
Electronic Communications of the EASST
Volume 36 (2010)

Proceedings of the
Workshop on OCL and Textual Modelling

(OCL 2010)

MySQL4OCL: A Stored Procedure-Based MySQL Code Generator for
OCL

Marina Egea, Carolina Dania and Manuel Clavel

16 pages

Guest Editors: Jordi Cabot, Tony Clark, Manuel Clavel, Martin Gogolla
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

MySQL4OCL: A Stored Procedure-Based MySQL Code Generator
for OCL

Marina Egea1, Carolina Dania12 and Manuel Clavel12∗

IMDEA Software Institute, Madrid, Spain.
[marina.egea,carolina.dania,manuel.clavel]@imdea.org1

Depto. Sistemas Informáticos y Computación2,
Universidad Complutense de Madrid, Spain.

Abstract: In this paper we introduce a MySQL code generator for a significant sub-
set of OCL expressions which is based on the use of stored procedures for mapping
OCL iterators. Our code generator is defined recursively over the structure of OCL
expressions. We discuss the class of OCL expressions covered by our definition
(which includes, possibly nested, iterator expressions) as well as some extensions
needed to cover the full OCL language. We also discuss the efficiency of the MySQL
code produced by our code generator, and compare it with previous known results
on evaluating OCL expressions on medium-large scenarios. We have implemented
our code generator in the MySQL4OCL tool.

Keywords: OCL, code generator, stored-procedures, MySQL

1 Introduction

In this paper we introduce a MySQL code generator for a significant subset of OCL expressions
which is based on the use of stored procedures for mapping OCL iterators. We have implemented
this code generator in the MySQL4OCL tool, which is available at [EDC10].

Motivation. Our motivation here is two-fold. On the one hand, our code generator addresses
the problem, already discussed in [CED08] of evaluating OCL expressions on really large scenar-
ios: instead of having to “load” them in memory (a time-consuming, or even impractical task for
OCL evaluators), we can (i) store these scenarios in a database, (ii) apply our code generator to
the expressions to be evaluated, and (iii) execute the resulting query statements on the database.
On the other hand, our code generator provides a key component for any models-to-code devel-
opment process, where the source models include OCL expressions and the target code evaluates
these expressions on relational databases. This is precisely the case of our models-to-code tool-
chain for developing smart, security-aware GUIs [DDS+10].

OCL to MySQL in a Nutshell. In general, given an expression expr, our code generator pro-
duces a MySQL query, denoted by codegen(expr), whose execution returns a result-set contain-
ing the values corresponding to the evaluation of expr. The case of iterator expressions, i.e., of
∗ Research partially supported by EU Program PCOFUND-2008-229599, Spanish MEC Projects TIN2009-14599-
C03-01 and TIN2009-14599-C03-02, and by Comunidad de Madrid Program S2009/TIC-1465.

1 / 16 Volume 36 (2010)

mailto:[marina.egea,carolina.dania,manuel.clavel]@imdea.org

MySQL4OCL: A Stored Procedure-Based MySQL Code Generator for OCL

expressions whose top-operator is an iterator operator, deserves, however, a particular attention.
Basically, for each iterator expression expr, our code generator produces a MySQL stored pro-
cedure1 that, when called, it creates a table containing the values corresponding to the evaluation
of expr.

Our code generator is defined recursively over the structure of OCL expressions. That is,
let expr be an expression with top-operator op and immediate subexpressions expr1, . . . ,exprn.
Thus, in general, codegen(expr) has as subqueries codegen(expr1), . . . ,codegen(exprn) (possibly
with aliases, that we denote by codegen(expr1), . . . ,codegen(exprn)), which are produced by
recursively calling our code generator on the corresponding subexpressions of expr.

Scope of our Mapping. As presented here, our code generator does not cover the full OCL
language, a non-realistic task anyway given the limited space available. Among the features of
OCL which are not currently covered are the followings: operations on sequences and ordered-
sets; operations on collection of collections; operations on types; and user-defined operations. In
our concluding remarks we briefly discussed how to extend our mapping to overcome its current
limitations.

However, the subset of OCL that we do cover here is significant in two ways. First, it allows
us to apply our code generator to (and experiment with) a large class of OCL queries: we have
included some examples in Appendix A and many more are available at [EDC10]. Second, it
allows us to introduce the key idea underlying our mapping, namely, the use of stored procedures
to deal with (possibly nested) iterator expressions. Interestingly, this idea was already hinted
in [Sch98]. However, as it is recognized there, “this work did not succeed in finding a concise
and complete formal representation for procedural mapping patterns”, and it was not further
developed afterwards.

Organization. The rest of this paper is organized as follows. In Section 2 we recall the basic
mapping from UML class and object diagrams to MySQL. Then, in Section 3, Section 4, and
Section 5, we give the definition of the mapping underlying our code generator. Afterwards, in
Section 6, we discuss the efficiency of the MySQL code produced by our code generator and, in
Section 7, we report on related work. We conclude the paper with our future work.

2 Mapping UML Class and Object Diagrams to MySQL

Our code generator assumes that the underlying UML class and object diagrams (i.e., the “con-
texts” of the OCL queries) are represented using MySQL tables according to the following
(rather) standard rules. Examples can be found in Appendix A. For the sake of simplicity,
we do not consider here the full class of UML class diagrams. In particular, we do not consider
the following modeling elements: generalizations, enumerations, multivalued attributes, n-ary
associations (with n > 2), and ordered or qualified associations.

1 Stored procedures are routines (like a subprogram in a regular computing language) that are stored in the database.
A stored procedure has a name, may have a parameter list, and an SQL statement, which can contain many other SQL
statements. Stored procedures provide a special syntax for local variables, error handling, loop control, if-conditions
and cursors, which allow the definition of iterative structures.

Proc. OCL 2010 2 / 16

ECEASST

Let M be a class diagram and let O be an instance of M. Then,

• Each class A in M is mapped to a table dAe, which contains, by default, a column pk of
type Int as its primary key. Then, each object in O of class A is represented by a row in
dAe and it will be denoted by its key (i.e., the value in pk).

• Given a class A, each attribute W of A is mapped to a column W] in dAe, the type of W]

being the type of W .2 Then, the value of W in an object o in O is represented by the value
which the column W] holds for the row that represents o in dAe.

• Given two classes A and B, each association P between A and B, with association-ends
rl A (at the class A) and rl B (at the class B), is mapped to a table dPe, which contains two
columns rl A] and rl B], both of type Int. Then, a P-link between an object o of class
A and an object o′ of class B is represented by a row in dPe, where rl A] holds the key
denoting o and rl B] holds the key denoting o′.

The above mapping rules assumes that the input UML class diagrams satisfy the following
(rather) natural constraints:

• Each class has a unique name.

• Each attribute within a class has a unique name.

• Each association is uniquely characterized by its association-ends. Also, the association-
ends in a self-association have different names.

3 Mapping Non-Iterator Expressions to MySQL Queries

In this section we define the query codegen(expr) produced by our code generator for the case
of expressions expr whose top-operator is a non-iterator operator. Examples can be found in
Appendix A.

We proceed by cases, each case being characterized by the expression’s top-operator. Due
to space constraints, we only consider a subset of the OCL non-iterator operators. Also, we
assume that the types of these operators are either primitive types, sets or bags of primitive
or class types, or class types. For the sake of presentation, we assume that, in all cases, the
immediate subexpressions of expr are non-iterator expressions. The remaining cases are dealt
with as explained in Section 5.

Primitive operators

Variables. Let var be a variable. Then, codegen(var) is:

select var as value

2 More specifically, the UML/OCL primitive types Boolean, Integer, and String, are mapped, respectively,
to the MySQL types Int, Int, and char(65). The UML/OCL class types are mapped to the MySQL type Int
(which is the type of the primary keys of the tables representing classes). We have decided to map String to
char(65) for efficiency reasons: obviously, a more general solution is to map String to text.

3 / 16 Volume 36 (2010)

MySQL4OCL: A Stored Procedure-Based MySQL Code Generator for OCL

Literals. Let lit be a primitive literal. Then, codegen(lit) is:

select lit as value

Operators. Let expr be an expression or the form expr1 prim op expr2, where prim op is +, -,
x, and, or, implies, or =. Then, codegen(expr) is:

select (codegen(expr1)) prim op[(codegen(expr2))

where prim op[denotes the operation in MySQL that corresponds to prim op.3 Similarly, for
expressions of the form prim op expr1, where prim op is - or not.

Type literals. Let class be a class identifier. Then, codegen(class) is:

select pk as value from dclasse

Boolean operators

isEmpty/notEmpty. Let expr be an expression of the form expr1->isEmpty(). Then,
codegen(expr) is:

select count(*)=0 as value from (codegen(expr1)) as codegen(expr1)

For the operator notEmpty, “count(*)>0” replaces “count(*)=0” above.

includes/excludes. Let expr be an expression of the form expr1->includes(expr2).
Then, codegen(expr) is:

select codegen(expr2) in codegen(expr1) as value

For the operator excludes, “not in” replaces “in” above.

Numeric operators

size. Let expr be an expression of the form expr1->size(). Then, codegen(expr) is:

select count(*) as value from (codegen(expr1)) as codegen(expr1)

sum. Let expr be an expression of the form expr1->sum(). Then, codegen(expr) is:

select sum(*) as value from (codegen(expr1)) as codegen(expr1)

3 In general, since there are primitive operators in OCL that do not have a direct counterpart in MySQL (e.g.,
implies), some expressions may need to be rewritten into equivalent ones before calling the code generator.

Proc. OCL 2010 4 / 16

ECEASST

Model specific operators

allInstances. Let expr be an expression of the form expr1.allInstances(). Then,
codegen(expr) is:

select * from (codegen(expr1)) as codegen(expr1)

Association-ends. Let expr be an expression of the form expr1.rl A (resp. expr1.rl B), where
rl A (resp. rl B) is the A-end (resp. B-end) of an association P between two classes A and B.
Then, codegen(expr) is:

select dPe.rl A] as value

from (codegen(expr1)) as codegen(expr1)
left join dPe on codegen(expr1).value = dPe.rl B
where dPe.rl A] is not null

Attributes. Let expr be an expression of the form expr1.attr where attr is an attribute of a
class A. Then, codegen(expr) is:

select dAe.attr] as value

from (codegen(expr1)) as codegen(expr1)
left join dAe on codegen(expr1) .value = dAe.pk

Collection operators

asSet. Let expr be an expression of the form expr1->asSet(). Then, codegen(expr) is the
following MySQL statement:

select distinct * from (codegen(expr1)) as codegen(expr1)

asBag. Let expr be an expression of the form expr1->asBag(). Then, codegen(expr) is:

codegen(expr1)

union. Let expr be an expression of the form expr1->union(expr2), where both expr1 and
expr2 are sets. Then, codegen(expr) is:

codegen(expr2) union codegen(expr1)

When expr1 or expr2 are bags, then “union all” will replace “union” above.

including. Let expr be an expression of the form expr1->including(expr2), where
expr1 is a set. Then, codegen(expr) is:

codegen(expr2) union codegen(expr1)

When expr1 is a bag, then “union all” will replace “union” above.

5 / 16 Volume 36 (2010)

MySQL4OCL: A Stored Procedure-Based MySQL Code Generator for OCL

excluding. Let expr be an expression of the form expr1->excluding(expr2). Then,
codegen(expr) is:

select * from codegen(expr1) as codegen(expr1)
where value not in codegen(expr2)

4 Mapping Iterator Expressions to MySQL Procedures

In this section we define the query codegen(expr) produced by our code generator for the case
of expressions expr whose top-operator is an iterator. Examples can be found in Appendix A.

Here, the basic idea is that, for each iterator expression expr, our code generator produces a
MySQL stored procedure, denoted by codegenproc(expr), that, when called, it creates a table,
denoted by dcodegenproc(expr)e, containing the values corresponding to the evaluation of expr.
Due to space constraints, we only consider a subset of the iterator operators in OCL: namely,
forAll, exists, collect, select, and reject. Also, we assume that the types of the
source-subexpressions are either sets or bags of primitive or class types, and that, in the case of
collect-expressions, the types of their body-subexpressions are either primitive or class types,
or set or bags of primitive or class types. For the sake of presentation, we assume that, in all cases,
the source- and body-subexpressions of expr are not themselves iterator expressions. The others
cases (which include the cases of nested iterators) are dealt with as explained in Section 5.

Let expr be an iterator expression of the form source->iter op(var|body). Then, codegen(expr)
is:

call codegenproc(expr);
select * from dcodegenproc(codegen(expr))e;

where codegenproc(expr) is a MySQL stored procedure. The definition of this procedure, also
generated by our code generator, follows the scheme shown in Figure 1. Basically, the function
codegenproc(expr) creates the table dcodegenproc(expr)e and execute, for each element in the
source-collection, the body of the iterator expression expr. More concretely, until all elements in
the source-collection have been considered, codegenproc(expr) repeats the following process: i) it
instantiates the iterator variable var in the body-subexpression, each time with a different element
of the source-collection, which it fetches from codegen(source) using a cursor; and ii) using the
so called “iterator-specific processing code”, it processes in dcodegenproc(expr)e the result of
the query codegen(body), according to the semantics of the iterator iter op. Additionally, in the
case of the iterators forAll and exists, the table dcodegenproc(expr)e is initialized, using the
so called “initialization-specific code”. Moreover, for the iterators forAll and exists, the
process described above will also be finished when, for any element in the source-collection, the
result of the query codegen(body) contains the value corresponding, in the case of the iterator
forAll, to false (i.e., 0) or, in the case of the iterator exists, to true (i.e., 1).

In the remaining of this section, we specify, for each case of iterator expression, the corre-
sponding “value-specific type”, “initialization-specific code” and “iterator-specific processing
code” produced by our code generator when instantiating the general schema. For all cases,
the “cursor-specific type” is the MySQL type which represents, according to our mapping (see
footnote 2), the type of the elements in the source.

Proc. OCL 2010 6 / 16

ECEASST

create procedure codegenproc(expr)()
begin
declare done int default 0;

declare var cursor-specific type ;
declare crs cursor for codegen(source);
declare continue handler for sqlstate ’02000’ set done = 1;
drop table if exists dcodegenproc(expr)e;
create table dcodegenproc(expr)e (value value-specific type);

Initialization-specific code (only for forAll and exists)
open crs;
repeat
fetch crs into var;
if not done then

Iterator-specific processing code
end if;
until done end repeat;

close crs;
end;

Figure 1: General schema for mapping iterator expressions as stored procedures.

forAll-iterator. Let expr be an expression of the form source->forAll(var|body). Then,
the “holes” in the scheme shown in Figure 1 will be filled as follows:

• value-specific type: int.

• Initialization code:

insert into dcodegenproc(expr)e (value) values (1);

• Iterator-processing code:

update dcodegenproc(expr)e set value = 0 where (codegen(body)) = 0;
if exists (select 1 from dcodegenproc(expr)e where value = 0)
then set done = 1;
end if;

exists-iterator. Let expr be an expression of the form source->exists(var|body). Then,
the “holes” in the scheme shown in Figure 1 will be filled as follows:

• value-specific type: int.

• Initialization code:

7 / 16 Volume 36 (2010)

MySQL4OCL: A Stored Procedure-Based MySQL Code Generator for OCL

insert into dcodegenproc(expr)e (value) values (0);

• Iterator-processing code:

update dcodegenproc(expr)e set value = 1 where (codegen(body)) = 1;
if exists (select 1 from dcodegenproc(expr)e where value = 1)
then set done = 1;
end if;

collect-iterator. Let expr be an expression of the form source->collect(var|body).
Then, the “holes” in the scheme shown in Figure 1 will be filled as follows:

• value-specific type: the MySQL type which represents, according to our mapping, the type
of the body.

• Iterator-processing code:

insert into dcodegenproc(expr)e (value) codegen(body);

select-iterator. Let expr be an expression of the form source->select(var|body). Then,
the “holes” in the scheme shown in Figure 1 will be filled as follows:

• value-specific type: the MySQL type which represents, according to our mapping, the type
of the elements in the source.

• Iterator-processing code:

if exists

(select 1 from (codegen(body)) as codegen(body)
where value = 1)

then insert into dcodegenproc(expr)e (value) values (var);
end if;

reject-iterator. Let expr be an expression of the form source->reject(var|body). Then,
the “holes” in the scheme shown in Figure 1 will be filled as follows:

• value-specific type: the MySQL type which represents, according to our mapping, the type
of the elements in the source.

• Iterator-processing code:

if exists

(select 1 from (codegen(body)) as codegen(body)
where value = 0)

then insert into dcodegenproc(expr)e (value) values (var);
end if;

Proc. OCL 2010 8 / 16

ECEASST

5 Dealing with Iterator Subexpressions

The key idea underlying our mapping from OCL to MySQL is the use of stored procedures to
deal with iterator expressions. However, since stored procedures cannot be called within queries,
the recursive definition of our code generator needs to treat the case of immediate subexpressions
which are iterator expressions in a special way.

More concretely, let expr be an OCL expression with top-operator op and immediate subex-
pressions expr1, . . . ,exprn. Now, let expri, 1≤ i≤ n, be an iterator expression. Then, except for
the case of iterator expressions whose body-subexpressions are themselves iterator expressions
(i.e., the case of nested iterator expressions), which we will discuss later, the query codegen(expr)
produced by our code generator will be preceded by

call codegenproc(expri);

and, moreover, any subquery codegen(expri) occurring in the definition of codegen(expr), as
given in Section 3 and Section 4, will be replaced by the following subquery

select * from dcodegenproc(expri)e as codegenproc(expr1);

Example 1 For example, let expr be the OCL expression expr1->notEmpty(), where expr1

is the non-iterator expression Car.allInstances(). Our code generator will produce the
following query:

select count(*)>0 as value from (codegen(expr1)) as codegen(expr1);

On the other hand, let expr be the OCL expression expr1->notEmpty(), where expr1 is the it-
erator expression Car.allInstances()->collect(c|c.model). Our code generator
will produce the following query:

call codegenproc(expr1);
select count(*)>0 as value from

(select * from dcodegenproc(expr1)e) as codegenproc(expr1);

5.1 Nested iterators

Let expr be an iterator expression of the form source->iter op(var|body). Then, if the subex-
pression source is itself an iterator expression, but not the subexpression body), we simply pro-
ceed as explained above. However, when the subexpression body is itself and iterator expression,
the general scheme for mapping iterator expressions shown in Figure 1 is slightly modified. More
concretely, right before the “iterator specific processing code”, our code generator will insert

call codegenproc(body)(var);

where now the procedure generated for mapping the body-iterator subexpression takes one pa-
rameter: namely, the iterator variable var introduced by the enclosing iterator expression.4 More-
over, our code generator will replace any subquery codegen(body) occurring in the “iterator-
specific processing code”, as given in Section 4, by the following subquery:
4 More generally, in the case of nested iterator expressions, the procedure generated for mapping an inner iterator
body-subexpression will take as parameters the iterator variables introduced by all its enclosing iterator expressions,
which we assume to have different names.

9 / 16 Volume 36 (2010)

MySQL4OCL: A Stored Procedure-Based MySQL Code Generator for OCL

Scenario I: 103 persons × 10 non-“black” cars, EOS MySQL
p = Car.allInstances().owner.ownedCars 4OCL

p->size() 30ms 180ms
p->collect(x|x.color)->size() 80ms 8.70s
p->collect(x|x.color <> ’black’)->size() 90ms 8.73s
p->collect(x|x.owner.ownedCars)->size() 240ms 15.25s
p->collect(x|x.owner.ownedCars->includes(x))->size() 221ms 17.24s
p->forAll(x|x.owner.ownedCars->includes(x)) 251ms 16.20s
p->select(x|x.owner.ownedCars->includes(x))->size() 260ms 19.84s
p->collect(x|x.owner.ownedCars.color)->size() 290ms 37.78s
p->collect(x|x.owner.ownedCars.color->size())->sum() 270ms 36.79s
p->forAll(x|x.owner.ownedCars.color->excludes(’black’)) 280ms 33.42s

Table 1: Efficiency evaluation. Preliminary results.

select * from dcodegenproc(body)(var)e

6 A Preliminary Discussion on Efficiency

In [CED08] we discussed: i) the need for an efficient implementation of OCL; ii) the aspects to be
taken into consideration to improve the efficiency of OCL evaluators on medium-large scenarios;
iii) the limits of the current OCL implementations for dealing with really large scenarios. To
motivate i), we included a benchmark showing the performance of some OCL tools on medium-
large scenarios.

Although the aim of our code generator is not to address i), that is, the efficient implementation
of OCL evaluation, but rather to overcome iii), that is, the limits of the current OCL implemen-
tations for dealing with really large scenarios, we found interesting to compare the execution of
the code produced by our MySQL4OCL with EOS,5 using for this purpose essentially the same
benchmark proposed in [CED08]. All the expressions in the benchmark were evaluated on the
same scenario, namely, an instance of the “Car-ownership” class diagram which contains 103

persons, each person owning 10 different cars, and each car with a color different from “black”.
The results are shown in Table 1.6 Notice that, for the sake of the experiment, we artificially
increased the size of the collections to be iterated upon: more concretely, in Table 1, p stands for
the expression Car.allInstances().owner.ownedCars, which, on the given scenario,
evaluates to a collection with 105 cars.

As expected, for small-medium size scenarios, it is faster to evaluate OCL expressions using
EOS than to execute the code generated by MySQL4OCL. Interestingly, the cost of executing
this MySQL code seems to depend, as in the case of EOS, on two measurements: first, the

5 In the benchmark proposed in [CED08], EOS outperformed the other OCL evaluators. We do not have more recent
comparison figures.
6 In the case of MySQL4OCL, the benchmark was run on a laptop computer with two processors at 2.40GHz, 2GB of
RAM and default settings for mySQL 5.1 Community Server. In the case of EOS, the benchmark was run on a laptop
computer, with a single processor at 2GHz, 1GB of RAM, and setting JVM parameters -Xms and -Xmx to 1024m.

Proc. OCL 2010 10 / 16

ECEASST

maximum number of times that objects’ properties will be accessed and, second, the maximum
size of the collections that will be built. In fact, for the expressions in this benchmark, the extra-
cost of executing the code generated by MySQL4OCL is essentially linear with respect to the
cost of evaluating the expressions in EOS.

The advantage of using our code generator comes when evaluating OCL expressions on large
scenarios. As reported in [CED08], none of the available OCL evaluators, including EOS, were
able to finish loading a scenario with 106 cars in less than 20 minutes.7 In contrast, loading this
scenario on a MySQL server may take less than a minute. However, it remains to be addressed
the question of whether executing the code produced by MySQL4OCL on large scenarios is
sufficiently efficient. For this purpose, we have run again on MySQL4OCL the benchmark
proposed in [CED08], but this time on a considerably larger scenario: namely, one that contains
105 persons, each person owning 10 different cars, and each car with a color different from
“black”. As expected, the execution times scale-up linearly with respect to those shown for
MySQL4OCL in Table 1: basically, they are multiplied by 102, in line with the fact that the
number of persons and cars are also multiplied by 102. Although these results are encouraging,
more experiments and comparisons are still needed in order to extract definite conclusions about
the efficiency on large scenarios of the code generated by MySQL4OCL.

7 Related Work

The work most directly related with this paper can be found in [DH99, Sch98] and provides
the foundations of the OCL2SQL tool [DHL01, HWD08]. As already discussed in [CED08],
the solution offered in [DH99, Sch98] is not satisfactory: it only considers a rather restricted
subset of the OCL language; it only applies to boolean expressions and not to arbitrary queries;
and the “complexity” of the produced code makes impractical its use for evaluating expressions
on medium-large scenarios.8 There are many differences between our mapping and the one
underlying OCL2SQL (along with some commonalities, of course). Here we only discuss the
two most relevant differences. First, we map navigation expressions using “left join”, while
OCL2SQL uses “in”. With “left join”, we avoid erroneously removing duplicated elements
when dealing with bags in arbitrary OCL queries. Second, and more relevant for our present
purposes, we give a well-defined mapping of OCL iterator operators using stored procedures.
Interestingly, this idea was already hinted in [Sch98]. However, as it is recognized there, “this
work did not succeed in finding a concise and complete formal representation for procedural
mapping patterns”, and the idea was not further developed afterwards.

The mapping from OCL to MQL (the SAP metamodel repository query language) proposed
in [Bur06] is also related with our work. Unfortunately, iterator expressions or boolean op-
erators on collections (e.g., isEmpty() or includes()) are not covered by the proposed
mapping, due to the limited expressiveness of the target language. On a more abstract level,

7 In fact, we do not know how long would it take to actually finish this task for the different OCL evaluators, since
we decided to stopped, in all cases, the loading process after 20 minutes. In any event, it is clear that, for most
applications, loading large scenarios in memory will be rather impractical.
8 As reported in [CED08], the cost of executing the code generated by OCL2SQL for a simple forall-expression
was the following: 25s for a collection with 104 elements, and 45m for a collection with 105 elements.

11 / 16 Volume 36 (2010)

MySQL4OCL: A Stored Procedure-Based MySQL Code Generator for OCL

several methodologies have been recently proposed in [MHS09, AN06, AN09] to generate code
(possibly for specific data storage language) from OCL expressions. It remains to be investi-
gated how our code generator fits in these (yet not fully developed) proposals. Also, there have
been several interesting proposals for mapping OCL expressions into Java code [DBL05, Wil09].
However, we envision for the code generated by these mappings the same general limitation re-
ported in [CED08] for OCL evaluators: namely, that for really large scenarios they need first to
solve the loading problem within a practical time-frame.

Finally, it is worthwhile mentioning the work done in [MAB08, Coo09, GMRS09] on translat-
ing other (constraint/query) languages to SQL, since they aim to bridge application and databases,
which is also part of our motivation. A detailed discussion on the expressiveness and/or practical
interest of OCL with respect to the (class of) source languages considered in [MAB08, Coo09,
GMRS09] is, however, out of the scope of this paper.

8 Conclusions and Future work

In this paper, we have introduced a MySQL code generator for a significant subset of OCL ex-
pressions (including, possibly nested, iterator expressions) which is based on the use of stored
procedures for mapping OCL iterators. Our code generator has been already implemented in the
MySQL4OCL tool, which is available at [EDC10]. Since the features and language constructs
that are employed in our mapping from OCL to MySQL are supported (leaving aside syntactic
differences) by other relational databases such as Oracle and PostgreSQL, we expect that our
code generator could be adapted for other database management systems. Also, we have dis-
cussed the efficiency of the code produced by our code generator, and we have compared it with
previous known results on evaluating OCL expressions on medium-large scenarios. Additional
experiments and comparisons are still needed in order to extract more definite conclusions, and
we plan to carry them on as part of our future work. In this context, we plan to investigate which
transformations between equivalent OCL expressions are useful in order to optimize the code
produced by our code generator.

Among the features of OCL that our code generator, as presented here, does not cover, we
briefly discuss how we shall extend our mapping to cover three of them: namely, (i) the possi-
bility of defining collection of collections (e.g., using collectNested); (ii) the possibility of
denoting or checking types (e.g., using oclType, oclIsTypeOf, and oclIsKindOf); and
(iii) the possibility of defining (maybe using recursion) operations. Now, to cover (i) and (ii), we
have to modify our queries codegen(expr) in order to obtain more “structured” result-sets. More
concretely, to cope with expressions denoting or checking types, each element in the result-set
of a query produced by our code generator shall not only hold a value, but also its type. Then, to
cope with expressions defining collection of collections, the result-set returned by executing the
query produced by our code generator shall take the form of a left-join, in which all the elements
of the same subcollection are joint together. Next, to cope with (iii) we will resort to the use
of stored procedures. Finally, we have also left uncovered the dealing with the special value
“undefined”. In principle, we shall treat undefinedness adding conditions in the code produced
by our code generator for the different OCL operators.

Proc. OCL 2010 12 / 16

ECEASST

Acknowledgements: We thank Michael Schläpfer for his interesting discussions and help dur-
ing the initial stage of this proposal.

Bibliography

[AN06] A. Armonas, L. Nemuraité. Pattern Based Generation of Full-Fledge Relational
Schemas From UML/OCL Models. Information Technology and Control 35(1),
2006.

[AN09] A. Armonas, L. Nemuraité. Using Attributes and Merging Algorithms for Trans-
forming OCL expressions into Code. Information Technology and Control 38(4),
2009.

[Bur06] E. Burger. Query Infrastructure and OCL within the SAP Project “Modeling
Infrastructure”- Studienarbeit. Technical report, Institut für Theoretische Informatik
- Technische Universität Karlsruhe, Germany, 2006.

[CED08] M. Clavel, M. Egea, M. G. de Dios. Building and Efficient Component for OCL
Evaluation. In Proc. of 8th OCL Workshop at the UML/MoDELS Conference: OCL
Concepts and Tools: From Implementation to Evaluation and Comparison. ECE-
ASST 15. Tolouse, France, September 2008.

[Coo09] E. Cooper. The Script-Writer’s Dream: How to Write Great SQL in Your Own Lan-
guage and Be Sure It Will Succeed. In Gardner and Geerts (eds.), Proc. of 12th Inter-
national Symposium Database Programming Languages - DBPL 2009. LNCS 5708,
pp. 36–51. Springer, 2009.

[DBL05] W. Dzidek, L. Briand, Y. Labiche. Lessons Learned from Developing a Dynamic
OCL Constraint Enforcement Tool for Java. In Proc. of the 4th OCL workshop at
MoDELS’05 Conference: Tool Support for OCL and Related Formalisms - Needs
and Trends. LNCS 3844, pp. 10–19. Springer-Verlag Berlin Heidelberg, Montego
Bay, Jamaica, October 2005.

[DDS+10] M. A. G. de Dios, C. Dania, M. Schläpfer, D. A. Basin, M. Clavel, M. Egea. SSG:
A Model-Based Development Environment for Smart, Security-Aware GUIs. In
Kramer et al. (eds.), Proc. of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010.
Pp. 311–312. ACM, 2010. http://www.bm1software.com.

[DH99] B. Demuth, H. Hußmann. Using UML/OCL Constraints for Relational Database
Design. In France and Rumpe (eds.), Proc. of UML’99: The Unified Modeling Lan-
guage - Beyond the Standard, Second International Conference, Fort Collins, CO,
USA, October 28-30, 1999, Proceedings. LNCS 1723, pp. 598–613. Springer, 1999.

[DHL01] B. Demuth, H. Hußmann, S. Loecher. OCL as a Specification Language for Busi-
ness Rules in Database Applications. In Proc. of UML 2001: The Unified Modeling

13 / 16 Volume 36 (2010)

http://www.bm1software.com

MySQL4OCL: A Stored Procedure-Based MySQL Code Generator for OCL

Language. Modeling languages, Concepts and Tools. LNCS 2185, pp. 104–117.
Springer, Toronto, Canada, 2001.

[EDC10] M. Egea, C. Dania, M. Clavel. The MySQL-OCL Code Generator. August 2010.
http://www.bm1software.com/mysql-ocl.

[GMRS09] T. Grust, M. Mayr, J. Rittinger, T. Schreiber. FERRY: Database-supported Program
Execution. In Cetintemel et al. (eds.), Proc. of the 35th SIGMOD international con-
ference on Management of data. SIGMOD ’09, pp. 1063–1066. ACM, New York,
NY, USA, 2009.

[HWD08] F. Heidenreich, C. Wende, B. Demuth. A Framework for Generating Query
Language Code from OCL Invariants. In Proc. of 7th OCL Workshop at the
UML/MoDELS Conference: Ocl4All: Modelling Systems with OCL. ECEASST 9.
Nashville, Tennessee, October 2008.

[MAB08] S. Melnik, A. Adya, P. A. Bernstein. Compiling Mappings to Bridge Applications
and Databases. ACM Transactions Database Systems 33:1–50, December 2008.

[MHS09] R. Moiseev, S. Hayashi, M. Saeki. Generating Assertion Code from OCL: A
Transformational Approach Based on Similarities of Implementation Languages.
In A.Schürr and Selic (eds.), Proc. of Model Driven Engineering Languages and
Systems, 12th International Conference, MoDELS 2009, Denver, CO, USA, October
4-9, 2009. Proceedings. LNCS 5795, pp. 650–664. Springer, 2009.

[Sch98] A. Schmidt. Untersuchungen zur Abbildung von OCL-Ausdrücken auf SQL. Mas-
ter’s thesis, Institut für Softwaretechnik II - Technische Universität Dresden, Ger-
many, 1998.

[Wil09] C. Wilke. Java Code Generation for Dresden OCL2 for Eclipse- Grosser Beleg.
Technical report, Fakultät Informatik - Institut für Software un Multimediatechnik -
Technische Universität Dresden - Lehrstuhl Softwaretechnolgie, Germany, 2009.

A Examples
Consider the “Car-ownership” UML class diagram in Figure 2: it contains two classes, “Person”
and “Car”, which are related by the association “Ownership”, which links persons (“owner”) with
their cars (“ownedCars”). To illustrate the mapping rules for UML class and object diagrams
given in Section 2, we show below the MySQL statements that create the tables corresponding
to “Car-ownership”.

create table Person (pk int auto increment primary key,
name char(65), age int, phoneno int);

create table Car (pk int auto incremente primary key,
model char(65), color char(65));

create table ownership (owner int not null, ownedCars int not null,
foreign key (owner) references Person (pk),
foreign key (ownedCars) references Car (pk));

Proc. OCL 2010 14 / 16

http://www.bm1software.com/mysql-ocl

ECEASST

Car

+ model : Stringalaaa
+ color : Stringaaaaal

Person

+ name : Stringaaallla
+ phoneno : Integerlal
+ age : Integeraaaaall

ownedCars

owner *

*

Figure 2: The “Car-ownership” class diagram

1 : Car

model = Peugeot 307
color = whiteaaaaaall

2 : Car

model = Peugeot 206
color = blueaaaaaaall

3 : Car

model = Peugeot 206
color = greyaaaaaaall

2 : Person

name = Teresaaaaaal
age = 25aaaaaaaaaa
phoneno = 67641875

1 : Person

name = Aleaaaaaaaa
age = 26aaaaaaaaaa
phoneno = 68901037

3 : Person

name = Césaraaaaall
age = 29aaaaaaaaaa
phoneno = 63518996

4 : Person

name = Juanaaaaaall
age = 26aaaaaaaaaa
phoneno = 65148161

Figure 3: A “Car-ownership” object diagram

Person
pk name age phoneno
1 Ale 26 68901037
2 Teresa 25 67641875
3 César 29 63518996
4 Juan 26 65148161

Car
pk model color
1 Peugeot 307 white
2 Peugeot 206 blue
3 Peugeot 206 grey

ownership
owner ownedCars

1 1
2 1
2 2
3 3

Figure 3: Mapping a “Car-ownership” ob-
ject diagram.

Also, consider the instance of “Car-ownership” in Figure 3. We show in Figure 3 the repre-
sentation of this object diagram in the tables created by our mapping for “Car-ownership”.

Next, to illustrate the recursive definition of our code generator given in Section 3 and Sec-
tion 4, we introduce the following examples:

Example 2 Let expr be the OCL expression Car.allInstances().model. Then,
codegen(expr) is the following MySQL statement:

select Car.model as value
from (select pk value from Car) as temp
left join Car on temp.value = Car.pk;

Example 3 Let expr be the OCL expression Car.allInstances().owner. Then,
codegen(expr) is the following MySQL statement:

select ownership.owner as value

15 / 16 Volume 36 (2010)

MySQL4OCL: A Stored Procedure-Based MySQL Code Generator for OCL

from (select pk value from Car) as temp
left join ownership on temp.value = ownership.ownedCars
where ownership.owner is not null;

Example 4 Let expr be the OCL expression Car.allInstances()->forAll(c|
c.owner.ownedCars->includes(c)). Then, codegen(expr) is the following MySQL
statement:

create procedure forAll0()
begin
declare done Int default 0;
declare result boolean default true;
declare var Int;
declare crs cursor for (select pkCar from Car);
declare continue handler for sqltate ’02000’ set done = 1;
drop table if exists forAll0;
create table forAll0(value int);
insert into forAll0 (value) values (1);
open crs;
repeat
fetch crs into var;
if not done then
update forAll0 set value = 0 where(
select var in (
(select ownership.ownedCars as value from
(select ownership.owner as value from
(select var as value) as t3
left join ownership on t3.value=ownership.ownedCars
where ownership.owner is not null) as t2
left join ownership on t2.value=ownership.owner
where ownership.ownedCars is not null) as t1) = 0;

if exists (select 1 from forAll0 where value = 0)
then set done = 1;
end if;

end if;
until done end repeat;
close crs;
end;
call forAll0();
select * from forAll0;

Proc. OCL 2010 16 / 16

	Introduction
	Mapping UML Class and Object Diagrams to MySQL
	Mapping Non-Iterator Expressions to MySQL Queries
	Mapping Iterator Expressions to MySQL Procedures
	Dealing with Iterator Subexpressions
	Nested iterators

	A Preliminary Discussion on Efficiency
	Related Work
	Conclusions and Future work
	Examples

