Verified
Indifferentiable Hashing into Elliptic Curves

Santiago Zanella Béguelin?

Gilles Barthe?, Benjamin Grégoire3,

Sylvain Heraud? and Federico Olmedo?

Microsoft

Research

Microsoft Research Cambridge!

iMdea % INRIA

:::::::::::::::

IMDEA Software Institute? INRIA Sophia Antipolis-Méditerranée?

2012.03.26
POST 2012

Joint work with

Gilles Barthe Benjamin Grégoire Sylvain Heraud

2/1

Federico Olmedo

What is an elliptic-curve?

Y
Y3=X3+aX+b

[.
N\

3/1

What is an elliptic-curve?

3/1

What is an elliptic-curve?

3/1

What is an elliptic-curve?

The points in the curve with the point at oo form an abelian group

3/1

Elliptic Curve Cryptography

Elliptic curve cryptography exploits the algebraic structure of
elliptic curves over finite fields

@ Based on the hardness of the discrete log problem on EC

@ Known methods to solve ECDLP are exponential, compared
to sub-exponential for solving RSA

@ Achieves same level of security as e.g. RSA but more
efficiently (shorter keys—224-bits vs. 2048-bits)

4/1

Why it is important to hash into an EC?

@ Some useful functionalities can only be achieved efficiently
using ECC

e Efficient pairings in Pairing-Based Cryptography are defined
on elliptic curves

@ Password Authenticated Key Exchange protocols,
Identity-Based encryption, signature and signcryption schemes
all require hashing into elliptic curves

5/1

Why it is important to hash into an EC?

5/1

@ Some useful functionalities can only be achieved efficiently
using ECC

e Efficient pairings in Pairing-Based Cryptography are defined
on elliptic curves

@ Password Authenticated Key Exchange protocols,
Identity-Based encryption, signature and signcryption schemes
all require hashing into elliptic curves

Boneh-Franklin IBE

Let e : G1 X G — Gy be bilinear pairing and H: {0,1}* — G; a
cryptographic hash function [...] The public key associated to an
id € {0,1}* is Qg = H(id) «— Gy is an EC group

Why it is difficult to hash (securely) into an EC?

Given a hash function h: {0,1}* — [F,, how to hash m € {0,1}*
into EC(Fp)?

@ Compute x = h(m). If Jy. (x,y) € EC(F,), return (x, y),
otherwise increment x and try again.

e Vulnerable to timing attacks
e Inefficient

@ Use a determinisitic encoding (e.g. Icart, SWU)
f:Fp— EC(Fp): return f(h(m))

o Efficient
e Differentiable from a random oracle (not surjective / not
uniform)

6/1

Why it is difficult to hash (securely) into an EC?

Given a hash function h: {0,1}* — [F,, how to hash m € {0,1}*
into EC(Fp)?

@ Compute x = h(m). If Jy. (x,y) € EC(F,), return (x, y),
otherwise increment x and try again.

e Vulnerable to timing attacks
e Inefficient

@ Use a determinisitic encoding (e.g. Icart, SWU)
f:Fp— EC(Fp): return f(h(m))
o Efficient

e Differentiable from a random oracle (not surjective / not
uniform)

Security proofs of most cryptographic constructions model hash
functions as ROs. Implementations are sound only if these hash
functions are indifferentiable from a RO

6/1

Indifferentiability
F with access to a RO h is (ts, g, €)-indifferentiable from a RO H if

3§ that runs in time ts, VD that makes at most g queries,
[Pr[b+ DFh:b=1]—Pr[b+ DS :b=1]| <e

F h H S
T \ , T
\\ \\ ,, ’/
---‘sxza"_—

N YO
\YARY
11

D ——0/1

7/1

Indifferentiability
F with access to a RO h is (ts, g, €)-indifferentiable from a RO H if

3§ that runs in time ts, VD that makes at most g queries,
[Pr[b+ DFh:b=1]—Pr[b+ DS :b=1]| <e

F h H S
N 8 i K
\\ \\ ,, ’/
---‘sxza"_—

N YO
\YARY
11

D |——o0/1

In any secure cryptosystem, a random oracle H
can be replaced with the construction F, which uses a random
oracle h

7/1

Indifferentiability
F with access to a RO h is (ts, g, €)-indifferentiable from a RO H if

3§ that runs in time ts, VD that makes at most g queries,
[Pr[b+ DFh:b=1]—Pr[b+ DS :b=1]| <e

F h H S
N 8 i K
\\ \\ ,, ’/
---‘sxza"_—

N YO
\YARY
11

D |——o0/1

In any secure cryptosystem, a random oracle H into EC(IF,)
can be replaced with the construction F, which uses a random
oracle hinto F, x Zy

7/1

Indifferentiable Hashing into Elliptic Curves

First indifferentiable construction proposed by Brier et al. in
CRYPTO 2010. Given:

o EC(F,) ~ Zp with generator g

o Efficiently invertible deterministic encoding f : F, — EC(F,)
e Random Oracle h; : {0,1}* — F,

e Random Oracle hy : {0,1}* — Zy

The construction
H(m) = f(hy(m)) @ ghtm™

is indifferentiable from a random oracle into EC(F))

8/1

Indifferentiable Hashing into Elliptic Curves

First indifferentiable construction proposed by Brier et al. in
CRYPTO 2010. Given:

o EC(F,) =~ Zp, x Zp, with generators g1, g

Efficiently invertible deterministic encoding f : F, — EC(F))
e Random Oracle h; : {0,1}* — T,

e Random Oracle hy : {0,1}* — Zp,

e Random Oracle h3 : {0,1}* — Zy,

The construction
H(m) = f(m(m)) © g™ @ g™
is indifferentiable from a random oracle into EC(F),)

Observation

The group EC(IF}) is either cyclic or a product of two cyclic groups

8/1

The Provable Security paradigm

How can we rigorously prove the indifferentiability of Brier et al.
construction?
@ Define an adequate model for the distinguisher D
@ Describe a concrete simulator S
© Define rigorously the ideal (D"°) and real (DF'") scenarios
o

Bound the statistical distance between the two scenarios and
the running time of S as a function of the number of queries
made by D

9/1

Beyond Provable Security: Verifiable Security

How can we formally prove the indifferentiability of Brier et al.
construction?

Build a framework to formalize cryptographic proofs

Provide foundations to cryptographic proofs
Use a notation as natural as possible for cryptographers
Automate common reasoning patterns

Support exact security

Provide independently and automatically verifiable proofs

10/1

CertiCrypt: Language-based cryptographic proofs

Security definitions, assumptions and games are formalized using a
probabilistic programming language

pWHILE:
C == skip nop
| C C sequence
| V<<€ assignment
| V& DE random sampling
| if £ then C else C conditional
| while £ doC while loop
|

V<« P(E,....E) procedure call

x & d: sample the value of x according to distribution d
[c € C] : M — Distr(M)

11/1

Probabilistic Relational Hoare Logic

12/1

Probabilistic extension of Benton's Relational Hoare Logic

Judgments are of the form ¢; >~ ¢ : P = Q, where
P, Q@ C M x M are binary relations on memories

Definition

Fa~o:P=>QY
le my, M P my — [[Cl]] my ﬁ(Q) [[CQ]] my
L(Q) lifts Q to a relation on distributions over memories

Observational equivalence F ¢; :’O ¢, with I, O C V is a special
case where:

P={(mi,mp) |Vx el , m(x)=myx)}

Q ={(m1,mp) | ¥x € O, mi(x) = my(x)}

From pRHL to probabilities

Assume
':C1NC2 P = Q

For all pair of memories my, my such that
P mi mo
and events A, B such that
Q = (AQl) = B(2))

we have
Pr[c1, my : A] < Pr[ca, my : B]

13/1

From pRHL to probabilities

Assume
':C1NC2 P = Q

For all pair of memories my, my such that
P mi mo
and events A, B such that
QR = (A(l) <= B(2))

we have
Prlci, m : A] = Pr[c;, my : B

13/1

Approximate Observational Equivalence

Simulation-based notions like e-indifferentiability are naturally
encoded as approximate equivalence of probabilistic programs

Definition

Approximate Observational Equivalence

Fa~ho<eX

Vmy my, o m o= my =
A([er] m/ =o,[c2] m2/ =0) <€

Can be generalized to a full-fledged Approximate pRHL

14/1

Approximate Observational Equivalence

Simulation-based notions like e-indifferentiability are naturally
encoded as approximate equivalence of probabilistic programs

Definition

Approximate Observational Equivalence

Fc ~ C2'<6d—ef
le my, m =; mp —

VA B, (m =0 m = (A(m) <= B(m))) =
|Pr[c1, my : A] — Pr[co,my : B]| <€

Can be generalized to a full-fledged Approximate pRHL

14/1

Example: random sampling

e = A(u1, p2)
Fx & g X & Se

Sampling from uniform distributions:
1/(m—6)
| e e

Fx & {0,.,m =6} >0 x & {0,.,m} 2 1/2(A+ C) =6/m

15/1

Recap: what we want to prove

Given:

@ An elliptic curve group EC(F,) ~ Zy with generator g
o An efficiently invertible deterministic encoding
f:F, — EC(F)p)
e A Random Oracle h: {0,1}* — F, x Zy
Define
F(u,z) & f(u) + g*

The construction F o h:{0,1}* — EC(F,) is indifferentiable from
a random oracle.

16/1

Recap: what we want to prove

S that runs in time tg, VD that makes at most g queries,
[Pr[b « DFoMh b =1] = Pr[b«+ DHS : p=1]| <

Foh h H)
4\ \ 1 !
\ . , ’
\\~_- NN - __—’/

----- ~ s LT
S owl .
(YARY
1
D ——o/1

17/1

Proof sketch

@ We show that an invertible encoding f : S — R is a weak
encoding

@ We show that a weak encoding is also an admissible encoding

© We show that an admissible encoding f composed with a
random oracle h: {0,1}* — S is indifferentiable from a
random oracle into R

18/1

Example: main theorem

19/1

Theorem (Indifferentiability)

An e-admissible encoding f : S — R composed with a random
oracle h: {0,1}* — S is indifferentiable from a random oracle

An e-admissible encoding comes with an efficient inverter Zr that
satisfies:
Fr& R, s<—If(r)z?s}s<LSje

We prove first that

Fs& S, ref(s):?rs} ré& Ry s« Ze(r) = 2

Example: main theorem

Define
¢ Es& S ref(s)
¢ Yrs R s« Ie(r)
a L if s= L then r & R else r <+ f(s)
o Y if s= L then bad « true; r & R else r < f(s)
3 ¢ if s= L then bad < true else r < f(s)

The conditional in ¢; is dead-code:

= Ci :?r,s} C1

20/1

Example: main theorem

Define
¢ Es& S ref(s)
¢ Yrs R s« Ie(r)
a L if s= L then r & R else r <+ f(s)
o Y if s= L then bad « true; r & R else r < f(s)
3 ¢ if s= L then bad < true else r < f(s)

The conditional in ¢; is dead-code:
E Ci :?r,s} C1
Since sequential composition preserves statistical distance:

Fca z?ns} =€

20/1

Example: main theorem

Define
¢ Es& S ref(s)
¢ Yrs R s« Ie(r)
a L if s= L then r & R else r <+ f(s)
o Y if s= L then bad « true; r & R else r < f(s)
3 ¢ if s= L then bad < true else r < f(s)

The conditional in ¢; is dead-code:
Ec :?{Jr,S} a
Since sequential composition preserves statistical distance:
Fa z?ns} o =e€
SinceEs & S :?s} cr < ¢,
Pr[cy :bad] =Pr[s ¢ S:s# 1] —Pr[cr:s# L] <e

F o :(*Z[)r,S} <€

20/1

Example: main theorem

Define
¢ Es& S ref(s)
¢ Yrs R s« Ie(r)
a L if s= L then r & R else r <+ f(s)
o Y if s= L then bad « true; r & R else r < f(s)
3 ¢ if s= L then bad < true else r < f(s)

The conditional in ¢; is dead-code:
E Ci :?r,s} 1

Since sequential composition preserves statistical distance:

Fa z?ns} 0 =Xe¢
. 0
SinceEs & S =iy Cf <€,
Pr[cy :bad] =Pr[s ¢ S:s# 1] —Pr[cr:s# L] <e

F o :(*Z[)r,S} <€

Since the else branch in c3 is dead-code: F 3 :?r sy Cf
20/1 ,

Example: main theorem

21/1

Game G : L < nil; b« D()

)

Game G’ : L < nil; b+ D()

Oracle O, (z) :
if z ¢ dom(Ly) then
s& S; Li(z) < s
return L1 (z)
Oracle Oz (x) :
if z ¢ dom(Lz2) then
s 4 O1(z); r f(s); La(z) <7

| return La(x)

Oracle Oy (z) :
if z ¢ dom(L1) then
r < Oz(x); s+ Zs(r); Li(z) « s
return L1 (z)
Oracle Oz(x) :
if z ¢ dom(L2) then
r& R; La(z) < r

| return L2 (x)

!

1

Game G; : L < nil; b+ A()

Game Gy : L < nil; b+ A()

Oracle O(z) :
if x ¢ dom(L) then
5 & 5 4 [f(s); L(z) = (s,7)

Oracle O(z) :
if x ¢ dom(L) then
r& Ry s« Ip(r); L(z) < (s,7)

return L(x)
|

return L(z)
1

Game GP?? : L « nil; b+ A()

Game G529 : L « nil; b+ A()

Oracle O(x) :
if z ¢ dom(L) then
if |IL| < g1 + g2 then
s& S r« f(s)
else bad < true; s & S; 1+ f(s)
L(z) < (s,7)
return L(zx)

Oracle O(z) :
if x ¢ dom(L) then
if |IL| < g1 + g2 then
s & S;r < f(s)
else bad < true; 7 & R; s < If(r)
L(z) < (s,7)

return L(z)
.

Summary

@ Extended CertiCrypt with a novel notion of approximate
program equivalence

@ First machine-checked security proof of an EC construction

@ First machine-checked proof of (exact) indifferentiability

The proof is a tour-de-force:

@ More than 10,000 original lines of Coq (65k lines in total)
Approximately 1 man-year effort
Integrates independently-developed mathematical libraries
Requires heavy algebraic reasoning

e 6 o

22/1

Some directions of research

@ Generalizations of approximate equivalence to encode DP

@ Use approximate equivalence to capture Statistical ZK
@ Verifiable proofs of indifferentiability of SHA-3 finalists

@ Extend EasyCrypt to reason about approximate equivalence

23/1

	cronominutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:
	cronominutes:

