
1

A Model-Driven Methodology for Developing
Secure Data-Management Applications

David Basin, Manuel Clavel, Marina Egea, Miguel A. Garcı́a de Dios, Carolina Dania

Abstract—We present a novel model-driven methodology
for developing secure data-management applications. System
developers proceed by modeling three different views of the
desired application: its data model, security model, and GUI
model. These models formalize respectively the application’s
data domain, authorization policy, and its graphical inter-
face together with the application’s behavior. Afterwards a
model-transformation function lifts the policy specified by the
security model to the GUI model. This allows a separation of
concerns where behavior and security are specified separately,
and subsequently combined to generate a security-aware
GUI model. Finally, a code generator generates a multi-tier
application, along with all support for access control, from the
security-aware GUI model. We report on applications built
using our approach and the associated tool.

Index Terms—Model-driven development, model-driven se-
curity, access control, GUI models, model transformation.

I. INTRODUCTION

Data-management applications are focused around so-
called CRUD actions that create, read, update, and delete
data from persistent storage. These operations are the
building blocks for numerous applications, for example
dynamic websites where users create accounts, store and
update information, and receive customized views based
on their stored data. When the data managed is sensitive,
then security is a concern and the use of these actions must
be controlled.

Access control is the standard approach to restricting
users’ actions on data. When the access-control policies
are sufficiently simple, it may be possible to formal-
ize them declaratively, independent of the application’s
business logic. For example, multi-tier systems for web-
based applications often build support for role-based access
control into the application server, which is configured
independently of the application’s procedural details. In
contrast, fine-grained access control policies may depend
not only on the user’s credentials but also on the satisfaction
of constraints on the state of the persistence layer, i.e. on
the values of stored data items. In such cases, authoriza-
tion checks are typically implemented programmatically,
by directly encoding them at appropriate places in the
application. Unfortunately, these programmatic additions

D. Basin is with ETH Zürich, Switzerland.
M. Clavel is with IMDEA Software, Madrid, Spain, and with Univer-

sidad Complutense de Madrid, Spain.
M. Egea is with Atos Research & Innovation, Madrid, Spain.
C. Dania and M. A. Garcı́a de Dios are with IMDEA Software, Madrid,

Spain.

are cumbersome, error prone, and scale poorly. Moreover,
they are difficult to audit and maintain as the authorization
checks are spread throughout the code and security policy
changes require code changes.

In this paper, we propose a methodology for the model-
driven development of secure data-management applica-
tions. It consists of languages for modeling multi-tier
systems, and a toolkit for generating these systems. Within
our methodology, a secure data-management application is
modeled using three interrelated models:

1) A data model defines the application’s data domain
in terms of its classes, attributes, associations, and
(non-CRUD) methods;

2) A security model defines the application’s security
policy in terms of authorized access to the actions on
the resources provided by the data model.

3) A graphical user interface, or GUI model, defines
the application’s graphical interface and application
logic. Note, in particular, that this model formalizes
both UI structure and behavior.

The heart of this methodology, illustrated in Fig. 1,
is a model-transformation function that automatically lifts
the policy that is specified in the security model to the
GUI model. The idea is simple but powerful. The security
model specifies under what conditions actions on data are
authorized. The control information in the GUI model
specifies which actions are executed in response to which
events. Lifting essentially consists of prefixing each data
action in the GUI model with the authorization check
specified in the security model. The resulting GUI model is
security aware. It specifies UI structure, information flow
with persistent storage, and all authorization checks.

We have implemented this methodology within a toolkit,
called ActionGUI [1], that performs this many-models-to-
model transformation. From the resulting security-aware
GUI model, ActionGUI generates a deployable application,
along with all support for access control. In particular, when
the security-aware GUI model contains only calls to execute
CRUD actions, then ActionGUI will generate the complete
implementation automatically.

The methodology and tool that we report on constitute a
substantial further development of [2], [3]. In this previous
work, we proposed the idea of using model transformations
to lift the security policy, formulated in terms of the data
model to the GUI model. Here we improve and generalize
this previous work and we provide an updated presentation
of the modeling languages, the toolkit, and the example
applications that we developed.

2

Fig. 1. Model-driven development of security-aware GUIs.

Let us expand on the main generalization with respect to
our previous work. Lifting previously consisted of prefixing
each event in the GUI model with the authorization check
specified in the security model. However since the data
actions executed by an event may change the persistence
layer’s state, checking authorization at the level of events,
and therefore before executing any data action, is sufficient
only if the underlying security policy does not contain
authorization constraints (which was explicitly assumed
in [3]), or if they do not depend on values that are changed
during the execution of the event’s data actions (as was the
case in the examples discussed in [2]). To overcome this
limitation, we now check authorization before executing
each event’s data actions and we provide events with a
transaction semantics: either all of the data actions are
executed in the given order, or none of them are executed
at all.

Overall, we see our contributions as follows. First, our
methodology offers Model Driven Architecture’s purported
benefits [4], [5] for data-management applications. By
working with models, designers can focus on the appli-
cation’s data, behavior, security, and presentation, indepen-
dent of the different, often complex, technologies that are
used to implement them. Second, our use of model trans-
formations leads to modularity and separation of concerns:
the GUI model and the security model can be changed
independently and by different developers, if desired. This
avoids the problems mentioned earlier with fine-grained,
hardcoded security policies that are difficult to maintain
and audit. Finally, our methodology is quite powerful and
compares favorably to alternatives, which are described
in detail in Section VI on related work. In particular, it
leverages well-known security languages [6] for modeling
rich, fine-grained access control policies, which must often
be manually encoded in other proposals. Moreover, our new
language for GUIs supports modeling realistic, dynamic
web interfaces (where the web content varies based on the

user’s actions or user-provided data), without limiting the
interfaces to a fixed set of templates or interaction patterns,
as in other methodologies. Of course, the proof of the
pudding is in the eating and we report on applications that
we developed, which provide evidence of the applicability
of this approach.

Organization: The remainder of this paper is orga-
nized as follows. In Section II we present background
on the existing modeling languages that we use, namely,
ComponentUML and SecureUML; in Appendix A we pro-
vide additional explanation on the semantics of the latter. In
Section III we introduce a new modeling language, called
GUIML, for modeling graphical user interfaces together
with their behavior. In Section IV we discuss our many-
models-to-model transformation and in Section V we report
on our tool support and on example applications that
we developed using it. Finally, in Section VI we survey
related work and we draw conclusions in Section VII. Due
to space limitations, we omit the formal account of our
methodology, which is given in the technical report [7].
Instead, we provide in Appendix B a high-level account of
the correctness of the model-transformation function, which
lies at our methodology’s core.

II. BACKGROUND

For modeling an application’s data and security pol-
icy, we leverage existing modeling languages, namely,
ComponentUML and SecureUML [6]. In this section we
briefly introduce these languages. Since SecureUML uses
the Object Constraint Language (OCL) [8] to model autho-
rization policies, we also summarize its main features.

A. ComponentUML

Data models provide a data-oriented view of a system.
Typically they are used to specify how data is structured,
the format of data items, and their logical organization, i.e.,
how data items are grouped and related. Our methodology

3

employs ComponentUML for data modeling. Component-
UML provides a subset of UML class models where entities
(classes) can be related by association and may have at-
tributes and methods. In ComponentUML, associations are
binary: they always have two association-ends connecting
two, not necessarily distinct, entities.

While ComponentUML and SecureUML have a graphi-
cal concrete syntax (see [6]), to simplify and clarify the pre-
sentation, we shall use textual concrete syntax. In this syn-
tax, entities are declared with the keyword Entity followed
by the entity’s name, and its attributes and association-
ends, which are enclosed within brackets. Attributes and
association-ends are declared together with their types.
Moreover, since associations are binary, each association-
end is declared together with its opposite association-end,
designated by the keyword oppositeTo. Multiplicities other
than * and 1 are specified using OCL invariants. Finally,
comments are introduced with //.

As the following example illustrates, ComponentUML
models specify how the application’s data is structured,
independently of how it will be visualized or accessed.

Example 1: We use a simple chatroom application as a
running example throughout this paper. A demo version
of this application can be found at [1]. The application
provides an online discussion site where users converse by
posting messages. Note that there are two types of users:
registered and unregistered users. Registered users have
their nicknames and passwords stored in the persistence
layer. As usual, some options are only available to regis-
tered users, who log into the application by entering a valid
nickname and password.

Here we use ComponentUML’s textual syntax to model
the chatroom’s data model. The model, called Chat-
RoomDTM, consists of three entities representing chat-
rooms, registered users, and messages. The associations
between these entities represent the relations between the
registered users and the chatrooms in which they partic-
ipate, the relations between the registered users and the
messages that they have written, and the relations between
the messages and the chatrooms where they have been
posted. The entities’ attributes represent that each chatroom
has a topic, each chatroom can be public or not, each
registered user has a nickname and a password, and each
message has a body.

1 Entity Chatroom {
2 String topic
3 Boolean public
4 //registered users participating in this chatroom
5 Set(User) participants oppositeTo chatrooms
6 //messages posted in this chatroom
7 Set(Message) messages oppositeTo chatroom }

8 Entity User {
9 String nickname
10 String password
11 //chatrooms in which this registered user participates
12 Set(Chatroom) chatrooms oppositeTo participants
13 //messages written by this registered user
14 Set(Message) messages oppositeTo owner }

15 Entity Message {
16 String body
17 //chatroom where this message is posted
18 Chatroom chatroom oppositeTo messages
19 //registered user that wrote this message
20 User owner oppositeTo messages }

B. Object Constraint Language (OCL)

The Object Constraint Language (OCL) [8] is a lan-
guage for specifying constraints and queries using a textual
notation. As part of the UML standard, it was originally
intended for modeling properties that could not be easily
expressed using graphical notation, such as class invariants
in a UML class diagram. Every OCL expression is written
in the context of a model (called the contextual model), and
is evaluated on an object model (also called the instance or
scenario) of the contextual model. This evaluation returns
a value but does not alter the given object model, since
OCL’s evaluation is side-effect free.

OCL is strongly typed. Expressions either have a prim-
itive type, a class type, a tuple type, or a collection type.
OCL provides standard operators on primitive data, tu-
ples, and collections. For example, the operator →includes
checks whether an object is part of a collection. OCL also
provides a dot-operator to access the values of the objects’
attributes and association-ends in the given scenario. For
example, suppose that the contextual model includes a class
c with an attribute at and an association-end as . Then,
if o is an object of the class c in the given scenario, the
expression o.at refers to the value of the attribute at for
the object o in this scenario, and o.as refers to the objects
linked to the object o through the association-end as .
Finally, OCL provides operators to iterate over collections,
such as →forAll, →exists, →select, →reject, →collect, and
→iterate.

C. SecureUML

SecureUML [6] extends Role-Based Access Control
(RBAC) [9] with authorization constraints. These con-
straints can be used to specify policies that depend on
properties of the system state, for example, that a user
can only post a message to a chatroom where the user
participates. More specifically, SecureUML allows one to
formalize access control decisions that depend on two kinds
of information:

1) static information, namely the assignments of users
and permissions to roles, and the role hierarchy, and

2) dynamic information, namely the satisfaction of au-
thorization constraints in the current system state.

SecureUML therefore supports the modeling of roles and
their hierarchies, permissions, actions, resources, and au-
thorization constraints. Moreover, one can also model as-
signments: which permissions are assigned to a role, which
actions are allowed by a permission, which resources are
affected by a permission, and which authorization constraint
must be satisfied before granting a permission.

In our methodology, we use an extension of SecureUML
to specify security policies over ComponentUML models.

4

TABLE I
SECUREUML+COMPONENTUML: ACTIONS AND RESOURCES.

Resource Atomic Actions Composite Actions
Entity create, delete read, update, full access
Attribute read, update full access
Method execute
Association-end read, create, delete full access

In this extension, the protected resources are the entities,
along with their attributes, methods, and association-ends,
while the actions are those shown in Table I.

Note that there are two classes of actions: atomic and
composite. Atomic actions are intended to map directly
onto existing operations on the persistence layer. Com-
posite actions hierarchically group lower-level actions. For
example, the full access action for an attribute groups
together the read and update actions for this attribute.
Finally, authorization constraints are specified using OCL,
where the context of an OCL expression is the underlying
ComponentUML model. Additionally, OCL expressions in
SecureUML models may contain the variables self, caller,
value, and target, which are interpreted as follows:
• self refers to the root resource upon which the ac-

tion will be performed if the permission is granted.
The root resource of an attribute, a method, or an
association-end is the entity to which it belongs.

• caller refers to the user that will perform the action if
the permission is granted.

• value refers to the value that will be used to update
an attribute if the permission is granted.

• target refers to the object that will be added (or
removed) at an association-end if the permission is
granted.

The reader familiar with the original presentation of
SecureUML [6] may notice that we have introduced two
new variables that can be used in authorization constraints:
the variables value and target. Furthermore, to avoid poten-
tial ambiguities, we have refined the association-end update
action into two separate actions: association-end create and
association-end delete.

In our concrete syntax, the entity modeling the system’s
users (or, more specifically, the system’s callers) is declared
with the keyword User. The roles that these users can
take are declared with the keyword Role followed by the
role’s name, and its permissions, which are enclosed within
brackets. The keyword inherits, appearing between two
roles, declares that the first role is subordinated to the
second role in the role hierarchy, and therefore inherits all
its permissions.

Permissions are introduced by naming the root resources
to which they grant access. Each permission consists of
a list of actions through which the corresponding root
resource can be accessed. Actions on attributes, methods,
or association-ends are declared along with their names.
For example, Read::attr denotes the read action on the
attribute attr. The if–then construction is used to declare
that the permission to execute an action is constrained by

a condition. This condition is the authorization constraint
that is associated to the permission.

As the following example illustrates, SecureUML models
specify the application’s access control policy in a fine-
grained way. These models depend, of course, on how
the application’s data is structured, but not on how it is
visualized or accessed through the application’s graphical
user interface.

Example 2: We use the SecureUML’s textual syntax to
model a policy for posting and reading chatroom messages.
Our model, called ChatRoomSTM, has two roles: the role
DefaultR represents everybody, i.e., both registered and
unregistered users, and the role UserR represents only reg-
istered users. Our policy states that everybody can read any
message posted in a public chatroom, but that only regis-
tered users can read messages posted in a private chatroom,
provided they participate in that chatroom. Moreover, only
registered users can post messages in public chatrooms;
they can also post to private chatrooms, provided they also
participate in that chatroom.

1 User User
2 Role DefaultR {
3 Chatroom {
4 //everybody can access the messages posted in a
5 //public chatroom
6 if self.public then Read::messages }
7 Message {
8 //everybody can read the body of any message
9 //posted in a public chatroom
10 if self.chatroom.public then Read::body } }

11 Role UserR inherits DefaultR {
12 Chatroom {
13 //every registered user can access the messages that
14 //are posted in a chatroom in which she participates
15 if self.participants→includes(caller)
16 then Read::messages }
17 Message {
18 //every registered user can read the body of any
19 //message that is posted
20 //in a chatroom in which she participates
21 if self.chatroom.participants→includes(caller)
22 then Read::body
23 //every registered user can create a new message
24 Create
25 //every registered user can claim ownership of any
26 //unowned message
27 if self.owner.oclIsUndefined() and target=caller
28 then Create::owner
29 //every registered user can change the body of any
30 //message she owns
31 //provided it is not yet posted anywhere
32 if self.owner=caller
33 and self.chatroom.oclIsUndefined()
34 then Update::body
35 //every registered user can post in a public chatroom any
36 //message she owns,
37 //provided it is not yet posted anywhere
38 if self.owner=caller and target.public
39 and self.chatroom.oclIsUndefined()
40 then Create::chatroom
41 //every registered user can post, in a chatroom in which

5

42 //she participates, any message she owns,
43 //provided it is not yet posted anywhere
44 if self.owner=caller and target.participants
45 →includes(caller)
46 and self.chatroom.oclIsUndefined()
47 then Create::chatroom } }

SecureUML provides various constructs for expressing
complex access control policies compactly and intuitively,
for example, by using action and role hierarchies or by
declaring default policies. Nevertheless, as described in
Appendix A, every SecureUML model S can be uniquely
transformed into a semantically equivalent model S[for
which the following holds:

Remark 1: Let S be a SecureUML model. Then, for
every atomic action act and every role r in S, there is
exactly one permission in S[(possibly constrained by false)
for r to execute act .

Informally, the model S[makes the security policy
specified in S completely explicit. Thus, let Auth be the
function that, for every SecureUML model S, role r, and
action act , returns the authorization constraint associated to
the unique permission that is defined in S[for r to execute
act . We will use this function Auth to define the model-
transformation that, in our methodology, lifts the security
policy from the security model to the GUI model. We
conclude this section with some examples that illustrate
in which sense Auth makes the security policy specified in
a security model explicit.

Example 3: Consider the chatroom’s security model,
ChatRoomSTM, in Example 2. Note that UserR is
a subrole of DefaultR (in line 11), which means that
UserR will inherit all the DefaultR’s permissions. Thus,
Auth(ChatRoomSTM, UserR, Read::body) returns:

self.chatroom.public (from ln. 10)
or
self.chatroom.participants→includes(caller) (from ln. 21).

Note also that the association-end messages is
opposite to the association-end owner. This means that
a create (respectively delete) action on messages will
be constrained by the same authorization that constrains
a create (respectively delete) action on owner, having
simultaneously replaced the variable self by target and
the variable target by self. Thus, although no permission
is explicitly given for the role UserR to execute a
create action on messages, Auth(ChatRoomSTM, UserR,
Create::messages) returns:

target.owner.oclIsUndefined() and self=caller (from ln. 27).

Finally, note that there is no permission explicitly given
to the role DefaultR for executing an action update on the
attribute body. Since permissions are denied by default
(and no other rules can be applied in this case, like
the ones for role inheritance or opposite association-ends)
Auth(ChatRoomSTM, UserR, Update::body) returns false.

III. GUI MODELS

GUI models provide a human-interface oriented view
of a system. Together with data models, they constitute
platform independent application models, omitting security
aspects.

Informally, a GUI consists of widgets, which are visual
elements that display information and trigger events that
execute actions. In this section we present a key compo-
nent of our methodology: a novel language for modeling
GUIs for data-management applications, called GUIML
(GUI Modeling Language). It is important, however, to
understand that GUIML is a language for modeling not
only the structure of a GUI, i.e, the elements (widgets)
that comprise it, but also the GUI’s behavior, i.e., how its
elements will react (actions) in response to user interactions
with them (events). In fact, the key feature of GUIML is
the language it provides for modeling the GUI’s behavior,
which uses OCL to specify both the conditions and the
arguments for the different actions. This feature enables
both the security model and the GUI model to “speak” the
same language (namely, OCL in the context of the common,
underlying data model). This allows us to define rigorously
the transformation function that lifts the security policy to
the GUI level.

We next briefly describe the main elements of GUIML,
namely, widgets (with their associated variables), events,
and actions. We will also illustrate them later with a simple
example: a window for our chatroom application, where
users can read and post messages in a chatroom.

Widgets: A GUIML model consists of widgets of dif-
ferent types: windows (pages, when referring to web appli-
cations), combo-boxes (selectable lists), tables, date fields,
boolean fields (check boxes), buttons, text fields, and labels.
Widgets can be displayed in containers, which are also
widgets. Widgets other than windows must be contained in
another widget, and only windows, combo-boxes and tables
may contain other widgets. Widgets may own variables,
which store values for later use, and trigger events, which
execute actions.

In concrete syntax, a widget is declared with a keyword
like Window, Button, and TextField, according to its type,
followed by the widget’s (local) name, and the declaration
of the variables it owns, the events it triggers, and the
widgets it contains, all enclosed in brackets. The global
name of each widget must be unique. If a widget is a
window, its global name is the name given in its declaration.
Otherwise, the global name results from concatenating,
using dot, the global name of the widget’s container with
the name given in its declaration.

Variables: Each widget declaration may contain variable
declarations, listing the variables owned by the widget.
In concrete syntax, a variable declaration consists of the
variable’s type followed by its name.

There are also variables that are, by default, owned
by every widget of a given type. These variables are
implicitly declared in every widget declaration, and their
values are handled in special ways. Here we only discuss

6

the predefined variables that we will use in our example.
The variables caller and role are predefined in every win-
dow. They store, respectively, the application’s user and
the user’s role. The variable text is predefined in every
label, button, and text field. This variable stores the string
displayed on the screen within the label, button, and text
field; also, when a user types in a text field, the value of
its variable text is automatically updated. The variable rows
is predefined in every combo-box and table. This variable
stores the collection of items that can be selected from the
combo-box or table. The variable row is also predefined in
every combo-box and table where, for each row, it stores
the item that can be selected.

Events: Each widget declaration may contain event
declarations. Events are triggered when specific actions
are executed upon their widgets, and they themselves can
execute actions either on data or on other widgets.

The actions executed when an event is triggered are
specified using statements. A statement is either an action,
a conditional statement, an iteration, or a sequence of
statements. In GUIML, the conditions in both conditional
statements and iterations are specified using OCL expres-
sions, whose context is the underlying ComponentUML
model. Additionally, they can refer to the widget variables.
In GUIML, when widget variables are used within OCL
expressions, they are enclosed in square brackets. Note
that each sequence of statements associated to an event is
executed as a single transaction: either all its statements
successfully execute in the given order, or none of them
are executed at all.

In concrete syntax, events are declared by indicating their
types followed by the sequence of statements that they
execute, enclosed in brackets. In our example we will use
two types of events: OnCreate and OnClick. The former
are triggered when the widgets are created and the latter
are triggered when widgets are clicked upon. In particular,
a window is created when an open action that has this
window as its target is executed. All the other widgets are
created immediately after their corresponding containers are
created.

Actions: Every event declaration contains a sequence
of statements that specifies the actions executed when the
event is triggered. These actions can be executed either
on objects belonging to the persistence layer or on objects
belonging to the visualization layer. The former are called
data actions, and the latter are called GUI actions. Note
that some actions may take arguments whose values are
only known at run-time, for example a delete action whose
argument is the item selected by the user in a combo-box, or
an update action whose argument is the number entered by
the user in a text field. In GUIML, these values are specified
using OCL. Again, the context of these expressions is the
underlying ComponentUML model, but they can also refer
to the widget variables.

Next, we briefly describe some of the GUIML data
actions and their concrete syntax.
• Entity create: It creates a data item in the persistence

layer. Its arguments are the type of the data item and

the variable that stores the data item. It is declared by
the statement variable := new type.

• Entity delete: It deletes a data item from the persis-
tence layer. Its argument is object, which is the data
item deleted. It is declared by the statement delete
object.

• Attribute read: It reads the value of a data item’s
attribute in the persistence layer. Its arguments are the
data item object whose property is read, the attribute
read, and the variable that stores the value read. It is
declared by the statement variable := object.attribute.

• Attribute update: It modifies the value of a data
item’s attribute in the persistence layer. Its arguments
are the data item object whose attribute is modified,
the attribute modified, and the new value. It is declared
by the statement object.attribute := value.

• Association-end read: It reads the collection of items
linked to an item’s association-end in the persistence
layer. Its arguments are the data item object whose
property is read, the association-end assocEnd read,
and the variable that stores the collection read. It is
declared by the statement variable := object.assocEnd.

• Association-end create: It creates a link in the persis-
tence layer between two data items. Its arguments are
the source data item srcObject, the target data item
tgtObject, and the association-end assocEnd through
which the target data item is linked to the source data
item. An association-end create action is declared by
the statement srcObject.assocEnd += tgtObject.

• Association-end delete: It deletes a link in the per-
sistence layer between two data items. Its arguments
are the source data item srcObject, the target data
item tgtObject, and the association-end assocEnd from
which the target data item is removed. It is declared
by the statement srcObject.assocEnd –= tgtObject.

Finally, we describe some of the GUI actions that are
defined in GUIML.

• Set: It updates the value of a variable. Its arguments
are the name of the variable and variable’s new value.
It is declared by the statement variable := value.

• Open: It opens a window. Its argument is target, which
names the window opened. Additionally, it may take
as arguments any number of pairs (variablei, valuei),
where variablei is the name of a variable owned by its
target window, and valuei is the value that is assigned
to variablei when target is opened. It is declared by
the statement open target with variable1:= value1 . . .
variablen:= valuen.

• Back: It moves back to the previous window. It is
declared using the keyword back.

• Fail: It forces a rollback in the current transaction,
whereby the corresponding statement is not success-
fully executed. It is declared using the keyword fail.

• Skip: It does nothing. It is declared using the keyword
skip.

We now provide an example that illustrates the main
elements of the GUIML language: a window ReadPostWI

7

for our chatroom application, where users can read and
post messages in (previously selected) a chatroom. As this
example will show, GUIML models depend on how the ap-
plication’s data is structured — after all, they describe how
users interact with this data — but not on the application’s
access control policy.1 In our example, this separation of
concerns is reflected by the fact that the GUIML model
for the window ReadPostWI is completely unaware of the
security policy for reading and posting messages in our
chatroom application.

Example 4: We use GUIML to model the window of our
chatroom application where users can read and post mes-
sages in a chatroom. This window is named ReadPostWI.
It owns a variable chatroomSel that stores a previously
selected chatroom (the action that opens the window Read-
PostWI will assign a value to this variable). The window
ReadPostWI contains four widgets:
• a table ReadPostsTB for visualizing the messages

posted in the selected chatroom;
• a text field WritePostEN for writing a new message;
• a button PostBU for posting in the selected chatroom

the message written in the text field WritePostEN; and
• a button BackBU for moving back to the previous

window.
The model is as follows:

1 Window ReadPostWI {
2 //this variable stores the previously selected chatroom
3 Chatroom chatroomSel
4 //this table visualizes the messages posted
5 //in the selected chatroom
6 Table ReadPostsTB {
7 OnCreate {
8 rows := [ReadPostWI.chatroomSel].messages } }
9 //in this text field the user writes its new message
10 TextField WritePostEN {
11 OnCreate { text := ” } }
12 //by clicking on this button, the user posts its new message
13 //in the selected chatroom
14 Button PostBU {
15 OnCreate { text := ’Post’ } }
16 //by clicking on this button, the user moves back to
17 //the previous window
18 Button BackBU {
19 OnCreate { text := ’Back’ } } }
20 //we continue with this table
21 Table ReadPostWI.ReadPostsTB {
22 //each column of this table shows the body of a message
23 //of the selected chatroom
24 Label BodyPostLB {
25 OnCreate {
26 text := [ReadPostWI.ReadPostTB.row].body } } }
27 //we continue with this button
28 Button ReadPostWI.PostBU {
29 OnClick {
30 newPost := new Message
31 newPost.owner += [ReadPostWI.caller]

1Of course, in terms of the final application’s usability, there is a
dependency: an application’s GUI can end up being unusable precisely
because of the application’s security policy.

32 newPost.body := [ReadPostWI.WritePostEN.text]
33 newPost.chatroom += [ReadPostWI.chatroomSel] } }
34 //we continue with this button
35 Button ReadPostWI.BackBU {
36 OnClick { back } }

Note that the table ReadPostTB and the buttons PostBU
and BackBU are modeled partially inside the window Read-
PostWI and partially outside this window. This is supported
by our concrete syntax in order to improve the readability of
the GUIML models. However, to avoid ambiguities, when a
widget is modeled outside its widget container, the widget’s
global name is used. Note too that the table ReadPostTB
is unaware of the security policy for visualizing messages,
which in our running example states that only registered
users are authorized to read messages posted in private
chatrooms. Similarly, the button PostBU is unaware of the
security policy for posting messages, which is that only
registered users can post messages in public chatrooms and
in private chatrooms but, in the latter case, they must also
participate in these chatrooms.

IV. SECURITY-AWARE GUI MODELS

In this section we describe the heart of our methodology:
a model-transformation function Sec that, given a GUIML
model G and a SecureUML model S, automatically gener-
ates a new GUIML model Sec(G,S). The generated model
is identical to G except that it is security aware with respect
to S. The transformation function Sec works by wrapping
around every data action act in G an if-then-else statement
with the following arguments:
• a condition that reflects the constraints associated to

the permissions specified in S, for each of the different
roles, to execute the action act ;

• a then-branch that contains the action act ; and
• an else-branch that contains the action fail.

Thus, the semantics of the if-then-else statement ensures
that act will only be executed if the constraints associated
to the corresponding permissions are satisfied. Moreover,
this semantics also guarantees that, if these constraints are
not satisfied, then the action fail will be executed, forcing
a rollback in the current transition.

More specifically, to generate the aforementioned
if-then-else statement, the function Sec makes use of
Remark 1. In particular, for each role r in S, it calls
the function Auth(S, r, act) to obtain the expression
that ultimately (i.e., when the security policy is made
completely explicit) constrains the permission given to
r for executing act . However, since this expression
may contain the variables self, value, target, and caller,
the function Sec must also replace these variables by
the actual arguments of the action act (including its
actual user). We denote the resulting OCL expression
by Auth(S, r, act)[args], where args are the arguments
specified in the GUI model for the action act . Finally,
since different roles may be constrained by different
expressions, the condition generated by Sec will have the

8

form:

((r1 = [Window .role] and Auth(S, r1, act)[args])
or . . . or
(rn = [Window .role] and Auth(S, rn, act)[args])),

where r1, . . . , rn are all the roles declared in S. (Recall that
the actual application’s user and its role are always stored
in the variables caller and role, which are owned by every
window in the GUI model.)

The following examples illustrate the model-
transformation function Sec. As previously mentioned, the
complete, formal account of our methodology, including
the model-transformation function Sec, is given in [7].
Nevertheless, the interested reader can find in Appendix B
a high-level account of the correctness of Sec.

Example 5: Consider line 32 in Example 4. It specifies
the third action that will be executed when the button
ReadPostWI.PostBU is clicked upon, namely,

newPost.body := [ReadPostWI.WritePostEN.text].

Recall that := refers to an update action, in this case to the
action Update::body. The function Sec will replace this by
the following if-then-else statement:

if ((DefaulR = [ReadPostWI.role] and false)
or
(UserR = [ReadPostWI.role] and

([newPost].owner = [ReadPostWI.caller]
and [newPost].chatroom.oclIsUndefined())))

then newPost.body := [ReadPostWI.WritePostEN.text]
else fail.

To understand the condition generated by Sec, note
that Auth(ChatRoomSTM, DefaultR, Update::body) is
equal to false, but that Auth(ChatRoomSTM, UserR,
Update::body) is equal to self.owner = caller and
self.chatroom.oclIsUndefined(). Thus, the function Sec must
replace the variable self by the newly created message
newPost (since this is the object upon which the action
Update::body will be executed), and the variable caller by
ReadPostWI.caller (since this is the user that will execute
the action Update::body).

Example 6: Consider line 31 in Example 4. It specifies
the second action that will be executed when the button
ReadPostWI.PostBU is clicked upon, namely,

newPost.owner += [ReadPostWI.caller].

Recall that += refers to an association-end create action, in
this case to the action Create::owner. Then, the function
Sec will replace this line by the following if-then-else
statement:

if ((DefaulR = [ReadPostWI.role] and false)
or
(UserR = [ReadPostWI.role] and
([newPost].owner.oclIsUndefined()

and [ReadPostWI.caller]=[ReadPostWI.caller])))
then newPost.owner += [ReadPostWI.caller]

else fail.
To understand the condition generated by Sec, note

that Auth(ChatRoomSTM, DefaultR, Create::owner) is
equal to false, but that Auth(ChatRoomSTM, UserR, Cre-
ate::owner) is equal to self.owner.oclIsUndefined() and tar-
get=caller. Thus, the function Sec must replace the variable
self by the newly created message newPost (since this is
the object upon which the action Create::owner will be
executed), the variable caller by ReadPostWI.caller (since
this is the user that will execute the action Create::owner),
and the variable target also by ReadPostWI.caller (since the
actual user is precisely the object that will be added by the
Create::owner as the owner of the newly created message).

Our next example illustrates how our model transforma-
tion Sec leads to modularity and separation of concerns
whereby the GUI model and the security model can be
changed independently, if desired.

Example 7: Suppose that we decide to allow anyone (not
only registered users, but also unregistered ones) to post
messages in public chatrooms. To update the chatroom
application’s security-aware GUIML model, we just carry
out the following steps:
• Step 1 Change the original chatroom’s SecureUML

model to reflect our security policy changes. We call
the new security model PubChatRoomSTM and show
below the new permissions for the role DefaultR
(i.e., for everybody using the application) to create a
message, update the body of a message, and post a
message in a chatroom:

Role DefaultR {
Message {

//everybody can create a new message
Create
//everybody can change the body of
//any unowned message
//provided it is not yet posted anywhere
if self.owner.oclIsUndefined()

and self.chatroom.oclIsUndefined()
then Update::body

//everybody can post in a public chatroom
//any unowned message
//provided it is not yet posted anywhere
if self.owner.oclIsUndefined() and target.public

and self.chatroom.oclIsUndefined()
then Create::chatroom } }

• Step 2 Apply our model transformation to the
original chatroom GUIML model and the modified
chatroom SecureUML model to generate the updated
security-aware GUIML model. We show below the
result of this transformation for line 32 in Example 4.

if ((DefaultR = [ReadPostWI.role] and
([newPost].owner.oclIsUndefined()

and [newPost].chatroom.oclIsUndefined()))
or
(UserR = [ReadPostWI.role] and
(([newPost].owner.oclIsUndefined()

and [newPost].chatroom.oclIsUndefined())
or

9

([newPost].owner = [ReadPostWI.caller]
and [newPost].chatroom.oclIsUndefined()))))

then newPost.body := [ReadPostWI.WritePostEN.text]
else fail.

It is interesting to compare this result with the one
explained in Example 5 for the case of the security model
ChatRoomSTM. To understand the differences, note that
Auth(ChatRoomSTM, DefaultR, Update::body) is equal
to false, but that Auth(PubChatRoomSTM, DefaultR, Up-
date::body) is equal to self.owner.oclIsUndefined() and
self.chatroom.oclIsUndefined(). Also, recall that UserR in-
herits all permissions from DefaultR and, in particular, its
new permission for updating the body of a message, which
is constrained by Auth(PubChatRoomSTM, DefaultR, Up-
date::body).

Note that in this example, the function Sec may generate
conditions that can be further simplified. However, for the
sake of illustration, here and elsewhere, we show the results
of Sec without further simplification.

V. ACTIONGUI TOOLKIT AND APPLICATIONS

A. ActionGUI Toolkit

Security-aware GUIML models are platform independent
and can be mapped to implementations employing differ-
ent technologies. This includes desktop applications, web
applications, and mobile applications. As part of our work,
we built the ActionGUI Toolkit [1], which automatically
generates web-based data-management applications from
security-aware GUIML models.

The ActionGUI Toolkit features model editors for con-
structing and manipulating ComponentUML, SecureUML,
and GUIML models. These editors share our own OCL
parser, which takes as additional input the variables intro-
duced by the different models, along with their respective
types: in the case of SecureUML models, the variables self,
caller, target, and value, and in the case of GUIML models,
all the given widget variables. Crucially, the ActionGUI
Toolkit implements our model transformation to generate
security-aware GUIML models. Finally, it includes a code
generator that, given a security-aware GUIML model, pro-
duces a web application based on the following, standard
three-tier architecture.

1) Presentation tier (also known as front-end): Users ac-
cess web applications through standard web browsers,
which render the content (HTML and JavaScript)
dynamically provided by the application server.

2) Application tier: The toolkit generates Java Web Ap-
plications, implemented using the Vaadin framework.
The applications run in a servlet container (such as
Tomcat or GlassFish), process client requests and,
generate content, which is sent back to the client for
rendering. They may also manipulate data stored in
the persistence tier. When processing client requests,
the generated application interprets its underlying
security-aware GUIML model. In particular, it per-
forms the required security checks before modifying
any data stored in the persistence tier or sending

any data to the presentation tier. This involves, of
course, dynamically evaluating the OCL expressions
appearing in the security-aware GUIML model.

3) Persistence tier (also known as data tier or back-
end): The generated application manages information
stored in a database. For each application, the toolkit
generates the corresponding database schema from
the application’s ComponentUML model.

As a model-driven development tool, the ActionGUI
Toolkit produces its best results when the data-management
application’s functionality can be reduced to CRUD actions
and its dynamics consists of navigating and passing in-
formation through windows, and exchanging information
with the underlying database. For applications in this
category, ActionGUI automatically generates the complete
implementation from the corresponding ComponentUML,
SecureUML, and GUIML model. Note that calling CRUD
actions is modeled in GUIML using data actions, and
navigating and passing information through windows is
modeled using GUI actions, namely, open, back, and set.

Of course, some data-management applications will re-
quire functionality that goes beyond CRUD actions. For
example, they may need to send emails, print tables, or
export data in some desired format. As expected, the Ac-
tionGUI Toolkit does not generate code for such methods.
Instead, it includes their implementation — which must be
provided by the application developer — in the generated
application. When the application needs to interpret one of
these methods, it simply calls the method provided.

B. Applications

We report here on five web applications that we devel-
oped using ActionGUI. Our objective is to show that one
can use our methodology and the ActionGUI Toolkit to
develop non-toy secure data-management applications. We
begin by briefly describing our applications. In Table II we
provide different measurements of the applications’ size,
defined in terms of their underlying GUIML models.

a) Customer Relationship Management (CRMApp):
We have developed a web application for managing cus-
tomers of a Hospital and Care Center. This application
allows marketing and public relations personnel to manage
contact information, including filtering contacts based on
different criteria and exporting the results in Excel files. As
customer data is highly sensitive, data is subject to a restric-
tive access-control policy. For example, a marketing and PR
staff member can only access the contact information of
those contacts previously selected as targets of a marketing
campaign to which he is assigned. The application also
allows a General Manager to create marketing campaigns,
select the targeted patients, and assign marketing and PR
staff members to campaigns.

b) Volunteer Management (VMApp): We have de-
veloped a web application for managing a care center’s
volunteer program. Using this application, the program’s
coordinators can take actions such as: introduce new volun-
teers; create, edit, and modify tasks; and propose these tasks

10

to the volunteers, based on the volunteers’ time availability
and preferences. The access-control policy stipulates, for
example, that volunteers are only authorized to edit their
own personal information, such as their preferences and
time availability, and to accept or reject their own tasks.

c) Meal Service Management (MSMApp): This is a
web application for managing a student residence’s meal
service. Using this application, a resident can notify the
administration whether he will have a meal at the resi-
dence’s cafeteria, in which of the available time slots, and
if he will bring a guest. A resident shall only edit his own
meal selection and within a specific time window, which
depends on the selected meal. Administrators can create
new resident accounts, and list the meals requested for each
available time slot.

d) EHealth Record Management (eHRMApp): This is
a web application for managing eHealth records. It allows
users with the appropriate roles to: register new patients in a
hospital and assign to them clinicians (doctor, nurses, etc.);
retrieve patient information; register new nurses and doctors
in a hospital and assign them to a ward; change nurses or
doctors from one ward to another; and move patients to
a different practice. The access-control policy regulates, in
particular, access to the patients’ highly sensitive records.
These records shall only be retrieved by their handling doc-
tors, although this policy can be relaxed in an emergency
situation.

e) Chatroom (ChatApp): This is an extension of our
running example: in addition to posting messages in a
selected chatrooms, users can also create and delete chat-
rooms, under specific conditions.

CRMApp, VMApp, and MSMApp are commercial ap-
plications. They were developed for actual customers, and
they are currently being used by their different stakeholders.
In contrast, EHRMApp was developed as part of a case
study proposed by industrial partners in a European project.
The interested reader can find more information about this
case study, as well as demo versions of the EHRMApp
and ChatApp applications, at [1]. With respect to code-
generation, for MSMApp, EHRMApp, and ChatApp, the
ActionGUI’s code generator automatically generates 100%
of their implementation (no non-CRUD actions are ever
called). In contrast, CRMApp and VMApp contain custom
code for sending mails and for generating Excel files,
which we borrowed from existing Java libraries. For all
our examples, the ActionGUI’s code generator produces
the corresponding applications in under a minute.

We conclude this section by summarizing the key con-
tributions of our methodology and toolkit. Our experience
developing the reported applications provides evidence of
the methodology’s potential for developing real-world ap-
plications. First, the use of model-transformation and code
generation frees the developer from programming fine-
grained authorization constraints and inserting them at all
the required places throughout the application’s code and
with the correct arguments. Except for small applications,
this is cumbersome and error-prone, since the number of
data actions associated to events may be on the order of

hundreds; see, for example, the applications CRMApp and
VMApp in Table II. Second, our methodology supports
modularity and separation of concerns. In particular, the
security model can be changed independently of the GUI
model, without requiring one to re-program and re-insert
all the new fine-grained authorization constraints since
this is automatically done by our model-transformation.
This substantially aided developing our applications as our
clients changed, several times, their security policies for
CRMApp, VMApp, and MSMApp.

VI. RELATED WORK

Over the past 15 years, there have been numerous re-
search advances in the model-driven development of data
management applications. Among these, UWE [10], [11],
[12], [13] and ZOOM [14] are the most closely related to
our work.

As a modeling tool, UWE [10], [11], [12], [13] provides
the modeler with a higher-level of abstraction than Ac-
tionGUI. In particular, the actions executed by the widgets’
events are described in UWE using natural language. Thus,
unless the models are appropriately refined, as discussed
in [13], UWE does not support code-generation. In con-
trast, UWE provides specific diagrams for modeling GUI
presentations and navigations, which facilitate the task of
GUI modeling. In this respect, we define in [15] a mapping
that transforms high-level UWE models into more concrete
ActionGUI models that, once completed by the modeler,
can be directly used to generate the intended applications.
Finally, [12] extends UWE to use SecureUML for modeling
security policies. However, this work does not use a model-
transformation to lift the security policy to the GUI level.
Instead the UWE modeler is responsible for adding all the
appropriate authorization checks to the GUI model.

Like ActionGUI, ZOOM [14] allows GUI modelers to
specify widgets, their events, and their actions. More-
over, using an extension of Z [16], one can specify the
conditions of the actions and their arguments, similar to
how this is done in ActionGUI using OCL. In contrast
to ActionGUI, ZOOM does not provide a language for
modeling security and security aspects are not explicitly
considered in this approach. Moreover, ZOOM does not
support code-generation. It only provides interpreters for
model animation.

In contrast to ActionGUI, UWE, and ZOOM, the ap-
proaches presented in [17], [18], [19] do not provide
a language for modeling GUIs. They instead implement
different rules for automatically deriving GUIs based on
either the application’s data model, as in [17], [18], or the
application’s prototypical scenarios, as in [19]. As expected,
the behavior of the resulting GUIs is limited and, based on
our experience, insufficient to cope with the logic embedded
in real data-management applications. Moreover, security
aspects are not addressed in these proposals.

There is other related work that falls between the two
extremes of full GUI modeling and full GUI derivation.
Both the OO-method [20], [21] and WebML [22], [23]

11

TABLE II
EXAMPLE APPLICATIONS: SIZE OF THE APPLICATION’S MODELS

CRMApp VMApp MSMApp eHRMApp ChatApp
Widgets
Number of windows 49 102 11 8 3
Number of buttons 182 293 30 18 10
Number of labels 691 697 83 66 7
Number of text fields 159 169 10 19 4
Number of boolean fields 67 9 0 5 1
Number of date fields 14 16 2 1 0
Number of combo boxes 52 33 24 1 0
Number of tables 65 85 7 9 2
Statements
Number of if-then-else 650 334 150 35 7
Number of iterate 66 13 0 0 1
Data actions
Number of creates (entity) 50 22 4 11 2
Number of deletes (entity) 14 33 0 0 2
Number of updates 268 180 15 25 4
Number of creates (assoc) 111 66 3 21 4
Number of deletes (assoc) 32 30 0 4 0
GUI actions
Number of sets 1840 1553 569 120 24
Number of opens 164 234 18 7 7
OCL Expressions
Number of expressions 3847 3221 925 331 74
Number of non-literal expressions 1478 1105 390 80 16

support building GUIs using UI-patterns. These patterns
specify the possible interactions with the application’s data
based on the classes, attributes, and associations that are de-
clared in the underlying data model. These approaches have
the advantage of reducing the time required for modeling
GUIs. However, the UI-patterns impose restrictions on the
type of GUIs that can be modeled, both in terms of their
structure and their behavior. Moreover, these approaches
only support role-based access control, but not fine-grained
access control. Other approaches that fall in this category
are [24], [25]. In both cases, the modeler must associate
to each widget container the specific data type accessed
using the widget. As before, the possible interactions with
the underlying data is limited by the default behavior
implemented for these widget containers. Security aspects
are also not considered.

Finally, there are approaches whose primary focus is
to support UI design at different levels of abstraction.
Prominent examples are the XML User Interface Language
(XUL) [26] and the USer Interface eXtensible Markup
Language (UsiXML) [27]. XUL is Mozilla’s XML-based
language for building user interfaces of applications like
Firefox. UsiXML is an XML-compliant markup language
that describes the UI for multiple usage contexts, such as
Character User Interfaces (CUIs), Graphical User Interfaces
(GUIs), Auditory User Interfaces, and Multimodal User
Interfaces.

Clearly, ActionGUI is designed for a different purpose
than XUL and UsiXML. In particular, ActionGUI is de-
signed for developing secure data-management applica-

tions. A key design decision for ActionGUI was to ensure
that the security model and the GUI models “speak” the
same language. To the best of our knowledge, neither XUL
nor UsiXML are concerned with security aspects of the
UIs. Moreover, ActionGUI is designed for the model-driven
development of secure data-management applications and
this has two clear consequences. First, ActionGUI’s mod-
eling languages are designed to be technology-agnostics,
in contrast with XUL, which is tightly linked to Mozilla-
related technologies. Second, ActionGUI’s modeling lan-
guages are designed to support the automatic generation
of ready to be deployed applications from the models.
As a result, ActionGUI models are more concrete than
general UsiXML models, which can be defined at any
of the four abstraction levels specified in the Cameleon
Reference Framework (CRF) [28]. In particular, a GUIML
modeler always works at the CRF-Concrete UI level, while
the WAR (Web application ARchive) file generated from a
GUIML model (along with the associated security and data
models) belongs to the CRF-Final UI level. Also, we note
that [29] has carried out promising work on extending our
methodology to cope with business processes, which are
typically defined at the Task & Concepts abstraction level
in CRF. Along these lines, it would be interesting to inves-
tigate ways of extending our methodology to support UI
modeling at the CRF-Abstract UI level, where interaction
details are abstracted away.

VII. CONCLUSIONS

The methodology we proposed constitutes a further de-
velopment of the idea of model-driven security [30]. The

12

two main innovations are an expressive language for mod-
eling an application’s graphical user interface and behavior,
and a many-models-to-model transformation that lifts a
security policy specified on the application’s data model to
this behavioral model. Our transformation function captures
the idea that authorization policies regulating complex
transactions can be generated uniformly from much simpler
policies on data. Despite our use of expressive modeling
languages, we have shown for data-management applica-
tions that it is possible to generate automatically complete
deployable applications.

Our methodology is supported by the ActionGUI Toolkit.
Applications like those described in Section V-B show the
toolkit’s potential for developing real-world applications.
Nevertheless, there is still much work ahead to turn this
toolkit into a full, robust, industrial-strength development
platform. In the short term, we plan to develop improved
model editors and better support for integrating custom
code. In the long term, we would like to support GUIs
running on different platforms, like mobile devices. We also
plan to add support for handling privacy policies: modeling
and generating code to enforce that data usage must follow
the purpose for which the data was collected and may entail
obligations.

Finally, we would like to support model analysis, based
on the formal semantics of our models and on the cor-
rectness of our model transformation. The following are
examples of questions we would like to be able to formally
answer. Will every sequence of action executed by every
event in the model preserve the data model’s invariants?
Will authorization checks ever force a transaction roll-back?
Do the conditions in the GUI model make redundant the au-
thorization checks generated by the model transformation?
Analysis support would allow us to optimize generated code
and support assurance activities like system certification.

ACKNOWLEDGEMENTS

This work is partially supported by the EU FP7-ICT
Project “NESSoS: Network of Excellence on Engineering
Secure Future Internet Software Services and Systems”
(256980), by the Spanish Ministry of Science and Inno-
vation Project “DESAFIOS-10” (TIN2009-14599-C03-01),
by the Spanish Ministry of Economy and Competitive-
ness Project “StrongSoft” (TIN2012-39391-C04-04), and
by Comunidad de Madrid Program “PROMETIDOS-CM”
(S2009TIC-1465).

REFERENCES

[1] ActionGUI, “The ActionGUI project,” 2013, http://www.actiongui.
org.

[2] D. A. Basin, M. Clavel, M. Egea, M. A. G. de Dios, C. Dania,
G. Ortiz, and J. Valdazo, “Model-driven development of security-
aware GUIs for data-centric applications,” in Foundations of Security
Analysis and Design VI - FOSAD Tutorial Lectures, ser. LNCS,
A. Aldini and R. Gorrieri, Eds., vol. 6858. Springer, 2011, pp.
101–124.

[3] D. A. Basin, M. Clavel, M. Egea, and M. Schläpfer, “Automatic
generation of smart, security-aware GUI models,” in Engineering
Secure Software and Systems, Second International Symposium,
ESSoS 2010, Pisa, Italy, February 3-4, 2010. Proceedings, ser.
LNCS, F. Massacci, D. S. Wallach, and N. Zannone, Eds., vol. 5965.
Springer, 2010, pp. 201–217.

[4] A. Kleppe, W. Bast, J. B. Warmer, and A. Watson, MDA Explained:
The Model Driven Architecture–Practice and Promise. Addison-
Wesley, 2003.

[5] Object Management Group, “Model driven architecture guide v.
1.0.1,” OMG, Tech. Rep., 2003, OMG document available at http:
//www.omg.org/cgi-bin/doc?omg/03-06-01.

[6] D. Basin, J. Doser, and T. Lodderstedt, “Model driven security: From
UML models to access control infrastructures.” ACM Transactions
on Software Engineering and Methodology, vol. 15, no. 1, pp. 39–91,
2006.

[7] ActionGUI, “ActionGUI semantics,” IMDEA & ETH, Tech. Rep.,
2013, available at http://www.actiongui.org.

[8] Object Management Group, “Object constraint language specifica-
tion version 2.3.1,” OMG, Tech. Rep., 2012, http://www.omg.org/
spec/OCL/2.3.1.

[9] D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST standard for role-based access control,”
ACM Transactions on Information and System Security, vol. 4, no. 3,
pp. 224–274, 2001.

[10] H. Baumeister, N. Koch, and L. Mandel, “Towards a UML extension
for hypermedia design,” in Proc. of UML’99, ser. LNCS, R. B.
France and B. Rumpe, Eds. Springer, 1999, pp. 614–629.

[11] M. Busch and N. Koch, “MagicUWE - a case tool plugin for
modeling web applications,” in Proc. of ICWE’09, ser. LNCS,
M. Gaedke, M. Grossniklaus, and O. Dı́az, Eds., vol. 5648. Springer,
2009, pp. 505–508.

[12] M. Busch, “Integration of security aspects in web engineering,” Mas-
ter’s thesis, Institut für Informatik, Ludwig-Maximilians-Universität,
München, Germany, 2011.

[13] C. Kroiss, N. Koch, and A. Knapp, “UWE4JSF: A model-driven
generation approach for web applications,” in Proc. of ICWE’09,
ser. LNCS, M. Gaedke, M. Grossniklaus, and O. Dı́az, Eds., vol.
5648. Springer, 2009, pp. 493–496.

[14] X. Jia, A. Steele, L. Qin, H. Liu, and C. Jones, “Executable
visual software modeling—the ZOOM approach,” Software Quality
Control, vol. 15, pp. 27–51, March 2007.

[15] M. Busch and M. A. G. de Dios, “ActionUWE: Transformation
of UWE to ActionGUI models,” 2012, http://uwe.pst.ifi.lmu.de/
publications/ActionUWE.pdf.

[16] J. Woodcock and J. Davies, Using Z: specification, refinement, and
proof. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[17] A. M. R. da Cruz, “Automatic generation of user interfaces from
rigorous domain and use case models,” Ph.D. dissertation, Faculdade
de Engenharia da Universidade do Porto, September 2010.

[18] A. M. R. da Cruz and J. P. Faria, “A metamodel-based approach for
automatic user interface generation,” in Part I of Proc. of Model
Driven Engineering Languages and Systems - 13th International
Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010., ser.
LNCS, D. C. Petriu, N. Rouquette, and Ø. Haugen, Eds. Springer,
2010, pp. 256–270.

[19] M. Elkoutbi, I. Khriss, and R. Keller, “Automated prototyping
of user interfaces based on UML scenarios,” Automated Software
Engineering, vol. 13, pp. 5–40, 2006.

[20] O. Pastor, J. Gómez, E. Insfrán, and V. Pelechano, “The OO-method
approach for information systems modeling: from object-oriented
conceptual modeling to automated programming,” Information Sys-
tems, vol. 26, no. 7, pp. 507–534, 2001.

[21] P. J. Molina, S. Meliá, and O. Pastor, “Just-UI : A user interface
specification model,” in Proc. of CADUI’02, C. Kolski and J. Van-
derdonckt, Eds., 2002, pp. 63–74.

[22] S. Ceri and P. Fraternali, “The web modeling language - WebML,”
2003, http://www.webml.org.

[23] Web Models Company, “Web ratio – you think, you get,” 2010,
http://www.webratio.com.

[24] A. Schramm, A. Preußner, M. Heinrich, and L. Vogel, “Rapid UI
development for enterprise applications: Combining manual and
model-driven techniques,” in Part I of Proc. of Model Driven En-
gineering Languages and Systems - 13th International Conference,
MODELS 2010, Oslo, Norway, October 3-8, 2010., ser. LNCS, D. C.
Petriu, N. Rouquette, and Ø. Haugen, Eds. Springer, 2010, pp. 271–
285.

13

[25] V. Kulkarni, S. Reddy, and A. Rajbhoj, “Scaling up model driven
engineering - experience and lessons learnt,” in Part II of Proc. of
Model Driven Engineering Languages and Systems - 13th Inter-
national Conference, MODELS 2010, Oslo, Norway, October 3-8,
2010., ser. LNCS, D. C. Petriu, N. Rouquette, and Ø. Haugen, Eds.
Springer, 2010, pp. 331–345.

[26] Mozilla Foundation, “XML user interface language (XUL),” 2013,
https://developer.mozilla.org/en-US/docs/XUL.

[27] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and
V. López-Jaquero, “UsiXML: A language supporting multi-path
development of user interfaces,” in Engineering Human Computer
Interaction and Interactive Systems, Joint Working Conferences
EHCI-DSVIS 2004, Hamburg, Germany, July 11-13, 2004, Revised
Selected Papers, ser. LNCS, R. Bastide, P. A. Palanque, and J. Roth,
Eds., vol. 3425. Springer, 2004, pp. 200–220.

[28] G. Calvary, J. Coutaz, L. Bouillon, M. Florins, Q. Limbourg,
L. Marucci, F. Paternò, C. Santoro, N. Souchon, D. Thevenin, and
J. Vanderdonckt, “The CAMELEON reference framework,” 2002,
http://giove.isti.cnr.it/projects/cameleon.html.

[29] J. Valdazo, “Developing secure business applications from secure
BPMN models,” Master’s thesis, Facultad de Informática, Universi-
dad Complutense de Madrid, Madrid, Spain, 2012.

[30] D. A. Basin, M. Clavel, and M. Egea, “A decade of model-driven
security,” in Proceedings of the 16th ACM symposium on Access
control models and technologies (SACMAT 2011), vol. 1998443.
Innsbruck, Austria: New York, NY, USA, 2011, pp. 1–10.

APPENDIX

A. Making the Security Policy Explicit

In this appendix we define a transformation that, for
every SecureUML model S, produces the SecureUML
model S[, which makes explicit the security policy declared
in S. We define this transformation in four steps. Note that,
as stated in Remark 1, the following holds at the end of
our transformation: for every atomic action act and every
role r in S, there is exactly one permission in S[(possibly
constrained by false) for r to execute act .
Step 1: Copy the explicit permissions

• Atomic actions. Let act be an atomic action. Suppose
that there is a permission in S for a role r to execute
act under a constraint auth . Then, there is also a
permission in S[for r to execute act under the same
constraint auth .

Step 2: Unfold the security model

• Action hierarchies. Let CA be a composite action.
Suppose that there is a permission in S for a role
r to execute CA under a constraint auth . Then for
every atomic action act contained in CA, there is a
new permission in S[for r to execute act under the
same constraint auth .

• Role hierarchies. Let act be an atomic action and let
r and r′ be two roles. Suppose that r is a subrole of
r′ in S, and that there is also a permission in S for
r′ to execute act under the constraint auth . There is
then a new permission in S[for the role r to execute
act under the same constraint auth .

• Delete actions. Let entity be an entity. Suppose that
there is a permission in S for a role r to delete entity
under a constraint auth . Then for every association-
end assoc owned by entity , there is a new permission
in S[for r to execute the action Delete::assoc under
the same constraint auth .

• Opposite association-ends. Let assoc and assoc′ be
two opposite association-ends. Let act be the action
Create::assoc. Suppose that there is a permission in S
for a role r to execute act under the constraint auth .
There is then a new permission in S[for the role r to
execute Create::assoc′ under the constraint that results
from simultaneously replacing in auth the variable self
by target and the variable target by self. Unfolding is
similar when act is the action Delete::assoc.

Step 3. Add default permissions to the security model
• Denying by default. Let r be a role and let act be an

atomic action. Suppose that there is no permission in
S[for the role r to execute act . There is then a new
permission in S[for the role r to execute act under
the constraint false. That is, the role r will be denied
access to execute act in all circumstances.

Step 4. Simplify the resulting security model
• Disjunction of constraints. Let r be a role and let act

be an action. Suppose that there are n permissions in
S[for the role r to execute act . These n permissions
are then simplified to a single permission whose au-
thorization constraint results from disjoining together
all the authorization constraints of the n individual
permissions.

B. Correctness of our Model Transformation

In this paper we have focused on our methodology
and tool support for designing and generating secure data-
management applications. Our approach also has a formal
basis and we sketch here the correctness of our model trans-
formation Sec, which is defined relative to the semantics
of GUI models. Full details are provided in [7].

We define the semantics of GUI models by first giving
a set of inference rules that defines a transition relation
−→ between triples of the form 〈stm, I, θ〉, where stm is a
statement, I is a scenario (i.e., an instance of the underlying
data model), and θ represents a state of the widget variables.
We provide inference rules for each possible statement:
namely, for every type of data action and GUI action
(base cases), and for arbitrary sequences of statements,
conditional statements, and iterator-statements (inductive
cases). In particular, for data actions, the inference rules
have form

〈act(args), I, θ〉 −→ 〈skip, res(I), res(θ)〉
,

where:
• args are the arguments of the data action act ,
• res(I) specifies the scenario that results from execut-

ing act(args) in the scenario I and widget variable
state θ, and

• res(θ) specifies the widget variables’ new state after
executing act(args) in the scenario I and widget
variable state θ.

Crucially, no inference rule leading to skip is defined for
the GUI action fail.

14

We then define the operational semantics of an event ev
that executes the actions specified by an statement stm as
the set of all the transitions

〈stm, I, θ〉 −→∗ 〈skip, I ′, θ′〉 ,

where −→∗ is the reflexive-transitive closure of −→.
By definition, this operational semantics for events is

security-unaware: it does not respect the authorization
constraints that, according to the given security model,
should constrain the execution of data actions. To provide
a security-aware operational semantics for events, we de-
fine the security-aware versions of the inference rules. In
particular, given a security model S, for each role r, and
for each type of data action act , the security-aware version
of the inference rule for act and r has the form

J(Auth(S, r, act)[args])θKI = true

〈act(args), I, θ〉 −→ 〈skip, res(I), res(θ)〉
,

where:
• JexprKI denotes the value of the expression expr in

the scenario I; and, therefore,
• J(Auth(S, r, act)[args])θKI denotes the evaluation in

the scenario I of the authorization Auth(S, r, act)
that constrains the only permission that, according
to Remark 1, ultimately allows users with the role
r to execute the action act , given that arg are the
arguments of act and θ is the state of the widget
variables.

These security-aware inference rules define the transition
relation −→S . Finally, given a security model S, we define
the security-aware operational semantics of an event ev
that executes the actions specified by an statement stm as
the set of all the transitions

〈stm, I, θ〉 −→∗S 〈skip, I ′, θ′〉 .

The theorem below formalizes the correctness of our
model-transformation function Sec. It states that evaluating
a statement transformed by Sec following the security-
unaware operational semantics returns the same result as
evaluating the original statement using the security-aware
semantics. Hence the transformed statement respects the
authorization constraints formalized in the underlying
security model.

Theorem Let S be a security model and let stm be a
statement. Then, for every scenario I , and every widget
variable state θ,

〈Sec(stm, S), I, θ〉 −→∗ 〈skip, I ′, θ′〉 ⇐⇒
〈stm, I, θ〉 −→∗S 〈skip, I ′, θ′〉.

David Basin is a full professor and has the
chair for Information Security at the Department
of Computer Science, ETH Zurich since 2003.
From 2003–2011 he was founding director of the
ZISC, the Zurich Information Security Center.
He received his Ph.D. from Cornell University
in 1989, and his Habilitation from the University
of Saarbrücken in 1996. His research focuses
on information security, in particular methods
and tools for modeling, building, and validating
secure and reliable systems.

Manuel Clavel received his bachelor’s degree
in Philosophy from the Universidad de Navarra
in 1992, and his Ph.D from the same univer-
sity in 1998. Currently, he is Associate Re-
search Professor at the IMDEA Software In-
stitute and Associate Professor at the Universi-
dad Complutense de Madrid. His research fo-
cuses on rigorous, tool-supported model-driven
software development, including: modeling lan-
guages, model transformation, model quality as-
surance, and code-generation.

Marina Egea is a Senior Security Consultant at
Atos Research & Innovation, based in Madrid,
since September 2011. She received her PhD in
Computer Science at Universidad Complutense
de Madrid in 2008. From 2008–2011 she was a
post doctoral researcher, first at the Information
Security Group at ETH Zurich, and later at
IMDEA Software Institute. Her current research
interests include secure systems development
and assurance of security and privacy properties
of Cloud services.

Miguel A. Garcı́a de Dios is a Ph.D student
at IMDEA Software in the Modeling Group.
He received his bachelor and master degrees
from the Universidad Complutense de Madrid
in 2007. His research focuses on rigorous, tool-
supported model-driven software development,
including: modeling languages, model trans-
formation, model quality assurance, and code-
generation.

Carolina Dania is a Ph.D student at IMDEA
Software in the Modeling Group. She received
her bachelor’s degree from the Universidad Na-
cional de Córdoba, Argentina, and her master’s
degree from the Universidad Complutense de
Madrid, Spain. Her research interests include
software engineering, formal methods and secu-
rity. In particular, she is working in tools and
techniques for modeling, building and validating
secure and reliable software systems.

