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f-divergences in Crypto

‘ Improving security bounds for Key-Alternating Cipher via Hellinger
Distance [Steinberger:2012].

Crux of his proof: bounding the f-divergence between two proba-
bilistic computations.
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In this Work

Goal

Lay the foundations for reasoning about f-divergences between
probabilistic programs.

w Observe that the notion of distance used to characterize
differential privacy (DP) belongs to the family of
f-divergences.

= Extend techniques from the DP literature to reason about
arbitrary f-divergences.



Differential Privacy Primer

General Scenario

%‘_’ Ei — Jﬂ&

Contributor privacy Data mining utility

We want to release statistical information about a sensitive dataset
without comprising the privacy of individual respondents.
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Differential Privacy Primer

Dwork’s Solution [ICALP ’'06]

The output of the mining process
should be indistinguishable when
run with two databases d; and d>
differing in a single record.

Output

K(d1)
K (dy)
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Differential Privacy Primer

Dwork’s Solution [ICALP ’'06]

The output of the mining process
should be indistinguishable when
run with two databases d; and d>
differing in a single record.

Output

K(d1)
K (dy)

A randomized mechanism K is (e, 0)-differentially private iff

le,dQ . A(dl,dg) <1 = Aa (K(dl),K(dg)) < 1)

where a = exp(e).
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f-divergences - Definition

The f-divergence between two distributions p1 and uo over a set
A is defined as

o St (219

acA

where f : R=0 — R is a continuous convex function s.t. f(1) = 0.

Some examples

e Statistical distance (Asp) ft)y=3t—1
o Kullback-Leibler (AkL) f(t) =tln(t)
@ Hellinger distance (Anp) f(t)=3(t—1)?
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A is defined as
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where f : R=0 — R is a continuous convex function s.t. f(1) = 0.

Some examples

e Statistical distance (Asp) ft)y=3t—1

o Kullback-Leibler (AkL) f(t) =tln(t)

@ Hellinger distance (Anp) f(t)=3(t—1)?

e a-distance (A,) f(t) = max{t — a,0}
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f-divergences - Composition

Sequential Composition Theorem of DP

(e,0)-DP

—
(¢,6")-DP

(e+¢€,6+0")-DP
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f-divergences - Composition

Sequential Composition Theorem of a-distance

Aa(, ) <9
——
Ap(_, )<?
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f-divergences - Composition

Sequential Composition Theorem of f-divergences

-

N

Ap(_,_)<é
R—
Ap (., )<d
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f-divergences - Composition

Sequential Composition Theorem of f-divergences

-

Ap(_,_)<é
] R—
Ap (., )<d

"

Af// (_,_) < 5+ 4

We extend the sequential composition theorem of DP by
= |ntroducing the notion of f-divergence composability.
(f, f") is f"-composable
= Showing that Agp, AL and App are self-composable.
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Relational Hoare Logic for DP

‘ Probabilistic Relational Reasoning for DP [Barthe:2012a].
They propose an approximate relational Hoare logic
C1 Na7502:\I/:>CI)

A program c is (¢, 0)-DP iff

C ~exp(e = =
database j equality on
adjacency program states

9/ 14



Relational Hoare Logic for f-divergences

Judgments have the form
Cc1 Nf’5022\1’2>(p
Such a judgment is valid iff for all memories m; and ms

miWmy = ([er] ma) £3(@) ([e2] m2)
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Relational Hoare Logic for f-divergences

Judgments have the form
Cc1 Nf’5622W2>q)
Such a judgment is valid iff for all memories m; and ms

miWmy = ([er] ma) £3(@) ([c] mo)

< Lifting of ® to a relation over

distributions on program states
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(f,0)-lifting of Relations

L5(-) : P(AxB) = P (D(A)xD(B))

o Generalizes previous lifting operator for the exact setting (ie
§ =0).

@ More or less involved definition for arbitrary relations, but
admits simpler characterization for equivalence relations.

@ In the case of equality we have

M1 ﬁ(}(E)M = Af(p,p2) <96
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Relational Hoare Logic for f-divergences - Applications

@ Bound the f-divergence between programs

Ay ([er] ma, [ea] ma) <6
o Relate the probability of individual events

Pr[eci(my) : E4]
Pr[ca(me) : EQ]) <90

Prleca(me) : Eo] f <

@ Model other quantitative notions such as such as continuity or
approximate non-interference.
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Relational Hoare Logic for f-divergences - Proof System

Selected Rules
Weakening

’:Cl ~ 02:\11/:>(I>/
U= v P = o f<f 0 <é
):Clwf,gcz:\lfiq)

Sequential composition

(f1, f2) is f3-composable
Eci~ps U= s, P =D

) PN
s ~fa 0148, C2;Cg 1 W = @
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Summary

Contributions

@ We unveil a connection between differential privacy and
f-divergences.

o We generalize the sequential composition theorem of DP to
some well-known f-divergences.

@ We introduce a program logic for upper-bounding the
f-divergences between probabilistic programs.



Thanks for your attention!
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f-divergences in Crypto

‘ Improving security bounds for Key-Alternating Cipher via Hellinger
Distance [Steinberger:2012].
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f-divergences in Crypto

! Improving security bounds for Key-Alternating Cipher via
Hellinger Distance [Steinberger:2012].

Ep(k,-):{0,1}™ — {0,1}"

01001 11010

PERMUTATION
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f-divergences in Crypto

‘ Improving security bounds for Key-Alternating Cipher via
Hellinger Distance [Steinberger:2012].

Hard to distinguish Ep(k,-) from a true random permutation @

EP(k7'>

Formally stated as an upper bound of
Asp (DEp(k,')’DQ)
Improved security guarantees by bounding instead the f-divergence

Anp (DEP( ) DQ>
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Key-Alternating Ciphers

Ep(k,m)=m’
P=(P;)i_, ke=ko-+ |kt
ko k1 ki

m 619—> —>ela—> -------- —>619 m/
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Generalized Data Processing Theorem
For any distribution transformer h : D(A) — D(B)

Ag (h(pn), h(n2)) < A (1, po)



Generalized Data Processing Theorem
For any distribution transformer h : D(A) — D(B)

Ag (h(pn), h(n2)) < A (1, po)

As a corollary,

Ay ([er] ma, [ea]l m2) <6 = Ay (ms([er] ma), ms([ca] ma)) <6



The Programming Language

skip

C; C

V< £&

V& D

if £ then C else C
while £ do C
V<« PE,... . §E)

nop

sequence
assignment
random sampling
conditional

while loop
procedure call
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Vmi,mg e m1 ¥ mg = (m {[er] mi1/z1}) @ (m2 {[e2] ma/x2})

ass
Fap e ~porae: V=0 oo
Ymi,mz2e m1 ¥ ma = Ay ([p1] ma, [pe] m2) < 5[ ;
ran
Fx (i/.“ ~fs T2 (i/,LQ U= x1<1> :{E2<2>
¥ = b(1) =b/(2)
Felr~ypsch i UABIL) =@ Feanpsch: UA-b1) =
[cond]

Fif b then ¢ else co ~y 5 if b’ then ¢ else ¢, : ¥ = @

(fi,-.., fn) composable and monotonic
0 £ (1) = (2) U Ae(l) < 0= —b(1)
Fenpscd : WAL AY(2)ANe(l) =k=> T AOANe(l) <k

F while b do ¢ ~¢, ns while b’ do ¢/ : WA O Ae(l) <n= ¥ A=b(1) A (2)

[while]

(f1, f2) is fs-composable
Feirmps c2: U= Hc)~ypys, ch: @'=0

. . [skip] - - [seq]
= skip ~f o skip: ¥ = ¥ Fe1;¢] ~ps3.6,465 C2;C ¥ = O
)—01Nf7502:‘11/\®:>(1) I—c1~f/75/02:‘11/=><1>/
Feir~psca: UA-O =@ V=0 =0 fF<fO8<S
[case] [weak]
|—01Nf7502:\1’1><1> |—01Nf’502:\111>¢‘
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(f,0)-lifting of Relations

L5(-): P (AxB) — P (D(A)xD(B))

5 . supp (1) € R A supp (ur) € R
p1 L3(R) p2 = Fpp, pre § mi(pn) = p1 A ma(pr) = pe
A (pr,pr) <6
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The a-distance A, (1, p2) between distributions 17 and pg is
defined as

Ao (p1, po) 2 max Priu €S] — aPrluses]



