ^ o2f
true

(Auth(S, r, act)))}.

Example 27 Consider the following question: In every scenario, is there
at least one employee whose salary can not be changed by anybody with
role Supervisor? According to Remark 1, the answer to this question is
‘Yes’, since the following set of formulas is unsatisfiable:

o2f
data

(Empl1) [{8(self)9(caller)(o2f
true

(caller .role = Supervisor) ^
o2f

true

(self .supervisedBy = caller or false))}.

Indeed, notice that in every valid scenario the invariant oneBoss evaluates
to true, which means that there is one employee in the scenario who has no
supervisor. In other words, for every valid scenario, we can find a value
for self such that no value for caller can be found such that the expression
self .supervisedBy = caller evaluates to true. ut

Finally, we want to illustrate the importance of taking into account
the invariants of the underlying data model when reasoning about FGAC
policies. Let Empl2 be the data model that results from adding to the
model EmplBasic the invariants noSelfSuper, roleSuper, allRole, plus the
following invariant:

5. Everybody has one supervisor.

This invariant, which we will refer to as allSuper, can be formalized in OCL
as follows:

Employee.allInstances()�>forAll(e|not(e.supervisedBy.oclIsUndefined())).

Example 28 Consider the security model Empl, but this time with Empl2
as its underlying data model. Consider again the question that we asked
ourselves in Example 26: namely, is there any scenario in which nobody
with role Supervisor is allowed to change the salary of someone else (in-
cluding itself)? According to Remark 1, the answer to this question is
di↵erent from Example 26, namely, ‘No’, since the set of formulas is now
unsatisfiable. Indeed, notice that in every valid scenario the invariants
allSuper and roleSuper both evaluate to true, which means that, for each
value for self , we can find a value for caller such that the expressions
self.supervisedBy = caller and caller .role = Supervisor aboth evaluate to
true. ut

116 Chapter 4. Application domains

Finally, let Empl3 be the data model that results from removing from
Empl2, the invariant roleSuper.

Example 29 Consider the security model Empl, but this time with Empl3
as its underlying data model. Consider, once again, the question that we
asked ourselves in Example 26: namely, is there any scenario in which
nobody with role Supervisor is allowed to change the salary of someone
else (including itself)? According to Remark 1, the answer to this question
is now di↵erent from Example 28, namely, ‘Yes’, since the set of formulas is
now satisfiable. Indeed, consider a scenario with three employees e

1

, e
2

, and
e
3

, such that e
1

is linked with e
2

through the association-end supervisedBy,
and similarly e

2

with e
3

and e
3

with e
1

. Suppose also that e
2

and e
3

have
role Supervisor, but e

1

has role Worker. (Notice that, since roleSuper
is not included in Empl3, nothing prevents e

1

from not having the role
Supervisor, despite the fact that it is linked with e

3

through the association-
end supervises.) Clearly, for self = e

3

, for every caller of role Supervisor,
namely, e

2

and e
3

, the expression self .supervisedBy = caller evaluates to
false. ut

We briefly report here on our experience using the Z3 SMT solver [30] to
automatically obtain the answers to the questions posed in the examples in
Section 4.3.3. Table 4.1 below summarizes the results of our experiments.
For each example, we show the time it takes Z3 to return an answer (in
all cases, less than 1 second); the answer that it returns (in all cases, the
expected one); and the first-order model that it generates when the an-
swer is sat, i.e., when it finds that the input set of formulas is satisfiable.
Each model represents a scenario (not necessarily the one discussed in Sec-
tion 4.3.3 for the corresponding example), and here we simply indicate the
number of employees that it contains, which employees are linked through
the association-end supervisedBy, which employees have the role Worker,
which employees have the role Supervisor, which employee is the one re-
questing permission to change the salary (caller), and which employee is the
one whose salary will be changed (self) if permission is granted. We ran our
experiments on a laptop computer, with a 2.66GHz Intel Core 2 Duo pro-
cessor and 4GB 1067 MHz memory, using Z3 version 4.3.2 9d221c037a95-
x64-osx-10.9.2. Finally, the input for Z3 has been generated using our tool
SecProver [89]

4.3. Analyzing security models 117

Ex. Time Answer Interpretation

21 0.078s unsat —–

22 0.107s sat

#employees = 3

supervisedBy = {(e
3

, e
2

), (e
1

, e
2

)}
Worker = {e

1

, e
3

}, Supervisor = {e
2

}
caller = e

2

, self = e
1

23 0.041s unsat —–

24 0.042s unsat —–

25 0.306s sat

#employees = 6

supervisedBy = {(e
1

, e
2

), (e
2

, e
3

), (e
4

, e
2

),

(e
5

, e
3

), (e
6

, e
3

)}
Worker = {e

1

, e
4

, e
5

, e
6

}, Supervisor =
{e

2

, e
3

}
caller = e

3

self = e
1

26 0.078s sat

#employees = 1

supervisedBy = ;
Worker = {e

1

}, Supervisor = ;
self = e

1

27 0.485s unsat —–

28 0.060s unsat —–

29 0.506s sat

#employees = 15

supervisedBy = {(e
1

, e
2

), (e
2

, e
4

), (e
3

, e
4

),

(e
4

, e
6

), (e
5

, e
4

), (e
6

, e
12

), (e
7

, e
4

), (e
8

, e
14

),

(e
9

, e
4

), (e
10

, e
4

), (e
11

, e
15

), (e
12

, e
13

), (e
13

, e
4

),

(e
14

, e
4

), (e
15

, e
4

)}
Worker = all, Supervisor = ;
self = e

2

Table 4.1: Automatic reasoning over the examples 21-29 introduced in
Section 4.3.3.

118 Chapter 4. Application domains

4.3.4 Concluding remarks

We have presented a novel, tool-supported methodology for reasoning
about fine-grained access control policies (FGAC). We have also reported
on our experience using the Z3 SMT solver for automatically proving non-
trivial properties about FGAC policies. The key component of our method-
ology is our mapping from OCL to first-order logic, which allows one to
transform questions about FGAC policies into satisfiability problems in
first-order logic. Although this mapping does not cover the complete OCL
language, our experience shows that the kind of OCL expressions typically
used for specifying invariants and authorization constraints are covered by
our mapping. More intriguing is, however, the issue about the e↵ectiveness
of SMT solvers for automatically reasoning about FGAC policies. Ulti-
mately, we know that there is a trade-o↵ when using SMT solvers. On
the one hand, they are necessarily incomplete and their results depend on
heuristics, which may change. In fact, we have experienced (more than
once) that two di↵erent versions of Z3 may return ‘sat’ and ‘unknown’ for
the very same problem. This is not surprising (since two versions of the
same SMT solver may implement two di↵erent heuristics) but it is certainly
disconcerting. On the other hand, SMT solvers are capable of checking, in
a fully automatic and very e�cient way, the satisfiability of large sets of
complex formulas. In fact, we have examples, involving more than a hun-
dred non-trivial OCL expressions, which are checked by Z3 in just a few
seconds.

4.4 Analyzing privacy models

4.4.1 Facebook: posting and tagging

Nowdays many people consider themselves as “Internet natives” (and
many others are happy “Internet immigrants”): when they need informa-
tion, they naturally open a browser and search for it; when they want to
share information, they naturally post it on a social network. At the same
time, privacy-related issues are a growing concern among users of social
networking sites and among their regulators.

On December 21, 2011, the O�ce of the Irish Data Protection Commis-
sioner (DPC) announced the results of its “thorough and detailed audit of
Facebook’s practices and policies” [101], which includes, among many oth-
ers, the following recommendations and findings [45] (see [46] for a DPC’s
follow-up review):

4.4. Analyzing privacy models 119

Facebook must work towards:(i) simpler explanations of its pri-
vacy policies; (ii) easier accessibility and prominence of these
policies during registration and subsequently; (iii) an enhanced
ability for users to make their own informed choices based on
the available information.

Many policies and procedures that are in operation are not for-
mally documented. This should be remedy.

We recommend that Facebook introduce increased functionality
to allow a poster to be informed prior to posting how broad an
audience will be to view their post and that they be notified
should the setting on that profile be subsequently change to
make a post that was initially restricted available to a broader
audience.

To Facebook’s credit, over the past years, users have been equipped
with new tools and resources which are designed to give them more control
over their so-called Facebook experience, including: an easier way to select
your audience when making a new post; inline privacy control on all your
existing posts; the ability to review tags made by others before they ap-
pear on your profile; a tool to view your profile as someone else would see
it; and more privacy education resources. Despite all these e↵orts, many
users are still concerned about how to maintain their privacy or —in Mark
Zuckerberg’s own words— “rightfully questions how their information was
protected” [102]. In our opinion, there are at least three reasons for this:

Facebook’s privacy policy is hardly trivial to understand. For exam-
ple, when default policies and privacy settings for posting and tagging
conflict to each other (which happens very often) the solution will de-
pend (sometimes in a convoluted way) on the existing relationships
among all the users involved: the owner of the timeline, the creator
of the post, the creators of the tags, and the reader of the post.

Facebook’s privacy policy has been in a constant state of flux over the
past few years [72], and it is prompted to change again in the future.

Facebook’s privacy policy is only informally and partially described
in a collection of privacy education resources and blogs, which cannot
provide a coherent and complete account of this policy.

120 Chapter 4. Application domains

As a consequence, even advanced Facebook users may find di�cult to
understand the actual visibility of a post.

To illustrate our point, we recall first the answers given in Facebook’s
2013 Frequently Asked Questions (FAQ) [35] regarding the policy for post-
ing and tagging:

If I post something on my friend’s timeline, who gets to see it?
When you post something on a friend’s timeline, who else gets to see
it will depend on the privacy settings your friend has selected. If you
want to write something to your friend privately, don’t post it.

What does the ‘Only Me’ privacy setting mean?
Sometimes you might want certain posts visible only to you. Post
with the ‘Only Me’ audience will appear on your timeline and in your
news feed but won’t be visible to anyone else. If you tag someone in
an ‘Only Me’ post, they will be able to see the post.

When I share something, how do I choose can see it?
Before you post, look at the audience selector. Use the dropdown
menu to choose who want to share a post with.

- Public

- Friends (+ friends of anyone tagged)

- Only Me

- Custom (Includes specific groups, friends lists or people you’ve
specified to include or exclude)

Remember: anyone you tag in a post, along their friends may see the
post. (...)
Note: When you post to another person’s timeline, that person con-
trols what audience can view your post.

What is tagging and how does it work?
A tag is a special kind of link. When you tag someone, you create a
link to their timeline. The post you tag the person in is also added
to the person’s timeline. For example, you can tag a photo to show
who’s in the photo or post status update and say who you’re with.
(..)

When you tag someone, they’ll be notified. Also, if you or a friend
tags someone in your post and it’s set to ‘Friends’ or more, the post

4.4. Analyzing privacy models 121

could be visible to the audience you selected plus friends of the tagged
person.
When someone adds a tag of you to a post, your friends may be able
to see this. The tagged post also goes on your timeline.

Now, suppose that Bob, Alice, Ted, and Peter have Facebook profiles:
Bob is a friend of Alice and Ted; Ted is a friend of Peter; Ted is not a
friend of Alice; Peter is not a friend of Alice or Bob; and none of them has
blocked to another.

To appreciate the challenge of understanding the actual visibility of a
post, consider the scenarios S1–S4 below and try to justify (based on the
previously recalled Facebook’s policy) our answers to the given questions.3

S1 Alice posts a photo of herself, Bob and Ted in her timeline, and sets its
audience to ‘Friends’. Then, Alice tags Bob in this photo. Question:
Can Bob see the photo in Alice’s timeline? The answer is Yes.

S2 Alice has set to ‘Only Me’ the default audience for posts made by
her friends in her timeline. Bob posts a photo in Alice’s timeline.
Question: Can Bob see this photo in Alice’s timeline? The answer is
Yes.

S3 Alice posts a photo of herself, Bob and Ted in her timeline, and set its
audience to ‘Friends’. Then, Bob tags Ted in this photo. Question:
Can Peter see this photo in Alice’s timeline? The answer is Yes.

S4 Bob posts a photo of himself, Ted and Alice in Alice’s timeline. Alice
has setting by default ‘Only Me’. Then, Bob tags Ted in this photo.
Question: Can Peter see this photo in Alice’s timeline? The answer
is No.

Clearly, as was explicitly requested in the DPC audit, Facebook should
provide simpler explanations of its privacy policies. Even better, it should
formally document these policies.

4.4.2 Modeling Facebook privacy policy

Data model

Facebook is a social network that “helps you connect and share with
the people in your life.” Each user has a profile that, basically, contains

3These answers were obtained in 2013 on real Facebook scenarios.

122 Chapter 4. Application domains

Figure 4.9: Modeling Facebook’s data model (partial).

his/her personal information (name, surname, email, birthday, gender, and
relationship status) and preferences (about music, television, movies, and
games). Moreover, each user’s timeline can displays posts or stories, status
updates, tags on status updates, comments to posts or stories, photos,
comments to photos, and tags on photos.

We now introduce our data model for Facebook’s profiles, timelines,
posts, and tags. We do not intend to model these features in full, but
rather those aspects that will play a role when modeling Facebook’s policy
for posting and tagging.

In Figure 4.9 we show how we can model, using a UML class diagram,
profiles, timelines, posts, and tags. The following explanations highlight
our main modeling decisions.

Each profile, timeline, post, and tag, is modeled, respectively, as an
instance of the classes Profile, Timeline, Post, and Tag.

4.4. Analyzing privacy models 123

Figure 4.10: Modeling a Facebook scenario.

The method addPost(@post) adds the post @post to the given time-
line.

The method removePost(@post) removes the post @post from the
given timeline.

The method readPost(@post) read the post @post in the given time-
line.

Each photo is a type of post.

Each profile is linked to exactly one timeline via timeline. This is the
profile’s timeline.

Each profile is linked to those who are friends of him or her via friends.

Each profile is linked to those that he or she has blocked via blocks.

Each profile has two attributes, namely, tagReview and contributors.
The attribute tagReview holds the setting chosen by the profile’s
owner for Tag Review. The attribute contributors holds the setting
chosen by the profile’s owner for posting on its timeline.

The method switchTagReview() switches on/o↵ the Tag Review on
the given profile.

124 Chapter 4. Application domains

The method setContributors(@selection) set to @selection the in-
tended post contributors to a given profile’s timeline.

Each post is linked to exactly one timeline via posted. This is the
timeline on which the post is posted.

Each post has two attributes, namely, creator and audience. These
attributes hold, respectively, the post’s creator and the post’s selected
audience.

The method setAudience(@selection) set to @selection the intended
audience for a given post.

The method addTag(@profiling) adds a tag of a profile @profiling to
a given post.

The method removeTag(@tag) removes a tag @tag from a given
post.

The method forbidTag(@profiling) adds a profile @profiling to the list
of profiles that can not be tagged on a given post.

Each tag is linked to exactly one post via post. This is the post on
which the tag appears.

Each tag is linked to exactly one profile via profiling. This is the tag’s
target.

Each tag has one attribute, namely, creator, that holds the tag’s
creator.

Each post is linked to those profiles that can not be tagged in the
post via forbidens.

We show in Figure 4.10 an instance of our data model for Facebook.
It represents the following Facebook scenario: Bob, Alice and Ted have
Facebook profiles. Bob is a friend of Alice, and Ted is a friend of Bob but
not a friend of Alice. Alice’s timeline has a photo that was posted by Bob
in her timeline. Bob has tagged Ted in this photo.

Next we show how we can formalize queries about the Facebook scenario
represented in Figure 4.10 using OCL. In particular,

To query about Bob’s friends, we can use the OCL expression:

4.4. Analyzing privacy models 125

Bob.friends.

This expression evaluates to Set{Alice, Ted} in our sample scenario.

To query about friends of Alice’s friends, we can use the OCL expres-
sion:

Alice.friends.friends�>asSet().

This expression evaluates to Set{Ted, Alice} in our sample scenario
(Alice is certainly a friend of any of her friends).

To query about friends of Alice and their friends, but not including
Alice herself, we can use the OCL expression:

Alice.friends�>union(Alice.friends.friends)�>excluding(Alice).

This expression evaluates to Set{Bob, Ted} in our sample scenario.

To query about whether Ted is tagged in any of the posts appearing
on Alice’s timeline, we can use the OCL expression:

Alice.timeline.posts.tags.profiling�>includes(Ted).

This expression evaluates to true in our sample scenario.

Privacy Policy

We are now ready to model, using SecureUML, the Facebook’s 2013
policy for posting and tagging.4 A word of caution: given the lack of a
formal documentation, our understanding of this policy is based not only
on the o�cial information available at [35] (which is not always complete or
coherent) but also on our own experiments using Facebook on “precooked”
scenarios.

In what follows, for each method in our data model for Facebook, after
describing the policy for executing this method, we will formally specified,
using OCL, the corresponding authorization constraint.

4 For the sake of simplicity, we have omitted some features, including: who is notified
(and how) when a tag is added to a post; how (and by whom) a post’s audience can
be customized; how (and by whom) a post on which someone is tagged can be reviewed
before it appears on his or her profile; how (and by whom) the maximum audience for
posts appearing in someone’s profile because he or she is tagged on them can be selected
by default; how (and by whom) a tag can be added to a post di↵erent from a photo; how
(and by whom) something di↵erent from a user can be tagged.

126 Chapter 4. Application domains

Method: switchTagReview() The next clause describes the policy for
executing the method switchTagReview:

anybody can turn on/o↵ the option of reviewing any tag that anybody
else wants to add to any post published in his or her timeline before
they are actually published.

More formally, the permission to execute the method switchTagReview()
has the following authorization constraint: caller = self.

Method: setContributors(@audience) The following clause describes
the policy for executing the method setContributors:

anybody can choose between not allowing anybody (except him or
herself) to post on his or her timeline or allowing also their friends to
post on his or her timeline.

More formally, the permission to execute the method setContributor(
@audience) has the following authorization constraint: caller = self.

Method: setAudience(@audience) The following clause describes the
policy for executing the method setAudience:

anybody can select the audience for any post that is posted on his or
her timeline.

More formally, the permission to execute the method setAudience(
@audience) has the following authorization constraint: caller = self.post-
ed.profile.

Method: addPost(@post) The following clauses describe the policy
for executing the method addPost:

anybody can add a post on his or her timeline.

anybody can add a post on any of his or her friends’ timelines, if the
owner of this timeline has its preferences for posting set to ‘Friends’.

More formally, the permission to execute the method addPost(@post)
has the following authorization constraint:

caller = self.profile or (self.profile.contributors = ’Friends’
and self.profile.friends�>includes(caller)).

4.4. Analyzing privacy models 127

Method: removePost(@post) The following clause describes the pol-
icy for executing the method removePost:

anybody can remove a post that he or she has posted on a timeline.

More formally, the permission to execute the method removePost(@p-
ost) has the following authorization constraint: caller = @post.creator.

Method: addTag(@profiling) The following clauses describe the pol-
icy for executing the method addTag:

anybody can add a tag of him or herself, or of any of his or her friends,
on a post that is posted on his or her timeline, unless this friend has
previously untagged him or herself from this post.

anybody can add a tag of him or herself, or of any of his or her friends,
on a post that is posted on a timeline, unless the owner of the timeline
has switched ‘On’ the tag review preferences and he or she is not the
owner of the timeline, or unless this friend has previously untagged
him or herself from this post.

More formally, the permission to execute the method addTag(@profiling)
has the following authorization constraint:

((caller=@profiling or caller.friends�>includes(@profiling))
and caller=self.posted.profile and self.forbidens�>excludes(@profiling))

or ((caller=@profiling or caller.friends�>includes(@profiling))
and self.posted.profile.tagReview=false

and self.forbidens�>excludes(@profiling)).

Method: removeTag(@tag) The following clauses describe the policy
for executing the method removeTag:

anybody can remove any tag of him or her on a post.

anybody can remove any tag from a post that he or she has posted
on a timeline.

anybody can remove any tag that he or she has added to a post.

More formally, the permission to execute the method removeTag(@tag)
has the following authorization constraint:

caller = @tag.profiling
or caller = @tag.post.creator or caller = @tag.creator.

128 Chapter 4. Application domains

Method: forbidTag(@profiling) The following clause describes the
policy for executing the method forbidTag:

anybody can forbid anybody else to tag him or her again on a post.

More formally, the permission to execute the method forbidTag(@profi-
ling) has the following authorization constraint: caller = @profiling.

Method: readPost(@post) The following clauses describe the policy
for executing the method readPost:

anybody can read any post that is posted on his or her timeline.

anybody can read any post that was posted by him or her on a time-
line, unless he or she is blocked by the owner of the timeline.

anybody can read any post that has its audience selected to ‘Friends’,
if he or she is a friend of the owner of the timeline.

anybody can read any post that has its audience selected to ‘Friend-
sOfFriends’, if he or she is a friend of the owner of the timeline, or
a friend of a friend of the owner of the timeline, unless he or she is
blocked by the owner of the timeline.

anybody can read any post that has its audience selected to ‘Public’,
unless he or she is blocked by the owner of the timeline.

anybody can read any post, if he or she is tagged on this post, unless
he or she is blocked by the owner of the timeline.

anybody can read any post that has its audience selected to ‘Friends’
and was created by the owner of the timeline, if he or she is a friend
of somebody tagged on the post, unless he or she is blocked by the
owner of the timeline.

More formally, the permission to execute the method readPost(@post)
has the following authorization constraint:

caller = self.profile
or (caller= @post.creator and self.profile.blocks�>excludes(caller))
or (@post.audience = ’Friends’ and self.profile.friends�>includes(caller))
or (@post.audience = ’FriendsOfFriends’
and (self.profile.friends�>includes(caller)

4.4. Analyzing privacy models 129

or self.profile.friends.friends�>includes(caller))
and self.profile.blocks�>excludes(caller))

or (@post.audience = ’Public’ and self.profile.blocks�>excludes(caller))
or (@post.tags.profiling�>includes(caller)

and self.profile.blocks�>excludes(caller))
or (@post.audience = ’Friends’ and @post.creator = self.profile
and @post.tags.profiling.friends�>includes(caller)
and self.profile.blocks�>excludes(caller)).

Next we validate our modeling of the policy for executing the method
readPost, using the scenarios S1–S4 that we introduced in Section 4.4.1.
Clearly, if our model is correct, the answers obtained in our real experiments
about the visibility of the posts in these scenarios should correspond to the
results of evaluating the method readPost’s authorization constraint on the
corresponding instances of our data model for Facebook.

Recall that Bob is a friend of Alice and Ted; Ted is a friend of Peter;
Ted is not a friend of Alice; Peter is not a friend of Alice or Bob; and none
of them has blocked to another.

S1 Alice posts a photo of herself, Bob and Ted in her timeline, and
sets its audience to ‘Friends’. Then, Alice tags Bob in this photo.
Question: Can Bob see the photo in Alice’s timeline? The answer is
Yes, because Alice has set her default audience to ‘Friends’ and Bob
is a friend of Alice. Indeed, the readPost’s authorization constraint
evaluates to true in this scenario, since

(@post.audience = ’Friends’
and self.profile.friends�>includes(caller))

evaluates to true when replacing @post by Alice’s photo, caller by
Bob, and self by Alice’s timeline.

S2 Alice has set to ‘Only Me’ the default audience for posts made by
her friends in her timeline. Bob posts a photo in Alice’s timeline.
Question: Can Bob see this photo in Alice’s timeline? The answer
is Yes, because Bob is the person who posted the photo and Bob is
not blocked by Alice. Indeed, the readPost’s authorization constraint
evaluates to true in this scenario, since

(caller = @post.creator and self.profile.blocks�>excludes(caller))

130 Chapter 4. Application domains

evaluates to true when replacing @post by Alice’s photo, caller by
Bob, and self by Alice’s timeline.

S3 Alice posts a photo of herself, Bob and Ted in her timeline, and set its
audience to ‘Friends’. Then, Bob tags Ted in this photo. Question:
Can Peter see this photo in Alice’s timeline? The answer is Yes.
because the audience selected by Alice is ‘Friends’ and, therefore,
after Bob tags Ted the audience is extended to Ted and his friends.
Indeed, the readPost’s authorization constraint evaluates to true in
this scenario, since

(@post.audience = ’Friends’ and @post.creator = self.profile
and @post.tags.profiling.friends�>includes(caller)
and self.profile.blocks�>excludes(caller)).

evaluates to true when replacing @post by Alice’s photo, caller by
Peter, and self by Alice’s timeline.

S4 Bob posts a photo of himself, Ted and Alice in Alice’s timeline. Alice
has setting by default ‘Only Me’. Then, Bob tags Ted in this photo
Question: Can Peter see this photo in Alice’s timeline? The answer
is No, because the audience selected by Alice by default is ‘Only Me’,
and Peter is neither the person who posted the photo, nor the person
who is tagged in the photo. Indeed, the readPost’s authorization
constraint evaluates to false in this scenario, when replacing @post
by Alice’s photo, caller by Peter, and self by Alice’s timeline.

Next, we show how we can adjust our model to changes. Facebook’s
privacy policy has been in a constant state of flux over the past years [72].
This is certainly the case for Facebook’s policy for tagging and posting,
which is now explained in its 2014 FAQ [36] as follows:

When someone adds a tag to a photo or post I shared, who can see
it?
When someone adds a tag to something you shared, it’s visible to:
1. The audience you chose for the post or photo. 2. The person
tagged in the post, and their friends. If you’d like, you can adjust
this visibility. You can select Custom, and uncheck the Friends of
those tagged box.

4.4. Analyzing privacy models 131

Clearly, the possibility of not sharing a post with friends of those tagged
in the post was not an option in 2013. In fact, if we consider again the sce-
narios S1–S4, we notice that our answers to the questions about the visibil-
ity of the posts in these scenarios remain valid, except for scenario S3: ac-
cording to the new Facebook’s policy for tagging and posting, the question
about whether Peter can see or not the photo in Alice’s timeline depends
on whether Alice has checked or not the box ‘Friends of those tagged’ in
her photo.

To adjust our SecureUML model of Facebook’s privacy policy to this
latest change, we need first to modify our data model for Facebook in
order to represent whether or not a post will be visible also to the tagged
profile’s friends. We do so by adding to the class Post a new Boolean
attribute audExt. Then, we modify accordingly the readPost(@post)’s
authorization constraint. In particular, we need to replace the last clause
in the previous description of the policy for executing the method readPost
by the following clause:

anybody can read any post that has its audience selected to ‘Friends’
and was created by the owner of the timeline, if he or she is a friend
of somebody tagged on the post, unless he or she is blocked by the
owner of the timeline or the owner has unchecked the box ‘Friends of
those tagged’.

More formally, the permission to execute the method readPost(@post) will
now have the following authorization constraint:

(caller = self.profile)
or (caller = @post.creator and self.profile.blocks�>excludes(caller))
or (@post.audience = ’Friends’ and self.profile.friends�>includes(caller))
or (@post.audience = ’FriendsOfFriends’

and (self.profile.friends�>includes(caller)
or (self.profile.friends.friends�>includes(caller)

and self.profile.blocks�>excludes(caller))
or (@post.audience = ’Public’ and self.profile.blocks�>excludes(caller))
or (@post.tags.profiling�>includes(caller)

and self.profile.blocks�>excludes(caller))
or (@post.audience = ’Friends’ and @post.creator = self.profile
and @post.tags.profiling.friends�>includes(caller)
and self.profile.blocks�>excludes(caller)
// the following conjunct is new
and @post.audExt).

132 Chapter 4. Application domains

4.4.3 Analyzing Facebook privacy policy

SecureUML has a well-defined semantics that supports formal reasoning
about its models. In particular, given a SecureUML model M , we can
check that nobody, for which a given property P holds, will be allowed to
execute a certain method X. Notice that this corresponds to proving that
there is no valid instance of the underlying data model for which both the
method X’s authorization constraint and the property P evaluate to true.
As explained before, we can automatically transform this type of problems
into first-order satisfiability problems, and then use automated SMT solver
tools to attempt to solve them.

We have applied this methodology to prove, as an example, that nobody
will be allowed to read a post in a timeline if this person is blocked by the
timeline’s owner. First, we have formalized, using OCL, the properties that
every valid instance of our data model for Facebook will have to satisfy, for
example:

If someone is blocked by someone else, then the former can not remain
friend of the latter. Formally,

Profile.allInstances()�>forAll(p, q|
p.blocks�>includes(q) implies p.friends�>excludes(q)).

Nobody can be blocked by itself. Formally,

Profile.allInstances()�>forAll(p|p.blocks�>excludes(p)).

Second, we have formalized, using OCL, the property of being blocked by
the timeline’s owner as follows:

self.profile.blocks�>includes(caller),

where caller refers to the person who wants to read the post and self refers
to the timeline where the posted is posted.

Finally, after generating the corresponding satisfiability problem, we
have used the SMT solver Z3 [30] to automatically prove the desired prop-
erty, i.e., that nobody will be allowed to read a post in a timeline if this
person is blocked by the timeline’s owner.

4.5. Checking data invariants preservation 133

4.4.4 Concluding remarks

To the best of our knowledge, no previous attempts have been made
to rigorously formalize the Facebook privacy policy and, in particular, its
policies for posting and tagging. There are, at least, two good reasons for
this. First, as the DPC audit [45] has pointed out, “many policies and pro-
cedures that are in operation [in Facebook] are not formally documented.”
Second, the Facebook privacy policy has significantly changed over the past
few years [72], in ways not always well-explained, as Zuckerberg has to ad-
mit in his blog [102]: “I’m the first to admit that we’ve made a bunch of
mistakes. In particular (...) poor execution as we transitioned our privacy
model two years ago.”

Now, assuming that the Facebook privacy policy is formally docu-
mented, what will be the challenges for modeling this policy? Basically,
as [90] discussed in detail, for modeling social networking privacy it is cru-
cial to use a language able to formalize fine-grained access control policies.
In other words, a basic role-based access control language, as proposed
in [54], will only do part of the job. Thanks to its tight-integration with
OCL, the language SecureUML [11] can deal with fine-grained access con-
trol policies, as we have shown in our case study. Of course, there are
other options, but not many when having a formal semantics becomes a
hard requirement. For example, XACML [63], which can be considered the
standard choice for describing privacy policies, lacks of a formal semantics.
In fact, due to this limitation, [90] uses the language Z [94] for specifying
fine-grained access control policies. Although an interesting option, we pre-
fer to use SecureUML instead of Z because SecureUML already has “built-
in” the notions of role, permission, methods, resources, and authorization
constraints, which, would have to be “encoded” (more or less, naturally)
along with the policies, if we were to use Z. Furthermore, SecureUML is
designed to support model-driven security [12].

4.5 Checking data invariants preservation

Data-management applications are focused around so-called CRUD ac-
tions that create, read, update, and delete data from persistent storage.
These operations are the building blocks for numerous applications, for
example dynamic websites where users create accounts, store and update
information, and receive customized views based on their stored data. Typ-
ically, the application’s data is required to satisfy some properties, which
we may call the application’s data invariants.

134 Chapter 4. Application domains

Figure 4.11: EHR: a sample data model.

We introduce here a tool-supported, model-based methodology for prov-
ing that all the actions possibly triggered by a data-management applica-
tion will indeed preserve the application’s data invariants. Moreover, we
report on our experience applying this methodology on the same applica-
tion for managing medical records that we introduced in in Section 4.1.5

In a nutshell, our approach consists of the following three steps. Suppose
that we are interested in checking whether a sequenceA = hact

1

, . . . , actn�1

i
of data actions preserves an invariant � of an application’s data model D.
We proceed as follows: (Step 1) From the data model D, we automatically
generate a new data model Film(D, n) for representing all sequences of n
states of D. Notice that some of these sequences will correspond to exe-
cutions of A, but many others will not. (Step 2) We constrain the model
Film(D, n) in such a way that it will represent exactly the sequences of
states corresponding to executions of A. We do so by adding to Film(D, n)
a set of constraints Execute(D, act i, i) capturing the execution of the ac-
tion act i upon the i-th state of a sequence of states, for i = 1, . . . , n � 1.
(Step 3) We prove that, for every sequence of states represented by the
model Film(D, n) constrained by

Sn�1

i=1

Execute(D, act i, i), if the invariant
� is satisfied in the first state of the sequence then it is also satisfied in the
last state of the sequence.

4.5.1 Modeling sequences of states

A data model provides a data-oriented view of a system, the idea being
that each state of a system can be represented by an instance of the system’s
data model. Here we introduce a special data model: one whose instances
do not represent states of a system but instead sequences of states of a
system.

Example 30 Consider the data model EHR shown in Figure 4.11. It con-
sists of three classes: Patient, Department, and Doctor.

5For the sake of simplicity, however, the underlying data model in this case does not
make use of class inheritance.

4.5. Checking data invariants preservation 135

Figure 4.12: Inst EHR: a sample object model.

Patient It represents patients. The doctor treating a patient is set in the
attribute doc and the department where a patient is treated is set in
the attribute dept.

Department It represents departments. The doctors working in a de-
partment are linked to the department through the association-end
doctors.

Doctor It represents doctor’s information. Departments where a doctor
works are linked to the doctor’s information through the association-
end doctorDepts.

ut

Example 31 Consider the object model Inst EHR shown in Figure 4.12.
It represents an instance of the data model EHR shown in Figure 4.11. In
particular, Inst EHR represents a state of the system in which there are only
two departments, namely, Cardiology and Digestive; one doctor, namely,
J Smith, working for both departments; and one patient, M Perez, treated
by doctor J Smith in the department of Cardiology. ut

Example 32 Suppose that the following data invariants are specified for
the data model EHR in Figure 4.11:

1. Each patient is treated by a doctor.

Patient.allInstances()�>forAll(p|not(p.doc.oclIsUndefined()))

2. Each patient is treated in a department.

Patient.allInstances()�>forAll(p|not(p.dept.oclIsUndefined()))

136 Chapter 4. Application domains

3. Each patient is treated by a doctor who works in the department
where the patient is treated.

Patient.allInstances()
�>forAll(p|p.doc.doctorDepts�>includes(p.dept))

Clearly, the object model Inst EHR in Figure 4.12 is a valid instance of
EHR with respect to the data invariants (1)–(3), since they evaluate to true
in Inst EHR. ut

Next, we introduce the notion of filmstrips to model sequences of states
of a system. Given a data model D, aD-filmstrip model of length n, denoted
by Film(D, n), is a new data model which contains the same classes as D,
but now:

To represent that an object may have di↵erent attribute values and/or
links in each state, each class c contains n di↵erent “copies” of each
of the attributes and association-ends that c has in D. The idea is
that, in each instance of a filmstrip model, the value of the attribute
at (respectively, association-end as) for an object o in the i-th state
of the sequence of states modelled by this instance is precisely the
value of the i-th “copy” of at (respectively, as).

To represent that an object may exist in some states, but not in
others, each class c contains n “copies” of a new boolean attribute
st. The idea is that, in each instance of a filmstrip model, an object
o exists in the i-th state of the sequence of states modelled by this
instance if and only if the value of the i-th “copy” of st is true.

A formal definition of filmstrip models is given here:6

Definition 8 (Filmstrip models) Let D be a data model, D = hC,AT ,
AS ,ASOi. Let n be a positive number. We denote by Film(D, n) the model
of the sequences of length n of D-object models. Film(D, n) is defined as
follows:

Film(D, n) = hC, (n⇥{st}) [(n⇥AT), (n⇥AS), (n⇥ASO)i

where

(n⇥{st}) = {(st i)
(c,Boolean) | c 2 C ^ 1 i n}.

6For the sake of simplicity, we are not considering here multiplicities or generalizations.

4.5. Checking data invariants preservation 137

Figure 4.13: Film(EHR,3): a filmstrip model of length 3 of EHR.

(n⇥AT) = {(at i)
(c,t) | at (c,t) 2 AT ^ 1 in}.

(n⇥AS) = {(as i)
(c,c0) | as(c,c0) 2 AS ^ 1 in}.

(n⇥ASO) = {((as i)
(c,c0), (as

0 i)
(c0,c)) | (as(c,c0), as 0

(c0,c)) 2 ASO ^ 1
in}.

Example 33 In Figure 4.13 we show the filmstrip model Film(EHR, 3).
Consider now the three instances of EHR shown in Figure 4.14. The first
instance (Inst#1 EHR) corresponds to a state where there are two depart-
ments, Cardiology and Digestive, and one doctor, J Smith, working in
Digestive. The second instance (Inst#2 EHR) is like the first one, except
that now J Smith also works in Cardiology and, moreover, there is a pa-
tient, M Perez, who is treated in Cardiology, but has no doctor assigned
yet. Finally, the third instance (Inst#3 EHR) is like the second one, ex-
cept that it does not contain any doctor. In Figure 4.15 we show how the
sequence hInst#1 EHR, Inst#2 EHR, Inst#3 EHRi can be represented as an
instance of Film(EHR, 3). ut

Finally, we introduce a function Project(), which we will use when rea-
soning about filmstrip models. Let D be a data model and let � be an
expression. Project(D,�, i) “projects” the expression � so as to refer to the
i-th state in the sequences represented by the instances of Film(D, n), for
n � i.

A formal definition of Project() is given here:

138 Chapter 4. Application domains

(a) Inst#1 EHR (b) Inst#2 EHR (c) Inst#3 EHR

Figure 4.14: Three instances of EHR.

Definition 9 (Project) Let D = hC,AT ,AS ,ASOi be a data model. Let
n be positive number. Let � be a D-expression. For 1 i n, Proj(D,�, i)
is the Film(D, n)-expression that “projects” the expression � so as to refer
to the i-th state in the sequences represented by the instances of Film(D, n).
Proj(D,�, i) is obtained from � by executing the following:

For every class c 2 C, replace every occurrence of c.allInstances() by
c.allInstances() �>select(o|o.st (i)).

For every attribute at
(c,t) 2 AT, replace every occurrence of .at by

.at (i).

For every link as
(c,c0) 2 AS, replace every occurrence of .as by .as (i).

Example 34 Consider the data invariants (1) and (3) presented in the

4.5. Checking data invariants preservation 139

Figure 4.15: An instance of Film(EHR, 3).

Example 32. Then,

Project(EHR, (1), 1) =

Patient.allInstances()�>select(p|p.st 1)
�>forAll(p|not(p.doc 1.oclIsUndefined()))

Project(EHR, (3), 1) =

Patient.allInstances()�>select(p|p.st 1)
�>forAll(p|p.doc 1.doctorDepts 1�>includes(p.dept 1))

Recall that Patient.allInstances()�>select(p|p.st 1) refers to the instances
of the entity Patient which exist in the first state of the sequences of states
modelled by Film(EHR, 3), while .doc 1 and .doctorDepts 1 refer, respec-
tively, to the value of the attribute doc and the links through the association-
end doctorDepts of the instances of the entity Patient also in the first state
of the aforementioned sequences of states. ut

4.5.2 Modeling sequences of data actions

As explained before, given a data model D and a positive number n, the
instances of the filmstrip model Film(D, n) represent sequences of n states
of the system. Notice, however, that, in the sequence of states represented
by an instance of Film(D, n), the (i + 1)-th state does not need to be the
result of executing an atomic data action upon the i-th state.

Let D be a data model and let act be a CRUD data action. In this
section we introduce a set of boolean OCL expressions, Execute(D, act , i),

140 Chapter 4. Application domains

which capture the relations that hold between the i-th and (i+1)-th states
of a sequence, if the latter is the result of executing the action act upon
the former. We provide first the expressions that capture the di↵erences
between the two states, (i+ 1)-th and i-th, and afterwards the expressions
that capture their commonalities.

As expected, we define Execute(D, act , i) by cases. We consider the
following atomic data actions: create or delete an object of an entity; read
the value of an attribute of an object; and add or remove a link between
two objects. 7

Action create. For act the action of creating an instance new of an entity
c, the di↵erence between the states (i+ 1)-th and i-th can be captured by
the following expressions in Execute(D, act , i):

new .st i = false.

new .st (i+ 1) = true.

new.at (i+ 1) = null, for every attribute at of the entity c.

new.as (i+ 1)�>isEmpty(), for every association-end as of the entity
c.

Action delete. For act the action of deleting an instance o of an entity
c, the di↵erence between the states (i+ 1)-th and i-th can be captured by
the following expressions in Execute(D, act , i):

o.st i = true.

o.st (i+ 1) = false.

o.at (i+ 1) = null, for every attribute at of the entity c.

o.as (i+ 1)�>isEmpty(), for every association-end as of the entity c.

c0.allInstances().as 0 (i+1)�>excludes(o) for every entity c0, and every
association-end as 0 between c0 and c.

7The tool supports also conditional data actions, where the conditions are boolean
OCL expressions. Notice that, when act is a conditional data action, we must also include
in Execute(D, act , i), the expression that results from “projecting” its condition, using
the function Project(), so as to refer to the i-th state in the sequence.

4.5. Checking data invariants preservation 141

Action update. For act the action of updating an attribute at of an
instance o of an entity c with a value v, the di↵erence between the states
(i+1)-th and i-th can be captured by the following expression in Execute(D,
act , i):

o.at (i+ 1) = v.

Action add. For act the action of adding an object o0 to the objects that
are linked with an object o through an association-end as (whose opposite
association-end is as 0), the di↵erence between the states (i+1)-th and i-th
can be captured by the following expressions in Execute(D, act , i):

o.as (i+ 1) = (o.as i)�>including(o0).

o0.as 0 (i+ 1) = (o0.as 0 i)�>including(o).

Action remove. For act the action of removing an object o0 to the ob-
jects that are linked with an object o through an association-end as (whose
opposite association-end is as 0), the di↵erence between the states (i+1)-th
and i-th can be captured by the following expressions in Execute(D, act , i):

o.as (i+ 1) = (o.as i)�>excluding(o0).

o0.as 0 (i+ 1) = (o0.as 0 i)�>excluding(o).

Finally, we list below the expressions in Execute(D, act , i) that capture
the commonalities between the states (i + 1)-th and i-th, for the case of
the action updating an attribute at of an instance o of and entity c; the
expressions for the other cases are entirely similar.

d.allInstances()�>select(x|x.st (i+ 1)) = d.allInstances()�>select(x|
x.st i), for every entity d.

d.allInstances()�>select(x|x.st i)�>forAll(x|x.at 0 (i+1) = x.at 0 i), for
every entity d and every attribute at 0 of d, such that at 0 6= at .

c.allInstances()�>select(x|x.st i)�>excluding(o)�>forAll(x|x.at (i+1)
= x.at i).

d.allInstances()�>select(x|x.st i)�>forAll(x|x.as (i + 1) = x.as i) for
every entity d, and every association-end as of d.

142 Chapter 4. Application domains

4.5.3 Checking data invariants preservation

Invariants are properties that are required to be satisfied in every sys-
tem state. Recall that, in the case of data-management applications, the
system states are the states of the applications’ persistence layer, which
can only be changed by executing the sequences of data actions associated
to the applications’ GUI events. We can now formally define the invariant-
preservation property as follows:

Definition 10 (Invariant preservation) Let D be a data model, with
invariants �. Let A = hact

1

, . . . , actn�1

i be a sequence of data actions.
We say that A preserves an invariant � 2 � if and only if

8F 2 JFilm(D, n),
n�1[

i=1

Execute(D, act i, i)K .(4.1)

JProject(D,
^

 2�
(), 1) implies Project(D,�, n)KF = true,

i.e., if and only if, for every A-valid instance F of Film(D, n) the follow-
ing holds: if all the invariants in � evaluate to true when “projected” over
the first state of the sequence of states represented by F , then the invari-
ant � evaluates to true as well when “projected” over the last state of the
aforementioned sequence.

By Remark 1, we can reformulate Definition 10 as follows: Let D be a
data model, with invariants �. Let A = hact

1

, . . . , actn�1

i be a sequence
of data actions. We say that A preserves an invariant � 2 � if and only if
the following set is unsatisfiable:

o2f
data

(Film(D, n)) [{o2f
true

(�) | � 2
n�1[

i=1

Execute(D, act i, i)}(4.2)

[o2f
true

(not(Project(D,
^

 2�
(), 1) implies Project(D,�, n))).

In other words, using our mapping from OCL to first-order logic, we can
transform an invariant-preservation problem (4.1) into a first-order satis-
fiability problem (4.2). And by doing so, we open up the possibility of
using SMT solvers to automatically (and e↵ectively) check the invariant-
preservation property of non-trivial data-management applications, as we
will report in the next section.

4.5. Checking data invariants preservation 143

Case Study

In this section we report on a case study about using SMT solvers
—in particular, Z3 [30]— for proving the invariant-preservation property.
All the proofs have been ran on a machine with an Intel Core2 processor
running at 2.83 GHz with 8GB of RAM, using Z3 versions 4.3.1 and 4.3.2.
The Z3 input files are available at [96] where we also indicate which files
are to be ran with which version.

The data-management application for this case study is the eHealth
Record Management System (EHRM) developed, using ActionGUI, within
the European Network of Excellence on Engineering Secure Future Internet
Software Services and Systems (NESSoS) [62]. The EHRM application
consists of a web-based system for electronic health record management.
The data model contains 18 entities, 40 attributes, and 48 association-ends.
It also contains 86 data invariants. For the sake of illustration, we can group
the EHRM’s data invariants in the following categories:

G1. Properties about the population of certain entities. E.g., There must
be at least a medical center.

MedicalCenter.allInstances()�>notEmpty().

G2. Properties about the definedness of certain attributes. E.g., The name
of a professional cannot be left undefined.

Professional.allInstances()�>forAll(p|not(p.name.oclIsUndefined())).

G3. Properties about the uniqueness of certain data. E.g.: There cannot
be two di↵erent doctors with the same licence number.

Doctor.allInstances()�>forAll(d1,d2|d1<>d2
implies d1.licence<>d2.licence).

G4. Properties about the population of certain association-ends. E.g.,
Every medical center should have at least one employee.

MedicalCenter.allInstances()�>forAll(m|m.employees�>notEmpty()).

G5. Other properties: E.g., A patient should be treated in a department
where its assigned doctor works.

144 Chapter 4. Application domains

Sequences Acts. Conds.

Invariants Time

af
fe

ct
ed

pr
es

er
ve

d

vi
ol

at
ed

min. max. avge.

Create an
administrative

8 9 18 18 0 0.03s 0.20s 0.05s

Create a nurse 10 11 22 22 0 0.03s 0.22s 0.06s

Create a
doctor

11 12 25 24 1 0.03s 27.00s 0.07s

Reassign a
doctor

2 6 2 2 0 6.88s 11.10s 8.94s

Reassign a
nurse

2 6 2 1 1 0.10s 17.01s 8.55s

Register
patient

30 6 28 26 2 0.03s 0.20s 0.05s

Move a patient 2 3 3 3 0 0.03s 0.03s 0.03s

Total 100 96 4

Figure 4.16: EHRM case study: summary.

Patient.allInstances()
�>forAll(p|p.doctor.doctorDepartments�>includes(p.department)).

In our case study, we have checked the invariant-preservation property
for seven non-trivial sequences of data actions: namely, those that create
a new admin sta↵, a new nurse, or a new doctor; those that reassign a
doctor or a nurse to another department; and those that register a new
patient, and move a patient to a di↵erent ward. The result of our case
study is shown in Figure 4.16. In particular, for each of the aforementioned
sequences of actions, we indicate:

The number of data actions (and conditions) in the sequence.

The number of data invariants (potentially) a↵ected by the actions

4.5. Checking data invariants preservation 145

in the sequence, indicating how many of them we have proved to be
preserved by the sequence and how many to be violated.8

The minimum, maximum, and average time taken for proving that
the sequence preserves (or violates) each of the (potentially) a↵ected
invariants.

4.5.4 Concluding remarks

There are two main lessons that we can learn from this case study. The
first lesson is that, when modelling non-trivial data-management applica-
tions, it is indeed not di�cult to make errors, or at least omissions. In
fact, the four violated invariants showed in Figure 4.16 arise because the
EHRM’s modeler inadvertently omitted some conditions for the execution
of the corresponding sequence of actions. As an example, for the case of
creating a doctor, the invariant that is violated is “Every doctor has a
unique licence number”, and it is so because the modeler omitted a condi-
tion for checking that the licence number of the doctor to be created must
be di↵erent from the licence numbers of the doctors already in the system.
As another example, for the case of reassigning a nurse, the invariant that
is violated is “There should be at least one nurse assigned to each depart-
ment”, and this is produced because the modeler omitted a condition for
checking that the department where the nurse to be reassigned currently
works must have at least two nurses working in it.

The second lesson that we have learned is that, using our method-
ology, and, in particular, using Z3 as the back-end prover, the invariant-
preservation property can indeed be e↵ectively checked for non-trivial data-
management applications. As reported in Figure 4.16, we are able to auto-
matically prove that, for each of the sequences of actions under considera-
tion, all the a↵ected invariants are either preserved or violated. This means
that Z3 does not return “unknown” for any of the 100 checks that we have
to perform (corresponding to the total number of a↵ected invariants), de-
spite the fact that in all these checks there are (many) quantifiers involved.
Moreover, regarding performance, Figure 4.16 shows that, in most of the
cases we are able to prove the invariant-preservation property in less than
100ms (worst case: 27s). This great performance is achieved even though,
for each case, Z3 needs to check the satisfiability of a first-order theory

8Interestingly, when an invariant is violated, Z3 returns also an instance of the given
filmstrip model responsibly for this violation. This counterexample can then be used to
fix accordingly the given sequence of actions.

146 Chapter 4. Application domains

containing on average 190 declarations (of function, predicate and constant
symbols), 20 definitions (of predicates), and 550 assertions. Overall, these
results improve very significantly those obtained in a preliminary, more sim-
ple case study reported in [29], where some checks failed to terminate after
several days, and some others took minutes before returning an answer.
However, we should take these new results with a grain of salt. Indeed, we
are very much aware (even painfully so) that our current results depend on
the (hard-won) interaction between (i) the way we formalize sequences of
n states, OCL invariants, actions’ conditions, and actions’ executions, and
(ii) the heuristics implemented in the verification back-end we use, namely
Z3. This state-of-a↵airs is very well illustrated by the fact that, as indi-
cated before, we have had to use two di↵erent versions of Z3 (4.3.1 and
4.3.2) to complete our case study for the following reason: there are some
checks for which one of the versions returns “unknown”, while the other
version returns either “sat” or “unsat”; but there are some other checks for
which precisely the opposite occurs.

147

Chapter 5
Related work

© Joaqúın S. Lavado, QUINO. Toda Mafalda, Penguin Random House, España

To facilitate the presentation, we will divide this chapter into four sec-
tions. First, we will discuss work related to our mapping from OCL queries
to the procedural language extensions of SQL (SQL-PL). Secondly, we will
discuss work related to our mapping from OCL constraints to many-sorted
first-order logic. Finally, we will discuss work related to two of our ap-
plications domains, namely, analyzing security models and checking data
invariants preservation. (The related work for the other three applications
domains is less substantial and was already discussed when presenting the
corresponding domains.)

5.1 Mapping OCL as a query language

There have been several interesting attempts to map OCL into SQL,
each with its own limitations and shortcomings. [91] supports only OCL

148 Chapter 5. Related work

class invariants and, partially, the operators forAll, select, and exists. [92]
generates SQL code from OCL as a part of Enterprise Architect, but only
for simple expressions; in particular, it cannot with deal with OCL itera-
tor expressions or sequences. [7] explores a model transformation approach
from UML to CWM and from OCL to a patterns metamodel, but the idea
has not been further developed. [19] introduces a di↵erent strategy for
query translation. Instead of a compile time translation, it proposes a run-
time query translation from model level languages like EOL, to persistent
query languages like SQL. Each EOL query is splitted up into subexpres-
sions that are handled by the appropriate implementation classes. The idea
has not yet applied for translating OCL to SQL. [14] explores how partici-
pation constraints defined on binary associations, e.g. ‘xor’ constraint, can
be expressed at two di↵erent levels, in OCL as a constraint language and
as triggers in SQL. No mapping from OCL to SQL expressions has been
proposed yet. [21] proposes OCL transformations rules to SQL for some
simple OCL expressions. Complex expressions are not covered yet. [73]
proposes a translation from OCL to a logic called Event-Dependency Con-
straints (EDC). From EDC it generates SQL statements with a pattern-
based approach. No information is provided regarding the subset of the
OCL language supported by the translation.

The most interesting comparison can be done, however, with the map-
ping OCL2SQL presented in [87, 31, 32]. OCL2SQL only supports boolean
OCL expressions. The main idea behind OCL operators is the following:
given a context, all elements of the query that do not satisfy the defined
condition are returned. The tansformation rules are described in [87]. Ba-
sically, it use a generic OCL pattern to map the expression into a generic
MySQL pattern.

OCL pattern

context: Class
inv: OCL boolean expression

MySQL pattern

select *
from Class
where not OCL2SQL(OCL boolean expression)

The mapping proposed there does not faithfully represent some key
properties of the evaluation semantics of OCL. In particular, by relying on
the SQL in operator, it erroneously removes duplicates from bag-collections.

5.1. Mapping OCL as a query language 149

Level 1 size, +, -, *, max, min, -(unary), abs, floor, round, size, and,
or, xor, implies, not, <=, <,>, <>, concat.

Level 2 mod y div.

Level 3 toInteger, toReal y toString.

Level 4 toBoolean, toUpper, toLower, substring.

Table 5.1: Support of OCL2SQL for primitive operators

Level 1 includes, excludes, isEmpty, notEmpty.

Level 2 excludesAll, includesAll, symmetricDi↵erence, intersection,
union(set,bag.), =(set,bag.).

Level 3

Level 4 including y excluding

Table 5.2: Support of OCL2FOL for operators over collections

In our case, to preserve the evaluation semantics of OCL, we use SQL left
joins instead of the in operator.

In particular, in the implementation of the OCL2SQL tool, we have
found we have found that there are for level of supported OCL operators:

Level 1: are supported by the OCL2SQL parser and the code gener-
ated is correct with respect to the semantics of the OCL operators,

Level 2: are supported by the OCL2SQL parser and the code gener-
ated is not correct with respect to the semantics of the OCL operators,
or it is not syntactically correct in MySQL,

Level 3: are supported by the OCL2SQL parser but no code is gen-
erated,

Level 4: are not supported by the OCL2SQL parser.

Tables 5.1 and 5.2 summarize the operators over primitive types and
the operators on sets and multi-sets that are currently in each level.

Sorted sets and sequence types are not supported by OCL2SQL. With
respect to the iterators, we have noticed that there are some implementation
problems: for example, they do not generate code for source�>collect(p|p)
or source�>collect(p|p.atr) expressions. Also, if the body of an iterator

150 Chapter 5. Related work

contains a comparison involving the iterator variable, and that variable
occurs on the right side of the comparison, only an incomplete query is
obtained.

To the best of our knowledge the idea of mapping OCL iterators to
stored procedures was first proposed in [87], but it was not developed af-
terwards.1.

Finally, [22] seems to be the only work dealing with the translation
from SQL to OCL up to date. It is motivated by the concern of expressing
database integrity constraints as business rules in a more abstract language.
In the process of business rules identification, it describes the mapping be-
tween SQL SELECT statements and certain type of PL blocks, and the
equivalent OCL expressions. The mapping focuses in handling SQL pro-
jections, joins, conditions, functions, group by and having clauses.

5.2 Mapping OCL as a constraint language

With the goal of providing support for UML/OCL reasoning, di↵erent
mappings from OCL to other formalisms have been proposed in the past. In
each case, the chosen target formalism imposes a di↵erent trade-o↵ between
expressiveness, termination, automation, and completeness. In particular,
most proposals have disregarded OCL undefinedness in order to more easily
map OCL to a two-valued formalism.

In Table 5.3 we summarize the di↵erent mappings from UML/OCL to
other formalism. They are grouped as follows. The first group (G1) includes
mappings that do not not support OCL constraints. FiniteSAT [56] uses
constrained generalization sets for reasoning about finite satisfiability of
UML class diagrams. DL [8] encodes the problem of finite model reasoning
in UML classes as a constraint satisfaction problem (CSP). MathForm [95]
formalizes UML class diagrams using set and partial functions.

The second group (G2) includes mappings that support OCL constraints,
but that do not consider OCL undefinedness. UMLtoCSP [17] translates

1 “Das Ergebnis des hier vorgestellten Abbildungsmusters kann für einen Teilausdruck
nicht direkt in das Abbildungsergebnis eines anderen Teilausdrucks eingesetzt werden.
Die Kombinationstechnik wird nicht formal beschrieben.” [87, pag.59] [. . .] “Es ist in
dieser Arbeit nicht gelungen, eine übersichtliche und vollständig formale Darstellung für
die prozeduralen Abbildungsmuster zu finden.” [87, pag.112].

In our own translation: “The result of the mapping model presented here may not apply
a part of the expression directly into the result of another subexpression.The combination
technique is not formally described.” [. . .] “This work did not succeed to find a concise
and complete formal representation for procedural mapping patterns.”

5.2. Mapping OCL as a constraint language 151

Mapping Target formalism

G1

FiniteSAT [56] System of Linear Inequalities

DL [8] Description Logics, CSP

MathForm [95] Mathematical Notation

G2

UMLtoCSP [17] CSP

EMFtoCSP [41] CSP

AuRUS [78] FOL

OCL2FOL [20] FOL

OCL-Lite [77] Description Logics

BV-SAT [93] Relation Logic

PVS [79] HOL

CDOCL-HOL [3] HOL

KeY [2] Dynamic Logic

Object-Z [82] Object-Z

UML-B [57] B

G3
UML2Alloy [4] Relation Logic

USE [39] Relation Logic

G4
HOL-OCL [16] HOL

OCL2FOL+ [26] FOL

Table 5.3: Other mappings from UML/OCL to other formalism.

UML class diagrams and OCL constraints into CSP. EMFtoCSP [41] is an
evolution of UMLtoCSP, which supports EMF models; AuRUS [78, 85]
supports verifying and validating UML/OCL conceptual schemes using
first-order logic; OCL2FOL [20] also maps UML/OCL class diagrams to
first-order logic. OCL-Lite [77] maps a fragment of OCL to DL, ensuring
termination. BV-SAT [93] encodes UML/OCL into bit vectors, and solves
UML/OCL verification problems based on Boolean satisfiability. PVS [79]
and CDOCL-HOL [3] uses higher-order logic: in particular, they map UM-
L/OCL to the specification languages of the theorem provers PVS and
Isabelle, respectively. KeY [2] uses dynamic logic, a multi modal exten-
sion of first-order logic; Object-Z [82] maps UML/OCL into Object-Z; and

152 Chapter 5. Related work

finally UML-B [57] maps UML/OCL to the B formal specification.
The third group (G3) includes mappings that support OCL constraints

and consider null-related undefinedness, but not invalid-related undefined-
ness. UML2Alloy [4] and USE [39, 51] map UML/OCL to relational logic
and use the SAT-based constraint solver KodKod for solving UML/OCL
verification problems.

The fourth group (G4) includes mappings that support OCL constraints
and OCL undefinedness. OCL2MSFOL belongs to this group. OCL-HOL
[16] embeds UML/OCL in the specification language of the interactive
theorem provers Isabelle. It supports the full OCL language, but it re-
quires advanced user interaction to solve UML/OCL verification problems.
OCL2FOL+ [26] maps UML/OCL to first-order logic and uses SMT solvers
to attempt to solve automatically UML/OCL verification problems.

Next, we compare more closely OCL2MSFOL with the mappings in
groups G3 and G4, and, in particular, with USE and HOL-OCL, from a
practical point of view.

With regard to HOL-OCL, there are two significant di↵erences. On
the one hand, HOL-OCL uses an interactive theorem prover, Isabelle, for
UML/OCL reasoning, which requires advanced knowledge (and possibly
time) from the part of the user. OCL2MSFOL, on the contrary, uses SMT
solvers with finite model finding capabilities, which, as we have shown,
e�ciently support automated UML/OCL reasoning. On the other hand,
HOL-OCL supports the full OCL language (in fact, it can be considered as
providing ’de facto’ formal semantics for OCL), while OCL2MSFOL has a
number of limitations, as we have discussed before, in supporting the OCL
language.

With regards to USE, the di↵erence, from a practical point of view,
is that its mapping is designed for using SAT-based constraint solvers,
while ours targets SMT-solvers. In practice, this means that while USE-
based proofs are only valid for instances up to a given size, our proofs are
valid for all possible instances. This is indeed the key advantage of using
SMT-solvers instead of SAT-based constraint solvers for reasoning about
UML/OCL models.

5.3 Analizing security models

Many proposals exist for reasoning about RBAC policies, each one using
a di↵erent logic or formalism, including the so-called “default” logic [99],
modal logic [59], higher-order logic [5], C-Datalog [9], first-order logic [49,

5.3. Analizing security models 153

15], and description logic [100]. To the best of our knowledge none of these
proposals has been properly extended to cope with fine-grained access con-
trol (FGAC) policies. In recent years, however, there has been a growing
interest in finding appropriate formalisms and frameworks for specifying
and analysing FGAC policies. [42] have proposed an interesting frame-
work for specifying and reasoning about FGAC policies, called Lithium.
It is based on a decidable fragment of (multi-sorted) first-order logic. Dif-
ferently from OCL, this logic does not consider undefined values, which,
based on our experience, is something crucial when formalizing properties
of the system states. We are not aware of case studies that have been
carried out using Lithium. [52, 53] propose a domain-specific language
for specifying role-based policies which is based on UML and OCL. For
the purpose of analyzing these policies, they propose to use SAT solvers,
and, in particular the one implemented in Alloy [47]. Di↵erently from SMT
solvers, Alloy requires the search space to be bounded. In the context of
XACML [65], there exists a XACML profile for the specification of RBAC
policies [64]. However, no methods have been proposed for reasoning about
policies written with this profile. Also, it is unclear whether this profile can
be extended to cope with fine-grained access control policies. To address
the first concern, [44] propose an extension of the XACML profile for RBAC
based on OWL. This approach supports the use of an OWL-DL reasoner
for deciding about RBAC policies within XACML. More interestingly, [80]
have recently proposed a new syntax and semantics for XACML, for the
purpose of supporting formal reasoning about XACML policies. One of the
challenges here is to formalize the di↵erent algorithms for enforcing policy
rules which are available in XACML. [80] formalize the majority of these
algorithms, and propose two new algorithms (one of which is very close to
the semantics of SecureUML.) Another challenge is to formalize the con-
cepts of obligations and advices in XACML, but they are not covered by
[80]. Finally, with respect to methods for reasoning about XACML poli-
cies, [80] propose to explore the use of SMT solvers, but no experiments
are reported yet.

In a nutshell, our proposal di↵ers from other approaches in that: (i)
we use SecureUML for modeling FGAC policies, and (ii) we use a mapping
from OCL to first-order for reasoning about these policies. In our opinion,
our approach has two main advantages: (i) the reasoning about FGAC
policies can take into account the properties of the system states, since
OCL is the language that we use both for specifying the invariants in the
data model and the authorization constraints in the security model; and (ii)

154 Chapter 5. Related work

the reasoning about FGAC policies can be done automatically (although
sometimes may fail to find a result), since the mapping that we use for
translating OCL into first-order logic supports the e↵ective application of
SMT solvers over the generated formulas.

5.4 Checking data invariants preservation

In the past decade, there has been a plethora of proposals for model-
based reasoning about the di↵erent aspects of a software system. For the
case of the static or structural aspects of a system, the challenge lies in
mapping the system’s data model, along with its data invariants, into a
formalism for which reasoning tools may be readily available. On the other
hand, for the case of model-based reasoning about a system’s dynamic as-
pects the main challenge lies in finding a suitable formalism in which to
map the models specifying how the system can change over time. To this
extent, it is worthwhile noticing the di↵erent attempts made so far to ex-
tend OCL with temporal features (see [50] and references). In our case,
however, we follow a di↵erent line of work, one that is centered around the
notion of filmstrips [33, 97]. A filmstrip is, ultimately, a way of encoding a
sequence of snapshots of a system. Interestingly, when this encoding uses
the same language employed for modelling the static aspects of a system,
then the tools available for reasoning about the latter can be used for rea-
soning about the former. This is precisely our approach, as well as the one
underlying the proposals presented in [48] and [40]. However, the di↵erence
between our approach and those are equally important. It has its roots in
our di↵erent way of mapping data models and data invariants (OCL) into
first-order logic [20, 26], which allows us to e↵ectively use SMT solvers for
reasoning about them, while [40] and [48] resort to SAT solvers. As a con-
sequence, when successful, we are able to prove that all possible executions
of a given sequence of data actions preserve a given data invariant. On the
contrary, [40] can only validate that a given execution preserves a given in-
variant, while [48] can prove that all possible executions of a given sequence
of data action preserve a given invariant, but only if these executions do
not involve more than a given number of objects and links. Finally, [93]
proposes also the use of filmstrip models and SMT solvers for model-based
reasoning about the dynamic aspects of a system. This proposal, however,
at least in its current form, lacks too many details (including non-trivial
examples) for us to be able to provide a fair comparison with our approach.

155

Chapter 6
Conclusions and future work

© Joaqúın S. Lavado, QUINO. Toda Mafalda, Penguin Random House, España

In the work presented here we have defined two key, novel mappings for
dealing with UML models (or UML-like models) that use OCL as a con-
straint and query language. Moreover, we have discussed the applicability
and benefits of our mappings with a number of non-trivial benchmarks and
case studies.

The first mapping we have introduced is a code-generator from OCL
queries to the procedural language extensions of SQL (SQL-PL), which
generates queries that can be e�ciently executed in the target language.
Our mapping follows the seminal ideas presented in our previous work [34,
25], with three substantial changes that greatly increase its applicability:

Each OCL expression is mapped to a single stored procedure, which
can afterwards be executed by a single call-statement.

156 Chapter 6. Conclusions and future work

When needed, temporary tables are used within store procedures to
hold intermediate values.

The three-valued evaluation semantics of OCL is considered.

Moreover, the definition of our mapping makes it now easier to target dif-
ferent relational database management systems, both open source and pro-
prietary.

The second mapping we have presented here is a translation from OCL
constraints to many-sorted first-order logic, which generates logical expres-
sions whose satisfiability can be e�ciently checked using Satisfiability Mod-
ule Theories (SMT) solvers. This mapping follows seminal ideas presented
in our previous work [20, 26], but successfully overcomes the limitarjtions
encountered in our previous proposals. First, it accepts as input a signifi-
cantly larger subset of the UML/OCL language; in particular, it supports
UML generalization, along with the generalization-related OCL operators.
Secondly, it generates as output a class of satisfiability problems that are
amenable to checking by using SMT solvers with finite model finding capa-
bilities. This second point has proven to be key in practice, since pure SMT
solvers would often return unknown when used along our mappings, as a
consequence of two facts: first, that non-trivial OCL constraints contain ex-
pressions that are naturally mapped to quantified formulas (since they refer
to all the objects in a class, for example), and, secondly, that techniques
for dealing with quantified formulas in SMT are generally incomplete.

There are many interesting lines of work that we would like to pursue
from here.

As for our mapping from OCL to SQL-PL, we plan to integrate it with
CASE tools supporting the development life-cycle in the context of UML-
like models, as to ease the work of developers and architects. Moreover, we
plan to use our mapping as a starting point to address the backward trace-
ability from SQL to OCL, which has been hardly studied so far. Finally, we
plan to study the feasibility of mapping OCL to NoSQL databases. Yet, we
are aware of the di�culty of such a mapping, given the lack of a common
standard among the di↵erent NoSQL databases.

Regarding our mapping from OCL to many-sorted first-order logic,
we would like to emphasize that our results ultimately depend on the
(hard-won) positive logical interaction between (i) our formalization of
UML/OCL in MSFOL, and (ii) the heuristics implemented in the SMT
solver. This means, in particular, that changes in the SMT solver’s heuris-
tics may have consequences (hopefully positive) in the applicability of our

157

mapping. It also means that a deeper understanding from our part of the
SMT solver’s heuristics may lead us to redefine our mapping in the future.
As for the current limitations of our mapping from OCL to many-sorted
first-order logic, we would like to comment the following. The key limitation
of OCL2MSFOL comes from the fact that expressions defining collections
are mapped, as we have explained, to predicates. Although these new
predicates are defined so as to capture the property that distinguishes the
elements belonging to the given collection, this is not su�cient for reasoning
about the size of this collection, or about the multiplicity or the ordering
of its elements. Because of this, OCL2MSFOL cannot support, in general,
size-expressions or expressions of collection types di↵erent from set types.
Fortunately, we are not finding this limitation hindering the applicability
of our mapping. Other limitations of OCL2MSFOL are mostly due to time
constraints, and will be soon corrected, including the current lack of sup-
port for attributes of type Boolean and for multiplicities of the form [n..m],
where n, m are natural numbers. In the first case, the corresponding terms
t of type Boolean would be replaced by formulas of the form t = >. In
the second case, the data model would be extended with the corresponding
invariants. Notice that it is also fairly trivial to extend our mapping to
support n-ary associations.

Finally, in the area of application domains, we plan to define, fol-
lowing our methodology for analyzing security policies, formal mappings
between the FGAC languages and frameworks supported by commercial
DBMS (e.g., Oracle, IBM/DB2, Microsoft SQL Server and Teradata) and
SecureUML. These mappings will allow us to apply our methodology also
when reasoning about FGAC policies in commercial DBMS. Also, building
upon our methodology for analyzing privacy policies, we envision the design
and development of new, more powerful privacy tools which, as requested
by the DPC audit to Facebook[45], will provide an “enhanced ability for
users to make their own informed choices based on the available informa-
tion”. These tools will help to carry out, among other things, the rigorous
comparisons between privacy policies of di↵erent social networking sites.
Finally, we plan to extend our methodology for checking data invariants
preservation to deal also with complex, non-atomic data action. The idea
is to model the execution of these complex actions using OCL, as we have
done for the case of CRUD actions. A more challenging goal, however, is
to extend our methodology to deal with iterations over collection of data
elements. The idea here is to integrate in our methodology the notion of
iteration invariant, taking advantage of the fact that the collection over

158 Chapter 6. Conclusions and future work

which the sequence of data actions must be iterated can be also specified
using OCL.

159

Bibliography

[1] ActionGUI Project, 2016. http://www.actiongui.org/.

[2] W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle,
W. Menzel, W. Mostowski, and P. H. Schmitt. The KeY system: Integrat-
ing object-oriented design and formal methods. In FASE 2002, Grenoble,
France, Proceedings, volume 2306 of LNCS, pages 327–330. Springer, 2002.

[3] T. Ali, M. Nauman, and M. Alam. An accessible formal specification of
the UML and OCL meta-model in isabelle/HOL. In Multitopic Conference,
2007. INMIC 2007. IEEE., pages 1–6. IEEE, 2007.

[4] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A challeng-
ing model transformation. In MoDELS 2007, Nashville, USA, Proceedings,
volume 4735 of LNCS, pages 436–450. Springer, 2007.

[5] A. W. Appel and E. W. Felten. Proof-carrying authentication. In J. Moti-
walla and G. Tsudik, editors, ACM Conference on Computer and Commu-
nications Security, pages 52–62. ACM, 1999.

[6] M. Arjona, R. Harjani, A. Muoz, and A. Maa. An Engineering Process to
Address Security Challenges in Cloud Computing. In 3rd ASE International
Conference on Cyber Security, 2014.

[7] A. Armonas and L. Nemuraité. Pattern Based Generation of Full-Fledged
Relational Schemas From UML/OCL Models. Information Technology and
Control, 35(1), 2006.

[8] A. Artale, D. Calvanese, and Y. A. Ibáñez-Garćıa. Checking full satisfiability
of conceptual models. In DL 2010, Waterloo, Ontario, Canada, volume 573
of CEUR Workshop Proceedings, 2010.

[9] J. Bacon, K. Moody, and W. Yao. A model of OASIS role-based access
control and its support for active security. ACM Trans. Inf. Syst. Secur.,
5(4):492–540, 2002.

160 BIBLIOGRAPHY

[10] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer,
editors, Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of
LNCS, pages 171–177. Springer, 2011.

[11] D. Basin, J. Doser, and T. Lodderstedt. Model driven security: from UML
models to access control infrastructures. ACM Trans. on Software Engineer-
ing and Methodology, 15(1):39–91, 2006.

[12] D. A. Basin, M. Clavel, and M. Egea. A decade of model-driven security. In
R. Breu, J. Crampton, and J. Lobo, editors, SACMAT, pages 1–10. ACM,
2011.

[13] D. A. Basin, M. Clavel, M. Egea, M. A. G. de Dios, and C. Dania. A model-
driven methodology for developing secure data-management applications.
IEEE Trans. on Software Engineering, 40(4):324–337, 2014.

[14] D. Berrabah and F. Boufarès. Constraints checking in UML class diagrams:
SQL vs OCL. In R. Wagner, N. Revell, and G. Pernul, editors, Database and
Expert Systems Applications, 18th International Conference, DEXA 2007,
Regensburg, Germany, September 3-7, 2007, Proceedings, volume 4653 of
LNCS, pages 593–602. Springer, 2007.

[15] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework
for reasoning about access control models. ACM Trans. Inf. Syst. Secur.,
6(1):71–127, 2003.

[16] A. D. Brucker and B. Wol↵. HOL-OCL: A formal proof environment for
UML/OCL. In FASE 2008, Budapest, Hungary. Proceedings, volume 4961
of LNCS, pages 97–100. Springer, 2008.

[17] J. Cabot, R. Clarisó, and D. Riera. UMLtoCSP: a tool for the formal verifi-
cation of UML/OCL models using constraint programming. In Conference
on ASE 2007, Atlanta, Georgia, USA, pages 547–548. ACM, 2007.

[18] D. Calvanese, S. Hartmann, and E. Teniente. Automated Reasoning on
Conceptual Schemas (Dagstuhl Seminar 13211). Dagstuhl Reports, 3(5):43–
77, 2013.

[19] X. D. Carlos, G. Sagardui, and S. Trujillo. MQT, an approach for run-
time query translation: From EOL to SQL. In A. D. Brucker, C. Dania,
G. Georg, and M. Gogolla, editors, Proceedings of the 14th International
Workshop on OCL and Textual Modelling co-located with 17th International
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS 2014), Valencia, Spain, September 30, 2014., volume 1285 of CEUR
Workshop Proceedings, pages 13–22. CEUR-WS.org, 2014.

[20] M. Clavel, M. Egea, and M. A. G. de Dios. Checking unsatisfiability for
OCL constraints. Electronic Communications of the EASST, 24:1–13, 2009.

BIBLIOGRAPHY 161

[21] S. C. Cortázar. Transformación de las restricciones OCL de un es-
quema UML a consultas de SQL. trabajo de fin de grado. Tech-
nical report, Universidad Carlos III de Madrid, 2012. http:

//e-archivo.uc3m.es/bitstream/handle/10016/16799/TFG_Sergio_

Casillas_Cortazar.pdf?sequence=1&isAllowed=y.

[22] V. Cosentino. A model-based approach for extracting business rules out of
legacy information systems. PhD thesis, École des mines de Nantes, France,
2013.

[23] CUMULUS Project. http://cumulus-project.eu/.

[24] D4.2: Tools supporting CUMULUS-aware engineering process v1. http:

//cumulus-project.eu/index.php/public-deliverables.

[25] C. Dania. MySQL4OCL: Un compilador de OCL a MySQL, 2011. Master
thesis. Universidad Complutense de Madrid.

[26] C. Dania and M. Clavel. OCL2FOL+: Coping with undefinedness. In
OCL@MoDELS, volume 1092 of CEUR Workshop Proceedings, pages 53–
62, 2013.

[27] C. Dania and M. Clavel. OCL2MSFOL: a mapping to many-sorted first-
order logic for e�ciently checking the satisfiability of OCL constraints. In
B. Baudry and B. Combemale, editors, Proceedings of the ACM/IEEE 19th
International Conference on Model Driven Engineering Languages and Sys-
tems, Saint-Malo, France, October 2-7, 2016, pages 65–75. ACM, 2016.

[28] C. Dania and M. Egea. SQLPL4OCL tool, 2016. http://software.imdea.
org/~dania/tools/sqlpl4ocl.

[29] M. A. G. de Dios, C. Dania, D. Basin, and M. Clavel. Model-driven develop-
ment of a secure eHealth application. In Engineering Secure Future Internet
Services, volume 8431 of LNCS, pages 97–118. Springer, 2014.

[30] L. M. de Moura and N. Bjørner. Z3: An e�cient SMT solver. In TACAS,
volume 4963 of LNCS, pages 337–340. Springer, 2008.

[31] B. Demuth and H. Hußmann. Using UML/OCL Constraints for Relational
Database Design. In R. B. France and B. Rumpe, editors, UML, volume
1723 of LNCS, pages 598–613. Springer, 1999.

[32] B. Demuth, H. Hußmann, and S. Loecher. OCL as a Specification Language
for Business Rules in Database Applications. In M. Gogolla and C. Kobryn,
editors, UML, volume 2185 of LNCS, pages 104–117. Springer, 2001.

[33] D. D’Souza and A. Wills. Catalysis. Practical Rigor and Refinement: Ex-
tending OMT, Fusion, and Objectory. Technical report, http://catalysis.org,
1995.

[34] M. Egea, C. Dania, and M. Clavel. MySQL4OCL: A stored procedure-based
MySQL code generator for OCL. ECEASST, 36, 2010.

http://e-archivo.uc3m.es/bitstream/handle/10016/16799/TFG_Sergio_Casillas_Cortazar.pdf?sequence=1&isAllowed=y
http://e-archivo.uc3m.es/bitstream/handle/10016/16799/TFG_Sergio_Casillas_Cortazar.pdf?sequence=1&isAllowed=y
http://e-archivo.uc3m.es/bitstream/handle/10016/16799/TFG_Sergio_Casillas_Cortazar.pdf?sequence=1&isAllowed=y
http://cumulus-project.eu/
http://cumulus-project.eu/index.php/public-deliverables
http://cumulus-project.eu/index.php/public-deliverables
http://software.imdea.org/~dania/tools/sqlpl4ocl
http://software.imdea.org/~dania/tools/sqlpl4ocl

162 BIBLIOGRAPHY

[35] Facebook. Facebook Help Center. 2013. http://www.facebook.com/help.

[36] Facebook. Facebook Help Center. 2014. http://www.facebook.com/help.

[37] I. O. for Standardization. ISO/IEC 9075-(1–10) Information technology –
Database languages – SQL, 2011. http://www.iso.org/iso/home/store/
catalogue_tc/catalogue_detail.htm?csnumber=63555.

[38] M. Gogolla, F. Büttner, and J. Cabot. Initiating a benchmark for UML and
OCL analysis tools. In TAP 2013, Budapest, Hungary. Proceedings, volume
7942 of LNCS, pages 115–132. Springer, 2013.

[39] M. Gogolla, F. Büttner, and M. Richters. USE: A UML-based specification
environment for validating UML and OCL. SCP, 69(1-3):27–34, 2007.

[40] M. Gogolla, L. Hamann, F. Hilken, M. Kuhlmann, and R. B. France. From
application models to filmstrip models: An approach to automatic validation
of model dynamics. In H. Fill, D. Karagiannis, and U. Reimer, editors,
Modellierung, volume 225 of LNI, pages 273–288. GI, 2014.

[41] C. A. González, F. Büttner, R. Clarisó, and J. Cabot. EMFtoCSP: a tool
for the lightweight verification of EMF models. In S. Gnesi, S. Gruner,
N. Plat, and B. Rumpe, editors, Proceedings of FormSERA 2012, Zurich,
Switzerland, June 2, 2012, pages 44–50. IEEE, 2012.

[42] J. Y. Halpern and V. Weissman. Using first-order logic to reason about
policies. ACM Trans. Inf. Syst. Secur., 11(4), 2008.

[43] R. Harjani, M. Arjona, A. Muoz, and A. Maa. Towards an Engineering Pro-
cess for Certified Multilayer Cloud Services, Layered Assurance Workshop.
In ASAC, 2013.

[44] N. Helil and K. Rahman. Extending XACML profile for RBAC with semantic
concepts. 2010.

[45] Irish Data Protection Commissioner. Facebook Ireland Ltd. Report of Audit,
December 2011. http://www.dataprotection.ie/documents/facebook%

20report/final%20report/report.pdf.

[46] Irish Data Protection Commissioner. Facebook Ireland Re-Audit Report,
September 2012. http://www.dataprotection.ie/documents/press/

Facebook_Ireland_Audit_Review_Report_21_Sept_2012.pdf.

[47] D. Jackson. Alloy: a new technology for software modelling. In J. Ka-
toen and P. Stevens, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 8th International Conference, TACAS 2002, Proceed-
ings, volume 2280 of LNCS, page 20. Springer, 2002.

[48] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006.

http://www.facebook.com/help
http://www.facebook.com/help
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63555
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63555
http://www.dataprotection.ie/documents/facebook%20report/final%20report/report.pdf
http://www.dataprotection.ie/documents/facebook%20report/final%20report/report.pdf
http://www.dataprotection.ie/documents/press/Facebook_Ireland_Audit_Review_Report_21_Sept_2012.pdf
http://www.dataprotection.ie/documents/press/Facebook_Ireland_Audit_Review_Report_21_Sept_2012.pdf

BIBLIOGRAPHY 163

[49] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible
support for multiple access control policies. ACM Trans. Database Syst.,
26(2):214–260, 2001.

[50] B. Kanso and S. Taha. Temporal constraint support for OCL. In K. Czar-
necki and G. Hedin, editors, Software Language Engineering, volume 7745
of LNCS, pages 83–103. Springer Berlin Heidelberg, 2013.

[51] M. Kuhlmann and M. Gogolla. From UML and OCL to relational logic and
back. In R. B. France, J. Kazmeier, R. Breu, and C. Atkinson, editors, Model
Driven Engineering Languages and Systems - 15th International Conference,
MODELS 2012. Proceedings, volume 7590 of LNCS, pages 415–431. Springer,
2012.

[52] M. Kuhlmann, K. Sohr, and M. Gogolla. Comprehensive two-level analy-
sis of static and dynamic RBAC constraints with UML and OCL. In Fifth
International Conference on Secure Software Integration and Reliability Im-
provement, SSIRI 2011, pages 108–117. IEEE, 2011.

[53] M. Kuhlmann, K. Sohr, and M. Gogolla. Employing UML and OCL for
designing and analysing role-based access control. Mathematical Structures
in Computer Science, 23(4):796–833, 2013.

[54] J. Li, Y. Tang, C. Mao, H. Lai, and J. Zhu. Role based access control for so-
cial network sites. In Pervasive Computing (JCPC), 2009 Joint Conferences
on, pages 389 –394, dec. 2009.

[55] MagicDraw Modelling Tool. http://www.nomagic.com/products/

magicdraw.html.

[56] A. Maraee and M. Balaban. E�cient reasoning about finite satisfiability
of UML class diagrams with constrained generalization sets. In ECMDA-
FA 2007, Haifa, Israel, Proccedings, volume 4530 of LNCS, pages 17–31.
Springer, 2007.

[57] R. Marcano-Kameno↵ and N. Lévy. Using B formal specifications for analysis
and verification of UML/OCL models. In Workshop on consistency problems
in UML-based software development. UML Conference, Dresden, Germany,
2002.

[58] MariaDB, 2016. https://mariadb.org/.

[59] F. Massacci. Reasoning about security: a logic and a decision method for
role-based access control. In D. M. Gabbay, R. Kruse, A. Nonnengart, and
H. J. Ohlbach, editors, Qualitative and Quantitative Practical Reasoning,
First International Joint Conference on Qualitative and Quantitative Prac-
tical Reasoning ECSQARU-FAPR’97, Proceedings, volume 1244 of LNCS,
pages 421–435. Springer, 1997.

[60] Microsoft. SQL Server, 2016. https://www.microsoft.com/es-es/

server-cloud/products/sql-server/overview.aspx.

http://www.nomagic.com/products/magicdraw.html
http://www.nomagic.com/products/magicdraw.html
https://mariadb.org/
https://www.microsoft.com/es-es/server-cloud/products/sql-server/overview.aspx
https://www.microsoft.com/es-es/server-cloud/products/sql-server/overview.aspx

164 BIBLIOGRAPHY

[61] MySQL 5.7 Reference Manual. http://dev.mysql.com/doc/refman/5.7/.

[62] NESSoS. The European Network of Excellence on Engineering Se-
cure Future internet Software Services and Systems, 2010. http://www.

nessos-project.eu.

[63] OASIS. eXtensible Access Control Markup Language (XACML),
2010. http://docs.oasis-open.org/xacml/3.0/xacml-3.

0-core-spec-cs-01-en.pdf.

[64] OASIS. XACML core and hierarchical role-based access control. http:

//docs.oasis-open.org/xacml/3.0/, 2010.

[65] OASIS. Extensible access control markup language (XACML). http://

docs.oasis-open.org/xacml/3.0/, 2013.

[66] Object Management Group. Model Driven Architecture Guide v. 1.0.1.
Technical report, OMG, 2003. OMG documento disponible en http:

//www.omg.org/cgi-bin/doc?omg/03-06-01.

[67] Object Management Group. Unified Modeling Language, Mar 2011. OMG
documento disponible en http://www.omg.org/spec/UML/2.4.

[68] Object Management Group. Object constraint language specification version
2.4. Technical report, OMG, 2014. http://www.omg.org/spec/OCL/2.4.

[69] OCL2FOL+ Project, 2014. http://software.imdea.org/~dania/tools/

ocl2folplus.

[70] OCL2MSFOL Project, 2016. http://software.imdea.org/~dania/

tools/ocl2msfol.

[71] Object Management Group. http://www.omg.org.

[72] N. O’Neill. Infographic: The History of Facebook’s Default Privacy Settings.
http://www.allfacebook.com.

[73] X. Oriol and E. Teniente. Incremental checking of OCL constraints through
SQL queries. In A. D. Brucker, C. Dania, G. Georg, and M. Gogolla, editors,
Proceedings of the 14th International Workshop on OCL and Textual Mod-
elling co-located with 17th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2014), Valencia, Spain, Septem-
ber 30, 2014., volume 1285 of CEUR Workshop Proceedings, pages 23–32.
CEUR-WS.org, 2014.

[74] PARIS Project. http://www.paris-project.org/.

[75] PL/pgSQL - SQL procedural language, 2016. https://www.postgresql.

org/docs/9.2/static/plpgsql.html.

http://dev.mysql.com/doc/refman/5.7/
http://www.nessos-project.eu
http://www.nessos-project.eu
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf
http://docs.oasis-open.org/xacml/3.0/
http://docs.oasis-open.org/xacml/3.0/
http://docs.oasis-open.org/xacml/3.0/
http://docs.oasis-open.org/xacml/3.0/
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/UML/2.4
http://www.omg.org/spec/OCL/2.4
http://software.imdea.org/~dania/tools/ocl2folplus
http://software.imdea.org/~dania/tools/ocl2folplus
http://software.imdea.org/~dania/tools/ocl2msfol
http://software.imdea.org/~dania/tools/ocl2msfol
http://www.omg.org
http://www.allfacebook.com
http://www.paris-project.org/
https://www.postgresql.org/docs/9.2/static/plpgsql.html
https://www.postgresql.org/docs/9.2/static/plpgsql.html

BIBLIOGRAPHY 165

[76] N. Przigoda, F. Hilken, J. Peters, R. Wille, M. Gogolla, and R. Drechsler.
Integrating an smt-based modelfinder into USE. In M. Famelis, D. Ratiu,
and G. M. K. Selim, editors, Proceedings of the 13th Workshop on Model-
Driven Engineering, Verification and Validation co-located with ACM/IEEE
19th International Conference on Model Driven Engineering Languages and
Systems (MODELS 2016), Saint-Malo, France, October 3, 2016., volume
1713 of CEUR Workshop Proceedings, pages 40–45. CEUR-WS.org, 2016.

[77] A. Queralt, A. Artale, D. Calvanese, and E. Teniente. OCL-Lite: Finite
reasoning on UML/OCL conceptual schemas. DKE, 73:1–22, 2012.

[78] A. Queralt, G. Rull, E. Teniente, C. Farré, and T. Urṕı. AuRUS: Automated
reasoning on UML/OCL schemas. In Conceptual Modeling - ER 2010, Van-
couver, BC, Canada. Proceedings, pages 438–444, 2010.

[79] L. A. R. Mapping from OCL/UML metamodel to PVS metamodel.

[80] C. D. P. K. Ramli, H. R. Nielson, and F. Nielson. The logic of XACML.
Sci. Comput. Program., 83:80–105, 2014.

[81] A. J. Reynolds. Finite model finding in satisfiability modulo theories. PhD
thesis, University of Iowa, 2013.

[82] D. Roe, K. Broda, and A. Russo. Mapping UML models incorporating OCL
constraints into Object-Z. Technical report, Imperial College of Science,
Technology and Medicine, 2003.

[83] J. Ruiz, A. Rein, M. Arjona, A. Maa, A. Monsifrot, and M. Morvan. Secu-
rity Engineering and Modelling of Set-Top Boxes. In Proc. of ASE/IEEE
BioMedCom, 2012.

[84] J. F. Ruiz, A. Maa, M. Arjona, and J. Paatero. Emergency Systems Mod-
elling using a Security Engineering Process. In Proc. of 3rd Int. Conf. SI-
MULTECH. SciTePress, 2013.

[85] G. Rull, C. Farré, A. Queralt, E. Teniente, and T. Urṕı. AuRUS: explaining
the validation of UML/OCL conceptual schemas. SoSyM, 14(2):953–980,
2015.

[86] A. Sánchez. Formal Verification of Temporal Properties for Parametrized
Concurrent Programs and Concurrent Data Structures. PhD thesis, Univer-
sidad Politécnica de Madrid, Spain, September 2015.

[87] A. Schmidt. Untersuchungen zur Abbildung von OCL-ausdrücken auf SQL.
Master’s thesis, Institut für Softwaretechnik II - Technische Universität Dres-
den, Germany, 1998.

[88] SecFutur Project. http://www.secfutur.eu/.

[89] SecProver, 2014. http://actiongui.org/, see SecProver project.

http://www.secfutur.eu/
http://actiongui.org/

166 BIBLIOGRAPHY

[90] A. Simpson. On the Need for User-Defined Fine-Grained Access Control
Policies for Social Networking Applications. In Proceedings of the workshop
on Security in Opportunistic and SOCial networks, SOSOC ’08, pages 1:1–
1:8, New York, NY, USA, 2008. ACM.

[91] N. Siripornpanit and S. Lekcharoen. An adaptive algorithms translating
and back-translating of object constraint language into structure query lan-
guage. In International Conference on Information and Multimedia Tech-
nology, 2009. ICIMT’09., pages 149–151. IEEE, 2009.

[92] P. Sobotka. Transformation from OCL into SQL, 2012. Master the-
sis. Charles University in Prague. https://is.cuni.cz/webapps/zzp/

download/120076745.

[93] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler. Verifying
UML/OCL models using boolean satisfiability. In DATE 2010, Dresden,
Germany., pages 1341–1344. IEEE, 2010.

[94] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[95] M. Szlenk. Formal semantics and reasoning about UML class diagram. In
DEPCOS-RELCOMEX, pages 51–59, Washington, DC, USA, 2006. IEEE.

[96] Traces Analyzer Project, 2015. http://software.imdea.org/~dania/

tools/tracesAnalyzer.html.

[97] R. Wieringa. A survey of structured and object-oriented software specifica-
tion methods and techniques. ACM Comput. Surv., 30(4):459–527, 1998.

[98] SQL Dialects Reference, 2016. https://en.wikibooks.org/wiki/SQL_

Dialects_Reference/Print_version.

[99] T. Y. C. Woo and S. S. Lam. Authorizations in distributed systems: A new
approach. Journal of Computer Security, 2(2-3):107–136, 1993.

[100] C. Zhao, N. Heilili, S. Liu, and Z. Lin. Representation and reasoning on
RBAC: a description logic approach. In D. V. Hung and M. Wirsing, edi-
tors, Theoretical Aspects of Computing - ICTAC 2005, Second International
Colloquium, Proceedings, volume 3722 of LNCS, pages 381–393. Springer,
2005.

[101] M. Zuckerberg. Facebook and the Irish Data Protection Commission. The
Facebook Blog, Dec. 2011. https://blog.facebook.com.

[102] M. Zuckerberg. Our Commitment to the Facebook Community. The Face-
book Blog, Nov. 2011. https://blog.facebook.com.

Carolina Inés D
ania Flores

M
apping OCL as a Query and Constraint Language

M
apping OCL as a Query and Constraint Language

© Joaquín S. Lavado, QUINO. Toda Mafalda, Penguin Random House, España.

Mapping OCL as a Query
and Constraint Language

Carolina Inés Dania Flores

Traduciendo OCL como
Lenguaje de Consultas y Restricciones

Supervisors:
Manuel García Clavel
Marina Egea González

Facultad de Informática
Universidad Complutense de Madrid

Tesis Doctoral

© Joaquín S. Lavado, QUINO. Toda Mafalda, Penguin Random House, España.

	Contents
	List of Figures
	List of Tables
	Abstract
	Resumen
	Introduction
	Model Driven Architecture (MDA)
	Unified Modeling Language (UML)
	Data models
	Object models

	Object Constraint Language (OCL)
	Outline

	Mapping OCL as a query language
	Procedural extensions of SQL
	From OCL to SQL-PL
	Mapping data models
	Mapping OCL expressions
	The SQL-PL4OCL tool

	Benchmark
	Description
	Results

	Mapping OCL as a constraint language
	From OCL to many-sorted first-order logic
	Mapping data models
	Mapping OCL expressions
	Checking satisfiability
	The OCL2MSFOL tool

	Benchmark
	Description
	Results

	Application domains
	Checking model satisfiability
	The eHealth record management system
	Checking data model satisfiability
	Concluding remarks

	Validating and instantiating metamodels
	The Core Security Metamodel (CSM)
	Validating the Core Security metamodel
	Security enhanced CSM instances
	Concluding remarks

	Analyzing security models
	SecureUML
	A running example
	Analyzing fine-grained access control policies
	Concluding remarks

	Analyzing privacy models
	Facebook: posting and tagging
	Modeling Facebook privacy policy
	Analyzing Facebook privacy policy
	Concluding remarks

	Checking data invariants preservation
	Modeling sequences of states
	Modeling sequences of data actions
	Checking data invariants preservation
	Concluding remarks

	Related work
	Mapping OCL as a query language
	Mapping OCL as a constraint language
	Analizing security models
	Checking data invariants preservation

	Conclusions and future work
	Bibliography

