
UNIVERSIDAD POLITÉCNICA DE MADRID

FACULTAD DE INFORMÁTICA

Approximate Relational Reasoning for

Probabilistic Programs

PhD Thesis

Federico Olmedo

Departamento de Lenguajes,
Sistemas Informáticos e Ingeniería del Software

FACULTAD DE INFORMÁTICA

Approximate Relational Reasoning for

Probabilistic Programs

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Software and Systems

Author: Federico Olmedo
Advisor: Gilles Barthe

Abstract

The verified security methodology is an emerging approach to build high assurance proofs
about security properties of computer systems. Computer systems are modeled as prob-
abilistic programs and one relies on rigorous program semantics techniques to prove that
they comply with a given security goal. In particular, it advocates the use of interactive
theorem provers or automated provers to build fully formal machine-checked versions of
these security proofs.

The verified security methodology has proved successful in modeling and reasoning
about several standard security notions in the area of cryptography. However, it has fallen
short of covering an important class of approximate, quantitative security notions. The
distinguishing characteristic of this class of security notions is that they are stated as a
“similarity” condition between the output distributions of two probabilistic programs, and
this similarity is quantified using some notion of distance between probability distributions.

This class comprises prominent security notions from multiple areas such as private
data analysis, information flow analysis and cryptography. These include, for instance,
indifferentiability, which enables securely replacing an idealized component of system with
a concrete implementation, and differential privacy, a notion of privacy-preserving data
mining that has received a great deal of attention in the last few years. The lack of
rigorous techniques for verifying these properties is thus an important problem that needs
to be addressed.

In this dissertation we introduce several quantitative program logics to reason about this
class of security notions. Our main theoretical contribution is, in particular, a quantitative
variant of a full-fledged relational Hoare logic for probabilistic programs. The soundness of
these logics is fully formalized in the Coq proof-assistant and tool support is also available
through an extension of CertiCrypt, a framework to verify cryptographic proofs in Coq.

We validate the applicability of our approach by building fully machine-checked proofs
for several systems that were out of the reach of the verified security methodology. These
comprise, among others, a construction to build “safe” hash functions into elliptic curves
and differentially private algorithms for several combinatorial optimization problems from
the recent literature.

v

vi

Resumen

La seguridad verificada es una metodología para demostrar propiedades de seguridad de
los sistemas informáticos que se destaca por las altas garantías de corrección que provee.
Los sistemas informáticos se modelan como programas probabilísticos y para probar que
verifican una determinada propiedad de seguridad se utilizan técnicas rigurosas basadas en
modelos matemáticos de los programas. En particular, la seguridad verificada promueve el
uso de demostradores de teoremas interactivos o automáticos para construir demostraciones
completamente formales cuya corrección es certificada mecánicamente (por ordenador).

La seguridad verificada demostró ser una técnica muy efectiva para razonar sobre di-
versas nociones de seguridad en el área de criptografía. Sin embargo, no ha podido cubrir
un importante conjunto de nociones de seguridad “aproximada”. La característica distintiva
de estas nociones de seguridad es que se expresan como una condición de “similitud” entre
las distribuciones de salida de dos programas probabilísticos y esta similitud se cuantifica
usando alguna noción de distancia entre distribuciones de probabilidad.

Este conjunto incluye destacadas nociones de seguridad de diversas áreas como la mi-
nería de datos privados, el análisis de flujo de información y la criptografía. Ejemplos
representativos de estas nociones de seguridad son la indiferenciabilidad, que permite re-
emplazar un componente idealizado de un sistema por una implementación concreta (sin
alterar significativamente sus propiedades de seguridad), o la privacidad diferencial, una
noción de privacidad que ha recibido mucha atención en los últimos años y tiene como
objetivo evitar la publicación datos confidenciales en la minería de datos. La falta de téc-
nicas rigurosas que permitan verificar formalmente este tipo de propiedades constituye un
notable problema abierto que tiene que ser abordado.

En esta tesis introducimos varias lógicas de programa quantitativas para razonar so-
bre esta clase de propiedades de seguridad. Nuestra principal contribución teórica es una
versión quantitativa de una lógica de Hoare relacional para programas probabilísticos. Las
pruebas de correción de estas lógicas son completamente formalizadas en el asistente de
pruebas Coq. Desarrollamos, además, una herramienta para razonar sobre propiedades de
programas a través de estas lógicas extendiendo CertiCrypt, un framework para verificar
pruebas de criptografía en Coq.

Confirmamos la efectividad y aplicabilidad de nuestra metodología construyendo prue-
bas certificadas por ordendor de varios sistemas cuyo análisis estaba fuera del alcance de
la seguridad verificada. Esto incluye, entre otros, una meta-construcción para diseñar fun-
ciones de hash “seguras” sobre curvas elípticas y algoritmos diferencialmente privados para
varios problemas de optimización combinatoria de la literatura reciente.

vii

viii

Disclaimer

This dissertation builds on several published works that I have co-authored.

Conference articles:

• Verified Indifferentiable Hashing into Elliptic Curves.
With Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and San-
tiago Zanella Béguelin.
In 1st Conference on Principles of Security and Trust - POST 2012.

• Probabilistic Relational Reasoning for Differential Privacy.
With Gilles Barthe, Boris Köpf, and Santiago Zanella Béguelin.
In 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages - POPL 2012.

• Beyond Differential Privacy: Composition Theorems and Relatio-
nal Logic for f -divergences between Probabilistic Programs.
With Gilles Barthe.
In 40th International Colloquium on Automata, Languages and
Programming - ICALP 2013.

Journal articles:

• Probabilistic Relational Reasoning for Differential Privacy.
With Gilles Barthe, Boris Köpf, and Santiago Zanella Béguelin.
In ACM Transactions on Programming Languages and Systems
(TOPLAS), Volume 35, Issue 3, ACM, 2013.

• Verified Indifferentiable Hashing into Elliptic Curves.
With Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and San-
tiago Zanella Béguelin.
To appear in Journal of Computer Security (JCS), IOS Press, 2013.

I contributed in the elaboration of all of them, as well as in the development of the
supporting machine-checked proofs.

A Coq development accompanying this dissertation is available upon request.

ix

x

Contents

Abstract v

Abstract (Spanish Version) vii

1 Introduction 3

1.1 Problem Overview . 3

1.2 Dissertation Contributions . 7

1.3 Dissertation Outline . 8

2 CertiCrypt Overview 11

2.1 Representation of Distributions . 11

2.2 The pWhile Language . 14

2.3 Adversarial Model . 16

2.4 Reasoning Tools . 16

3 Security Analysis based on the Statistical Distance 21

3.1 Statistical Distance . 22

3.2 Weak Notions of Program Equivalence . 22

3.2.1 A Logic for Bounding the Statistical Distance 22

3.2.2 Approximate Observational Equivalence 25

3.3 Indifferentiable Hash Functions into Elliptic Curves 28

3.3.1 Construction of Indifferentiable Hash Functions 28

3.3.2 Application to Elliptic Curves . 38

4 Security Analysis based on the α-distance 45

4.1 Preliminaries . 47

4.1.1 Skewed Distance between Distributions 47

4.1.2 Differential Privacy . 48

4.1.3 Approximate Lifting of Relations to Distributions 50

4.2 Approximate Relational Hoare Logic . 52

4.2.1 Validity and Privacy . 52

4.2.2 Logic . 53

4.2.3 An Asymmetric Variant of α-pRHL 56

4.2.4 Sequential and Parallel Composition Theorems 58

xi

Contents

4.3 Case Studies . 59
4.3.1 Laplacian, Gaussian and Exponential Mechanisms 59
4.3.2 Statistics over Streams . 62
4.3.3 k-Median . 66
4.3.4 Minimum Vertex Cover . 69

4.A Appendix . 74
4.A.1 Auxiliary Lemmas . 74
4.A.2 Proofs . 76

5 Security Analysis based on Arbitrary f-divergences 81
5.1 Preliminaries . 82

5.1.1 The Family of f -divergences . 82
5.1.2 The Composition of f -divergences 84
5.1.3 Lifting Relations to Distributions . 86

5.2 A Relational Logic for f -divergences . 89
5.2.1 Judgments . 89
5.2.2 Proof System . 91
5.2.3 Symmetric Logic . 93

5.A Appendix . 94
5.A.1 Auxiliary Lemmas . 94
5.A.2 Proofs . 96

6 Related Work and Conclusions 105
6.1 Related Work . 105
6.2 Conclusion and Future Work . 108

Bibliography 119

xii

List of Figures

2.1 Semantics of pWhile programs. 15
2.2 Rules for the derivation of well-formed adversaries. 17
2.3 Selected proof rules of pRHL. 18

3.1 Logic for bounding the statistical distance between programs. 23
3.2 Selected rules for reasoning about approximate observational equivalence. . 26
3.3 Pair of scenarios in the definition of indifferentiability. 29
3.4 Games used in the proof of Theorem 3.6. 33
3.5 Games used in the proof of Theorem 3.7. 36

4.1 Core proof rules of α-pRHL. 54
4.2 Generalized α-pRHL rule for loops. 55
4.3 Rules for the Laplacian, Gaussian and Exponential mechanisms. 62
4.4 A simple ǫ-differentially private algorithm for sums over streams. 64
4.5 An ǫ-differentially private algorithm for partial sums over streams. 65
4.6 A 2ǫ-differentially private algorithm for partial sums over streams. 65
4.7 A 2ǫ∆(T + 1)-differentially private algorithm for the k-Median problem. . . 67
4.8 Vertex cover of an undirected graph. 70
4.9 An ǫ-differentially private algorithm for the MVC problem. 70

5.1 Examples of f -divergences. 83
5.2 Closeness conditions established by inequality (5.2). 88
5.3 Core proof rules of f -pRHL O. 92
5.4 Proof rules of f -pRHL Ofor weakly-composable f -divergences. 93

1

List of Figures

2

1
Introduction

Over the past few decades the society dependence on computer systems has grown to an
unexpected extent. Nowadays every facet of life involves a computer system on some level.
It is thus of paramount importance to recognize the risks that one incurs by employing
such systems and to provide means to counter them.

Roughly speaking we can say that computer systems admit two kind of users. On the
one hand, a set of intended users for which systems are originally designed. On the other
hand, a set of unintended users, usually refereed to as adversaries, which perform some
kind of undesirable or malicious actions to systems. The aim of computer security is to
design defense mechanisms that prevent these malicious actions or mitigate their effects.

The process of developing such defense mechanisms involves two stages: one definitional
and one constructive. In the definitional stage one sets a precise system1 model, one
specifies the threat model or adversary’s abilities, e.g. the set of actions he can perform or
the kind of access to the system he has, and finally one defines a security property. The
goal of the constructive stage is then to design systems that are secure according to a given
system model, threat model and security property.

1.1 Problem Overview

Once a system design is proposed, proving that it actually meets the expected security
property is, certainly, a complex and error-prone task. To justify this claim, let us consider
the case of cryptography, one of the most mature fields of computer security. We can
find a large body of examples [Galindo, 2005; Shoup, 2001], where cryptographic systems
were proposed together with a security-compliance proof and shortly afterwards substantial
flaws were discovered in the security arguments. This suggests that the development of
secure systems calls for a more rigorous methodology that delivers high-assurance security
proofs.

1From now on we will use the terms “computer system” and “system” interchangeably.

3

Chapter 1. Introduction

A promising approach to circumvent this problem in the design of computer systems
is to borrow techniques from the formal methods community such as the use of interac-
tive theorem provers or automated provers. This approach, which we call verified secu-
rity [Barthe et al., 2011b, 2009b], has been successfully applied to prominent cryptographic
constructions such as ElGamal and OAEP encryption schemes, Boneh-Franklin identity-
based encryption scheme and the Full Domain Hash (FDH) signature scheme [Barthe et al.,
2009a, 2011c,d; Zanella Béguelin et al., 2009].

We argue, however, that it falls short of providing the necessary tools to reason about
an important class of approximate, quantitative security notions (we elaborate on these
security notions shortly afterwards). To see why, let us review the general structure and
standard reasoning patterns behind cryptographic proofs within this approach.

Since Goldwasser & Micali [1984]’s seminal work about provable security, cryptographic
systems are designed on the basis of some computational hard problem. Security arguments
then proceed as a reduction (in the complexity theory sense) from the security of the
system to the hardness assumption of the underlying problem. (Said otherwise, one shows
that if the underlying problem is hard, then so is breaking the system). Following the
code-based game-playing technique [Bellare & Rogaway, 2006; Shoup, 2004], both hardness
assumptions and security goals are represented as experiments where an adversary interacts
with a challenger; these experiments are called games and are modeled as probabilistic
programs. Proofs are structured as a sequence (in general, a tree) of transitions G, A →
G′, A′ between pairs of games and events, such that the probability of event A in game G

is bounded by a function of the probability of event A′ in game G′. A central property of
the code-centric view of games is that it enables justifying game transitions by means of
semantic arguments. In particular, the verified security approach relies on a probabilistic
relational Hoare logic (pRHL) that manipulates judgments of the form

|= G1 ∼ G2 : Ψ⇒ Φ,

where G1 and G2 are games and Ψ and Φ are binary relations over program memories.
Barthe et al. [2009b] present a machine-checked proof system to reason about pRHL judg-
ments and provide the following rules to derive assertions about the probability of events
in games from pRHL judgments:

m1 Ψm2 |= G1 ∼ G2 : Ψ⇒ Φ Φ =⇒ (A〈1〉 ⇐⇒ B〈2〉)
Pr [G1(m1) : A] = Pr [G2(m2) : B]

m1 Ψm2 |= G1 ∼ G2 : Ψ⇒ Φ Φ =⇒ (A〈1〉 =⇒ B〈2〉)
Pr [G1(m1) : A] ≤ Pr [G2(m2) : B]

Here, Pr [G(m) : E] represents the probability of event E in the distribution obtained from
running G on the initial memory m; E〈1〉 (resp. E〈2〉) is the lifting of E to a binary
memory relation; the pair (m1,m2) belongs to E〈1〉 (resp. E〈2〉) if m1 (resp. m2) belongs
to E.

4

1.1. Problem Overview

The above rules have proved useful to reason about a wide range of security notions,
but fall short of capturing another important class. Intuitively, the security properties
out of scope are modeled using a pair of probabilistic programs (or a single program run
on two different initial memories) and are specified as a “similarity” condition between
their output distributions (or some related distributions); technically, one considers the
distance between their output distributions according to some metric and establishes an
upper bound for its value; this upper bound is provided as a parameter of the security
notion. Notice that the above pair of rules allows reasoning about the output of proba-
bilistic programs at the level of individual events and compare their probabilities w.r.t. the
(in)equality relation, while the foregoing class of security notions requires reasoning at a
distribution-wise level, establishing similarity conditions.

This class of security notions comprises prominent concepts from several disciplines
such as private data analysis, information flow analysis and cryptography. Let us review
some examples.

Differential Privacy. Differential privacy [Dwork, 2006] is a confidentiality policy that
provides strong privacy guarantees in the analysis of sensitive data. Assume that D is
a database whose rows contain sensitive data about a set of individuals. Informally, a
randomized computation c over D is differentially private if the sensitive data of each
individual contributing to D is protected against arbitrary adversaries with query access
to c(D). Formally, given δ ∈ [0, 1] and ǫ ∈ R

≥0 we say that a randomized computation c
is (ǫ, δ)-differentially private if the distributions it outputs on any two inputs D1 and D2

differing at most in one row are (ǫ, δ)-close, i.e. if for every event P on the output domain
of c we have

Pr [c(D1) : P] ≤ eǫ Pr [c(D2) : P] + δ.

Intuitively, a differentially private computation c is insensitive to changes in the contribu-
tion of any particular individual. This prevents data leaks through the output of c.

Observe that the we consider a rather unrestrictive thread model: it allows for adver-
saries of unbound computational power and arbitrary auxiliary information. This turns
differential privacy into a very strong privacy guarantee.

Approximate Probabilistic Noninterference. In a nutshell, noninterfer-
ence [Goguen & Meseguer, 1982] can be viewed as a confidentiality policy that prevents
the flow of information from a secret part of a system to a public part of the system. For
the sake of simplicity we now discuss the termination-insensitive version of noninterference.
Let c be a probabilistic program endowed with a denotational semantics JcK :M→D(M)
that maps an initial state to a distribution of final states; states (or memories) are
mappings from variables to values and each variable is either public or private (public
variables contain low sensitive data while private variables contain high sensitive data).
We say that c is noninterferent if for every pair of initial states m1 and m2 that coincide

5

Chapter 1. Introduction

in their public variables we have

πL(JcK m1) = πL(JcK m2),

where πL projects a distribution over states to the associated distribution over the set of
public variables. As so defined, noninterference is a binary notion: a program is either
interferent or noninterferent. Unfortunately, absolute noninterference is too strong and
can hardly be achieved in practice. We can obtain a more flexible notion of confidentiality
relaxing the above equation as follows:

d(πL(JcK m1), πL(JcK m2)) ≤ ǫ.

Here d denotes some notion of distance between probability distributions, e.g. statistical
distance or relative entropy, and ǫ quantifies the degree of noninterference of c; absolute
noninterference corresponds to ǫ = 0.

Computational Indistinguishability. Computational indistinguishability is not a se-
curity notion itself but a concept drawn from the probability and complexity theories that
underlies several foundational concepts of the modern cryptography. Loosely speaking, it
captures the fact that two probability distributions cannot be told apart efficiently and
can thus be considered equivalent for practical purposes. To define it formally, we rely on
the concept of statistical distance, which constitutes a metric over the space of probability
distributions. Assume that µ1 and µ2 are a pair of distributions over some set A. The
statistical distance between µ1 and µ2 is defined as

∆(µ1, µ2)
def

= sup
A0⊆A

|Pr [µ1 : A0]− Pr [µ2 : A0]| .

Then we say that two distributions µ and µ′ are ǫ-computationally indistinguishable if

∆
(

D(µ),D(µ′)
)

≤ ǫ

for any probabilistic polynomial time distinguisher D.2

Computational indistinguishability underlies a large body of security properties.
Among these are pseudorandomness, secure symmetric-key encryption, computational
zero-knowledge and secure multi-party computation, to name but a few. In this dissertation
we will consider more closely the notion of indifferentiability.3

The indifferentiability framework [Maurer et al., 2004] is used to justify rigorously the
substitution of an idealized component in a system by a concrete implementation. Using
this framework, we prove that a system satisfy a security property in two steps. We first
prove that the system complies its goal assuming that some of its components is ideal.
Then we show that the ideal component and its implementation are indifferentiable. It
then follows that the resulting system remains secure.

2The statistical distance between two distributions over a binary set B can be computed as the (absolute
value of the) difference between the probability that they assign to either element of B. Therefore the
distance ∆

(

D(µ), D(µ′)
)

is usually presented as
∣

∣Pr [D(µ) = 1]− Pr
[

D(µ′) = 1
]∣

∣ in the literature.
3Do not confuse the foregoing notion of computational indistinguishability with that of system compo-

nent indistinguishability. The latter is a particular case of indifferentiability.

6

1.2. Dissertation Contributions

1.2 Dissertation Contributions

In the previous section we have argued that verified security is an emerging methodology
to reason about the security of computer systems but it has fallen short of covering a large
class of security notions. The aim of this dissertation is to provide verification techniques
that expand the frontiers of the verified security methodology to allow reasoning about
this class of security notions.

To this end let us examine more closely the examples discussed in the previous section.
Note that both approximate noninterference and differential privacy can be construed as a
quantitative 2-safety property [Clarkson & Schneider, 2010; Terauchi & Aiken, 2005]; in-
formally this means that proving that a program satisfies either property requires reasoning
simultaneously about two executions of the program. Computational indistinguishability
is strongly related to 2-safety properties as well. Indeed, for each distinguisher D, the
bound ∆(D(µ),D(µ′)) ≤ ǫ can be viewed as a 2-safety property of D. Building on this
observation and following Benton [2004], we advocate the use of approximate relational
logics to reason about the foregoing class of security notions.

In its most general setting, approximate relational logic judgments have the form

c1 ∼d , δ c2 : Ψ⇒ Φ, (1.1)

where c1 and c2 are probabilistic programs, Ψ and Φ are binary relations over program
states, d is a metric (or weaker notion of distance) between probability distributions and
δ is either a value in R

≥0 or a mapping from program states to values in R
≥0. The

validity of such a judgment implies that δ is an upper bound for the d-distance between
the probability distributions generated by programs c1 and c2, modulo relational pre- and
post-conditions Ψ and Φ on program states.

In this dissertation we formalize several variants of an approximate relational logic in
the Coq proof-assistant [The Coq development team, 2010]. The basis of our formalization
is CertiCrypt [Barthe et al., 2009b; Zanella Béguelin, 2010], a machine-checked framework
for verifying cryptographic proofs in Coq. The resulting framework significantly broadens
the scope of the verified security methodology and goes beyond the state-of-the-art in the
following two aspects:

Expressivity. The framework enables modelling and formally reasoning about a large and
important class of quantitative security notions that encompasses e.g. (approximate)
differential privacy, approximate probabilistic noninterference, indifferentiability and
computational zero-knowledge.

Homogeneity. Even though there exist techniques—outside the verified security
methodology—that support reasoning independently about some of the above notions
(see Section 6.1 for a discussion of the related work), the use of approximate relational
logics allows reasoning about all such notions in a homogeneous and uniform way.

Moreover, the framework inherits the following features from its predecessor CertiCrypt:

7

Chapter 1. Introduction

Generality. One is not confined to reasoning about a restricted set of domains; the frame-
work inherits the generality of the Coq proof assistant and allows modelling arbitrary
objects and incorporating reasoning principles from diverse fields such as algebra, num-
ber theory or discrete mathematics. A fundamental consequence of this breadth is that
one can justify all kind of intermediate steps and build full security proofs within a
single framework.

Extensibility. It can be integrated with complex libraries that formalize involved mathe-
matical results; this ability of the framework will be fully exercised in the case study of
Section 3.3.

High-assurance proofs. It delivers fully formalized and independently verifiable proofs.
Concretely, every proof yields a proof object that can be checked automatically by
a (small and trustworthy) proof checking engine.

In order to illustrate the applicability of our approach we choose two representative
security properties and present full security proofs for systems from the recent literature.
The first property is indifferentiability from a random oracle, which formally captures the
notion of “secure” hash functions; we verify Brier et al. [2010]’s construction used to build
hash functions into elliptic curves. The second property is differential privacy and we
verify several systems: On the one hand, some standard mechanisms that deliver privacy-
preserving numerical computations; on the other hand, some approximation algorithms for
classical combinatorial optimization problems [Gupta et al., 2010].

Summarizing, we can say that our contributions are twofold. On the theoretical side, we
lay the foundations for reasoning formally about an important and general class of approx-
imate relational properties of probabilistic programs, which includes differential privacy,
approximate noninterference and indifferentiability. On the practical side, we demonstrate
the applicability of our approach by providing the first machine-checked security proof of
several constructions from the recent literature.

1.3 Dissertation Outline

In order to make the presentation more accessible to the reader, we first study (Chapters 3
and 4) different variants of an approximate relational logic, each of them being driven by a
concrete security notion we aim to model and reason about. Then we demonstrate (Chap-
ter 5) that such logics can be developed in a uniform manner introducing the approximate
relational Hoare logic of Equation (1.1).

We next survey in more detail how the rest of the dissertations is organized:

• In Chapter 2 we provide a brief introduction to the CertiCrypt framework, the basis
for our formalization. In particular we present the language that we use to describe
probabilistic programs, our model of adversaries and the “exact” relational Hoare
logic pRHL at the heart of the framework.

8

1.3. Dissertation Outline

• In Chapter 3 we focus on security properties that adopt the statistical distance as
metric to compare the output distributions of programs. Concretely, we develop two
logics. The first enables reasoning about the approximate observational equivalence
of probabilistic programs, which subsumes the notion of approximate noninterference.
The second is tailored to bound the statistical distance generated by the call to
adversaries that interact with two different environments and is thus suitable to
capture the notion of computational indistinguishability. Finally we use these tools
to verify that Brier et al. [2010]’s construction yield hash functions into elliptic curves
that are indifferentiability from a random oracle.

• In Chapter 4 we propose a novel notion of distance between probability distributions
coined α-distance and show that the property of differential privacy of a program
c can be formulated as an upper bound for the α-distance between the output dis-
tributions of c when executed on certain pair of initial memories. Building on this
observation, we present a full-fledged relational Hoare logic that allows bounding the
α-distance between the output distributions of probabilistic programs. We demon-
strate the effectiveness of this logic for proving programs differentially private verify-
ing, among others, two classic numerical mechanisms from the literature and several
approximation algorithms for combinatorial optimization problems.

• In Chapter 5 we observe that the statistical distance and the α-distance are mem-
bers of a more general class of distances between probability distributions known as
f -divergences and generalize the relational Hoare logic of Chapter 4 to reason about
arbitrary f -divergences. As a preliminary step, we show that the sequential compo-
sition theorem of differential privacy extends to an important subset of this class of
distance measures.

• In Chapter 6 we survey the related work in the area and conclude.

9

Chapter 1. Introduction

10

2
CertiCrypt Overview

In the following chapters we present several variants of an approximate relational program
logic and show their applicability for verifying some relevant quantitative security notions.
In particular, the developments of Chapters 3 and 4 are formalized in the Coq proof as-
sistant [The Coq development team, 2010] and build upon CertiCrypt, a machine-checked
framework for verifying cryptographic proofs in Coq.

This chapter summarizes the main components of CertiCrypt, namely the represen-
tation of probability distributions, the probabilistic programming language used to de-
scribe games, the thread model used to describe legitimate adversaries and the proba-
bilistic relational Hoare logic pRHL for reasoning about games. We refer the reader to
[Zanella Béguelin, 2010] for further details.

2.1 Representation of Distributions

CertiCrypt adopts the monadic representation of distributions provided by the ALEA li-
brary [Audebaud & Paulin-Mohring, 2009]. The library builds on an axiomatization of the
unit interval [0, 1] that supports addition, inversion, multiplication and division as primi-
tive operations (underflows and overflows are mapped to 0 and 1, respectively). The unit
interval [0, 1] is given the structure of an ω-cpo by taking the usual order and defining an
operator “ lub” that computes the supremum of monotonic [0, 1]-valued sequences. This
ω-cpo structure on the interval [0, 1] readily induces an ω-cpo structure on the function
space A→ [0, 1] by taking the pointwise order between two functions. In the reminder we
use “≤” and “ lub” to denote the order and supremum of monotonic sequences over either
structure.

A distribution over a set A is defined as a function of type

D(A) def

= (A→ [0, 1]) → [0, 1]

verifying the following set of (universally quantified) axioms:

11

Chapter 2. CertiCrypt Overview

Monotonicity: f ≤ g =⇒ µ(f) ≤ µ(g);

Compatibility with inverse: µ(1− f) ≤ 1− µ(f), where 1 is the constant function 1;

Homogeneity of degree 1: µ(k · f) = k · µ(f) for any k ∈ [0, 1];

Additivity: f ≤ 1− g =⇒ µ(f + g) = µ(f) + µ(g);

Continuity: µ(lub F) ≤ lub (µ ◦F) for any monotonic sequence F : N→
(A→ [0, 1]).

Observe that we do not require the mass µ(1) of a distribution µ to be 1; therefore our
definition corresponds to probability sub-distributions. This provides an elegant means of
giving semantics to runtime assertions and programs that do not terminate with probability
1. In particular, we let µ0 be the null sub-distribution.

Intuitively, one must view a distribution µ over a set A as an operator mapping a
unit-valued random variable (i.e. a function in A→ [0, 1]) to its expected value. When A
is a discrete, this translates into

µ(f) =
∑

a∈A
µ(a) · f(a),

where µ(a) denotes the probability density function of µ at a. For instance, the Bernoulli
distribution over B with success probability p is represented as λf. p · f(true) + (1 −
p) · f(false), while the distribution over N that assigns probability (1/2)i to number i is
represented as λf.

∑

i∈N(1/2)
i · f(i).

The probability that distribution µ ∈ D(A) assigns to an event P ⊆ A can be computed
by measuring its characteristic function 1P , i.e.

Pr [µ : P] = µ(1P). (2.1)

For the sake of notation compactness, we will usually use µ(P) to denote the probability
µ(1P). In particular, when P = {a} is a singleton, the probability µ(1{a}) will be denoted
as µ(a).

Distributions can be given the structure of a monad; this monadic view eliminates
the need for cluttered definitions and proofs involving summations, and allows to give a
continuation-passing style semantics to probabilistic programs. Formally, we define the
unit and bind operators as follows:

unit : A→ D(A)
def

= λx. λf. f(x)

bind : D(A)→ (A→ D(B))→ D(B)
def

= λµ. λM. λf. µ(λx. M(x)(f)).

For a value a ∈ A, the expression unit a denotes the Dirac measure on a, which assigns
probability 1 to a and 0 to all other values in A (in the continuous case, unit a is the
degenerate probability distribution that has all its mass concentrated at a). The bind

12

2.1. Representation of Distributions

operator composes a distribution over A with a conditioned distribution over B given
a ∈ A to yield a distribution over B; when A and B are discrete sets, we have

(bind µM)(b) =
∑

a∈A µ(a)M(a)(b).

For our development it will be enough to consider distributions over discrete sets.
Therefore some of the forthcoming definitions related to distributions are specializations
to the discrete case. In particular our work builds on the following operations and relations:

range P µ def

= ∀a • µ(a) > 0 =⇒ P (a);

(µ1 × µ2)(a, b)
def

= µ1(a) · µ2(b);

π1(µ)(a)
def

=
∑

b∈B µ(a, b);

π2(µ)(b)
def

=
∑

a∈A µ(a, b);

w(µ) def

= µ(1);

µ ≤ µ′ def

= ∀a • µ(a) ≤ µ′(a).

The formula range P µ says that P overapproximates the support of µ, i.e. the set of
elements with non-null probability. (We can view range as a lifting operator that maps
predicates over some set A into predicates over D(A)). For a distribution µ1 over A and
a distribution µ2 over B, µ1 × µ2 denotes the product distribution (over A×B) between
µ1 and µ2. For a distribution µ over a product type A × B, π1(µ) (resp. π2(µ)) defines
its projection on the first (resp. second) component. Expression w(µ) denotes the mass of
µ. (Proper probability distributions correspond to distributions of unitary mass.) Finally,
relation “≤” defines a pointwise partial order on D(A).
Remark. In our Coq development we slightly depart from the above definitions since
we use those provided by the ALEA library, which make sense for a wider family
of distributions. For example, the range relation and the π1 operator are defined as
range P µ def

= ∀f • (∀a • P (a) =⇒ f(a) = 0) =⇒ µ(f) = 0 and π1(µ)
def

= bind µ (unit ◦ fst).
However, in our presentation we prefer to stick to the specializations to the discrete case
as these definitions are more intuitive and natural.

Besides the above operators over distributions, we will often use µ/R to denote the
distribution induced by µ ∈ D(A) on the quotient set A/R, for an equivalence relation
R ⊆ A×A; formally it is defined by clause (µ/R)([a]) def

= µ([a]).
Finally, given a set A and a family of (usually two) distributions {µi}i∈I over A we use

AP to denote the subset of A that satisfies formula P , where P is some linear constrain
between the probabilities assigned by {µi}i∈I . For instance, Aµ1≤µ2 denotes the subset
{a | µ1(a) ≤ µ2(a)} of A.

We conclude this section presenting a lifting operation L(·) from the probabilistic pro-
cess algebra [Jonsson et al., 2001] that transforms any binary relation R ⊆ A×B into a
binary relation L(R) ⊆ D(A)×D(B). This operation is used in Section 2.4 for defining the
interpretation of pRHL judgments as this requires lifting a relation over program states
into a relation over distributions on program states.

13

Chapter 2. CertiCrypt Overview

Definition 2.1 (Relation Lifting). The lifting of a relation R ⊆ A×B is a relation
L(R) ⊆ D(A)×D(B) such that µ1 L (R) µ2 iff there exists µ ∈ D(A×B) satisfying

i) rangeR µ;

ii) π1(µ) = µ1;

iii) π2(µ) = µ2.

We say that such a distribution µ is a witness for the lifting.

The lifting operation has close connections with the problem of network flows. Con-
cretely, if R is a finite relation then one can decide the membership to L(R) by solving
a maximum network flow problem. Moreover, if R is an equivalence relation over some
set A, then the lifting L(R) to D(A) admits a simpler characterization: µ1L (R) µ2 if
and only if µ1([a]) = µ2([a]) for every equivalence class [a]. In the general case, the
relation L(R) can also be built inductively, starting from pairs of Dirac distributions
unita and unit b where aR b (in this case, distribution unit (a, b) is a witness for the lifting
(unit a)L (R) (unit b)) [Deng & Du, 2011].

2.2 The pWhile Language

We now describe the programming language adopted by CertiCrypt to describe games.
Roughly speaking, games are modeled as probabilistic imperative programs with procedure
calls. The set of commands C is defined inductively by the clauses

I | V ← E deterministic assignment
| V $← DE random assignment
| assert E runtime assertion
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= skip nop
| I; C sequence

Here, V is a set of variables tagged with their scope (either local or global), P is a set of
procedure identifiers, E is a set of deterministic expressions, and DE is a set of distribution
expressions that denote distributions from which values can be sampled in random assign-
ments. The base language includes expressions over Booleans, integers, lists, option and
product types, but can be extended by the user.

A program consists of a command c and an environment E that maps procedure iden-
tifiers to their declaration, specifying their formal parameters, their body, and a return
expression that is evaluated upon exit.

decl
def

= {args : list V; body : C; re : E}

14

2.2. The pWhile Language

Although procedures are single-exit, we often write programs using explicit return expres-
sions for the sake of readability. Declarations are subject to well-formedness and well-
typedness conditions; these conditions are enforced using the underlying dependent type
system of Coq.

The semantics of programs is defined in two steps. First, we give an interpretation JT K
to all object types T—these are types that are declared in CertiCrypt programs—and we
define the set M of program states or memories as the set of mappings from variables to
values. Then, the semantics of an expression e of type T , a distribution expression d of
type T , and a command c, respectively, are given by functions of the following types:

JeKE :M→ JT K JdKDE :M→D(JT K) JcKE :M→ D(M)

Informally, the semantics of an expression e maps a memory to a value in JT K, the semantics
of a distribution expression d maps a memory to a distribution over JT K, and the semantics
of a command c in an environment E maps an initial memory to a distribution over final
memories. We often omit the environment of a program when it is irrelevant (e.g. when the
program contains no procedure call) or can be inferred from the context. The semantics
of programs complies with the expected equations; see Figure 2.1.

JskipK m = unit m

Jc; c′K m = bind (JcK m) Jc′K

Jx← eK m = unit (m {JeKE m/x})
Jx $← dK m = bind (JdKDE m) (λv. unit (m {v/x}))
Jassert eK m = if (JeKE m = true) then (unit m) else µ0

Jif e then c1 else c2K m = if (JeKE m = true) then (Jc1K m) else (Jc2K m)

Jwhile e do cK m = λf. lub (λn. (J[while e do c]nKm)(f))

where
[while e do c]0 = assert ¬e
[while e do c]n+1 = if e then c; [while e do c]n

Figure 2.1: Semantics of pWhile programs.

By specializing the definition of probability Pr [µ : P] (see Equation (2.1)) to programs,
we have that the probability of an event P in a program c run on an initial memory m is
given by

Pr [c(m) : P] = (JcKm)(1P).

In particular, if c is assertion-free and samples only from proper probability distributions,
Pr [c(m) : true] denotes the termination probability of c in the initial memory m. Moreover,
we say that a program c is lossless iff Pr [c(m) : true] = 1 for any initial memory m.

15

Chapter 2. CertiCrypt Overview

In order to reason about program complexity and define the class of probabilistic
polynomial-time computations, the semantics of programs is indexed by a security pa-
rameter (a natural number) and instrumented to compute the time and memory cost of
evaluating a command, given the time and memory cost of each construction in the ex-
pression language. We choose not to make this parametrization explicit to avoid cluttering
the presentation.

In this dissertation we only consider programs that sample values from discrete distri-
butions, and so their output distributions are also discrete.

2.3 Adversarial Model

Adversaries are modeled as procedures whose code and return expression are unknown.
However, adversaries are required to respect basic interface conditions; such conditions
enforce scoping, and may ensure for example that the adversary cannot read or write
values that he has to guess. Formally, an interface is a triple (O,RW ,R), where O is a
set of oracles, and RW and R are sets of variables. An adversary respects an interface
(O,RW ,R) if he only reads variables in RW ∪R, only writes variables in RW , and only
call oracles in O or procedures that respect the same interface as himself. In this case we
say that A is well-formed w.r.t. interface (O,RW ,R) and note it ⊢wf A. This condition is
defined inductively by the rules of Figure 2.2. We remark that this set of rules only aims at
ensuring the correct use of variables and procedure calls by the adversary and are general
enough as to capture the behaviour of any legitimate adversary in standard cryptographic
security models. Any additional constraints, such as conditions on the number or form of
oracle calls may be stated as post-conditions of security experiments.

The system of Figure 2.2 yields an induction principle for well-formed adversaries of
key importance in our development, since it allows to extend any proof system for closed
programs to programs with calls to well-formed adversaries. Specifically, in Section 3.2.1
we present a logic to bound the statistical distance between the output distributions of
two (structurally similar) programs. The soundness of the rule for calling a well-formed
adversary is proved by structural induction on the derivation of its well-formedness.

2.4 Reasoning Tools

CertiCrypt provides several tools for reasoning about games. One main tool is a probabilistic
relational Hoare logic coined pRHL. Its judgments are of the form

c1 ∼ c2 : Ψ⇒ Φ,

where c1 and c2 are programs and Ψ and Φ are relations over states (we assume a pair E1

and E2 of fixed environments for c1 and c2). CertiCrypt uses shallow embedding for state
relations, and thus inherits the expressiveness of Coq when writing (relational) pre- and
post-conditions. Throughout the exposition, we usually specify a relation m1Θm2 as a

16

2.4. Reasoning Tools

I ⊢ skip :I
I ⊢ i :I ′ I ′ ⊢ c :O

I ⊢ i; c :O

writable(x) fv(e) ⊆ I

I ⊢ x← e :I ∪ {x}
writable(x)

I ⊢ x $← T :I ∪ {x}
fv(e) ⊆ I I ⊢ ci :Oi, i = 1, 2

I ⊢ if e then c1 else c2 :O1 ∩O2

fv(e) ⊆ I I ⊢ c :I

I ⊢ while e do c :I

fv(~e) ⊆ I writable(x) p ∈ O
I ⊢ x← p(~e) :I ∪ {x}

fv(~e) ⊆ I writable(x) p 6∈ O ⊢wf p

I ⊢ x← p(~e) :I ∪ {x}
RW ∪R ∪A.args ⊢ A.body :O fv(A.re) ⊆ O

⊢wf A
writable(x) def

= local(x) ∨ x ∈ RW
Figure 2.2: Rules for well-formedness of an adversary against interface (O,RW,R). A
judgment of the form I ⊢ c :O reads as follows: assuming variables in I may be read, the
adversarial code fragment c respects the interface, and after its execution variables in O
may be read. Thus, I ⊢ c :O =⇒ I ⊆ O.

formula over expressions tagged with either 〈1〉 or 〈2〉, to indicate whether they should be
evaluated in m1 or m2, respectively. For instance, the formula e1〈1〉 < e2〈2〉 denotes the
relation {(m1,m2) | Je1KE m1 < Je2KE m2}.

Formally, a judgment c1 ∼ c2 : Ψ ⇒ Φ is valid, written |= c1 ∼ c2 : Ψ ⇒ Φ, iff for all
memories m1 and m2 we have

m1 Ψm2 =⇒ (Jc1K m1)L (Φ) (Jc2K m2).

Figure 2.3 provides an excerpt of the set of rules of the relational Hoare logic. The logic
can be used to prove (in)equalities between probability quantities; to this end we can rely
on the following rules:

m1Ψm2 |= c1 ∼ c2 : Ψ⇒ Φ Φ =⇒ (A〈1〉=⇒B〈2〉)
Pr [c1(m1) : A] ≤ Pr [c2(m2) : B]

[PrLe]

m1Ψm2 |= c1 ∼ c2 : Ψ⇒ Φ Φ =⇒ (A〈1〉⇐⇒B〈2〉)
Pr [c1(m1) : A] = Pr [c2(m2) : B]

[PrEq]

Observational equivalence is defined by specializing judgments to relations Ψ and Φ
corresponding to the equality relation on subsets of program variables. Formally, let X be
a set of variables, m1,m2 ∈ M and f1, f2 :M→ [0, 1]. We define

m1 =X m2
def

= ∀x ∈ X • m1(x) = m2(x);

f1 =X f2
def

= ∀m1,m2 • m1 =X m2 =⇒ f1(m1) = f2(m2).

17

Chapter 2. CertiCrypt Overview

∀m1,m2 • m1Ψm2 =⇒ (m1 {Je1KE m1/x1}) Φ (m2 {Je2KE m2/x2})
|= x1 ← e1 ∼ x2 ← e2 : Ψ⇒ Φ

[assn]

∀m1,m2 • m1Ψm2 =⇒ (Jd1KDE m1)L (Θ) (Jd2KDE m2)

where v1 Θ v2
def

= (m1 {v1/x1})Φ (m2 {v2/x2})
|= x1 $← d1 ∼ x2 $← d2 : Ψ⇒ Φ

[rnd]

Ψ =⇒ b1〈1〉 = b2〈2〉
|= assert b1 ∼ assert b2 : Ψ⇒ Ψ ∧ b1〈1〉

[assert]

Ψ =⇒ b1〈1〉 = b2〈2〉
|= c1 ∼ c2 : Ψ ∧ b1〈1〉 ⇒ Φ |= c′1 ∼ c′2 : Ψ ∧ ¬b1〈1〉 ⇒ Φ

|= if b1 then c1 else c′1 ∼ if b2 then c2 else c′2 : Ψ⇒ Φ
[cond]

Θ =⇒ b1〈1〉 = b2〈2〉
|= c1 ∼ c2 : Θ ∧ b1〈1〉 ⇒ Θ

|= while b1 do c1 ∼ while b2 do c2 : Θ⇒ Θ ∧ ¬b1〈1〉
[while]

|= skip ∼ skip : Φ⇒ Φ [skip]
|= c1 ∼ c2 : Ψ⇒ Θ |= c′1 ∼ c′2 : Θ⇒ Φ

|= c1; c
′
1 ∼ c2; c

′
2 : Ψ⇒ Φ

[seq]

Ψ =⇒ Ψ′ Φ′ =⇒ Φ
|= c1 ∼ c2 : Ψ

′ ⇒ Φ′

|= c1 ∼ c2 : Ψ⇒ Φ
[weak]

|= c1 ∼ c2 : Ψ ∧Ψ′ ⇒ Φ
|= c1 ∼ c2 : Ψ ∧ ¬Ψ′ ⇒ Φ

|= c1 ∼ c2 : Ψ⇒ Φ
[case]

Figure 2.3: Selected proof rules of pRHL.

Then, two programs c1 and c2 are observationally equivalent w.r.t. an input set of variables
I and an output set of variables O, written |= c1 ≃I

O c2, iff

|= c1 ∼ c2 : =I ⇒ =O.

Equivalently, |= c1 ≃I
O c2 iff for all memories m1,m2 ∈ M and functions f1, f2 :M→ [0, 1],

m1 =I m2 ∧ f1 =O f2 =⇒ (Jc1K m1)(f1) = (Jc2K m2)(f2).

Observational equivalence is amenable to automation. CertiCrypt provides mechanized tac-
tics based on dependency analyses to perform common program transformations and to
prove that two programs satisfy an observational equivalence specification. Relevant mech-
anized transformations used in this dissertation include dead code elimination, procedure
call inlining, code motion and expression propagation. Since observational equivalence

18

2.4. Reasoning Tools

is only a partial equivalence relation, it might be of interest to prove that a program is
observational equivalent to itself; CertiCrypt also provide an automatic tactic to prove a
program self-equivalent.

In the exposition we sometimes use a standard (probabilistic) Hoare logic for reasoning
about individual programs. Its judgments are of the form

{P} c {Q},

where c is a program and P and Q are predicates on states. Formally, a judgment {P} c {Q}
is valid iff for every memory m ∈ M,

P (m) =⇒ range (JcK m)Q.

19

Chapter 2. CertiCrypt Overview

20

3
Security Analysis based on

the Statistical Distance

Following an established trend [Goldwasser & Micali, 1984], the prevailing methodology
for building secure cryptosystems is to conduct a rigorous analysis that proves security
under standard hypotheses. Sometimes this analysis is performed assuming that some
components of the system have an ideal behavior. However, ideal functionalities are difficult
or even impossible to realize, leading to situations where provably secure systems have
no secure implementation. An alternative methodology is to devise systems based on
constructions that do not deviate significantly from ideal ones, and to account for these
deviations in the security analysis.

For quantifying the deviation between idealized functionalities and their implemen-
tations, the common practice is to rely on the notion of statistical distance. The aim
of this chapter is to develop several quantitative notions of program equivalence and re-
lated logics for upper-bounding the statistical distance between distributions generated by
probabilistic programs. More specifically, we introduce a logic for bounding the statistical
distance between the output distributions of two programs in the presence of adversaries
(Section 3.2.1) and an approximate variant of observational equivalence that supports rea-
soning through an equational theory (Section 3.2.2).

Finally we show the applicability of these tools by presenting a machine-checked proof
of Brier et al. [2010]’s construction for building hash functions into elliptic curves (Sec-
tion 3.3); loosely speaking, we prove that their construction yields hash functions whose
behaviour is similar to the ideal one—formally modeled as a random oracle—and thus can
be used safely to implement provable secure cryptosystems. These guarantees are formally
established using the indifferentiability framework of Maurer et al. [2004].

21

Chapter 3. Security Analysis based on the Statistical Distance

3.1 Statistical Distance

Statistical distance quantifies the largest difference between the probability that two dis-
tributions assign to the same event, and underlies many concepts in cryptography, such
as indifferentiability [Maurer et al., 2004] and statistical zero-knowledge proofs [Goldreich,
2002]. We review its definition next, and provide below an alternative characterization
that is more appropriate for reasoning about the monadic representation of distributions
that we use in our development; we refer to Shoup [2009] or Sahai & Vadhan [1999] for an
in-depth presentation of statistical distance and its properties.

Definition 3.1 (Statisitical Distance). The statistical distance ∆(µ1, µ2) between two dis-
tributions µ1 and µ2 over a set A is defined as

∆(µ1, µ2)
def

= sup
f :A→{0,1}

|µ1(f)− µ2(f)|. (3.1)

Note that for any f , the expression |µ1(f)− µ2(f)| is upper-bounded by 1; hence the
supremum exists and ∆(µ1, µ2) is well defined. Statistical distance satisfies the metric
axioms, and is non-increasing w.r.t. the bind operator, i.e.

i) 0 ≤ ∆(µ1, µ2) ≤ 1, and ∆(µ1, µ2) = 0 iff µ1 = µ2;

ii) ∆(µ1, µ2) = ∆ (µ2, µ1);

iii) ∆(µ1, µ3) ≤ ∆(µ1, µ2) + ∆ (µ2, µ3);

iv) ∆(bind µ1M, bind µ2M) ≤ ∆(µ1, µ2).

For discrete distributions, an equivalent definition is obtained if one lets f in (3.1) range
over the real interval [0, 1] rather than over Boolean values. This characterization of sta-
tistical distance is more convenient for reasoning about our monadic formalization of dis-
tributions and corresponds to the definition that we adopt in the Coq development.

Lemma 3.1. For any pair of discrete distributions µ1 and µ2 over a set A,

∆(µ1, µ2) = sup
f :A→[0,1]

|µ1(f)− µ2(f)|.

Proof. The proof follows by taking α = 1 in Lemma 4.1. �

3.2 Weak Notions of Program Equivalence

3.2.1 A Logic for Bounding the Statistical Distance

In this section, we consider the problem of bounding the statistical distance between the
distributions output by two programs given the same initial memory. Formally, let c1 and
c2 be two programs, which we assume to be executed in two fixed environments E1 and E2

and let ∆m (c1, c2) denote the distance ∆(Jc1K m, Jc2K m). We define a logic that allows

22

3.2. Weak Notions of Program Equivalence

upper-bounding the distance ∆m (c1, c2) by a function of the memory m. Concretely, we
consider judgments of the form

L c1, c2 M � g,

where g has typeM→ [0, 1]. Such a judgment is valid, written |= L c1, c2 M � g, iff

∀m • ∆m (c1, c2) ≤ g(m).

Figure 3.1 presents the main rules of the logic; contrary to the logic of Sections 3.2.2 and
5.2, this logic is not restricted to constant functions g. The logic deals with programs that
are structurally similar, and as shown by Lemma 3.2, supports a rule for reasoning about
adversaries.

|= Lx← e, x← e M � λm. 0 |= L assert b, assert b M � λm. 0

∀m • ∆(Jd1KDE m, Jd2KDE m) ≤ g(m)

|= Lx $← d1, x $← d2 M � g

|= L c1, c
′
1 M � g1 |= L c2, c

′
2 M � g2

g(m) def

= if JbKE m then g1(m) else g2(m)

|= L if b then c1 else c2, if b then c′1 else c′2 M � g

|= L c1, c2 M � g

g0(m) def

= 0 gn+1(m) def

= if JbKE m then (Jc1K m)(gn) + g(m) else 0

|= Lwhile b do c1,while b do c2 M � λm. lub (λn. gn(m))

|= LE1(p).body, E2(p).body M � g

g =X g ∀x • x ∈ X ⇒ global(x)

|= L y ← p(x), y ← p(x) M � g

|= L skip, skip M � λm. 0
|= L c1, c2 M � g |= L c′1, c

′
2 M � g′

|= L c1; c
′
1, c2; c

′
2 M � λm. (Jc1K m)(g′) + g(m)

Figure 3.1: Logic to bound the statistical distance between two probabilistic programs.

To prove the soundness, for instance, of the rule for sequential composition, we intro-
duce an intermediate program c1; c

′
2 (where c1 is executed in environment E1 and c′2 in

environment E2) and prove that the distance between Jc1; c
′
1Km and Jc1; c

′
2Km is bounded

by (Jc1Km)(g′), while the distance between Jc1; c
′
2Km and Jc2; c

′
2Km is bounded by g(m).

The rule for loops relies on the characterization of the semantics of a while loop as the
supremum of its n-th unrolling [while e do c]n (see Figure 2.1), and on the auxiliary rule

|= L [while b do c1]n, [while b do c2]n M � gn

|= Lwhile b do c1,while b do c2 M � λm. lub (λn. gn(m))

23

Chapter 3. Security Analysis based on the Statistical Distance

The rule for procedure calls builds on the fact that the semantics of a call y ← p(x) in
memory m is basically given by an unfolding of p’s code, where the resulting command
is executed in a memory m′ that only differs from m in the set of (local) variables that
correspond to p’s formal parameters; global variables have the same values in m and m′.
The last two premises of the rule are thus required to guarantee that g(m′) = g(m).

While the rules in Figure 3.1 are sufficient to reason about closed programs, they do
not allow to reason about programs in the presence of adversaries. We enhance the logic
with a rule that allows drawing conclusions of the form1 |= LA,A M � g, i.e. to bound the
statistical distance between calls to an adversary A executed in two different environments
E1 and E2.

Although the code of A is unknown, the only statements in his code that can increase
statistical distance are calls to oracles (since these are the only instructions whose semantics
may vary between the two environments E1 and E2). The rule we formalize captures
this intuition, by providing an upper bound for the statistical distance between the final
distributions in terms of the statistical distance induced by individual oracle calls, and
the number of oracle calls made by the adversary. In its simplest formulation, the rule
assumes that oracles are instrumented with a counter that keeps track of the number of
queries made by the adversary, and that the statistical distance between the distributions
induced by a call to an oracle x← O(~e) in E1 and E2 is upper-bounded by some constant δ,
i.e. |= LO,O M � λm. δ. In this case, the statistical distance between calls to the adversary
A in E1 and E2 is upper-bounded by q · δ, where q is an upper bound on the number of
oracle calls made.

For the application presented in Section 3.3, we need to formalize a more expressive
rule, in which the statistical distance between two oracle calls can also depend on the
program state. Moreover, we allow the counter to be any integer expression, and only
require that it does not decrease across oracle calls.

Lemma 3.2 (Adversary Rule). Let A be an adversary and let cnt be an integer expression
whose variables are global and cannot be written by A. Let h : N→ [0, 1] and define

h̄cnt(m,m′) def

= min

1,

JcntKE m′−1
∑

i=JcntKE m

h(i)

Assume that for every oracle O,

|= LO,O M � λm. (JE1(O).bodyK m)(λm′. h̄cnt(m,m′))

and moreover,
{cnt = i} E1(O).body {cnt ≥ i}.

Then,
|= LA,A M � λm. (JE1(A).bodyK m)

(

λm′. h̄cnt(m,m′)
)

.

1For the sake of readability, we write |= LA,A M � g instead of |= Lx ← A(~e), x ← A(~e) M � g, and
likewise for oracles.

24

3.2. Weak Notions of Program Equivalence

The first hypothesis states that the distance ∆m (E1(O).body, E2(O).body) can be
bounded in terms of the value of cnt before and after executing O; for instance, if a
call to O always increments cnt by 2, then the distance ∆m (E1(O).body, E2(O).body) is
bounded by h (JcntKE m) + h (JcntKE m+ 1). The second hypothesis captures the mono-
tonicity property of the counter.

Proof. As in [Barthe et al., 2010], the rule is derived from the induction principle induced
by the definition of well-formed adversary using the rules in Figure 3.1. �

Failure events constitute a major reasoning pattern in cryptographic game-based proofs.
We now build on this reasoning pattern to derive a related rule of the logic.

Transitions based on failure events allow transforming a program into another program
that is semantically equivalent unless some failure condition is triggered. This kind of
program transformations rely on the following lemma:

Lemma 3.3 (Fundamental Lemma of the Game-Playing Technique). Consider two pro-
grams c1, c2 and let A,B, and F be events. For every initial memory m, if

Pr [c1(m) : A ∧ ¬F] = Pr [c2(m) : B ∧ ¬F] ,

then
|Pr [c1(m) : A]− Pr [c2(m) : B] | ≤ max{Pr [c1(m) : F] ,Pr [c2(m) : F]}.

When A = B and F = bad for some Boolean variable bad, the hypothesis of the
lemma can be automatically established by inspecting the code of c1 and c2: it holds if
their code differs only after program points setting bad to true and bad is never reset to
false. In this case we say that c1 and c2 are upto-bad programs.

As a corollary of Lemma 3.3 and in view of Lemma 3.1 one can derive the following
result.

Lemma 3.4 (Upto-bad Rule). Let c1 and c2 be a pair of upto-bad programs such that c2
is lossless. Then,

|= L c1, c2 M � λm. Pr [c2(m) : bad] .

The proof of Lemma 3.4 also relies on the fact that for upto-bad programs c1 and c2,
Pr [c1(m) : bad] ≤ Pr [c2(m) : bad] whenever c2 is lossless.

3.2.2 Approximate Observational Equivalence

Approximate observational equivalence generalizes observational equivalence between two
programs by allowing that their output distributions differ up to some quantity δ. In-
formally, two programs c1 and c2 are δ-observationally equivalent w.r.t. an input set of
variables I and an output set of variables O iff for every pair of memories m1,m2 coin-
ciding on I, the statistical distance between the quotient distributions (Jc1K m1)/ =O and
(Jc2K m2)/ =O over M/ =O is upper-bounded by δ. For the purpose of formalization, it
is more convenient to rely on the following alternative characterization that does not use
quotient distributions.

25

Chapter 3. Security Analysis based on the Statistical Distance

Definition 3.2 (Approximate Observational Equivalence). Two programs c1 and c2 are δ-
observationally equivalent w.r.t. an input set of variables I and an output set of variables O,
written |= c1 ≃I

O c2 � δ, iff for all memories m1,m2 ∈ M and functions f1, f2 :M→ [0, 1],

m1 =I m2 ∧ f1 =O f2 =⇒
∣

∣(Jc1K m1)(f1)− (Jc2K m2)(f2)
∣

∣ ≤ δ.

Figure 3.2 provides an excerpt of an equational theory for approximate observational
equivalence; further and more general rules appear in the Coq development.

|= c1 ≃I
O c2 � δ1 |= c2 ≃I

O c3 � δ2

|= c1 ≃I
O c3 � δ1 + δ2

[trans]
|= c1 ≃I

O′ c2 � δ1 |= c′1 ≃O′

O c′2 � δ2

|= c1; c
′
1 ≃I

O c2; c
′
2 � δ1 + δ2

[seq]

|= c1 ≃I′

O′ c2 � δ′ I ′ ⊆ I O ⊆ O′ δ′ ≤ δ

|= c1 ≃I
O c2 � δ

[weak]

|= c1 ≃I
O c′1 � δ |= c2 ≃I

O c′2 � δ =I =⇒ b〈1〉 = b′〈2〉
|= if b then c1 else c2 ≃I

O if b′ then c′1 else c′2 � δ
[cond]

∀m1,m2 • m1 =I m2 =⇒ ∆(Jd1KDE m1, Jd2KDE m2) ≤ δ

|= x $← d1 ≃I
I∪{x} x $← d2 � δ

[rand]

Figure 3.2: Selected rules for reasoning about approximate observational equivalence.

Most rules generalize observational equivalence in the expected way. For instance, the
rule for random assignments considers the case of two distribution expressions δ-away from
each other. Let µ1 and µ2 be their interpretation. In case µ1 = µ2, one obtains δ = 0.
Furthermore, if µ1 and µ2 are uniform distributions over subsets A1, A2 ⊆ T of some
underlying type, one has ∆(µ1, µ2) = max { |A1\A2|/|A1|, |A2\A1|/|A2|}.

As an illustrative example we sketch the soundness proof of the rule for random as-
signments. Consider m1,m2 ∈ M and f1, f2 : M → [0, 1] such that m1 =I m2 and
f1 =I∪{x} f2. Now define S1 = {a | (Jd1K m1)(a) > 0}, g1(a) = f1(m1 {a/x}) and analo-
gously for S2 and g2, A0 = (S1∩S2∩Aµ1≥µ2)∪(S1\S2) and A1 = (S1∩S2∩Aµ1<µ2)∪(S2\S1).
Then we have

∣

∣(Jx $← d1K m1)(f1)− (Jx $← d2K m2)(f2)
∣

∣

(1)
=
∣

∣

∣

∑

a∈S1

µ1(a) g1(a)−
∑

a∈S2

µ2(a) g2(a)
∣

∣

∣

=
∣

∣

∣

∑

a∈S1∩S2

µ1(a) g1(a)− µ2(a) g2(a) +
∑

a∈S1\S2

µ1(a) g1(a)−
∑

a∈S2\S1

µ2(a) g2(a)
∣

∣

∣

(2)
=
∣

∣

∣

∑

a∈A0

(µ1(a)− µ2(a)) g1(a)−
∑

a∈A1

(µ2(a)− µ1(a)) g2(a)
∣

∣

∣

26

3.2. Weak Notions of Program Equivalence

(3)

≤ max
{

∑

a∈A0

(µ1(a)− µ2(a)) g1(a),
∑

a∈A1

(µ2(a)− µ1(a)) g2(a)
}

(4)

≤ max
{

∑

a∈A0

µ1(a)− µ2(a),
∑

a∈A1

µ2(a)− µ1(a)
}

≤ ∆(µ1, µ2) .

Equation (1) follows from unfolding the semantics of random assignments; equality (2)
follows from the definitions of A0, A1, S1 and S2, and the fact that g1(a) = g2(a) for all
a ∈ S1 ∩ S2. Finally inequality (3) holds since for all reals x, y satisfying 0 ≤ x, y ≤ δ one
has |x − y| ≤ δ and inequality (4) holds because the max operator is monotonic (in its
both arguments).

We highlight that the notion of (approximate) observational equivalence subsumes
that of (approximate) non-interference (see Section 1.1); concretely, a program c is δ-
non-interferent if |= c ≃L

L c � δ, where L stands for the set of public (or low sensitivity)
variables. Therefore, the logic of Figure 3.2 finds applications in approximate information
flow analysis, besides the case study about indifferentiability described in Section 3.3.

3.2.2.1 A Conditional Variant

The application we describe in Section 3.3 requires reasoning about conditional approxi-
mate observational equivalence, a generalization of approximate observational equivalence.
We define for a distribution µ and event P the conditional distribution µ|P as

µ|P def

= λf. µ

(

λa.
f(a) 1P (a)

µ(1P)

)

.

Intuitively, µ|P 1Q yields the conditional probability of Q given P .

Definition 3.3 (Conditional Approximate Observational Equivalence). A program c1
conditioned on predicate P1 is δ-observationally equivalent to a program c2 conditioned
on P2 w.r.t. an input set of variables I and an output set of variables O, written
|= [c1]P1

≃I
O [c2]P2

� δ, iff for any m1,m2 ∈M and f1, f2 :M→ [0, 1],

m1 =I m2 ∧ f1 =O f2 =⇒
∣

∣(Jc1K m1)|P1(f1)− (Jc2K m2)|P2(f2)
∣

∣ ≤ δ.

Remark. At first glance it might seem possible to define conditional observational equiv-
alence as a specialization of standard observational equivalence by interpreting judgment
|= [c1]P1

≃I
O [c2]P2

� δ as |= c1; assert P1 ≃I
O c2; assert P2 � δ. However, this is not the

case. To see why, observe that both distributions (JcK m)|P and Jc; assert P K m assign the
same—null—probability to those final memories that do not satisfy P , but for those final
memories that do satisfy P , the former includes a normalizing factor 1/(JcKm)(1P), while
the latter does not.

Conditional approximate observational equivalence subsumes classic approximate ob-
servational equivalence, which can be recovered by taking P1 = P2 = true.

27

Chapter 3. Security Analysis based on the Statistical Distance

3.3 Indifferentiable Hash Functions into Elliptic Curves

A customary technique to design cryptosystems that are both efficient and provable secure
is to assume that some of their components are ideal, for instance, that they have a “truly”
random output. Such kind of ideal components are called random oracles and the tech-
nique, coined random oracle model (ROM), was put in solid grounds by Bellare & Rogaway
[1993].

When implementing such cryptosystems, random oracles are instantiated by concrete
hash functions; the concept of indifferentiability [Maurer et al., 2004] allows rigorously jus-
tifying this substitution (and more generally, the substitution of any idealized component
by a concrete implementation): a cryptosystem that is provable secure in the ROM remains
secure if the random oracle is replaced by a hash function that is indifferentiable from the
random oracle.

Although the ROM has been under fierce criticism [Canetti et al., 2004] and the indif-
ferentiability framework turns out to be weaker than initially believed [Fleischmann et al.,
2010; Ristenpart et al., 2011], it is generally accepted that proofs in these models provide
some evidence that a system is secure. Not coincidentally, all finalists in the NIST Cryp-
tographic Hash Algorithm competition have been proved indifferentiable from a random
oracle.

A class of hash functions particularly useful in the domain of cryptography are those
mapping values onto the group induced by an elliptic curve. In general, elliptic curve
cryptography allows building efficient public-key cryptographic systems with comparatively
short keys and as such is an attractive solution for resource-constrained applications. In
contrast to other approaches to public-key cryptography, where candidates to instantiate
random oracles into bitstrings, residue classes, or finite fields have been known for some
time, constructions of random oracles into ordinary elliptic curves have remained elusive.

In 2010, Brier et al. [2010] proposed the first generic construction indifferentiable from
a random oracle into elliptic curves. This construction is of practical significance since, as
discussed above, it allows securely implementing elliptic curve cryptosystems. In this sec-
tion we present a machine-checked proof of the security of this construction using the tools
described in Section 3.2. The proof builds additionally on several large developments (in-
cluding Théry & Hanrot [2007]’s formalization of elliptic curves and Gonthier et al. [2007]’s
formalization of finite groups) and demonstrates that the verified security technique is apt
to support proofs involving advanced algebraic and number-theoretical reasoning.

3.3.1 Construction of Indifferentiable Hash Functions

Let us recall the notion of indifferentiability from a random oracle. First we explain briefly
the notion of random oracle and then we recall the definition of indifferentiability.

A random oracle is an ideal primitive that maps elements in some domain into uniformly
and independently distributed values in a finite set; queries are answered consistently so
that identical queries are given the same answer. A proof conducted in the ROM for a

28

3.3. Indifferentiable Hash Functions into Elliptic Curves

Real World

H G
Ideal World

F S

D

Figure 3.3: The two scenarios in the definition of indifferentiability of construction H from
an ideal primitive F

function H assumes that H is a random oracle and makes it publicly available to all parties.
In games, random oracles are represented as stateful procedures.

Definition 3.4 (Indifferentiability). A construction H built from a primitive G is said to
be (tS , tD, q1, q2, δ)-indifferentiable from an ideal primitive F iff there exists a simulator
S with oracle access to F such that any distinguisher D running within time tD has at
most probability δ of distinguishing a scenario where it is given H and G as oracles from a
scenario where it is given F and S instead:

∣

∣

∣
Pr
[

b← DHG ,G() : b = true
]

− Pr
[

b← DF ,SF
() : b = true

]∣

∣

∣
≤ δ.

The distinguisher D is allowed to make at most q1 queries to H (resp. F) and at most q2
queries to G (resp. S).

Intuitively, S must simulate the primitive G so that no distinguisher can tell whether it
is interacting with HG and G or with F and SF (see Figure 3.3). The simulator must do so
without access to the internal state (if any) of F or to its interaction with the distinguisher.

Random oracles into elliptic curves over finite fields are typically built from a random
oracle G on the underlying field and a deterministic encoding f that maps elements of the
field into the elliptic curve. Examples of such encodings include Icart’s function [Icart, 2009]
and the Shallue-Woestijne-Ulas (SWU) algorithm [Shallue & van de Woestijne, 2006]. In
general (and for the aforementioned mappings) the function f is not surjective and only
covers a fraction of points in the curve. Hence, the naive definition of a hash function H
as f ◦G would not cover the whole curve, contradicting the assumption that H behaves as
a random oracle.

In a recent paper, Brier et al. [2010] show how to build hash functions into elliptic
curves that are indifferentiable from a random oracle for a particular class of encodings,
including both SWU and Icart’s encodings. They prove that if (G,⊗) is a finite cyclic
group of order N with generator g, a function into G indifferentiable from a random oracle
can be built from any polynomially invertible function f : A → G and hash functions

29

Chapter 3. Security Analysis based on the Statistical Distance

G1 : {0, 1}∗ → A and G2 : {0, 1}∗ → ZN that behave as random oracles as follows:

H(m) def

= f(G1(m))⊗ gG2(m).

Intuitively, the term gG2(m) behaves as a one-time pad and ensures that H covers all
points in the group even if f covers only a fraction. This construction can be seen as the
composition of the function F (a, p) = f(a)⊗ gp and a random oracle into A× ZN .

We prove in CertiCrypt the indifferentiability of a generalization of Brier et al.’s con-
struction to finitely generated abelian groups. The proof introduces two intermediate
constructions and is structured in three steps:

i) We first prove that any efficiently invertible encoding f can be turned into a weak
encoding (Theorem 3.5);

ii) We then show an efficient construction to transform any weak encoding f into an
admissible encoding (Theorem 3.6);

iii) Finally, we prove that any admissible encoding can be turned into a hash function
indifferentiable from a random oracle (Theorem 3.7).

Moreover, we show in Section 3.3.2 that Icart’s and SWU encodings are efficiently invertible
and thus yield hash functions indifferentiable from a random oracle when plugged in into
the above construction.

We recall the alternative definitions of weak and admissible encoding from [Icart, 2010].
Note that these do not match the definitions of Brier et al. [2010], but, in comparison, are
better behaved: e.g. admissible encodings as we define them are closed under functional
composition and cartesian product. In the reminder, for any finite set A, the instruction
x $← A assigns to x a value uniformly chosen from A.

Definition 3.5 (Weak encoding). A function f : S → R is an (α, δ)-weak encoding iff it
is computable in polynomial-time and there exists a probabilistic polynomial-time algorithm
If : R→ S⊥ such that

i) {true} r $← R; s← If (r) {s = ⊥ ∨ f(s) = r};
ii) |=

[

r $← R; s← If (r)
]

s 6=⊥ ≃
∅
{s} [s

$← S] � δ;

iii) Pr
[

r $← R; s← If (r) : s = ⊥
]

≤ 1− α−1.

Condition i) states that If either inverts f or fails; ii) states that given a random input,
If returns a pre-image chosen almost uniformly when it does not fail and iii) states that
If does not fail too often.

Definition 3.6 (Admissible encoding). A function f : S → R is an δ-admissible encod-
ing if it is computable in polynomial-time and there exists a probabilistic polynomial-time
algorithm If : R→ S⊥ such that

i) {true} r $← R; s← If (r) {s = ⊥ ∨ f(s) = r};
ii) |= r $← R; s← If (r) ≃∅

{s} s
$← S � δ.

30

3.3. Indifferentiable Hash Functions into Elliptic Curves

Compared to a weak encoding, an admissible encoding may seem to impose no explicit
bound on the probability of If failing. However, condition ii) requires the output of inverter
If on a random input be statistically indistinguishable from the uniform distribution on
S; the bound δ must account for the probability of If failing.

We begin our proof by showing that any efficiently invertible encoding is a weak en-
coding.

Theorem 3.5. Let f : S → R be a function computable in polynomial-time such that for
any r ∈ R,

∣

∣f−1(r)
∣

∣ ≤ B. Assume there exists a polynomial-time algorithm I that given
r ∈ R outputs the set f−1(r). Then, f is an (α, 0)-weak encoding, with α = B |R| / |S|.

Proof. Using I , we build a partial inverter If : R → S⊥ of f that satisfies the properties
in Definition 3.5:

If (r) : X ← I(r); b $← true⊕|X|/B false;

if b = true then s $← X; return s else return ⊥

In the above construction of If , true⊕β false denotes the Bernoulli distribution with success
probability β, so that the instruction b $← true⊕β false assigns true to b with probability β.

First observe that If (r) fails with probability 1−
∣

∣f−1(r)
∣

∣ /B or else returns an element
uniformly chosen from the set of pre-images of r, and thus satisfies the first property
trivially. In addition we have

Pr
[

r $← R; s← If (r) : s 6= ⊥
]

=
∑

r∈R

1

|R|

∣

∣f−1(r)
∣

∣

B
=
|S|

B |R| ,

and for any x ∈ S,

Pr
[

r $← R; s← If (r) : s = x
]

=
∑

r∈R

1

|R|

∣

∣f−1(r)
∣

∣

B

1f−1(r)(x)

|f−1(r)| =
1

B |R| .

Hence, for a uniformly chosen r, the probability of If (r) failing is exactly 1−α−1, and the
probability of returning any particular value in S conditioned to not failing is uniform. �

We show next how to construct an admissible encoding F : A × P → Q from a
weak encoding f : A → Q for appropriate sets P and Q. This construction generalizes
Brier et al.’s original result (see [Brier et al., 2010, Theorem 3]) that restricts the analysis
to the case where Q is a cyclic group of order N and P is ZN .

The proof that we present relies on the application of two padding lemmas involving
a pair of expressions of type P and Q. To capture these properties we introduce a novel
algebraic structure coined padding algebra.

Definition 3.7 (Padding algebra). Let P and Q be two finite sets equipped with binary
operations ⊛,⊙ : P × Q → Q and ⊘ : Q × Q → P . We say that (P,Q,⊛,⊙,⊘) is a
padding algebra iff:

i) (p⊛ q)⊘ q = p for all p ∈ P, q ∈ Q;

31

Chapter 3. Security Analysis based on the Statistical Distance

ii) q ⊘ (p⊙ q) = p for all p ∈ P, q ∈ Q;

iii) for all q ∈ Q, the function λp. p⊛ q is an isomorphism between P and Q;

iv) for all q ∈ Q, the function λp. p⊙ q is an isomorphism between P and Q.

For such a structure one can prove the following algebraic equivalences:

|= p $← P ; q2 ← p⊛ q1 ≃{q1}
{q1,q2,p} q2

$← Q; p← q2 ⊘ q1, (3.2)

|= q2 $← Q; p← q1 ⊘ q2 ≃{q1}
{q1,q2,p} p

$← P ; q2 ← p⊙ q1. (3.3)

To do so we need to rely on the rules for random assignments and sequential composition
[rnd] and [seq] of CertiCrypt’s logic (see Figure 2.3) and on the above set of axioms—axioms
i) and iii) for the former equivalence and axioms ii) and iv) for the latter. In Section 3.3.2
we show that every finite abelian group induces a padding algebra and use this fact to
instantiate the results presented in this section.

We now show how to turn a weak encoding f : A → Q into an admissible encoding
F : A× P → Q when P and Q can be given the structure of a padding algebra.

Theorem 3.6. Let (P,Q,⊛,⊙,⊘) be a padding algebra such that

(q1 ⊘ q2)⊙ q1 = q2 ∀q1, q2 ∈ Q,

and operations ⊛ and ⊙ can be computed in polynomial-time. Then, for any (α, δ)-weak
encoding f : A→ Q, the function

F : A× P → Q
F (a, p) def

= p⊙ f(a)

is an δ′-admissible encoding into Q, with δ′ = δ+
(

1− α−1
)T+1

for any value T polynomial
in the security parameter.

Proof. Since f is a weak encoding, there exists a polynomial-time computable inverter
If of f satisfying the conditions in Definition 3.5. Let T be polynomial in the security
parameter. Using If , we build a partial inverter IF of F that satisfies the properties in
Definition 3.6:

IF (q) : i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do
p $← P ;
x← p⊛ q;
a← If(x);
i← i+ 1

end;
if a 6= ⊥ then return (a, p) else return ⊥

The partial inverter IF runs in time tIF = (T +1) tIf , where tIf is a bound on the running
time of If . Hence, IF is polynomial-time.

32

3.3. Indifferentiable Hash Functions into Elliptic Curves

Game G1 : q $← Q; s← IF (q)

Game G2 :
q $← Q;
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do
x $← Q; p← x⊘ q;
a← If (x); i← i+ 1

end;
if a 6= ⊥ then s← (a, p) else s← ⊥

Game G3 :
q $← Q;
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do
x $← Q; a← If (x); i← i+ 1

end;
p← x⊘ q;
if a 6= ⊥ then s← (a, p) else s← ⊥

Game G4 :
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do
x $← Q; a← If (x); i← i+ 1

end;
p $← P ;
if a 6= ⊥ then s← (a, p) else s← ⊥

Game G5 G6 :
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do
x $← Q; a← If (x); i← i+ 1

end;
p $← P ;
if a 6= ⊥ then a $← A; s← (a, p)
else bad← true;

s← ⊥ a $← A; s← (a, p)

Game G7 : s $← A× P

Figure 3.4: Games used in the proof of Theorem 3.6.

We prove that

|= q $← Q; s← IF (q) ≃∅
{s} s $← A× P � δ′

using the sequence of games G1, . . . ,G7 shown in Figure 3.4, the mechanized program
transformations of CertiCrypt, and the proof rules for observational and approximate ob-
servational equivalence. We briefly describe the proof below.

We obtain game G2 by first inlining the call to IF in the initial game and then applying
the algebraic equivalence (3.2) to transform the body of the while loop.

Game G3 is obtained by moving the assignment to p outside the loop in game G2. This
transformation is semantics-preserving because p is never used inside the loop and the
value that it has when exiting the loop only depends on the value of x in the last iteration.
Formally, this is proven by unfolding the first iteration of the loop and establishing that
the relation

={i,x,a,q} ∧ (p = x⊘ q)〈1〉

is a relational invariant between the loop in G2 and the loop resulting from removing the
assignment to p. By appending p← x⊘ q to the latter loop, we recover equivalence on p.

Observe that games G2 and G3 use operation ⊘, which might not be computable in
polynomial-time (for elliptic curve groups, it would require computing a discrete loga-
rithm). This is a valid proof technique that does not undermine the validity of the analysis;
we prove all necessary equivalences.

33

Chapter 3. Security Analysis based on the Statistical Distance

Since q is no longer used inside the loop, we can postpone choosing it after the loop and
use the algebraic equivalence (3.3) to sample p instead of q. We obtain G4 by additionally
removing the assignment to q, which is now dead code.

For the next step in the proof we use the fact that f is a weak encoding and therefore
the distribution of a after a call a← If (x) conditioned to a 6= ⊥ is δ-away from the uniform
distribution. This allows us to re-sample the value of a after the loop, provided a 6= ⊥,
incurring a penalty δ on the statistical distance of the distribution of s between G4 and G5.
To prove this formally, let b be the condition of the loop and c its body. Observe that the
semantics of the loop coincides with the semantics of its (T +1)-unrolling [while b do c]T+1.
We show by induction on T that for any [0, 1]-valued functions f and g such that f ={a′} g,

m1={a,i}m2 ∧ m1(a) = ⊥ =⇒
∣

∣(Jc1K m1)(f
′)− (Jc2K m2)(g

′)
∣

∣ ≤ δ,

where
c1

def

= [while b do c]T+1; if a 6= ⊥ then a′ ← a
c2

def

= [while b do c]T+1; if a 6= ⊥ then a′ $← A
f ′(m) def

= if m(a) 6= ⊥ then f(m) else 0
g′(m) def

= if m(a) 6= ⊥ then g(m) else 0

and use this to conclude the δ-approximate equivalence of G4 and G5.

Since G5 and G6 are syntactically equivalent except for code appearing after the flag
bad is set, we apply Lemma 3.4 to obtain the bound

|= LG5,G6 M � Pr [G5 : bad] .

Since the probability of failure of If on a uniformly chosen input is upper-bounded by
1− α−1, we can show by induction on T that

Pr [G5 : bad] ≤
(

1− α−1
)T+1

,

from which we conclude |= G5 ≃∅
{s} G6 �

(

1− α−1
)T+1

.

By coalescing the branches in the conditional at the end of G6 and removing dead code,
we prove that the game is observational equivalent w.r.t. a and p to the game a $← A; p $←
P ; s← (a, p), which is trivially equivalent to G7.

By composing the above results, we conclude

|= G1 ≃∅
{s} G7 � δ +

(

1− α−1
)T+1

.

We must also show that s = ⊥ ∨F (s) = q is a post-condition of G1. As G1 and G3 are
observationally equivalent with respect to s and q, it is sufficient to establish the validity
of the post-condition for G3. We show that a 6= ⊥ ⇒ x = f(a) is an invariant of the
loop. When the loop finishes, either a = ⊥ and in this case s = ⊥, or a 6= ⊥ and we have
F (s) = p⊙ f(a) = (x⊘ q)⊙ x = q. �

34

3.3. Indifferentiable Hash Functions into Elliptic Curves

Finally, we show that the composition of an admissible encoding f : S → R and a
random oracle into S is indifferentiable from a random oracle into R.

Theorem 3.7. Let f : S → R be an δ-admissible encoding with inverter algorithm If and
let G : {0, 1}∗ → S be a random oracle. Then, f ◦ G is (tS , tD, q1, q2, δ′)-indifferentiable
from a random oracle into R, where tS = q1 tIf and δ′ = 2(q1 + q2)δ.

Before moving to the proof of Theorem 3.7, we prove the following useful result.

Proposition 3.8. Let f : S → R be an δ-admissible encoding with inverter algorithm If .
Then

|= s $← S; r ← f(s) ≃∅
{r,s} r $← R; s← If (r) � 2δ.

Proof. Define

ci = s $← S; r ← f(s)
cf = r $← R; s← If (r)
c1 = ci; if s = ⊥ then r $← R else r ← f(s)
c2 = cf ; if s = ⊥ then bad← true; r $← R else r ← f(s)
c3 = cf ; if s = ⊥ then bad← true else r ← f(s)

Since the first branch of the conditional in c1 is never executed, we have

|= ci ≃∅
{r,s} c1.

Due to the second property of Definition 3.6, the distributions of s after executing ci and
cf are δ-away. Using the rules for approximate observational equivalence, we obtain

|= c1 ≃∅
{r,s} c2 � δ.

Lemma 3.4 implies that |= L c2, c3 M � Pr [c2 : bad]. Moreover,

Pr [c2 : bad] = 1− Pr
[

cf : s 6= ⊥
]

= Pr [s $← S : s 6= ⊥]− Pr
[

cf : s 6= ⊥
]

≤ δ.

where the last inequality holds again because of the second property of Definition 3.6. Since
the final values of r and s in programs c2 and c3 are independent of the initial memory, we
have

|= c2 ≃∅
{r,s} c3 � δ.

Because If is a partial inverter for f , the else branch of the conditional in c3 has
no effect and can be removed, and thus |= c3 ≃∅

{r,s} cf . We conclude by transitivity of
approximate observational equivalence. �

Proof of Theorem 3.7. Let D be a distinguisher against the indifferentiability of H = f ◦G
from a random oracle F into R. We show that the simulator S constructed as If ◦ F is
good enough, i.e. D cannot distinguish with probability greater than δ′ between a game G

35

Chapter 3. Security Analysis based on the Statistical Distance

Game G : L1,L2 ← nil; b← DHG ,G()

Oracle HG(x) :
if x /∈ dom(L2) then
s← G(x); r ← f(s); L2(x)← r

return L2(x)

Oracle G(x) :
if x /∈ dom(L1) then
s $← S; L1(x)← s

return L1(x)

Game G′ : L1,L2 ← nil; b← DF ,SF()

Oracle F(x) :
if x /∈ dom(L2) then
r $← R; L2(x)← r

return L2(x)

Oracle SF (x) :
if x /∈ dom(L1) then
r← F(x); s← If (r); L1(x)← s

return L1(x)

Game G1 : L← nil; b← AO()

Oracle O(x) :
if x /∈ dom(L) then
s $← S; r ← f(s); L(x)← (s, r)

return L(x)

Game G2 : L← nil; b← AO()

Oracle O(x) :
if x /∈ dom(L) then
r $← R; r← If(r); L(x)← (s, r)

return L(x)

Game Gbad
1 : L← nil; b← AO()

Oracle O(x) :
if x /∈ dom(L) then
if |L| < q1 + q2 then

s $← S; r ← f(s)
else bad← true; s $← S; r← f(s)
L(x)← (s, r)

return L(x)

Game Gbad
2 : L← nil; b← AO()

Oracle O(x) :
if x /∈ dom(L) then
if |L| < q1 + q2 then

s $← S; r ← f(s)
else bad← true; r $← R; s← If (r)
L(x)← (s, r)

return L(x)

Figure 3.5: Games used in the proof of Theorem 3.7.

where it is given H and G as oracles and a game G′ where it is given F and S instead. An
overview of the proof, including these two games is shown in Figure 3.5.

Our goal is to prove

∣

∣Pr [G : b = true]− Pr
[

G′ : b = true
]∣

∣ ≤ 2(q1 + q2)δ.

The crux of the proof is an application of Lemma 3.2. In order to apply it, we need first
to transform game G (resp. G′) to replace oracles H and G (resp. F and S) by a single
joint oracle that simultaneously returns the responses of both. Using D, we construct an
adversary A with access to a single joint oracle, such that game G (resp. G′) is equivalent
to game G1 (resp. G2) in the figure. Adversary A simply calls the distinguisher D and

36

3.3. Indifferentiable Hash Functions into Elliptic Curves

forwards the value it returns; it simulates H and G (resp. F and S) by using its own oracle
O.

We assume, as Brier et al. [2010] do, that whenever the distinguisher makes a query x to
one of its oracles, it also makes the same query to its other oracle. Under this assumption,
game G is equivalent to G1, and game G′ is equivalent to G2. We thus have

Pr [G : b = true] = Pr [G1 : b = true] and Pr
[

G′ : b = true
]

= Pr [G2 : b = true] .

Furthermore, since D makes at most q1 and q2 queries to each of its oracles, A makes at
most q = q1 + q2 queries to its joint oracle.

We next transform the implementation of oracle O in game G1 so that its behavior after
the first q queries is the same as in G2. This transformation will pave the way to applying
Lemma 3.2. The desired behavior of oracle O is represented in game Gbad

2 . Observe that
Gbad
2 is annotated with a flag bad that is set to true when the allotted number of queries

is reached. This is because we essentially rely on Lemma 3.3 to justify the equivalence
between G1 and Gbad

2 . To apply this lemma we need however to introduce an intermediate
game Gbad

1 . Since G1 and Gbad
1 are trivially equivalent, we have

Pr [G1 : b = true] = Pr
[

Gbad

1 : b = true
]

An application of Lemma 3.3 between games Gbad
1 and Gbad

2 gives

Pr
[

Gbad

1 : b = true ∧ ¬bad
]

= Pr
[

Gbad

2 : b = true ∧ ¬bad
]

.

But since bad =⇒ q < |L| is an invariant and |L| ≤ q a post-condition of both Gbad
1 and

Gbad
2 , we have

Pr
[

Gbad

1 : b = true
]

= Pr
[

Gbad

2 : b = true
]

.

We can now apply Lemma 3.2 to the games G2 and Gbad
2 , defining cnt = |L| and

h(i) = if i < q then 2δ else 0. The second hypothesis of the lemma, i.e. that a call to
E2(O) cannot decrease |L|, is immediate. We can assume that 2qδ < 1 (otherwise the
theorem is trivially true). Then for any pair of initial and final memories m and m′,

JcntKE m′−1
∑

i=JcntKE m

h(i) ≤ 2qδ < 1, and h̄cnt(m,m′) =
JcntKE m′−1
∑

i=JcntKE m

h(i).

We are only left to prove that

|= LE2(O).body, Ebad

2 (O).body M � λm. (JE2(O).bodyK m)(λm′. h̄cnt(m,m′)).

A case analysis on the conditions x ∈ dom(L) and |L| < q yields three cases; two of
them yield a null distance and are immediate. The remaining case, where x /∈ dom(L)

37

Chapter 3. Security Analysis based on the Statistical Distance

and |L| < q, yields a distance of 2δ and follows from Proposition 3.8. We finally obtain
|= LG2,G

bad
2 M � 2(q1 + q2)δ, which entails

∣

∣

∣
Pr [G2 : b = true]− Pr

[

Gbad

2 : b = true
]∣

∣

∣
≤ 2(q1 + q2)δ.

This, combined with the previous results implies the desired inequality. �

3.3.2 Application to Elliptic Curves

We now discuss the instantiation of the proof presented in the previous section to hashing
into elliptic curves. We proceed in two steps. First, we show that every finite abelian group
with an efficiently computable law can be given the structure of a padding algebra that
satisfies the hypotheses of Theorem 3.6. It follows that any efficiently invertible encoding
into such a group induces a hash function onto the group that is indifferentiable from a
random oracle. Second, we show that the set of points of an elliptic curve form a finite
abelian group with an efficiently computable law, and that Icart’s function is an efficiently
invertible encoding. The formalization of both steps in the Coq proof assistant relies
on independently developed libraries of mathematics. In addition, it assumes standard
mathematical results that are not formalized in Coq (e.g. Cassels’ theorem).

We begin with some mathematical background, before describing the Coq formalization.

3.3.2.1 Mathematical Background

Fundamental theorem of finite groups. The fundamental theorem of finite groups
states that every finite abelian group (G,⊗) is isomorphic to a product of cyclic groups
Zn1 × · · · × Znk

. Moreover the decomposition can be made unique by fixing additional
conditions on n1 . . . nk. Assume that gi is a generator of the group Zni , for all 1 ≤ i ≤ k.
Then for every group element x ∈ G there exists a unique vector (z1, . . . , zk) ∈ Zn1 × · · ·×
Znk

such that
x = gz11 ⊗ · · · ⊗ gzkk

In the sequel, we use log x to denote (z1, . . . , zk) and ~g ~z to denote gz11 ⊗· · ·⊗gzkk , as above.

Elliptic Curves over Finite Fields. Recall that the order of a finite field is of the
form pm, where p is a prime number called the characteristic of the field, and that finite
fields of the same order are unique up to isomorphism. In the following, we let Fn refer to
any finite field of order n (i.e. containing n elements).

For our purposes, it is sufficient to consider elliptic curves over fields of order pm with
p > 3, that is, finite fields of characteristic different from 2 and 3. For the sake of readability,
we specialize all our definitions to this case. Let a, b ∈ Fpm such that 4a3 + 27b2 6= 0. The
elliptic curve induced by a and b contains all points (X,Y) ∈ Fpm × Fpm that satisfy the
Weierstrass equation

Y 2 = X3 + aX + b.

38

3.3. Indifferentiable Hash Functions into Elliptic Curves

Note that the condition on a and b is equivalent to requiring that the polynomial X3+aX+b
has distinct roots, and ensures that the curve is non-singular (i.e. it has no cusps or self-
intersections) and is thus a proper elliptic curve.

The set of points of an elliptic curve can be given the structure of an abelian group by
adding an additional “idealized” point at infinity O:

Ea,b(Fpm) = {(X,Y) ∈ Fpm × Fpm | Y 2 = X3 + aX + b} ∪ {O}

The point O behaves as the identity; the inverse of an element is given by equations

−O def

= O and − (X,Y) def

= (X,−Y).

The definition of the group law rests on the following property of elliptic curves, which
follows from Bézout’s theorem [Hartshorne, 1977, Corollary 7.8]: The line defined by two
points P1 and P2 in a curve2 intersects the curve at a third point P3 (which might coincide
with P1 or P2). The group law is defined as

P1 ⊕ P2
def

= − P3.

For an in-depth algebraic description of elliptic curves we refer the interested reader
to [Hankerson et al., 2004] or [Silverman, 2009].

The construction of hash functions onto elliptic curves exploits the particular group
structure of this kind of curves; Cassels’ theorem [Hankerson et al., 2004, Theorem 3.12]
states that every elliptic curve Ea,b(Fn) over a finite field Fn is isomorphic to the product
of the two cyclic groups Zn1 × Zn2 where n1 and n2 are uniquely determined; moreover
n2 divides both n1 and n− 1. As an immediate corollary, observe that

∣

∣Ea,b(Fn)
∣

∣ = n1n2,
and that the group is cyclic when n2 = 1.

Encodings into elliptic curves. Brier et al. [2010] present two encodings into elliptic
curves: Icart’s function [Icart, 2009] and (a simplified version of) the Shallue-Woestijne-
Ulas (SWU) algorithm [Shallue & van de Woestijne, 2006]. We review their definition and
prove that they can be computed and inverted in polynomial-time.

Icart’s encoding. Let p > 3 be a prime such that pm ≡ 2 (mod 3). Icart’s function
fa,b : Fpm → Ea,b(Fpm) is defined as:

fa,b(t)
def

=

(x, tx+ v) if t 6= 0

((−b)1/3, 0) if t = 0 ∧ a = 0
O if t = 0 ∧ a 6= 0

where x =

(

v2 − b− t6

27

)
1
3

+
t2

3
v =

3a− t4

6t

2If P1 = P2 = (X0, Y0) we let {(X,Y) ∈ Fn × Fn | α(X −X0) + β(Y − Y0) = 0} be the line defined by
P1 and P2, where α = 3X2

0 + a and β = −2Y0.

39

Chapter 3. Security Analysis based on the Statistical Distance

As a side remark, observe that the original definition only deals with the case a 6= 0; the
definition for the case a = 0 was suggested to us by Icart in a private communication.

One can prove by computation that the image of t through fa,b belongs to the curve
Y 2 = X3+aX+b for every t in Fpm . Moreover, the set of pre-images under Icart’s function
of a point in the curve can be characterized as the set of roots of a polynomial over Fpm:

f−1
a,b (O) =

{

{0} if a 6= 0
∅ if a = 0

f−1
a,b (X,Y) =

{

{t | t3 − 6tX + 6Y = 0} if a = 0
{t | t4 − 6t2X + 6tY = 3a} if a 6= 0

Since the polynomials are of degree at most 4, every point in the curve has at most 4 pre-
images. Moreover, the pre-images can be computed in polynomial-time using algorithms for
factoring polynomials over finite fields, e.g. Berlekamp’s algorithm. Thus, Icart’s encoding
is polynomially invertible.

The Shallue-Woestijne-Ulas (SWU) encoding. Let p > 3 be a prime such that
pm ≡ 3 (mod 4) and let a, b 6= 0 belong to Fpm . We use g(X) as a shorthand for the
polynomial X3 + aX + b. For every t ∈ Fpm we let

X1(t)
def

= − ba−1
(

1 + (t4 − t2)−1
)

X2(t)
def

= − t2 X1(t) U(t) def

= t3 g(X1(t))

Note that U(t)2 = −g(X1(t)) g(X2(t)). As −1 is a quadratic non-residue in Fpm , it follows
that exactly one of g(X1(t)) and g(X2(t)) is a square and thus either X1(t) or X2(t) is the
abscissa of a point on the curve Y 2 = g(X) [Fouque & Tibouchi, 2010]. This motivates
the definition of the SWU function f ′

a,b as follows:

f ′
a,b(t)

def

=

{

(

X1(t), g(X1(t))
1/2
)

if g(X1(t)) is a square
(

X2(t), g(X2(t))
1/2
)

otherwise

To compute the pre-images t of a point (X,Y) we need to solve equations X1(t) = X
and X2(t) = X, keeping the solutions that verify g(X1(t)) = Y 2 and g(X2(t)) = Y 2

respectively. Each of the constraints X1(t) = X and X2(t) = X can be reduced to a
polynomial equation and the inverse of the SWU function can be computed as

f ′−1
a,b(O) = ∅

f ′−1
a,b(X,Y) =

{

t | −α1t
4 + α1t

2 − ba−1 = 0 ∧ g(X1(t)) = Y 2
}

∪
{

t | −ba−1t4 + α2t
2 − α2 = 0 ∧ g(X2(t)) = Y 2

}

where α1 = ba−1+X and α2 = ba−1−X. Since each polynomial has degree 4 and for every
t, exactly one of g(X1(t)) and g(X2(t)) is a square, every point in the curve admits at most

40

3.3. Indifferentiable Hash Functions into Elliptic Curves

4 pre-images. As with Icart’s function, they can be computed in polynomial-time using,
for instance, the Berlekamp’s algorithm. Therefore, the SWU encoding can be inverted in
polynomial time.

Finally we claim that both encodings can be computed in polynomial time. This
basically amounts to verifying that square (in the case of the SWU function) and cubic
roots (in the case of Icart’s function) can be computed in polynomial-time, which is in turn
entailed by the restrictions imposed on the order pm of the field. More precisely, for every
x ∈ Fpm , condition pm ≡ 2 (mod 3) entails formula x1/3 = x2p

m−1 while condition pm ≡ 3
(mod 4) implies that x1/2 = x(p

m+1)/4.

3.3.2.2 Formalization in Coq

To instantiate our generic proof of indifferentiability to Icart’s encoding, we proceeded as
follows:

i) We showed that every finite abelian group G can be given the structure of a padding
algebra. The formalization exploits the fundamental theorem of finite groups to
decompose G as a product of cyclic groups Zn1×· · ·×Znk

. We set P = Zn1×· · ·×Znk
,

Q = G and

~z ⊛ x = x⊗ ~g −~z ~z ⊙ x = x⊗ ~g ~z x1 ⊘ x2 = log (x1
−1 ⊗ x2).

Our formalization relies on the SSReflect standard library [Gonthier et al., 2007],
which provides a wealth of results on finite abelian groups, including the fundamental
theorem of finite groups.

It follows from Theorems 3.5, 3.6 and 3.7 that one can build a hash function onto G

from a polynomially invertible function f : A→ G and random oracles G1 : {0, 1}∗ →
A and G2 : {0, 1}∗ → Zn1 × · · · × Znk

.

Lemma 3.9 (Indifferentiable Hashing into Finite Abelian Groups). Let G be a fi-
nite abelian group with an efficiently computable law. Let Zn1 × · · · × Znk

be the
decomposition of G as a product of cyclic groups and let gi be a generator of Zni for
i = 1 . . . k. Assume that f : A→ G is a polynomial-time function such that for each
x, the set f−1(x) can be computed by a probabilistic polynomial-time algorithm If and
its size is bounded by B. Then, for any pair of random oracles G1 : {0, 1}∗ → A and
G2 : {0, 1}∗ → Zn1 ×· · ·×Znk

and any value T polynomial in the security parameter,
the construction

H(m) def

= f(G1(m))⊗ ~g G2(m)

is (tS , tD, q1, q2, δ)-indifferentiable from a random oracle into G, where tS = q1(T +
1)tIf and δ = 2(q1 + q2) (1− |A| /(B |G|))T+1.

ii) We showed that the set of points of the elliptic curve Ea,b(Fpm) can be construed as
a finite abelian group. To carry out this step, we adapted Théry & Hanrot [2007]’s

41

Chapter 3. Security Analysis based on the Statistical Distance

formalization of elliptic curves to match the definition of finite group used by SSRe-
flect. As a result, one obtains an instantiation of Lemma 3.9 to elliptic curves (the
fact that the group law is efficiently computable is assumed).

Given its complexity, we have not attempted to formalize the proof of Cassels’ the-
orem. However, Bartzia [2011] is working towards completing a formalization of
Cassels’ theorem. Since their formalization is based on the SSReflect library of finite
groups, it would be immediate to use it for specializing the lemma further. Specif-
ically, one could define G2,1 and G2,2 as the first and second projections of G2 and
let

H(m) def

= f(G1(m))⊗ g1
G2,1(m) ⊗ g2

G2,2(m).

Under the previous assumptions, the function H is indifferentiable from a random
oracle.

iii) We defined Icart’s function fa,b, and showed that it generates points in the curve
Ea,b. This required showing the existence of cubic roots in the field Fpm when
pm ≡ 2 (mod 3). Moreover, we defined the inverse of Icart’s function, and assumed
that it is polynomially computable. Discharging this assumption would require to
show the existence of an efficient method for factoring polynomials over the under-
lying field, and is left as future work (Berlekamp’s algorithm, for instance, computes
the roots of a polynomial of degree d over field Fn in time O(d2 log3 n)). It then
follows from Lemma 3.9 that fa,b induces a hash function onto Ea,b(Fpm) that is
(tS , tD, q1, q2, 2(q1+q2)δ)-indifferentiable from a random oracle into Ea,b(Fpm), where
tS = q1 tIF = q1(T + 1)tf−1 and tf−1 is an upper bound on the time needed to com-
pute the pre-image of a point under Icart’s function, i.e. to solve a polynomial of
degree 4 in Fpm .

We could also instantiate Lemma 3.9 to the SWU encoding. However, this would require
showing that equality U(t)2 = −g(X1(t))g(X2(t)) entails that either X1(t) or X2(t) is the
abscissa of point on the curve Y 2 = g(X), which involves some reasoning about quadratic
residues. Nowak [2009]’s formalization of quadratic residues would be a good starting
point.

Overall, the formalization consists of over 65,000 lines of Coq (without counting com-
ponents reused from the standard libraries of Coq and SSReflect), which break down as
follows: 45,000 lines corresponding to the original CertiCrypt framework, 3,500 lines of
extensions to CertiCrypt, 7,000 lines written originally for our application to indifferentia-
bility, and 10,000 lines of a slightly adapted version of Théry & Hanrot [2007]’s elliptic
curve library.

We conclude with the observation that our development in the current section points to
some underdeveloped areas in formalized mathematics. Although there have been substan-
tial efforts to develop machine-checked libraries of mathematics, covering relevant topics
such as polynomials and finite fields, the libraries lack many important results. For in-
stance, we are not aware of any formalization of factorization algorithms for polynomials
over finite fields. Since such algorithms, and in particular Berlekamp’s algorithm, are

42

3.3. Indifferentiable Hash Functions into Elliptic Curves

used by many computer algebra systems, we believe that it would be of general interest
to provide a machine-checked proof of their correctness. Moreover, elliptic curve theory
is a fascinating area of mathematics, and it would be particularly appealing to develop
formalizations of some of the most important results in the area.

43

Chapter 3. Security Analysis based on the Statistical Distance

44

4
Security Analysis based on

the α-distance

The aim of this chapter is to present a full-fledged relational Hoare logic for approximate
reasoning between probabilistic programs. This program logic is primarily inspired by ap-
plications in privacy-preserving data analysis, even though it can be used to model a wider
class of quantitative confidentiality properties such as probabilistic non-interference. We
begin by reviewing differential privacy, the policy for private data analysis that motivates
our development.

When dealing with collections of private data one is faced with conflicting requirements:
on the one hand, it is fundamental to protect the privacy of the individual contributors;
on the other hand, it is desirable to maximize the utility of the data by mining and
releasing partial or aggregate information, e.g. for medical statistics, market research, or
targeted advertising. Differential privacy [Dwork et al., 2006b] has emerged as a compelling
confidentiality policy that achieves an attractive trade-off between these two conflicting
requirements.

Loosely speaking, differential privacy captures the idea that joining an statistical
database should not increase the risks to the contributors’ privacy. To achieve this goal,
Dwork et al. suggested that algorithms mining the database should be probabilistic and
their outputs should be insensitive to the contribution of any single individual. Formally,
we say that a randomized computation or mechanism c is ǫ-differentially private iff for any
two input databases D1 and D2 differing in at most one row1,

Pr [c(D1) : P] ≤ eǫ Pr [c(D2) : P]

1We assume that each row in the database corresponds to the contribution of an individual.

45

Chapter 4. Security Analysis based on the α-distance

for every event P on the output domain of c. Sometimes differential privacy is hard to
achieve in practice and we have to resort to a weaker notion of confidentiality known as
approximate differential privacy. In these cases, the above equation is relaxed with a slack
δ, i.e.

Pr [c(D1) : P] ≤ eǫ Pr [c(D2) : P] + δ,

and we say that c is (ǫ, δ)-differentially private.
In this chapter we report on α-pRHL, an approximate relational Hoare logic for rea-

soning about (standard and approximate) differential privacy. α-pRHL can be viewed as
a quantitative extension of the native logic pRHL of CertiCrypt that allows modeling ap-
proximate properties of probabilistic programs. In particular, it allows reasoning about the
statistical distance between probabilistic programs and subsumes the equational theory of
Chapter 3 used to reason about approximate observational equivalence.

Moreover, we extend CertiCrypt to provide complete tool support for α-pRHL. In doing
so, we present a proof system to derive valid α-pRHL judgments and provide a machine-
checked proof in Coq of its soundness. The resulting framework allows constructing fully
formalized proofs about, e.g. differential privacy, and crisply extends the frontiers of the
verified security methodology.

Conceptually, our development of α-pRHL for reasoning about differential privacy com-
prises two major steps.

i) First we introduce a notion of distance between distributions (called α-distance)
that generalizes statistical distance with a skew parameter α, and we show that a
computation c is (ǫ, δ)-differentially private if and only if δ is an upper bound for the
eǫ-distance between the output distributions obtained by running c on two adjacent
memories; in the dissertation we consider a more general view of differential privacy
where we assume given a (discrete) metric over the input domain of mechanisms, and
the adjacency relation is stated as an upper bound of 1 on this metric.

ii) Then, we introduce our relational Hoare logic α-pRHL, whose judgment have the
form

c1 ∼α,δ c2 : Ψ⇒ Φ, (4.1)

where c1 and c2 are probabilistic programs, Ψ and Φ are binary relations over pro-
gram states, α ∈ R

≥1 and δ ∈ [0, 1]. We establish the connection of α-pRHL with
differential privacy by showing that judgments with the equality on programs as
post-condition yield (α, δ)-closeness conditions between the output of programs. Con-
cretely, if Φ represents the equality on program states, the validity of judgment (4.1)
implies that δ is an upper bound for the α-distance between the output distribution
of c1 and c2 when executed on two initial states related by Ψ. As a corollary, if we let
c1 = c2 = c, α = eǫ, Ψ represent the adjacency relation and Φ represent the equality
on program states, judgment (4.1) entails that c is (ǫ, δ)-differentially private.

Before outlining our development in details, let us review how the rest of the chapter is
organized. In Section 4.1 we present the semantic foundations of α-pRHL; in particular we

46

4.1. Preliminaries

introduce the α-distance between distributions and demonstrate how the notion of differ-
ential privacy can be stated in terms of it. In Section 4.2 we show that α-pRHL judgments
characterize differential privacy and provide a detailed overview of the α-pRHL proof sys-
tem. In Section 4.3 we report on several case studies that we have fully formalized in our
framework. Finally, we sketch pencil-and-paper proofs of all our results in Appendix 4.A.

4.1 Preliminaries

4.1.1 Skewed Distance between Distributions

In this section we define the notion of α-distance, a parametrized distance between dis-
tributions. We show how this notion can be used to express ǫ-differential privacy, (ǫ, δ)-
differential privacy, and statistical distance.

We begin by augmenting the Euclidean distance between reals a and b (|a − b| =
max{a − b, b − a}) with a skew parameter α ≥ 1, which will later play the role of the
factor eǫ in the definition of differential privacy. Namely, we define the α-distance ∆vα (a, b)
between a and b as

∆vα (a, b)
def

= max {a− α b, b− αa, 0}.
Note that ∆α is non-negative by definition and that ∆1 coincides with the Euclidean
distance. We extend ∆α to a distance between distributions as follows.

Definition 4.1 (α-distance). For α ∈ R
≥1, the α-distance ∆vα (µ1, µ2) between two distri-

butions µ1 and µ2 in D(A) is defined as

∆vα (µ1, µ2)
def

= sup
f :A→{0,1}

∆vα (µ1(f), µ2(f)) .

The condition α ≥ 1 is natural when one thinks of differential privacy, and is required
for technical reasons to have e.g. ∆vα (µ, µ) = 0.

Observe that α-distance generalizes the notion of statistical distance from Section 3.1,
which is recovered by taking α = 1.

The definition of α-distance considers only Boolean-valued functions, i.e. those cor-
responding to characteristic functions of events. The next lemma shows that for discrete
distributions this definition is equivalent to an alternative definition that considers all
[0, 1]-valued functions.

Lemma 4.1. For all distributions µ1 and µ2 over a discrete set A,

∆vα (µ1, µ2) = sup
f :A→[0,1]

∆vα (µ1(f), µ2(f)) .

This characterization of α-distance generalizes that of statistical distance given in
Lemma 3.1. Likewise, this is the characterization that we adopt for our Coq development.

We now state some basic properties of α-distance; these properties are the keystone for
reasoning about relation lifting that is used to give meaning to our α-pRHL judgments.
All properties are implicitly universally quantified.

47

Chapter 4. Security Analysis based on the α-distance

Lemma 4.2 (Basic Properties of α-distance).

i) 0 ≤ ∆vα (µ1, µ2) ≤ 1 and ∆vα (µ, µ) = 0;

ii) ∆vα (µ1, µ2) = ∆vα (µ2, µ1);

iii) ∆vαα′(µ1, µ3) ≤ max{α′ ∆vα (µ1, µ2) + ∆vα′(µ2, µ3) ,

∆vα (µ1, µ2) + α∆vα′(µ2, µ3)};
iv) α ≤ α′ =⇒ ∆vα′(µ1, µ2) ≤ ∆vα (µ1, µ2);

v) ∆vα (bind µ1M, bind µ2 M) ≤ ∆vα (µ1, µ2).

Most of the above properties are self-explanatory; we briefly highlight the most impor-
tant ones. Property iii) generalizes the triangle inequality with appropriate skew factors;
iv) states that α-distance is anti-monotonic with respect to α; v) states that probabilistic
computations do not increase the distance (which is a well-known fact for statistical dis-
tance); a particularly useful specialization of this property is obtained when µ1 and µ2 are
distributions over a product space and M represent their left or right projections, i.e.

∆vα (π1(µ1), π1(µ2)) ≤ ∆vα (µ1, µ2) and ∆vα (π2(µ1), π2(µ2)) ≤ ∆vα (µ1, µ2) .

Lemma 4.17 in the appendix further generalizes v). In contrast to statistical distance,
α-distance does not satisfy the identity of indiscernibles, i.e. one may have ∆vα (µ1, µ2) = 0
and µ1 6= µ2.

4.1.2 Differential Privacy

Differential privacy is a condition on the distance between the output distributions pro-
duced by a randomized algorithm. Namely, for a given metric on the input space, differen-
tial privacy requires that, for any pair of inputs at distance at most 1, the probability that
an algorithm outputs a value in an arbitrary set differs at most by a multiplicative factor
of eǫ. Approximate differential privacy relaxes this requirement by additionally allowing
for an additive slack δ. The following definition captures these requirements in terms of
α-distance.

Definition 4.2 (Approximate Differential Privacy). Let d be a metric on A. A randomized
algorithm M : A→ D(B) is (ǫ, δ)-differentially private (w.r.t. d) iff

∀a, a′ ∈ A • d(a, a′) ≤ 1 =⇒ ∆veǫ
(

M(a),M(a′)
)

≤ δ.

For algorithms that terminate with probability 1 (i.e. when Pr [M(a) : true] = 1 for
all a ∈ A), the above definition corresponds to standard approximate differential pri-
vacy [Dwork et al., 2006a], which assumes that an adversary can only observe the result
of a query. In particular, (ǫ, 0)-differential privacy corresponds to ǫ-differential privacy.

As the following example shows, Definition 4.2 does not imply termination-sensitive
differential privacy. Let A = {a, a′}, B = {b} and d(a, a′) ≤ 1 and consider the algorithm
M : A → D(B) such that M(a) returns b with probability 1, and M(a′) returns b with

48

4.1. Preliminaries

probability 1/2, but loops with probability 1/2. Algorithm M satisfies Definition 4.2 for
δ = 0 and ǫ ≥ ln(2). However, for any ǫ,

1

2
= 1− Pr

[

M(a′) : true
]

> eǫ (1− Pr [M(a) : true]) = 0,

which would violate privacy when an adversary can observe non-termination (note that
1− Pr [M(a) : true] and 1− Pr [M(a′) : true] represent the probability of non-termination
of M on inputs a and a′).

A termination-sensitive definition of differential privacy can be obtained by considering
in Definition 4.2 the extension M⊥ of M to B⊥ = B∪{⊥}, letting Pr [M⊥(a) = ⊥] def

= 1−
Pr [M(a) : true]. As the following lemma shows, we can account for differences in termina-
tion on adjacent inputs by shifting these differences to the additive slack.

Lemma 4.3. Let M : A → D(B) be an (ǫ, δ)-differentially private algorithm. Then, M⊥
is (ǫ, δ + δ′)-differentially private, where

δ′ def

= sup
a,a′|d(a,a′)≤1

∣

∣Pr [M(a) : true]− Pr
[

M(a′) : true
]∣

∣ .

Timing channels are as problematic as termination channels. They could be taken
into account by defining a cost model for programs and treating the cost of executing a
program as an observable output. CertiCrypt provides a cost-instrumented semantics (used
for capturing probabilistic polynomial-time complexity) that can be readily used to capture
privacy leaks through timing channels. Although, as we showed, richer models may be used
to account for information leaked through side-channels, these are best mitigated by means
of independent countermeasures (see [Haeberlen et al., 2011] for an excellent analysis of
the space of possible solutions).

In what follows we will describe differentially private mechanisms as imperative pro-
grams written in the language described in Section 2.2. We assume that these programs
will sample values from proper probability distributions (i.e. distributions of unitary mass)
only and will be assertion free. It is for this class of programs that the probability of
termination is given by the mass of their output distributions—or equivalently, by the
probability that they assign to true.

To conclude the section we highlight that for discrete domains the definition of differ-
ential privacy is equivalent to its pointwise variant where one quantifies over characteristic
functions of singleton sets rather than those of arbitrary sets; however, this equivalence
breaks when considering approximate differential privacy [Dwork et al., 2006a]. The fol-
lowing lemma provides a way to establish bounds for α-distance (and hence for approximate
differential privacy) in terms of characteristic functions of singleton sets. Note that the
inequality is strict in general.

Lemma 4.4. For all distributions µ1 and µ2 over a discrete set A,

∆vα (µ1, µ2) ≤
∑

a∈A
∆vα (µ1(a), µ2(a)) .

49

Chapter 4. Security Analysis based on the α-distance

4.1.3 Approximate Lifting of Relations to Distributions

Our α-pRHL is an approximate variant of the “exact” logic pRHL, which in turn elaborates
on Benton [2004]’s relational Hoare logic. Judgments in Benton’s logic are of the form
c1 ∼ c2 : Ψ ⇒ Φ, where c1, c2 are deterministic programs, and assertions Ψ,Φ are binary
relations over program states. The validity of such a judgment requires that terminating
executions of programs c1 and c2 in initial states related by Ψ result in final states related
by Φ. In pRHL and α-pRHL, judgments have the same shape: assertions are still binary
relations over program states, but programs are probabilistic. Since in this setting a
program execution results in a distribution over states rather than a single final state, in
order to extend Benton’s logic to probabilistic programs, we need a means of lifting the
post-condition Φ to distributions.

In this section we introduce a notion of approximate lifting of binary relations over
sets to distributions over those sets, which will be the cornerstone for defining validity of
α-pRHL judgments.

Given α ∈ R
≥1 and δ ∈ [0, 1], the (α, δ)-lifting of R ⊆ A×B is a relation between D(A)

and D(B) formally defined as follows.

Definition 4.3 ((α, δ)-lifting). Let α ∈ R
≥1 and δ ∈ [0, 1]. The (α, δ)-lifting of a relation

R ⊆ A× B is the relation Lvα,δ(R)⊆ D(A)×D(B) such that µ1 Lvα,δ(R)µ2 iff there exists
a pair of distributions µL, µR ∈ D(A×B) satisfying the following conditions:

i) rangeR µL ∧ rangeR µR;

ii) π1(µL) = µ1 ∧ π2(µR) = µ2;

iii) ∆vα (µL, µR) ≤ δ.

The distributions µL and µR are called the left and right witnesses for the lifting, respec-
tively.

In our development, we slightly depart from the definition of the (α, δ)-lifting used
in [Barthe et al., 2012], which is built on the basis of a single witness distribution. By
adopting two witnesses, we reduce some technical burden when proving several properties
of the lifting operation. These includes e.g. the forthcoming Theorem 4.8 or Lemma 4.9
(we refer the reader to [Barthe et al., 2013b] for the proofs of these results using the lifting
based on a single witness).

The notion of (α, δ)-lifting generalizes previous notions of lifting, such as that
of Jonsson et al. [2001] discussed in Section 2.1, which is obtained by taking (α, δ) = (1, 0),
and the δ-lifting [Desharnais et al., 2008; Segala & Turrini, 2007], obtained by taking
α = 1.

In the case of equivalence relations, the notion of (α, δ)-lifting admits a more intuitive
characterization. Specifically, if R is an equivalence relation over A, then µ1 and µ2 are
related by the (α, δ)-lifting of R iff the pair of distributions that µ1 and µ2 induce on the
quotient set A/R are at α-distance at most δ.

50

4.1. Preliminaries

Lemma 4.5. Let R be an equivalence relation over a discrete set A and let µ1, µ∈D(A).
Then,

µ1 Lvα,δ(R)µ2 ⇐⇒ ∆vα (µ1/R, µ2/R) ≤ δ.

Jonsson et al. also show that for equivalence relations, their definition of lifting co-
incides with the more intuitive notion that requires related distributions to assign equal
probabilities to all equivalence classes. This result can be recovered from Lemma 4.5 by
taking (α, δ) = (1, 0).

The next lemma shows that (α, δ)-lifting is monotonic w.r.t. the slack δ, the skew factor
α, and the relation R. An immediate consequence is that for α > 1, the (α, δ)-lifting is
more permissive than the previously proposed notions of lifting.

Lemma 4.6. For all 1 ≤ α ≤ α′, δ ≤ δ′, and relations S ⊆ S′,

µ1 Lvα,δ(S)µ2 =⇒ µ1 Lvα′,δ′
(

S′)µ2.

We next present a fundamental property of (α, δ)-lifting, which is central to the appli-
cability of α-pRHL to reason about α-distance (and hence differential privacy). Namely,
two distributions related by the (α, δ)-lifting of R yield probabilities that are within α-
distance of δ when applied to R-equivalent functions. Given R ⊆ A×B we say that two
functions f : A → [0, 1] and g : B → [0, 1] are R-equivalent , and write f =R g, iff for
every a ∈ A and b ∈ B, aR b implies f(a) = g(b). In what follows we use ≡ to denote the
identity relation over arbitrary sets.

Theorem 4.7 (Fundamental Property of the (α, δ)-lifting). Let R⊆A×B, µ1 ∈ D(A) and
µ2 ∈ D(B). Then, for any two functions f1 : A→ [0, 1] and f2 : B → [0, 1],

µ1 Lvα,δ(R)µ2 ∧ f1 =R f2 =⇒ ∆vα (µ1 f1, µ2 f2) ≤ δ.

In particular, when A = B and R is the identity relation,

µ1 Lvα,δ(≡)µ2 =⇒ ∆vα (µ1, µ2) ≤ δ.

Theorem 4.7 provides an interpretation of (α, δ)-lifting in terms of α-distance. Next
we present a result that enables us to actually construct witnesses for such liftings.

The result is the converse of Theorem 4.7 for the special case of R being the identity
relation: we prove that two distributions are related by the (α, δ)-lifting of the identity
relation if their α-distance is smaller than δ. This result is used to prove the soundness of
α-pRHL rule for random assignments.

Theorem 4.8. Let µ1 and µ2 be distributions over a discrete set A. Then

∆vα (µ1, µ2) ≤ δ =⇒ µ1 Lvα,δ(≡)µ2.

51

Chapter 4. Security Analysis based on the α-distance

The proof is immediate by considering as a witnesses for the lifting the following dis-
tributions:

µL(a, a
′) =

µ1(a) if a = a′

0 if a 6= a′
µR(a, a

′) =

µ2(a) if a = a′

0 if a 6= a′

As a side remark, observe that the equivalence ∆vα (µ1, µ2) ≤ δ ⇐⇒ µ1 Lvα,δ(≡)µ2 is
immediate from Lemma 4.5. However, we prefer to keep separate statements and proofs
for each direction (Theorems 4.7 and 4.8), because these correspond to theorems in our Coq
formalization, while we only give a pencil-and-paper proof of Lemma 4.5 in Appendix 4.A.

We conclude this section with a result that shows the compatibility of the bind operator
with (α, δ)-liftings. This result allows deriving the soundness of the rule for sequential
composition presented in the next section.

Lemma 4.9. Let A,A′,B and B′ be discrete sets and let R ⊆ A×B and R′ ⊆ A′×B′.
Then for any µ1 ∈ D(A), µ2 ∈ D(B), M1 : A→ D(A′) and M2 : B → D(B′) that satisfy

µ1 Lvα,δ(R)µ2 and ∀a, b • aR b =⇒ M1(a) Lvα′,δ′
(

R′)M2(b)

we have

(bind µ1 M1) Lvαα′,δ+δ′
(

R′) (bind µ2M2).

4.2 Approximate Relational Hoare Logic

This section introduces α-pRHL, an approximate probabilistic relational Hoare logic that
is used to establish differential privacy guarantees of programs. We first define relational
judgments and show that they generalize differential privacy. We then define a proof system
for deriving valid judgments and finally we present an asymmetric variant of the logic.

4.2.1 Validity and Privacy

α-pRHL is an approximate probabilistic relational Hoare logic that supports reasoning
about differentially private computations. Judgments in α-pRHL are of the form

c1 ∼α,δ c2 : Ψ⇒ Φ,

where c1 and c2 are programs, assertions Ψ and Φ are relations over memories, α ∈ R
≥1 is

called the skew, and δ ∈ [0, 1] is called the slack.

An α-pRHL judgment is valid iff, for every pair of initial memories related by the pre-
condition Ψ, the corresponding pair of output distributions is related by the (α, δ)-lifting
of the post-condition Φ.

52

4.2. Approximate Relational Hoare Logic

Definition 4.4 (Validity in α-pRHL). A judgment c1 ∼α,δ c2 : Ψ ⇒ Φ is valid, written
|= c1 ∼α,δ c2 : Ψ⇒ Φ, iff

∀m1,m2 • m1 Ψm2 =⇒ (Jc1K m1) Lvα,δ(Φ) (Jc2K m2).

The following lemma is a direct consequence of the fundamental property of the
(α, δ)-lifting applied to Definition 4.4. It shows that statements about programs derived
using α-pRHL imply bounds on the α-distance of their output distributions.

Lemma 4.10. If |= c1 ∼α,δ c2 : Ψ ⇒ Φ, then for all memories m1,m2 and functions
f1, f2 :M→ [0, 1],

m1Ψm2 ∧ f1 =Φ f2 =⇒ ∆vα ((Jc1K m1)(f1), (Jc2K m2)(f2)) ≤ δ.

By specializing f1 and f2 to the characteristic function of two events A and B one
obtain the following rule to derive claims about probability quantities (cf. rule [PrEq] from
the exact logic pRHL on page 17):

m1 Ψm2 |= c1 ∼α,δ c2 : Ψ⇒ Φ Φ =⇒ (A〈1〉⇐⇒B〈2〉)
∆vα (Pr [c1(m1) : A] ,Pr [c2(m2) : B]) ≤ δ

[PrEq-∆vα]

This rule can be further specialized to a statement about the differential privacy of pro-
grams.

Corollary 4.11. Let d be a metric onM and Ψ an assertion expressing that d(m1,m2) ≤
1. If |= c ∼eǫ,δ c : Ψ⇒ ≡, then c satisfies (ǫ, δ)-differential privacy.

Corollary 4.11 is the central result for deriving differential privacy guarantees in
α-pRHL. Using Theorem 4.8, one can prove the converse to Corollary 4.11. These two
results together imply that α-pRHL judgments completely characterize approximate dif-
ferential privacy.

4.2.2 Logic

This section introduces a set of proof rules for reasoning about the validity of α-pRHL
judgments. In order to maximize flexibility and to allow the application of proof rules to
be interleaved with other forms of reasoning, the soundness of each proof rule is proved
individually as a Coq lemma. Nevertheless, we retain the usual presentation of the rules
as a proof system.

We present the core α-pRHL rules in Figure 4.1; all rules generalize their counterparts
in pRHL (see Figure 2.3), which can be recovered by setting α = 1 and δ = 0. (Any valid
pRHL derivation admits an immediate translation into α-pRHL.)

The [skip], [assert] and [assn] rules are direct transpositions of the corresponding pRHL
rules. Rule [rand] states that for any two distribution expressions d1 and d2 of type A, the
random assignments x1 $← d1 and x2 $← d2 are (α, δ)-related w.r.t. pre-condition Ψ and

53

Chapter 4. Security Analysis based on the α-distance

∀m1,m2 • m1 Ψm2 =⇒ (m1 {Je1KE m1/x1}) Φ (m2 {Je2KE m2/x2})
|= x1 ← e1 ∼1,0 x2 ← e2 : Ψ⇒ Φ

[assn]

∀m1,m2 • m1 Ψm2 =⇒ ∆vα (Jd1KDE m1, Jd2KDE m2) ≤ δ

m1 Ψ
′m2

def

= ∃v1, v2 • (m1 {v1/x1})Ψ (m2 {v2/x2})
|= x1 $← d1 ∼α,δ x2 $← d2 : Ψ⇒ x1〈1〉 = x2〈2〉 ∧ Ψ′ [rand]

Ψ =⇒ b1〈1〉 = b2〈2〉
|= assert b1 ∼1,0 assert b2 : Ψ⇒ Ψ ∧ b1〈1〉

[assert]

Ψ =⇒ b1〈1〉 = b2〈2〉
|= c1 ∼α,δ c2 : Ψ ∧ b1〈1〉 ⇒ Φ |= c′1 ∼α,δ c

′
2 : Ψ ∧ ¬b1〈1〉 ⇒ Φ

|= if b1 then c1 else c′1 ∼α,δ if b2 then c2 else c′2 : Ψ⇒ Φ
[cond]

Θ =⇒ b1〈1〉 = b2〈2〉 Θ ∧ e〈1〉 ≥ n =⇒ ¬b1〈1〉
|= c1 ∼α,δ c2 : Θ ∧ b1〈1〉 ∧ e〈1〉 = k ⇒ Θ ∧ e〈1〉 > k

|= while b1 do c1 ∼αn,nδ while b2 do c2 : Θ ∧ e〈1〉 ≥ 0⇒ Θ ∧ ¬b1〈1〉
[while]

|= skip ∼1,0 skip : Ψ⇒ Ψ [skip]
|= c1 ∼α,δ c2 : Ψ⇒ Φ′ |= c′1 ∼α′,δ′ c

′
2 : Φ′ ⇒ Φ

|= c1; c
′
1 ∼αα′,δ+δ′ c2; c

′
2 : Ψ⇒ Φ

[seq]

Ψ =⇒ Ψ′ Φ′ =⇒ Φ α′ ≤ α δ′ ≤ δ
|= c1 ∼α′,δ′ c2 : Ψ

′ ⇒ Φ′

|= c1 ∼α,δ c2 : Ψ⇒ Φ
[weak]

|= c1 ∼α,δ c2 : Ψ ∧Θ⇒ Φ

|= c1 ∼α,δ c2 : Ψ ∧ ¬Θ⇒ Φ

|= c1 ∼α,δ c2 : Ψ⇒ Φ
[case]

Figure 4.1: Core proof rules of α-pRHL.

post-condition x1〈1〉 = x2〈2〉∧Φ, where m1Φm2
def

= ∃v1, v2 • (m1 {v1/x1})Ψ (m2 {v2/x2}),
provided the α-distance between the distributions Jd1KDE m1 and Jd2KDE m2 is smaller
than δ for any m1 and m2 related by Ψ. (Observe that rule [rand] is stated in a strongest
post-condition style, whereas rule [assgn] is stated using a weakest pre-condition style).

Rule [seq] encodes the sequential composition theorem of approximate differential pri-
vacy, further elaborated in Section 4.2.4.

Rule [cond] states that branching statements are (α, δ)-related w.r.t. pre-condition Ψ
and post-condition Φ, provided that the pre-condition Ψ ensures that the guards of both
statements are equivalent, and that the true and false branches are (α, δ)-related w.r.t.
pre-conditions Ψ ∧ b1〈1〉 and Ψ ∧ ¬b1〈1〉, respectively.

Rule [case] allows one to reason by case analysis on the pre-condition of a judgment.
The weakening rule [weak] generalizes the rule of consequence of (standard) Hoare logic by

54

4.2. Approximate Relational Hoare Logic

Θ ∧ i〈1〉 ≥ n =⇒ ¬b1〈1〉
Θ =⇒ b1〈1〉 = b2〈2〉 ∧ P 〈1〉 = P 〈2〉 ∧ i〈1〉 = i〈2〉
Ψ def

= Θ ∧ b1〈1〉 ∧ i〈1〉 = j Φ def

= Θ ∧ i〈1〉 = j+1

|= c1; assert ¬P ∼α1(j),0 c2; assert ¬P : Ψ ∧ ¬P 〈1〉 ⇒ Φ

|= c1; assert P ∼α2,0 c2; assert P : Ψ ∧ ¬P 〈1〉 ⇒ Φ

|= c1 ∼1,0 c2 : Ψ ∧ P 〈1〉 ⇒ Φ ∧ P 〈1〉
|= while b1 do c1 ∼α2

∏n−1
i=0 α1(i),0

while b2 do c2 : Θ ∧ i〈1〉 = 0⇒ Θ ∧ ¬b1〈1〉
[gwhile]

Figure 4.2: Generalized α-pRHL rule for loops.

allowing to increase the skew and slack.
Finally, rule [while] can be used to relate two loops that execute in lockstep and ter-

minate after at most n iterations. The loop invariant Θ ensures that the loops progress
in lockstep; to guarantee that both loops terminate within n iterations, the rule requires
exhibiting a loop variant e. Rule [while] essentially states that the loops are (n ln(α), nδ)-
differentially private when each iteration is (ln(α), δ)-differentially private. This rule is
sufficient for programs like the k-Median algorithm studied in Section 4.3.3, where the
skew factor α and the slack δ are the same for every iteration. Other programs, such as
the Minimum Vertex Cover algorithm studied in Section 4.3.4, require applying more so-
phisticated rules in which the skew and the slack may vary across iterations. For instance,
the rule [gwhile] shown in Figure 4.2 allows for a finer-grained case analysis depending on
a predicate P whose validity is preserved across iterations. Assume that when P does not
hold, the j-th iteration of each loop can be related with skew α1(j) if P does not hold
after their execution, and with skew α2 if it does. Furthermore, assume that once P holds,
the remaining iterations are observationally equivalent. Then, the two loops are related
with skew α2

∏n−1
i=0 α1(i). Intuitively, as long as P does not hold, the j-th iteration is

ln(α1(j))-differentially private, while the single iteration where the validity of P may be
established (this occurs necessarily at the same time in both executions) incurs a ln(α2)
privacy penalty; the remaining iterations preserve P and do not add to the privacy bound.

The proofs of soundness of α-pRHL rules in Coq rely on properties of the approximate
lifting. For instance, the soundness of rules [weak] and [seq] follows directly from Lemmas
4.6 and 4.9, respectively. To illustrate the kind of reasoning such proofs involve, we sketch
the soundness proof of [rand]. To establish the validity of judgment

x1 $← d1 ∼α,δ x2 $← d2 : Ψ⇒ Φ,

where Φ is defined as in the statement of the rule in Figure 4.1, we have to show that for
every pair of Ψ-related memories m1 and m2, distributions

bind (Jd1KDE m1) (λv. unit (m1 {v/x1}) and bind (Jd2KDE m2) (λv. unit (m2 {v/x2})

55

Chapter 4. Security Analysis based on the α-distance

are related by Lvα,δ(Φ). We prove this by applying Lemma 4.9 with (α′, δ′) = (1, 0), and R
the identity relation. The hypotheses of the lemma simplify to

(Jd1KDE m1) Lvα,δ(≡) (Jd2KDE m2) and unit (m1 {v/x1}) Lv1,0(Φ) unit (m2 {v/x2}).

The first follows from Theorem 4.8 and the premise of the rule, whereas the second follows
from Proposition 4.18.

We conclude this section by highlighting that α-pRHL can also be used to reason about
the notion of approximate observational equivalence from Chapter 3. To see why recall
that statistical distance—the metric underlying approximate observational equivalence—
belongs to the family of α-distances; it corresponds, concretely, to the instance α = 1.
α-pRHL can thus be specialized to reason about the statistical distance between programs
by considering judgments of the form c1 ∼1,δ c2 : Ψ⇒ Φ. This kind of judgments succinctly
model approximate observational equivalence, which is retrieved by taking as pre and post-
conditions the equality over the sets of input and output variables, respectively. To be more
precise, the assertion about observational equivalence |= c1 ≃I

O c2 � δ can be represented
within α-pRHL as |= c1 ∼1,δ c2 : =I ⇒ =O. (Observe that the application of Lemma 4.10
to judgment |= c1 ∼1,δ c2 : =I ⇒ =O reads as the definition of |= c1 ≃I

O c2 � δ). Moreover,
if we drop rule [trans], all rules of the equational theory to reason about approximate
observational equivalence (see Figure 3.2) admit a transposition in the proof system of
α-pRHL. Therefore, any derivation about approximate observational equivalence can be
transposed to a derivation in the proof system of α-pRHL.

4.2.3 An Asymmetric Variant of α-pRHL

The judgments of α-pRHL can be used to relate the output distributions of programs.
More precisely, if |= c1 ∼α,δ c2 : Ψ⇒ Φ, Lemma 4.10 entails inequalities

(Jc1Km1)(f1) ≤ α (Jc2Km2)(f2) + δ and (Jc2Km2)(f2) ≤ α (Jc1Km1)(f1) + δ

for every pair of Ψ-related memories m1,m2 ∈ M and every pair of Φ-equivalent functions
f1, f2 :M→ [0, 1]. It is sometimes convenient to reason independently about each of the
above inequalities: in this way one can choose different values of the parameters α and δ
in the left and right formula, which can lead to stronger privacy guarantees.

We next introduce α-pRHL O, an asymmetric variant of α-pRHL that allows deriving
only one of the above inequalities, and thus allows an independent and finer-grained choice
of the skew α and the slack δ. α-pRHL Ojudgments have the same form

c1 ∼α,δ c2 : Ψ⇒ Φ

as the original version of the logic and their validity is defined in a similar way by consid-
ering asymmetric versions of the α-distance and (α, δ)-lifting presented in Section 4.1. All
rules from α-pRHL remain valid in α-pRHL O.

56

4.2. Approximate Relational Hoare Logic

We next give formal definitions of the asymmetric counterparts of the notions studied in
Sections 4.1.1 and 4.1.3 and briefly discuss how their properties translate to the asymmetric
setting. We present only the “left” variant of the logic, the right variant is analogous. We
first define the asymmetric variant of the α-distance

∆ O

α (µ1, µ2)
def

= sup
f :A→[0,1]

∆ O

α (µ1(f), µ2(f)) ,

where ∆ O

α (a, b)
def

= max{a − α b, 0}. Given α ∈ R
≥1, δ ∈ [0, 1] and R ⊆ A×B, we define

the asymmetric lifting of R as the relation L O

α,δ(R) such that µ1L O

α,δ(R)µ2 iff there exists
a pair of distributions µL, µR ∈ D(A×B) satisfying

i) rangeR µL ∧ rangeR µR;

ii) π1(µL) = µ1 ∧ π2(µR) = µ2;

iii) ∆ O

α (µL, µR) ≤ δ.

The distance ∆ O

α enjoys all properties of Lemma 4.2, except symmetry; the generalized

triangle inequality can be strengthened to ∆ O

αα′(µ1, µ3) ≤ ∆ O

α (µ1, µ2) + α∆ O

α′(µ2, µ3).

Lemma 4.16 can be reformulated as ∆ O

α (µ1, µ2) = µ1(Aµ1≥αµ2) − αµ2(Aµ1≥αµ2), where
µ1, µ2 : D(A). This relates both variants of the α-distance by

∆vα (µ1, µ2) = max{∆ O

α (µ1, µ2) ,∆ O

α (µ2, µ1)}. (4.2)

Finally, one can upper-bound ∆ O

α (µ1, µ2) by
∑

a∈A ∆ O

α (µ1(a), µ2(a)) as Lemma 4.4 does
for standard α-distance.

The new notion of lifting satisfies both the monotonicity condition of Lemma 4.6 and
an analogue of Theorem 4.8. The fundamental property of lifting can also be transposed
to the asymmetric setting. Given f : A→ [0, 1], g : B → [0, 1] and R ⊆ A×B, we say that
f is R-dominated by g, and write it f ≤R g, iff for every a ∈ A and b ∈ B, aR b implies
f(a) ≤ g(b). Theorem 4.7 is reformulated as follows:

µ1 L O

α,δ(R)µ2 ∧ f1 ≤R f2 =⇒ ∆ O

α (µ1(f1), µ2(f2)) ≤ δ.

We next define validity in α-pRHL Oand show how the asymmetric logic can be used
to relate the distributions generated by probabilistic programs.

Definition 4.5 (Validity in α-aRHL O). We say that a judgment c1 ∼α,δ c2 : Ψ ⇒ Φ is

valid in α-pRHL O, written |= Oc1 ∼α,δ c2 : Ψ⇒ Φ, iff

∀m1,m2 • m1 Ψm2 =⇒ (Jc1K m1) L O

α,δ(Φ) (Jc2K m2).

Lemma 4.12. If |= Oc1 ∼α,δ c2 : Ψ ⇒ Φ, then for all memories m1,m2 and [0, 1]-valued
functions f1, f2 :M→ [0, 1],

m1Ψm2 ∧ f1 ≤Φ f2 =⇒ ∆ O

α ((Jc1K m1)(f1), (Jc2K m2)(f2)) ≤ δ.

57

Chapter 4. Security Analysis based on the α-distance

It is not hard to see that Corollary 4.11 and its converse remain valid if the validity of
judgment c ∼eǫ,δ c : Ψ⇒ ≡ is taken in α-pRHL Oinstead of α-pRHL. (This is true for any
symmetric precondition Ψ). Therefore, approximate differential privacy can also be cast in
terms of α-pRHL O. We immediately obtain a proof system for reasoning about the validity
of α-pRHL Ojudgments. All α-pRHL rules in Figures 4.1 and 4.2 can be transposed to
α-pRHL O. For consistency, we keep the names of the original rules and decorate them
with symbol O. E.g., the rule for random assignments reads

∀m1,m2 • m1 Ψm2 =⇒ ∆ O

α (Jd1KDE m1, Jd2KDE m2) ≤ δ

m1Ψ
′ m2

def

= ∃v1, v2 • (m1 {v1/x1})Ψ (m2 {v2/x2})
|= Ox1 $← d1 ∼α,δ x2 $← d2 : Ψ⇒ x1〈1〉 = x2〈2〉 ∧ Ψ′

[rand O]

In Section 4.3.4 we demonstrate the benefits of α-pRHL Oover α-pRHL. Concretely, we
show how α-pRHL Ocan be used to prove a differential privacy bound for an approximation
algorithm for the Minimum Vertex Cover problem that improves over the bound that can
be proved using α-pRHL.

4.2.4 Sequential and Parallel Composition Theorems

Composition theorems play an important role in the construction and analysis of differen-
tially private mechanisms. There are two main forms of composition, namely sequential and
parallel. We briefly explain each of them, and establish their connections with reasoning
principles in α-pRHL.

The sequential composition theorem states that the composition of an (ǫ, δ)-
differentially private computation with an (ǫ′, δ′)-differentially private computation yields
an (ǫ+ ǫ′, δ+ δ′)-differentially private computation [Dwork et al., 2006a; McSherry, 2009].
The α-pRHL rule for sequential composition [seq] provides a counterpart to this first
theorem. One can curb the linear growth in ǫ by shifting some of the privacy loss to
δ [Dwork et al., 2010], a result which is established using an information-theoretic ana-
logue of the dense model theorem. Proving the soundness of this alternative bound is a
significant challenge, which we leave for future work.

The parallel composition theorem states that the composition of an (ǫ, δ)-differentially
private computation with another (ǫ′, δ′)-differentially private computation that operates
on a disjoint part of the dataset yields a (max{ǫ, ǫ′},max{δ, δ′})-differentially private com-
putation [McSherry, 2009]. This theorem has a natural counterpart in α-pRHL. To make
this claim precise, we introduce the parallel composition of two commands, as a construct
taking two commands that operate on disjoint parts of the memory. Formally, the con-
struction c X‖Y c′ is only well defined when X and Y are disjoint sets of variables, with c
reading and writing variables from X, and c′ reading and writing variables from Y . The
semantics of c X‖Y c′ coincides with the semantics of c; c′:

Jc X‖Y c′K def

= Jc; c′K.

58

4.3. Case Studies

Now assume that c X‖Y c′ is well defined. Let Ψ and Ψ′ be relational formulae that
depend only on variables in X and Y , respectively. We establish the following rule [par]

|= c ∼α,δ c : Ψ⇒ ≡ |= c′ ∼α′,δ′ c
′ : Ψ′ ⇒ ≡

|= c X‖Y c′ ∼max{α,α′},max{δ,δ′} c X‖Y c′ : Ψ ∨Ψ′ ⇒ ≡ [par]

whose proof follows from the observation that for every command c0,

|= c0 ∼1,0 c0 : ≡ ⇒ ≡

and uses the sequential composition rule to derive

|= c X‖Y c′ ∼α,δ c X‖Y c′ : Ψ⇒ ≡ |= c X‖Y c′ ∼α′,δ′ c X‖Y c′ : Ψ′ ⇒ ≡

The validity of [par] then follows from the rules of weakening and case analysis.
To see why [par] captures parallel composition of computations as described above,

instantiate Ψ to express that memories coincide on variables in X and differ in the value of
at most one variable in Y . Symmetrically, instantiate Ψ′ to express that memories coincide
on Y and differ in at most one variable in X. The disjunction Ψ ∨ Ψ′ captures the fact
that the initial memories differ in the value of at most one variable in X ∪Y , i.e. that they
are adjacent in the sense of the standard definition of differential privacy.

4.3 Case Studies

We illustrate the versatility of our approach for reasoning about differential privacy we
present case studies by proving from first principles the correctness of the three standard
mechanisms, namely, the Laplacian, Gaussian and Exponential mechanisms. Then we
prove differential privacy for an algorithm solving the k-Median problem, several streaming
algorithms, and an approximation algorithm for the Minimum Vertex Cover problem.

4.3.1 Laplacian, Gaussian and Exponential Mechanisms

Many algorithms for computing statistics and data mining are numeric, meaning that
they return (approximations of) real numbers. The Laplacian and Gaussian mechanisms
of Dwork et al. [2006a,b] are fundamental tools for making such computations differentially
private. This is achieved by perturbing the algorithm’s true output with symmetric noise
calibrated according to its sensitivity.

In the reminder, we use L(r, σ) and N (r, σ) to denote, respectively, the Laplace and
Gaussian distribution with mean r and scale factor σ. Their density functions at x satisfy

L(r, σ)(x) ∝ e−
|x−r|

σ and N (r, σ)(x) ∝ e−
|x−r|2

σ .

To transform a deterministic computation f : A→ R into a differentially private com-
putation, one needs to set r to the true output of the computation and choose σ (i.e. the

59

Chapter 4. Security Analysis based on the α-distance

amount of noise) according to the sensitivity of f . Informally, the sensitivity of f measures
how far apart it maps nearby inputs. Formally, the sensitivity Sf is defined relative to a
metric d on A as

Sf
def

= sup
a,a′∈A

d(a,a′)≤1

|f(a)− f(a′)|.

The justification for the Laplacian mechanism is a result that states that for a function
f : A → R, the randomized algorithm that on input a returns a value sampled from
distribution L(f(a),Sf/ǫ) is ǫ-differentially private [Dwork et al., 2006b].

While the Laplacian mechanism transforms numerical algorithms into computations
that satisfy standard differential privacy, the Gaussian mechanism achieves only approx-
imate differential privacy. The randomized algorithm that on input a returns a value
drawn from distribution N (f(a), σ) is (ǫ, δ)-differentially private provided σ is chosen so
that the tail of N (0, σ) satisfies a particular bound involving ǫ and δ. We elaborate on
such constraint later.

One limitation of the Laplacian and Gaussian mechanisms is that they are confined
to numerical algorithms. The Exponential mechanism [McSherry & Talwar, 2007] is a
general mechanism for building differentially private algorithms with arbitrary discrete
output domains. The Exponential mechanism takes as parameters a base distribution µ
on a set B, and a scoring function s : A×B → R

≥0; intuitively, values b maximizing s(a, b)
are the most appealing output for an input a. The Exponential mechanism is a randomized
algorithm that takes a value a ∈ A and returns a value b ∈ B that approximately maximizes
the score s(a, b), where the quality of the approximation is determined by a parameter
ǫ > 0. Formally, the discrete Exponential mechanism Eǫs,µ maps every element in A to a
distribution in B whose probability mass at b is:

Eǫs,µ(a)(b) =
eǫ s(a,b) µ(b)

∑

b′∈B
eǫ s(a,b

′) µ(b′)
.

The definition implicitly assumes that the sum in the denominator is bounded for all
a ∈ A. McSherry & Talwar [2007] show that Eǫs,µ is 2ǫSs-differentially private, where Ss is
the maximum sensitivity of s w.r.t. a, for all b.

We define the three mechanisms as instances of a general construction (·)♯ that takes
as input a function f : A → B → R

≥0 and returns another function f ♯ : A → D(B) such
that for every a ∈ A the probability mass of f ♯(a) at b is given by:

f ♯(a)(b) def

=
f(a)(b)

∑

b′∈B
f(a)(b′)

.

Using this construction, the Exponential mechanism for a scoring function s, base distri-
bution µ and scale factor ǫ is defined as

Eǫs,µ def

= (λa b. eǫ s(a,b) µ(b))
♯
,

60

4.3. Case Studies

whereas the Laplacian and Gaussian mechanisms with mean value r and scale factor σ are
defined, respectively, as

L(r, σ) def

=
(

λa b. e−
|b−a|

σ

)♯
(r) N (r, σ) def

=

(

λa b. e−
|b−a|2

σ

)♯

(r).

Rigorously speaking, we consider discrete versions of the Laplacian and Gaussian mecha-
nisms over integers. (When instantiating the operator (·)♯ in the definition of both mech-
anisms, we take A = B = Z.)

We derive the correctness of Gaussian mechanism as a consequence of the following
lemma.

Lemma 4.13. Let B be a discrete set and consider f : A→ B → R
≥0 such that f ♯ is

well defined. Moreover, let a1, a2 ∈ A and α ∈ R
≥1 be such that

∑

b∈B f(a1)(b) ≤
α
∑

b∈B f(a2)(b) and
∑

b∈B f(a2)(b) ≤ α
∑

b∈B f(a1)(b). Then for every α′ ∈ R
≥1,

∆vαα′

(

f ♯(a1), f
♯(a2)

)

≤ max
{

f ♯(a1)(S1), f
♯(a2)(S2)

}

,

where S1 = {b ∈ B | f(a1)(b) > α′ f(a2)(b)} and S2 = {b ∈ B | f(a2)(b) > α′ f(a1)(b)}.

The correctness of the Laplacian and Exponential mechanisms is derived from the
following corollary.

Corollary 4.14. Let B be a discrete set and consider f : A→ B → R
≥0 such that f ♯ is well

defined. Moreover, let a1, a2 ∈ A and α ∈ R
≥1 be such that for all b, f(a1)(b) ≤ α f(a2)(b)

and f(a2)(b) ≤ α f(a1)(b). Then,

∆v
α2

(

f ♯(a1), f
♯(a2)

)

= 0.

If moreover
∑

b∈B f(a1)(b) =
∑

b∈B f(a2)(b), then

∆vα

(

f ♯(a1), f
♯(a2)

)

= 0.

The privacy guarantees for the Laplacian, Gaussian and Exponential mechanisms are
stated as rules [lap], [norm] and [exp] in Figure 4.3. The premise of rule [lap] requires to
prove that the values around which the mechanism is centered are within distance k. This
is the case when these values are computed by a k-sensitive function starting from adjacent
inputs, which corresponds to the usual interpretation of the guarantees provided by the
Laplacian mechanism [Dwork et al., 2006b]. In the premise of rule [norm], B (σ, x) denotes
the probability that the normal distribution N (0, σ) takes values greater than x. The rule
can be simplified by considering particular (upper) bounds of B (σ, x). For instance, the
Gaussian mechanism of Dwork et al. [2006a] is recovered from rule [norm] by adopting the

bound B (σ, x) ≤ σe−x2/σ

2x
√
π

, while that of Nikolov et al. [2012] by considering a Chernoff

61

Chapter 4. Security Analysis based on the α-distance

m1Ψm2 =⇒
∣

∣JrKE m1 − JrKE m2

∣

∣ ≤ k eǫ ≤ α

|= x $← L(r, k/ǫ) ∼α,0 y $← L(r, k/ǫ) : Ψ⇒ x〈1〉 = y〈2〉 [lap]

m1Ψm2 =⇒
∣

∣JrKE m1 − JrKE m2

∣

∣ ≤ k eǫ ≤ α B (σ, σǫ − k2/2k) ≤ δ

|= x $← N (r, σ) ∼α,δ y $← N (r, σ) : Ψ⇒ x〈1〉 = y〈2〉 [norm]

m1Ψm2 =⇒ d
(

JaKE m1, JaKE m2

)

≤ k e2kǫSs ≤ α

|= x $← Eǫs,µ(a) ∼α,0 y $← Eǫs,µ(a) : Ψ⇒ x〈1〉 = y〈2〉 [exp]

Figure 4.3: Rules for the Laplacian, Gaussian and Exponential mechanisms.

bound. For the sake of generality, we present rule [norm] in a generic way and assume no
particular bound for B (σ, x).

As a further illustration of the expressive power of our technique, we have also defined
a Laplacian mechanism Ln for lists; given σ ∈ R

+ and a vector a ∈ Z
n, the mechanism Ln

outputs a vector in Z
n whose i-th component is drawn from distribution L(a[i], σ). More

formally, we have proved the soundness of the following rule

m1Ψm2 =⇒ ∑

1≤i≤n

∣

∣Ja[i]KE m1 − Ja[i]KE m2

∣

∣ ≤ k

|= x $← Ln(a, k/ǫ) ∼eǫ,0 y $← Ln(a, k/ǫ) : Ψ⇒ x〈1〉 = y〈2〉 [lap
n]

4.3.2 Statistics over Streams

In this section we present analyses of algorithms for computing private and continual
statistics in data streams [Chan et al., 2010]. We focus on algorithms for private summing
and counting. More sophisticated algorithms, e.g. computing heavy hitters in a data
stream, can be built using sums and counters as primitive operations and inherit their
privacy and utility guarantees.

We consider streams of elements in a bounded set D ⊆ Z such that |x − y| ≤ b for all
x, y ∈ D. This setting is slightly more general than the one considered by Chan et al.
[2010], where only streams over {0, 1} are considered. On the algorithmic side, the gener-
alization to bounded domains is immediate; for the privacy analysis, however, one needs
to take the bound b into account because it conditions the sensitivity of computations.

Although in our implementation we formalize streams as finite lists, we use array-
notation in the exposition for the sake of readability. Given an array a of n elements in
D, the goal is to release, for every point 0 ≤ j < n the aggregate sum c[j] =

∑j
i=0 a[i] in

a privacy-preserving manner. As observed in [Chan et al., 2010], there are two immediate
solutions to the problem. The first is to maintain an exact aggregate sum c[j] and output
at each iteration a curated version c[j] $← L(c[j], b/ǫ) of that sum. The second solution

62

4.3. Case Studies

is to maintain and output a noisy aggregate sum c̃[j], which is updated at iteration j + 1
according to

a[j + 1] $← L(a[j + 1], b/ǫ); c̃[j + 1]← c̃[j] + a[j + 1].

The stream c[0] · · · c[n − 1] offers weak, nǫ-differential privacy, because every element
of a may appear in n different elements of c, each with independent noise. However,
each c[j] offers good accuracy because noise is added only once. In contrast, the stream
c̃[0] · · · c̃[n−1] offers improved, ǫ-differential privacy, because each element of a appears only
in one ǫ-differentially private query. However, the sum c̃[j] yields poor accuracy because
noise is added j times during its computation.

One solution proposed by Chan et al. [2010] is a combination of both basic methods
of releasing partial sums that achieves a good compromise between privacy and accuracy.
The idea is to split the stream a into chunks of length q, where the less accurate (but
more private) method is used to compute the sum within the current chunk, and the
more accurate (but less private) method is used to compute summaries of previous chunks.
Formally, let st =

∑q−1
i=0 a[t q+i] be the sum over the t-th chunk of a and let st $← L(st, b/ǫ)

be the corresponding noisy version. Then, for each j = q r + k, with k < q, we compute

ĉ[j] =

r−1
∑

t=0

st +

k
∑

i=0

a[q r + i].

The sequence ĉ[0] · · · ĉ[n− 1] offers 2ǫ-differential privacy, intuitively because each element
of a is accessed twice during computation. Moreover, ĉ[j] also offers improved accuracy
over c̃[j] because noise is added only r + k times rather than j = q r + k times.

We can turn the above informal security analysis into a formal analysis of program
code. The code for computing st is given as the function PartialSum in Figure 4.4, the
code for computing c is given as the function PartialSum’ in Figure 4.5, and the code for
computing ĉ is given as the function SmartSum in Figure 4.6. We next sketch the key
steps in our proofs of differential privacy bounds for each of these algorithms. For all of
our examples, we use the pre-condition

Ψ =length(a〈1〉) = length(a〈2〉) ∧ a〈1〉 .
= a〈2〉 ∧

∀i • 0 ≤ i < length(a〈1〉) =⇒
∣

∣a[i]〈1〉 − a[i]〈2〉
∣

∣ ≤ b,

which relates two lists a〈1〉 and a〈2〉 whenever they have the same length, differ in at most
one element (denoted as relation

.
=), and the distance between the elements at the same

position at each array is upper-bounded by b.

PartialSum The proof of differential privacy of PartialSum proceeds in two key steps.
First, we prove (using the pRHL fragment of α-pRHL) that

|= c1−5 ∼1,0 c1−5 : Ψ⇒ |s〈1〉 − s〈2〉| ≤ b,

63

Chapter 4. Security Analysis based on the α-distance

function PartialSum(a)
1 s← 0; i← 0;
2 while i < length(a) do
3 s← s+ a[i];
4 i← i + 1;
5 end;
6 s← L(s, b/ǫ)

Figure 4.4: A simple ǫ-differentially private algorithm for sums over streams.

where c1−5 corresponds to the code in lines 1-5 in Figure 4.4, i.e. the initialization and the
loop. We apply the rule [lap] that gives a bound for the privacy guarantee achieved by the
Laplacian mechanism (see Figure 4.3) to c6 = s $← L(s, b/ǫ) (the instruction in line 6) and
derive

|= c6 ∼eǫ,0 c6 : |s〈1〉 − s〈2〉| ≤ b⇒ s〈1〉 = s〈2〉.
Using rule [seq], applied to c1−5 and c6, we derive the following statement about Par-

tialSum, which implies that its output s is ǫ-differentially private.

|= PartialSum(a) ∼eǫ,0 PartialSum(a) : Ψ⇒ s〈1〉 = s〈2〉.

PartialSum’ Our implementation of PartialSum’ in Figure 4.5 differs slightly from the
description given above in that we first add noise to the entire stream (line 1), before
computing the partial sums of the noisy stream (lines 2-6). This modification allows us
to take advantage of the proof rule for the Laplacian mechanism on lists. By merging
the addition of noise into the loop, our two-pass implementation can be turned into an
observationally equivalent one-pass implementation suitable for processing streams of data.

The proof of privacy for PartialSum’ proceeds in the following basic steps. First, we
apply the rule [lapn] to the random assignment in line 1 (noted as c1) of PartialSum’. We
obtain

|= c1 ∼eǫ,0 c1 : Ψ⇒ a〈1〉 = a〈2〉
i.e. the output a is ǫ-differentially private at this point. For lines 2-6 (denoted by c2−6),
we prove (using the pRHL fragment of α-pRHL) that

|= c2−6 ∼1,0 c2−6 : a〈1〉 = a〈2〉 ⇒ s〈1〉 = s〈2〉.

This is straightforward because of the equality appearing in the pre-condition; this result
can be derived using α-pRHL rules, but is also an immediate consequence of the preserva-
tion of α-distance by probabilistic computations (see Lemma 4.2).

Finally, we apply the rule for sequential composition to c1 and c2−6 and obtain

|= PartialSum’(a) ∼eǫ,0 PartialSum’(a) :Ψ⇒ s〈1〉=s〈2〉,

which implies that the output s of PartialSum’ is ǫ-differentially private.

64

4.3. Case Studies

function PartialSum’(a)
1 a $← Ln(a, b/ǫ);
2 s[0]← a[0]; i← 1;
3 while i < length(a) do
4 s[i]← s[i − 1] + a[i];
5 i← i + 1;
6 end

Figure 4.5: An ǫ-differentially private algorithm for partial sums over streams.

function SmartSum(a, q)
1 i← 0; c← 0;
2 while i < length(a)/q do

3 b← PartialSum(a[i q..i(q + 1)− 1]);
4 x← PartialSum’(a[i q..i(q + 1)− 1]);
5 s← OffsetCopy(s, x, c, iq, q);
6 c← c+ b;
7 i← i + 1;
8 end

Figure 4.6: A 2ǫ-differentially private algorithm for partial sums over streams (a[i..j] de-
notes the sub-array of a at entries i through j).

SmartSum Our implementation of the smart private sum algorithm in Figure 4.6 makes
use of PartialSum and PartialSum’ as building blocks, which enables us to reuse the above
proofs. In addition, we use a procedure OffsetCopy that given two lists s and x, a constant
c and non-negative integers i, q, returns a list which is identical to s, but where the entries
s[i] · · · s[i + (q − 1)] are replaced by the first q elements of x, plus a constant offset c, i.e.
s[i+ j] = x[j] + c for 0 ≤ j < q. We obtain

�s←OffsetCopy(s, x, c, i, q)∼1,0 s←OffsetCopy(s, x, c, i, q) : =X ⇒ s〈1〉 = s〈2〉,

where X stands for the set of variables {s, x, c, i, q}. We combine this result with the judg-
ments derived for PartialSum and PartialSum’ using the rule for sequential composition,
obtaining

|= c4−7 ∼e2ǫ,0 c4−7 : Ψ⇒ s〈1〉 = s〈2〉

where c4−7 denotes the body of the loop in lines 4-7. To conclude, we apply the rule for
while loops in Fig. 4.2 with α1(i) = 1 and α2 = e2ǫ. This instantiation of the rule states
that a loop that is non-interfering in all but one iteration is 2ǫ-differentially private, if
the interfering loop iteration is 2ǫ-differentially private. More technically, the existence of
a single interfering iteration is built into the rule using a stable predicate of the state of
the program. In our case, the critical iteration corresponds to the one in which the chunk
processed contains the entry in which the two streams differ.

65

Chapter 4. Security Analysis based on the α-distance

4.3.3 k-Median

We discuss next a private version of the k-Median problem [Gupta et al., 2010]. This
problem constitutes an instance of the so called facility location problems, whose goal is
to find an optimal placement for a set of facilities intended to serve a set of clients. To
model this family of problems we assume the existence of a finite set of points V and a
quasimetric d : V × V → R

≥0 on this set. (A quasimetric is metric that may not be
symmetric.) Facilities and clients are represented by the points in V , whereas d measures
the cost of matching a client to a facility. Given an integer k and a set C ⊆ V of clients, the
aim of the k-Median problem is to select a set F ⊆ V of facilities of size k that minimizes
the sum of the distance of each client to the nearest facility. Formally, this corresponds to
minimizing the objective function

costC(F) def

=
∑

c∈C
d(c, F) where d(c, F) def

= min
f∈F

d(c, f).

As finding the optimal solution is hard in general, in practice, one has to resort to
heuristic techniques. In particular, one can perform a time-bounded local search to find
an approximation of the optimal solution. Local search is a general-purpose heuristic
aimed to find a solution within a search space that maximizes (or minimizes) the value of
some objective function. Given a neighborhood relation on the search space and an initial
candidate solution, the local search heuristic proceeds by iteratively replacing the current
solution with one within its neighborhood, until some time bound or some “good” sub-
optimal solution is reached. The simplest way to implement the local search technique for
the k-Median problem is by considering two sets of facilities to be neighbors iff they differ
in exactly one point and halting upon a predefined number of iterations. More precisely,
the implementation we consider begins with an initial solution S0 and in the i-th iteration,
finds, if possible, a pair of points (x, y) ∈ Si× (V \Si) such that the solution obtained from
Si by swapping x for y outperforms Si; if this is the case, it sets the new solution Si+1 to
Si \ {x} ∪ {y}.

Observe that the aforementioned heuristic might leak some information about the set
of clients C. Gupta et al. [2010] showed how to turn this algorithm into a differentially
private algorithm that conceals the presence or absence of any client in C. The crux is to
rely on the Exponential mechanism to choose the pair of points (x, y) ∈ Si × (V \ Si) in
a differentially private way. The description of the algorithm is given in Figure 4.7. We
assume that the quasi-metric space (V, d) is fixed. Moreover, the algorithm is parametrized
by an integer T , which determines the number of solution updates the local search will
perform. The integer k is implicitly determined by the size of the initial solution S0. Lines
1 − 6 iteratively refine S0 and store all the intermediate solutions in S (we use array-
notation to refer to these solutions, in our Coq formalization we use lists). Line 7 picks the
(index of the) solution to be output by the algorithm.

In each iteration of the loop, the algorithm updates the current solution S[i] by substi-
tuting one of its points. That is, it chooses a point x in S[i] and a point y not belonging
to S[i] and swaps them. In order to do so in a differentially private way the algorithm

66

4.3. Case Studies

function kMedian(C, ǫ, S0)
1 i← 0;S[0]← S0;
2 while i < T do

3 (x, y) $← PickSwapǫ,C,S[i](S[i]× (V \ S[i]));
4 S[i+ 1]← S[i] \ {x} ∪ {y};
5 i← i + 1
6 end;
7 j $← PickSolutionǫ,C,T (S)

Figure 4.7: A 2ǫ∆(T + 1)-differentially private algorithm for computing the k-Median.

uses (a variant of) the Exponential mechanism. Specifically, the pair of points (x, y) is
drawn from the parametrized distribution PickSwap. Given C,F ⊆ V , R ⊆ V × V and
ǫ > 0, distribution PickSwapǫ,C,F (R) assigns to each pair (x, y) in R a probability propor-

tional to e−ǫ costC(F\{x}∪{y}). Technically, this mechanism is defined as an instance of the
construction (·)♯ introduced in Section 4.3.1:

PickSwapǫ,C,F (R) def

= gǫ,R
♯ (C,F),

where gǫ,R has type P (V)2 → R→ R
≥0 and is defined as

gǫ,R (C,F) (x, y) def

= e−ǫ costC(F\{x}∪{y}).

During a solution update, pairs of vertices with lower resulting cost are more likely to be
chosen. However, swapping such pairs might deliver increased values of the cost function
(for instance, when dealing with a local minimum). This raises the need to choose one of
the computed solutions, in accordance with the value assigned to them by the objective
function. Likewise, this choice should not leak any information about the clients in C.
This is accomplished by distribution PickSolution in line 7, which is defined in the same
spirit as PickSwap by equation:

PickSolutionǫ,C,T (S)
def

= hǫ,T,S
♯(C),

where T ∈ N, S is an array of T sets of points from V , and hǫ,T,S has type P (V) →
{0, . . . , T − 1} → R

≥0 and is defined as

hǫ,T,S(C, j)
def

= e−ǫ costC(S[j]).

The original proof [Gupta et al., 2010] shows that the algorithm in Figure 4.7 is 2ǫ∆(T+
1)-differentially private, where ∆ def

= maxv1,v2∈V d(v1, v2) is the diameter of the quasi-metric
space. The key steps in the proof are as follows. First show that for every F ⊆ V , the
function cost (·)(F) has sensitivity ∆. Let C1 = {c0, c1, . . . , cm} and C2 = {c′0, c1, . . . , cm}
be two subsets of V differing in at most one point. Then,

|costC1(F)− costC2(F)| =
∣

∣

∣

∣

min
f∈F

d(c0, f)−min
f∈F

d(c′0, f)

∣

∣

∣

∣

≤ ∆,

67

Chapter 4. Security Analysis based on the α-distance

where the last inequality holds because both terms minf∈F d(c0, f) and minf∈F d(c′0, f) are
non-negative and upper-bounded by ∆. Now observe that the mechanisms used to choose
the pair of points (x, y) (line 3) and to pick the output solution (line 7) can be viewed as
instances of the Exponential mechanism with uniform base distributions and score func-
tions λC F (x, y). − costC(F \ {x} ∪ {y}) and λC j. − costC(S[j]) respectively, having
each of them sensitivity ∆. Therefore each of them is 2ǫ∆-differentially private. Since
privacy composes additively and step 3 is run T times one concludes that the algorithm is
2ǫ∆(T + 1)-differentially private.

Next we present a language-based analysis of this security result using α-pRHL. The
privacy statement is formalized by the judgment

|= kMedian(C, ǫ, S0) ∼e2ǫ∆(T+1),0 kMedian(C, ǫ, S0) : Ψ⇒ S[j]〈1〉 = S[j]〈2〉, (4.3)

where Ψ = S0〈1〉 = S0〈2〉 ∧ C〈1〉 .
= C〈2〉. We let c = kMedian(C, ǫ, S0) and use the same

convention as in Section 4.3.2 to denote program fragments by indicating the initial and
final lines in subscript.

We begin by applying the rule for sequential composition [seq], which enables to derive
the privacy condition (4.3) from judgments

|= c1−6 ∼e2ǫ∆T ,0 c1−6 : Ψ⇒ I

and

|= c7 ∼e2ǫ∆,0 c7 : I ⇒ S[j]〈1〉 = S[j]〈2〉,

where I = S〈1〉 = S〈2〉 ∧ C〈1〉 .
= C〈2〉 ∧ i〈1〉 = i〈2〉.

The former is derived with an application of rule [while] with n = T , e = i, Θ = I,
α = e2∆ǫ, and δ = 0. Rule [while] is enough because α and δ are constant across iterations.
To prove the premise

|= c3−5 ∼e2ǫ∆,0 c3−5 : I ∧ (i < T)〈1〉 ∧ i〈1〉 = k ⇒ I ∧ i〈1〉 > k

we use rule [assn] to deal with lines 4 and 5 and rule [rand] to deal with the random
assignment in line 3. By setting d = PickSwapǫ,C,S[i](S[i]× (V \ S[i])), the premise

∀m1,m2 • m1 I m2 =⇒ ∆v
e2ǫ∆

(JdKDE m1, JdKDE m2) ≤ 0

of rule [rand] can be discharged by Corollary 4.14, which requires showing that for all C1,
C2, F , x and y satisfying C1

.
= C2 ∧ x ∈ F ∧ y /∈ F ,

e−ǫ costC1
(F\{x}∪{y}) ≤ eǫ∆ e−ǫ costC2

(F\{x}∪{y}).

This inequality is a direct consequence of the sensitivity property of function cost stated
above.

We are left to verify the second premise of the [seq] rule. We follow a similar reasoning
to the one above, applying rule [rand]. Let d′ = PickSolutionǫ,C,T (S); the premise

∀m1,m2 • m1 I m2 =⇒ ∆v
e2ǫ∆

(

Jd′KDE m1, Jd
′KDE m2

)

≤ 0

68

4.3. Case Studies

of rule [rand] boils down to proving that for all C1, C2, S and j satisfying C1
.
= C2 and

0 ≤ j < T ,

e−ǫ costC1
(S[j]) ≤ eǫ∆ e−ǫ costC2

(S[j]),

which follows from the sensitivity of function cost .

4.3.4 Minimum Vertex Cover

In this section we use α-pRHL Oto provide a formal proof of the differential privacy
for an approximation algorithm solving the Minimum (Unweighted) Vertex Cover (MVC)
problem [Gupta et al., 2010].

A vertex cover of an undirected graph G = (V,E) is a set of vertices S ⊆ V such that
for any edge (v,w) ∈ E either v ∈ S or w ∈ S. The Minimum Vertex Cover problem is
the problem of finding a vertex cover S of minimal size. In the privacy-preserving version
of the problem the goal is to output a good approximation of a minimum cover while
concealing the presence or absence of edges in the graph. Contrary to other optimization
algorithms where the private data only determines the objective function (i.e. the size of
a minimum cover), in the case of the Minimum Vertex Cover problem the edges in the
graph determine the feasible solutions. This means that no privacy-preserving algorithm
can explicitly output a vertex cover of size less than n − 1 for a graph with n vertices,
for otherwise any pair of vertices absent from the output reveals the absence of an edge
connecting them. To overcome this limitation, the algorithm that we analyze outputs
an implicit representation of a cover as a permutation of the vertices in the graph. This
output permutation determines an orientation of the edges in the graph by considering
each edge as pointing towards the endpoint appearing last in the permutation. A vertex
cover can then be recovered (presumably in a privacy-preserving distributed manner) by
taking for each edge the vertex it points to (see Figure 4.8). Alternatively, this implicit
representation may be regarded as a privacy-preserving recipe for constructing a vertex
cover in a distributed manner: the orientation of edges indicates how to reach a vertex in
the cover from any given vertex in the graph.

The algorithm shown in Figure 4.9 is based on a randomized, albeit not privacy-
preserving, approximation algorithm from [Pitt, 1985] that achieves a constant approx-
imation factor of 2 (i.e. the size of the computed cover is at most twice the size of a
minimum vertex cover). The idea behind this algorithm is to iteratively pick a random
uncovered edge and add one of its endpoints to the cover set, both the edge and the end-
point being chosen with uniform probability. Equivalently, this iterative process can be
seen as selecting a vertex at random with probability proportional to its uncovered degree.
This base algorithm can be transformed into a privacy-preserving algorithm by perturbing
the distribution according to which vertices are sampled by a carefully calibrated weight
factor. This idea can be implemented by the algorithm shown in Figure 4.9 if we require
the instruction v $← PickVertexE,ǫ,n,i(V) to choose a vertex v from V with probability

69

Chapter 4. Security Analysis based on the α-distance

a b

c

d

e

f

g

h

ij k

l

π = [b, g, e, h, l, k, j, i, f, d, c, a]

Figure 4.8: A minimum vertex cover (vertices in gray) and the cover given by a permutation
π of the vertices in the graph (vertices inside the shaded area). The orientation of the edges
is determined by π.

function VertexCover(V,E, ǫ)
1 n← |V |; π ← nil; i← 0;
2 while i < n do

3 v $← PickVertexE,ǫ,n,i(V);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i← i + 1
7 end

Figure 4.9: A differentially private approximation algorithm for the Minimum Unweighted
Vertex Cover problem

proportional to dE(v) + wi, where dE(v) denotes the degree of v in E and

wi =
4

ǫ

√

n

n− i
.

Put otherwise, the expression PickVertexE,ǫ,n,i(V) denotes the discrete distribution over V
whose probability mass function at v is

dE(v) + wi
∑

x∈V
dE(x) + wi

.

We first present an informal analysis on the privacy of the algorithm and then discuss
how to justify this reasoning with the tools of Section 4.2. Let G1 = (V,E) and G2 =
(V,E ∪ {(t, u)}) be a pair of graphs with the same set of vertices but differing in exactly
one edge. We can conclude that the above algorithm is ǫ-differentially private by showing

70

4.3. Case Studies

that the probability of obtaining a permutation π of the vertices in the graph when the
input is G1 differs at most by a multiplicative factor eǫ from the probability of obtaining π
when the input is G2 and vice versa. To do so we show privacy bounds for each iteration of
the loop and apply composition results to conclude. Proving a bound for the i-th iteration
boils down to proving a bound for the ratio between the probability of choosing a particular
vertex in G1 and G2 respectively, and its reciprocal. In the analysis below, we use E〈1〉
(resp. E〈2〉) to denote the value of E in the i-th iteration when the algorithm is run with
G1 (resp. G2) as input; idem for v. We distinguish three different cases, and use the fact
that for a graph (V,E),

∑

x∈V dE(x) = 2|E| and the inequality 1+ x ≤ ex to derive upper
bounds in each case:

(a) the chosen vertex x is not one of t, u and neither t nor u are in π;

Pr[v〈1〉 = x]

Pr[v〈2〉 = x]
=

(dE〈1〉(x) + wi)
∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉| + (n− i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉| + (n− i)wi)

≤ 1 +
2

(n− i)wi
≤ e

2
(n−i)wi

Pr[v〈2〉 = x]

Pr[v〈1〉 = x]
≤ 1

(b) the vertex v chosen in the iteration is one of t, u. We analyze the case where v = t,
the other case is similar;

Pr[v〈1〉 = x]

Pr[v〈2〉 = x]
≤ 1

Pr[v〈2〉 = x]

Pr[v〈1〉 = x]
=

(wi + dE〈1〉(t) + 1)(2|E〈1〉| + (n− i)wi)

(wi + dE〈1〉(t))(2|E〈1〉| + (n− i)wi + 2)

≤ 1 + w−1
i ≤ 1 + w−1

0 ≤ eǫ/4

(c) either t or u is already in π, in which case both executions are observationally equiv-
alent and do not add to the privacy bound;

Pr[v〈1〉 = x]

Pr[v〈2〉 = x]
=

Pr[v〈2〉 = x]

Pr[v〈1〉 = x]
= 1

Case (a) can occur at most (n − 2) times, while case (b) occurs exactly once. Thus,
multiplying the bounds over all n iterations and recalling inequality

∑n
i=1 1/

√
i ≤ 2

√
n,

one gets

Pr [VertexCover(G1, ǫ) : π = ~v]

Pr [VertexCover(G2, ǫ) : π = ~v]
≤ e

∑n−3
i=0

2
(n−i)wi ≤ eǫ

71

Chapter 4. Security Analysis based on the α-distance

Pr [VertexCover(G2, ǫ) : π = ~v]

Pr [VertexCover(G1, ǫ) : π = ~v]
≤ eǫ/4 ≤ eǫ,

and the ǫ-differential privacy of the algorithm follows.
We now transform the above security analysis into a formal reasoning using the logic

of Section 4.2.3. Each of the two above inequalities can be captured by the α-pRHL O

judgments

|= OVertexCover(V,E, ǫ) ∼ǫǫ,0 VertexCover(V,E, ǫ) : Ψ1 ⇒ Φ (4.4)

and

|= OVertexCover(V,E, ǫ) ∼eǫ,0 VertexCover(V,E, ǫ) : Ψ2 ⇒ Φ (4.5)

respectively, where

Ψ1
def

= V 〈1〉 = V 〈2〉 ∧ E〈2〉 = E〈1〉 ∪ {(t, u)};
Ψ2

def

= V 〈1〉 = V 〈2〉 ∧ E〈1〉 = E〈2〉 ∪ {(t, u)};
Φ def

= π〈1〉 = π〈2〉.

Let us focus first on judgment (4.4). We prove the validity of this judgment using an
asymmetric variant of the generalized rule for while loops given in Figure 4.2. This rule,
which we call [gwhile O], has the same shape as [gwhile], but judgments in the premises and
conclusion are interpreted in α-pRHL O. We apply the rule with parameters

α1(i) = e
2

(n−i)wi α2 = 1,

the following invariant

Θ =
(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉 ∧ i〈1〉 = i〈2〉,

(which is established by the initialization code before the loop,) and the stable property

P = t ∈ π ∨ u ∈ π.

The first and second equivalences appearing in the premises of the rule are of the form

|= Oc; assert P ∼α,0 c; assert P : Ψ′ ⇒ Φ′

and

|= Oc; assert ¬P ∼α,0 c; assert ¬P : Ψ′ ⇒ Φ′,

where c is the body of the loop. For each of them, we first hoist the assertion immediately
after the random assignment that chooses the vertex v in c. As a result, the expression

72

4.3. Case Studies

in the assertions becomes (t, u /∈ (v :: π)) in the case of the first premise and (t ∈ (v ::
π) ∨ u ∈ (v :: π)) in the case of the second. We then compute the weakest pre-condition
of the assignments that now follow the assertions. The resulting judgments simplify, after
applying the [weak O] rule, to judgments of the form

|= Oc′ ∼α,0 c
′ : Θ ∧ i〈1〉 = j ∧ t, u /∈ π ⇒ v〈1〉 = v〈2〉 ∧Θ ∧ i〈1〉 = j.

For the first premise we have α = α1(j) and

c′ = v $← PickVertexE,ǫ,n,i(V); assert (t, u /∈ (v :: π)),

whereas for the second premise we have α = α2 and

c′ = v $← PickVertexE,ǫ,n,i(V); assert (t∈(v :: π) ∨ u∈(v :: π)).

To establish the validity of both judgments, we cast the code for c′ as a random assignment
where v is sampled from the interpretation of PickVertexE,ǫ,n,i(V) restricted to v satisfying
the condition on the assertion. In the first case, the restriction amounts to v 6= u, t whereas
in the second case it amounts to v = t ∨ v = u. For each one of these cases, we apply the

rule for random assignments [rand O] and are thus left to prove that distance ∆ O

α between

the corresponding distributions is null. In view of the variant of Lemma 4.4 for ∆ O

α this
in turn amounts to verifying for each element x in the support of the distribution that the
ratio between the probability of v being equal to x in the left-hand side program and the
right-hand side program is bounded by α, which directly translates into the inequalities
presented in the initial analysis of the algorithm. Technically, these inequalities are proved
by appealing to a variant of Corollary 4.14.

To prove the remaining judgment (4.5) we follow a similar reasoning. In this case, we
apply rule [gwhile O] with parameters

α1(i) = 1 α2 = eǫ/4,

the following invariant

Θ =
(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈1〉 = E〈2〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉 ∧ i〈1〉 = i〈2〉,

and the same stable property as before

P = t ∈ π ∨ u ∈ π.

As a final remark, we observe that the use of α-pRHL Ois fundamental to prove the
privacy bound ǫ from [Gupta et al., 2010], as opposed to [Barthe et al., 2012], where the

73

Chapter 4. Security Analysis based on the α-distance

use of α-pRHL yields a looser bound of 5ǫ/4. This is because the proof in α-pRHL Oallows
to prove independently that eǫ is a bound for the ratios

Pr [VertexCover(G1, ǫ) : π = ~v]

Pr [VertexCover(G2, ǫ) : π = ~v]
and

Pr [VertexCover(G2, ǫ) : π = ~v]

Pr [VertexCover(G1, ǫ) : π = ~v]
,

while a proof in α-pRHL requires to prove this simultaneously. As a consequence, the proof
in α-pRHL Oconsists of two independent applications of the asymmetric rule [gwhile O].
One application requires to bound for each iteration of the loop the ratio

Pr[v〈2〉 = x]

Pr[v〈1〉 = x]
,

while the other requires to bound its reciprocal. For each application, one can
choose independent—and thus tighter—parameters α1 and α2; namely (α1(i), α2) =
(

e2/((n−i)wi), 1
)

and (α1(i), α2) = (1, eǫ/4). In contrast, when using the symmetric logic

α-pRHL, one needs to choose a single pair of parameters to bound both ratios simulta-

neously, namely (α1(i), α2) =
(

e2/((n−i)wi), eǫ/4
)

. This translates into a looser privacy

bound.

4.A Appendix

In this section we present proof sketches for all the results of the present chapter. Some
results can be obtained as specializations to the α-distance of results in Chapter 5, modulo
the symmetric/asymmetric setting considered in each case (the results of Chapter 5 apply
to arbitrary f -divergences, which, as we shall see, include α-distance). In these cases, we
directly point out to the corresponding result of Chapter 5.

All results presented here and in the body of the chapter have been formally verified
using the Coq proof assistant, with the only exception of Lemma 4.5, which is not central
to our development.

We present first some auxiliary lemmas and then turn to the proofs.

4.A.1 Auxiliary Lemmas

Proposition 4.15. Let µ1 and µ2 be two distributions over a discrete set A. Then for any
f : A→ [0, 1],

∆vα (µ1(f), µ2(f)) ≤ max
{

µ1(A0)− αµ2(A0), µ2(A1)− αµ1(A1)
}

,

where A0 = Aµ1≥αµ2 and A1 = Aµ2≥αµ1 .

Proof. Observe that

µ1(f)− αµ2(f) =
∑

a∈A
µ1(a)f(a)− α

∑

a∈A
µ2(a)f(a)

74

4.A. Appendix

=
∑

a∈A0

(µ1(a)− αµ2(a))f(a) +
∑

a/∈A0

(µ1(a)− αµ2(a))f(a)

≤
∑

a∈A0

µ1(a)− αµ2(a) = µ1(A0)− αµ2(A0)

In a similar way one can prove that µ2(f)− αµ1(f) ≤ µ2(A1) − αµ1(A1). By combining
these two results one gets the desired inequality. �

Lemma 4.16. Let µ1 and µ2 be two distributions over a discrete set A. Then,

∆vα (µ1, µ2) = max
{

µ1(A0)− αµ2(A0), µ2(A1)− αµ1(A1)
}

,

where A0
def

= Aµ1≥αµ2 and A1
def

= Aµ2≥αµ1 .

Proof. The inequality ∆vα (µ1, µ2) ≥ max
{

µ1(A0) − αµ2(A0), µ2(A1) − αµ1(A1)
}

follows
trivially from the definition of α-distance between distributions. The converse inequality
is derived from Proposition 4.15 as follows:

∆vα (µ1, µ2) = sup
f :A→{0,1}

∆vα (µ1(f), µ2(f)) ≤ sup
f :A→[0,1]

∆vα (µ1(f), µ2(f))

≤ max
{

µ1(A0)− αµ2(A0), µ2(A1)− αµ1(A1)
}

. �

Lemma 4.17. Let A and B be two discrete sets. Then, for any µ1, µ2 ∈ D(A) and
M1,M2 : A→ D(B),

∆vαα′(bind µ1M1, bind µ2M2) ≤ ∆vα (µ1, µ2) + sup
a

∆vα′(M1(a),M2(a)) .

Proof. As a first step, observe that

∆vαα′(bind µ1M1, bind µ2M2) ≤ ∆vαα′(θ1, θ2) ,

where distributions θ1, θ2 ∈ D(A×B) are defined as θ1(a, b) = µ1(a)M1(a)(b) and θ2(a, b) =
µ2(a)M2(a)(b). This claim follows from Lemma 4.2.v), since distributions bind µ1 M1 and
bindµ2 M2 can be computed from θ1 and θ2 as bindµ1M1 = π2(θ1) and bindµ2M2 = π2(θ2).

We now apply Lemma 4.16 to bound ∆vαα′(θ1, θ2). We are left to prove

θ1(X0)− αα′ θ2(X0) ≤ δ + δ′ and θ2(X1)− αα′ θ1(X1) ≤ δ + δ′,

where X0 = {(a, b) | θ1(a, b) ≥ αα′ θ2(a, b)}, X1 = {(a, b) | θ2(a, b) ≥ αα′ θ1(a, b)},
δ = ∆vα (µ1, µ2) and δ′ = supa ∆vα′(M1(a),M2(a)). We now prove the first inequality. In
doing so, we use the following notation. Given R ⊆ A×B, we let π1(R) and R(a) denote
sets {a ∈ A | ∃b. (a, b) ∈ R} and {b ∈ B | (a, b) ∈ R}, respectively.

θ1(X0)− αα′ θ2(X0)

75

Chapter 4. Security Analysis based on the α-distance

=
∑

(a,b)∈X0

µ1(a)M1(a)(b) − αα′ µ2(a)M2(a)(b)

(1)
=

∑

a∈π1(X0)

∑

b∈X0(a)

µ1(a)M1(a)(b) − αα′ µ2(a)M2(a)(b)

=
∑

a∈π1(X0)

µ1(a) ν1(a)− αα′ µ2(a) ν2(a) where νi(a)
def

= Mi(a)(X0(a))

(2)

≤
∑

a∈π1(X0)
α′ν2(a)>1

µ1(a)− αµ2(a) +
∑

a∈π1(X0)
α′ν2(a)≤1

µ1(a)(α
′ ν2(a) + δ′)− αα′ µ2(a) ν2(a)

=
∑

a∈π1(X0)
α′ν2(a)>1

µ1(a)− αµ2(a) +
∑

a∈π1(X0)
α′ν2(a)≤1

µ1(a) δ
′ +

∑

a∈π1(X0)
α′ν2(a)≤1

α′ ν2(a)
(

µ1(a)− αµ2(a)
)

≤
∑

a∈π1(X0)
α′ν2(a)>1

µ1(a)− αµ2(a) +
∑

a∈π1(X0)
α′ν2(a)≤1

µ1(a) δ
′ +

∑

a∈π1(X0)
α′ν2(a)≤1

µ1(a)≥αµ2(a)

µ1(a)− αµ2(a)

Here, (1) holds by a simple reordering of the terms in the sum; to justify (2) we rely on the
fact that the expression µ1(a) ν1(a) − αα′ µ2(a) ν2(a) can be bounded by µ1(a) − αµ2(a)
when α′ ν2(a) > 1 and on the definition of δ′ to bound ν1(a) by α′ ν2(a) + δ′.

From the above reasoning, by letting Y1 = {a ∈ π1(X0) | α′ ν2(a) ≤ 1 =⇒ µ1(a) ≥
αµ2(a)} and Y2 = {a ∈ π1(X0) | α′ ν2(a) ≤ 1} we obtain

θ1(X0)− αα′ θ2(X0) ≤ µ1(Y1)− αµ2(Y1) + µ1(Y2) δ
′ ≤ δ + δ′.

We use a similar argument to prove that θ2(X1)− αα′ θ1(X1) ≤ δ + δ′ and conclude. �

Proposition 4.18. For any relation R ⊆ A×B,

aR b =⇒ (unit a) Lv1,0(R) (unit b).

Proof. See Proposition 5.20. �

4.A.2 Proofs

Proof of Lemma 4.1. The inequality ∆vα (µ1, µ2) ≤ supf :A→[0,1] ∆vα (µ1(f), µ2(f)) is im-
mediate from the definition of α-distance between distributions. To prove the con-
verse inequality we apply transitivity with max {µ1(A0) − αµ2(A0), µ2(A1) − αµ1(A1)},
where A0 and A1 are defined as in Proposition 4.15. The inequality ∆vα (µ1, µ2) ≥
max {µ1(A0)−αµ2(A0), µ2(A1)−αµ1(A1)} follows from the definition of α-distance, while
inequality max {µ1(A0) − αµ2(A0), µ2(A1) − αµ1(A1)} ≥ supf :A→[0,1]∆vα (µ1(f), µ2 f)
holds by Proposition 4.15. �

76

4.A. Appendix

Proof of Lemma 4.2. All properties follow immediately from the definition of α-distance
or some straightforward computations. �

Proof of Lemma 4.3. A direct calculation shows that for E ⊆ B⊥ we have

∆veǫ
(

M⊥(a)(E),M⊥(a
′)(E)

)

≤ ∆veǫ
(

M⊥(a)(E \ {⊥}),M⊥(a
′)(E \ {⊥})

)

+∆veǫ
(

M⊥(a)(⊥),M⊥(a
′)(⊥)

)

= ∆veǫ
(

M(a)(E \ {⊥}),M(a′)(E \ {⊥})
)

+∆veǫ
(

1−M(a)(B), 1 −M(a′)(B)
)

≤ δ + δ′. �

Proof of Lemma 4.4. Let A0 and A1 be defined as in Lemma 4.15. Then,

∆vα (µ1, µ2) = max

∑

a∈A0

µ1(a)− αµ2(a),
∑

a∈A1

µ2(a)− αµ1(a)

= max

∑

a∈A
max{µ1(a)− αµ2(a), 0},

∑

a∈A
max{µ2(a)− αµ1(a), 0}

≤
∑

a∈A
max{max{µ1(a)− αµ2(a), 0},max{µ2(a)− αµ1(a), 0}}

=
∑

a∈A
∆vα (µ1(a), µ2(a)). �

Proof of Lemma 4.5. See Lemma 5.5. �

Proof of Lemma 4.6. See Lemma 5.7. �

Proof of Theorem 4.7. See Lemma 5.6. �

Proof of Lemma 4.9. See Lemma 5.8. �

Proof of Lemma 4.10. See Lemma 5.12. �

Proof of Lemma 4.13. Let E be a subset of B. The reasoning below shows that
f ♯(a1)(E) − αα′ f ♯(a2)(E) ≤ f ♯(a1)(S1).

f ♯(a1)(E) =

∑

b∈E∩S1
f(a1)(b)

∑

b∈B f(a1)(b)
+

∑

b∈E∩S1
f(a1)(b)

∑

b∈B f(a1)(b)

(1)

≤ α′
∑

b∈E∩S1
f(a2)(b)

∑

b∈B f(a1)(b)
+

∑

b∈E∩S1
f(a1)(b)

∑

b∈B f(a1)(b)

(2)

≤ αα′
∑

b∈E∩S1
f(a2)(b)

∑

b∈B f(a2)(b)
+

∑

b∈E∩S1
f(a1)(b)

∑

b∈B f(a1)(b)

77

Chapter 4. Security Analysis based on the α-distance

≤ αα′
∑

b∈E f(a2)(b)
∑

b∈B f(a2)(b)
+

∑

b∈S1
f(a1)(b)

∑

b∈B f(a1)(b)

= αα′ f ♯(a2)(E) + f ♯(a1)(S1).

Here (1) follows from the definition of S1, while (2) follows from hypothesis
∑

b∈B f(a2)(b) ≤ α
∑

b∈B f(a1)(b). Similarly, we can show that f ♯(a2)(E) −
αα′ f ♯(a1)(E) ≤ f ♯(a2)(S2). The final result follows from Lemma 4.16. �

Proof of Corollary 4.14. The first claim ∆v
α2

(

f ♯(a1), f
♯(a2)

)

= 0 follows from Lemma 4.13
by taking α′ = α. Observe that hypothesis

∀b ∈ B • f(a1)(b) ≤ α f(a2)(b) ∧ f(a2)(b) ≤ αf(a1, b)

implies S1 = S2 = ∅. Hence, f ♯(a1)(S1) = f ♯(a2)(S2) = 0, and thus ∆v
α2

(

f ♯(a1), f
♯(a2)

)

=
0.

The second claim ∆vα
(

f ♯(a1), f
♯(a2)

)

= 0 follows from instantiating the parameters
(α,α′) of Lemma 4.13 with (1, α). (The occurrence of α within pair (1, α) stands for the
parameter of Corollary 4.14.) �

Soundness Proof of Rule [exp]. Applying rule [rand], we are left to prove that for any pair
of memories m1,m2 such that m1Ψm2,

∆v
e2kǫSs

(

Eǫs,µ(JaKE m1), Eǫs,µ(JaKE m2)
)

≤ 0. (4.6)

Let f(a)(b) = eµ(b) s(a,b) ǫ, α = ekǫSs , a1 = JaKE m1, and a2 = JaKE m2.

From the first premise of rule [exp] we have d(a1, a2) ≤ k, and hence for all b ∈ B,
s(a1, b)− s(a2, b) ≤ kSs. Moreover,

µ(b)kǫSs ≤ kǫSs =⇒ eµ(b)kǫSs ≤ α

=⇒ eµ(b)(s(a1 ,b)−s(a2,b))ǫ ≤ α

=⇒ f(a1, b) ≤ αf(a2, b).

Hence, for all b ∈ B, f(a1)(b) ≤ α f(a2)(b), and analogously f(a2)(b) ≤ α f(a1)(b).

Observe that (4.6) is equivalent to ∆v
α2

(

f ♯(a1), f
♯(a2)

)

≤ 0, which follows from Corol-
lary 4.14. �

Soundness Proof of Rule [norm]. Applying rule [rand], we are left to prove that for every
pair of memories m1,m2 such that m1Ψm2,

∆veǫ(N (JrKE m1, σ),N (JrKE m2, σ)) ≤ B
(

σ,
σǫ− k2

2k

)

≤ δ (4.7)

78

4.A. Appendix

We prove (4.7) by applying Lemma 4.13 with A = B = Z, f(a)(b) = e−|b−a|2/σ , a1 =
JrKE m1, a2 = JrKE m2, α = 1 and α′ = eǫ. We conclude by showing inequality

max
{

f ♯(a1)(S1), f
♯(a2)(S2)

}

≤ B
(

σ,
σǫ− k2

2k

)

(4.8)

(Here S1 and S2 are defined as in the statement of Lemma 4.13.) The reader can verify
that (4.8) is entailed by |a1 − a2| ≤ k, which follows from the first premise of the rule. �

79

Chapter 4. Security Analysis based on the α-distance

80

5
Security Analysis based on

Arbitrary f -divergences

In Chapter 3 we considered an approximate version of the observational equivalence be-
tween probabilistic programs based on the notion of statistical distance and developed an
equational theory to reason thereof. In the following chapter we introduced the notion of
α-distance—which subsumes statistical distance—and showed that this equational theory
can be generalized to a full-fledged relational Hoare logic α-pRHL that enables reasoning
about the α-distance between probabilistic programs. In this chapter we show that this re-
lational logic approach for reasoning about the distance between probabilistic programs is
not confined to the statistical distance or α-distance, but can be extended to an important
and well-known family of distance measures known as f -divergences.

Concretely, we generalize the α-pRHL logic to reason about arbitrary f -divergences.
The resulting logic, coined f -pRHL, paves the way for introducing alternative security
analyses based on measures different from the classic statistical distance (or the α-distance
introduced herein). The benefits of this approach have already been confirmed e.g. in the
context of cryptography, where Steinberger [2012] improved the security analysis of key-
alternating ciphers using the Hellinger distance, a representative member of the class of
f -divergences.

All the development in the present chapter is supported by correctness proofs outlined in
Appendix 5.A. However, providing machine-checked versions of these proofs or tool support
for f -pRHL is left as future work. Our aim here is to lay the theoretical foundations for
supporting verified security based on arbitrary f -divergences.

To achieve this goal we take the following steps:

i) As a preliminary observation, we prove that the notion of α-distance used to char-
acterize differential privacy is, in fact, an f -divergence. (The fact that the statistical
distance is an f -divergences is already well-known.)

ii) We define a notion of composability between f -divergences which will be used later
for introducing the sequential composition rule of f -pRHL. This notion of compos-

81

Chapter 5. Security Analysis based on Arbitrary f-divergences

ability is inspired by—and generalizes to an important subset of f -divergences—the
sequential composition theorem of differential privacy.

iii) We generalize the notion of lifting used in α-pRHL to f -divergences and prove its
compatibility with composable f -divergences.

iv) We define f -pRHL, a relational Hoare logic for reasoning about f -divergences be-
tween programs, and prove its soundness.

For the sake of concreteness, we choose the asymmetric version f -pRHL Oof the logic
to be thoroughly developed; the modifications to implement the symmetric version are
straightforward and briefly discussed in Section 5.2.3.

The remainder of the chapter is structured as follows. In Section 5.1 we review all the
preliminaries to define our logic f -pRHL. In Section 5.2 we introduce the logic and in
Appendix 5.A we sketch detailed proofs of all our results.

5.1 Preliminaries

5.1.1 The Family of f -divergences

In this section we recall the definition of f -divergences and show that the notion of α-
distance used to characterize differential privacy belongs to the family of f -divergences.

Briefly, f -divergences represent distance measures between probability distributions.
They were introduced independently by Csiszár and Ali & Silvey in the sixties and over
the years, they have found multiple applications in diverse fields such as information theory,
machine learning and cryptography.

Each distance measure in this class is basically defined by a convex function f . Formally,
let F be the set of non-negative convex functions f : R≥0 → R

≥0 such that f is continuous
at 0 and f(1) = 0; each function in F induces a notion of distance between probability
distributions as follows [Ali & Silvey, 1966; Csiszár, 1963]:

Definition 5.1 (f -divergence). Given f ∈ F , the f -divergence ∆ O

f (µ1, µ2) between two
distributions µ1 and µ2 in D(A) is defined as

∆ O

f (µ1, µ2)
def

=
∑

a∈A
µ2(a) f

(

µ1(a)

µ2(a)

)

.

The definition adopts the following conventions, which are used consistently in the remain-
der of the dissertation:

0 f(0/0) = 0 and 0 f(t/0) = t lim
x→0+

x f(1/x) if t > 0.

Moreover, if ∆ O

f (µ1, µ2) ≤ δ we say that µ1 and µ2 are (f, δ)-close.

82

5.1. Preliminaries

In Definition 5.1, the restriction of F to functions that vanish at 1 is required to

guarantee, e.g., that ∆ O

f (µ, µ) = 0. The restriction to positive functions is usually omitted
in the literature. In our case, it is required for technical reasons and can be shown not to
affect the generality of our development.

Proposition 5.1. Let F ′ be defined as F , except that we allow f ∈ F ′ to take negative
values. Then for every f ∈ F ′ there exists g ∈ F such that

∆ O

f (µ1, µ2) = ∆ O

g (µ1, µ2) + f ′(1) (w(µ1)− w(µ2)).

Function g is given by g(t) def

= f(t)− f ′(1) (t − 1); if f is not differentiable at 1, f ′(1) can
be replaced with any value in the interval [f−(1), f+(1)]. (Here f ′

− and f ′
+ denote the left

and right derivatives of f , whose existence and relative order can be guaranteed from the
convexity of f .)

Said otherwise, ∆ O

f (µ1, µ2) and ∆ O

g (µ1, µ2) differ only by an additive term that accounts

for the possibility that w(µ1) 6= w(µ2). In any case, one can easily recover ∆ O

f (µ1, µ2) from

∆ O

g (µ1, µ2) and vice versa.
The class of f -divergences includes several popular instances; these comprise statistical

distance, relative entropy (also known as Kullback-Leibler divergence), Hellinger distance
and χ2-divergence. In Figure 5.1 we summarize the convex function used to define each of
them1 and also include a simplified form, useful to compute the divergence.

f-divergence f Simplified Form

Statistical distance SD(t) = 1
2 |t− 1|

∑

a∈A

1
2 |µ1(a)− µ2(a)|

Kullback-Leibler2 KL(t) = t ln(t)− t+ 1
∑

a∈A
µ1(a) ln

(

µ1(a)

µ2(a)

)

+ w(µ2)− w(µ1)

Hellinger distance HD(t) = 1
2 (
√
t− 1)2

∑

a∈A

1
2

(

√

µ1(a)−
√

µ2(a)
)2

χ2-distance χ2(t) = (t− 1)2
∑

a∈A

(µ1(a)− µ2(a))
2

µ2(a)

Figure 5.1: Examples of f -divergences.

In general, ∆ O

f does not define a metric. The symmetry axiom might be violated
and the triangle inequality holds only if ∆ O

f is a (non-negative) multiple of the statistical
distance. The identity of indiscernibles does not hold in general, but can be guaranteed if

1In case of negative functions, we previously apply the transformation mentioned in Proposition 5.1, so
as to be consistent with our definition of f -divergences.

2Rigorously speaking, the function used for defining the Kullback-Leibler divergence should be given
by f(t) = t ln(t) + t− 1 if t > 0 and f(t) = 1 if t = 0 to guarantee its continuity at 0.

83

Chapter 5. Security Analysis based on Arbitrary f-divergences

f is strictly convex at 1 (i.e. if there exists some interval around 1 in which f is not linear).

The range of ∆ O

f is bounded from below and above by 0 and f(0) + f⋆(0), respectively,

where f⋆(t) = limt→0+ t f(1/t).3 Both bounds are tight; the lower bound is attained e.g.
when the compared distributions are equal while the upper bound is attained e.g. when
the distributions have unitary mass and disjoint supports. In the case of the statistical

distance, for instance, this gives the well-known result 0 ≤ ∆ O

SD
(µ1, µ2) ≤ 1 recalled in

Section 3.1.
One key property of the f -divergences is a monotonicity result referred to as the data

processing inequality [Pardo & Vajda, 1997]. Loosely speaking, it says that f -divergences
never increase after probabilistic transformations. In our setting, this is captured by the
following lemma:

Lemma 5.2 (Data Processing Inequality). Let µ1,µ2 ∈ D(A), M : A→ D(B) and f ∈ F .
Then,

∆ O

f (bind µ1M, bind µ2 M) ≤ ∆ O

f (µ1, µ2) .

The instantiation of the data processing inequality to the statistical distance has been
extensively used in our development of Chapter 3. Furthermore, we have seen that this
inequality also holds true for the α-distance (see Lemma 4.2). We conclude the section
showing that this property of the α-distance does not have an incidental origin independent
of Lemma 5.2.

Concretely, we show that the notion of α-distance can be built as an f -divergence. This
result will be of particular importance in the following section as it hints at borrowing the
structure of the sequential composition theorem of differential privacy to define our notion
of composition between f -divergences.

Lemma 5.3. For every α ≥ 1, the α-distance ∆ O

α (µ1, µ2) coincides with the f -divergence

∆ O

ADα
(µ1, µ2) associated to function ADα(t)

def

= max{t− α, 0}.
Now, some basic properties of the α-distance such as its range of possible values,

(anti-)monotonicity w.r.t. α or monotonicity w.r.t. the bind operator can be derived for
free from standard properties of the f -divergences.

5.1.2 The Composition of f-divergences

The goal of this section is to introduce the notion of composability between f -divergences
that will be used for establishing the sequential composition rule of f -pRHL O.

The notion of f -divergence composability that we present has its origins in the sequen-
tial composition theorem of differential privacy. The core of this composition theorem is a
composability result for the α-distance stated in the appendix of Chapter 4; let us recall
it (we paraphrase this composability result for the asymmetric version of the α-distance;
originally, it is stated for the symmetric version).

3If f⋆(0) = ∞, then ∆ O

f can take arbitrarily large values. Furthermore, ∞ is in the range of ∆ O

f in
these cases.

84

5.1. Preliminaries

Lemma 4.17 (α-distance Composition). Let A and B be discrete sets. Then, for any
µ1, µ2 ∈ D(A) and M1,M2 : A→ D(B),

∆ O

αα′(bind µ1M1, bind µ2M2) ≤ ∆ O

α (µ1, µ2) + sup
a

∆ O

α′(M1(a),M2(a)) . (5.1)

In order to define our notion of composability between f -divergences we build on the
observation that the α-distance is an f -divergence. We basically abstract the α-distances

∆ O

α , ∆ O

α′ and ∆ O

αα′ in (5.1) as arbitrary f -divergences ∆ O

f1
, ∆ O

f2
and ∆ O

f3
and augment

the RHS with an additive term that accounts for the product between ∆ O

f1
(µ1, µ2) and

supa ∆ O

f2
(M1(a),M2(a)). This term is weighted by a parameter γ ≥ 0 that is 0 in the

case of α-divergences. We elaborate on the motivation for this additional term shortly
afterwards.

Our notion of f -divergence composability comprises two variants. The first considers
f -divergences between arbitrary pair of distributions, while the second, weaker, considers
f -divergences between distributions that have the same mass.

Definition 5.2 (f -divergence Composability). Let f1, f2, f3 ∈ F and γ ∈ R
≥0. We say

that (f1, f2, γ) strongly-composes into f3 iff for all µ1, µ2 ∈ D(A) and M1,M2 : A→ D(B),
we have

∆ O

f3
(bind µ1 M1, bind µ2 M2) ≤ ∆ O

f1
(µ1, µ2) + sup

a
∆ O

f2
(M1(a),M2(a))

+ γ∆ O

f1
(µ1, µ2) sup

a
∆ O

f2
(M1(a),M2(a)) .

If the above inequality holds provided w(µ1) = w(µ2) and w(M1(a)) = w(M2(a)) for all
a ∈ A, we say that (f1, f2, γ) weakly-composes into f3.

The way in which we extend the composability of the α-distance to define our com-
posability between f -divergences is motivated by the notion of additivity, which can be
viewed as a more elementary form of self-composition of distance measures between dis-
tributions [Ebanks et al., 1998, Ch. 5]. We say that a distance measure ∆f is additive iff
there exists γ ∈ R such that

∆f

(

µ1 × µ′
1, µ2 × µ′

2

)

≤ ∆f (µ1, µ2) + ∆f

(

µ′
1, µ

′
2

)

+ γ∆f (µ1, µ2) ∆f

(

µ′
1, µ

′
2

)

.

It is easily seen that composability, as given in Definition 5.2, subsumes additivity.
To conclude the section, we show that our notion of composability is indeed satisfied

by an important subset of the class of f -divergences. In particular, we show that all the
f -divergences from Figure 5.1 are composable.

Theorem 5.4.

• (ADα1 ,ADα2 , 0) strongly-composes into ADα1α2 ;
• (SD,SD, 0) strongly-composes into SD;

85

Chapter 5. Security Analysis based on Arbitrary f-divergences

• (KL,KL, 0) weakly-composes into KL;
• (HD,HD, 0) weakly-composes into HD;
• (χ2, χ2, 1) weakly-composes into χ2.

Theorem 5.4 shows that the sequential composition theorem of differential privacy
extends naturally to an important subset of the class of f -divergences. For this subset of
f -divergences, Theorem 5.4 also subsumes the data processing inequality, which can be
recovered by taking M = M1 = M2.

5.1.3 Lifting Relations to Distributions

The definition of valid α-pRHL judgments rests on the notion of the (α, δ)-lifting. The first
step to define our relational logic f -pRHL Ois to extend this notion of lifting to arbitrary
f -divergences.

Definition 5.3 ((f, δ)-Lifting). Let f ∈ F and δ ∈ R
≥0. The (f, δ)-lifting of a relation

R ⊆ A×B is the relation L O

f,δ(R) ⊆ D(A)×D(B) such that µ1 L O

f,δ(R)µ2 iff there exists a
pair of distributions µL, µR ∈ D(A×B) satisfying the following conditions:

i) rangeR µL ∧ rangeR µR;

ii) π1(µL) = µ1 ∧ π2(µR) = µ2;

iii) ∆ O

f (µL, µR) ≤ δ.

The distributions µL and µR are called the left and right witnesses for the lifting

µ1 L O

f,δ(R)µ2, respectively.

We next review some key properties of the (f, δ)-lifting, which are used to justify
the results of the next section. Although these properties are direct translations of the
properties of the (α, δ)-lifting studied in Section 4.1.3 (modulo the symmetric/asymmetric
variant considered in each case), we paraphrase them in the more general setting of f -
divergences to keep the chapter self-contained.

The first property characterizes liftings over equivalence relations, and will be used to
show that f -divergences between the output of probabilistic programs can be characterized
by f -pRHL Ojudgments.

Lemma 5.5 ((f, δ)-lifting of Equivalence Relations). Let R be an equivalence relation over
A and let µ1, µ2 ∈ D(A). Then,

µ1 L O

f,δ(R)µ2 ⇐⇒ ∆ O

f (µ1/R, µ1/R) ≤ δ.

In particular, if R is the identity relation ≡, we have

µ1 L O

f,δ(≡)µ2 ⇐⇒ ∆ O

f (µ1, µ2) ≤ δ.

86

5.1. Preliminaries

Our next result allows deriving closeness conditions between the probabilities µ1(g1)
and µ2(g2) whenever µ1 and µ2 are related by the lifting of some relation R and functions
g1 and g2 are R-equivalent (see p.51 for the definition of R-equivalent functions). In what
follows, given a [0, 1]-valued function g, we use g to denote its complementary function,
i.e. g(t) def

= 1− g(t).

Lemma 5.6 (Fundamental Property of the (f, δ)-lifting). Let µ1 ∈ D(A), µ2 ∈ D(B), and
R ⊆ A×B. Then, for any two functions g1 : A→ [0, 1] and g2 : B → [0, 1],

µ1 L O

f,δ(R)µ2 ∧ g1 =R g2 =⇒ µ2(g2) f

(

µ1(g1)

µ2(g2)

)

+ µ2(g2) f

(

µ1(g1)

µ2(g2)

)

≤ δ.

Let us discuss in more detail the kind of relationship that Lemma 5.6 allows establishing
between probabilities p1 = µ1(g1) and p2 = µ2(g2). For the sake of simplicity, assume that
µ1 and µ2 have unitary mass.4 Then the conclusion of the above implication reduces to

p2 f

(

p1
p2

)

+ (1− p2) f

(

1− p1
1− p2

)

≤ δ. (5.2)

This inequality imposes certain closeness conditions between p1 and p2, and their nature is
best understood by considering particular instances of f . For example, for the case of the
statistical distance and Hellinger distance, inequality (5.2) simplifies to |p1 − p2| ≤ δ and
∣

∣

√
p1 −

√
p2
∣

∣ +
∣

∣

√
1− p1 −

√
1− p2

∣

∣ ≤ 2δ, respectively. The way in which these formulae
constrain the values of p1 and p2 is illustrated in Figure 5.2. It can be seen that for
every value of p1 there exists a bounded range [m(p1),M(p1)] of possible values for p2.
Moreover, since M and m lie above and below the identity, p1 also belongs to interval
[m(p1),M(p1)]. This entails an implicit closeness constrain between the two probabilities,
namely |p1 − p2| ≤M(p1)−m(p1).

We now show that the (f, δ)-lifting is monotonous w.r.t. its both parameters f and δ,
and its input relation.

Lemma 5.7. For all f ′ ≤ f , δ ≤ δ′, and relations R ⊆ R′,

µ1 L O

f,δ(R)µ2 =⇒ µ1 L O

f ′,δ′
(

R′)µ2.

The last property of the (f, δ)-lifting required to develop our f -pRHL logic states that,
for composable f -divergences, the lifting operation is compatible with respect to the bind

operator. This result will be the cornerstone for deriving the sequential composition rule
of f -pRHL.

Lemma 5.8 ((f, δ)-lifting Composition). Let f1, f2, f3 ∈ F and γ ∈ R
≥0 such that

(f1, f2, γ) strongly-composes into f3. Moreover let µ1 ∈ D(A), µ2 ∈ D(B), M1 : A→ D(A′)

4If this is not the case, inequality (5.2) should be replaced with p2 f
(

p1
p2

)

+(w(µ2)−p2) f
(

w(µ1)−p1
w(µ2)−p2

)

≤ δ;

the subsequent reasoning remains valid.

87

Chapter 5. Security Analysis based on Arbitrary f-divergences

p1

p2

1

1

v

p2 = p1

m(v)

M(v)

v

(a) Statistical distance

p1

p2

1

1

v

p2 = p1

m(v)

M(v)

v

(b) Hellinger distance

Figure 5.2: Closeness conditions between probabilities p1 and p2 established by inequal-
ity (5.2). Shaded area corresponds to the set of feasible solutions of the inequality. The
highlighted interval [m(v),M(v)] in the vertical axis corresponds to the set of possible
values of p2 for p1 = v.

and M2 : B → D(B′). If µ1 L O

f1,δ1
(R1)µ2 and M1(a) L O

f2,δ2
(R2)M2(b) whenever aR1 b,

then we have
(bind µ1 M1) L O

f3,δ3(R2) (bind µ2 M2)

for δ3 = δ1 + δ2 + γδ1δ2. The result remains valid for weakly-composable f1, f2 and f3
provided w(µ1) = w(µ2) and w(M1(a)) = w(M2(b)) whenever aR1 b.

We conclude this section presenting an inductive characterization of the (f, δ)-lifting.
This characterization is independent of the rest of our development, but may be handy in
other applications that underly some notion of (weak) equivalence between probabilistic
systems, e.g. bisimulation of probabilistic processes. This inductive characterization is
stated in terms of Dirac sub-probability distributions. Given k ∈ [0, 1] and a ∈ A we
use *a+k to denote the Dirac distribution over A that assigns probability k to a and null
probability to any other value in A. (Observe that the unit operator is a shorthand for
* ·+1.)

Lemma 5.9 (Inductive Characterization of the (f, δ)-lifting). For any relation R ⊆ A×B,

the (f, δ)-lifting L O

f,δ(R) is the smallest relation over D(A) × D(B) that satisfies the fol-
lowing rules:

aR b k′ f
(

k
k′

)

≤ δ

*a+k L O

f,δ(R) *b+k
′

µi L O

f,δi
(R)µ′

i ∀i∈I
∑

i∈I δi ≤ δ
(
∑

i∈I µi

)

L O

f,δ(R)
(
∑

i∈I µ
′
i

)

In the RHS rule we assume that distributions
∑

i∈I µi and
∑

i∈I µ
′
i are well defined, i.e.

∑

i∈I w(µi) ≤ 1 and
∑

i∈I w
(

µ′
i

)

≤ 1.

88

5.2. A Relational Logic for f -divergences

The lifting of R defined inductively by the above rules can be viewed as a generalization
to an approximate setting through f -divergences of the exact lifting of Deng et al. [2009].
Moreover, Lemma 5.9 extends a previous result in [Deng & Du, 2011] about the equivalence
between the exact liftings of Deng et al. [2009] and Jonsson et al. [2001] to the approximate
setting.

5.2 A Relational Logic for f-divergences

Building on the results of the previous section, we now define our relational Hoare logic
f -pRHL O, which enables reasoning about f -divergences between probabilistic programs.

5.2.1 Judgments

Judgments in f -pRHL Ohave the same shape as in α-pRHL, except that they are
parametrized by an arbitrary f -divergence, rather than by an α-divergence. Specifically,
they are of the form

c1 ∼f,δ c2 : Ψ⇒ Φ,

where c1 and c2 are programs, Ψ and Φ are relational assertions, f ∈ F and δ ∈ R
≥0.

The notion of validity in f -pRHL Ois also defined as in α-pRHL: an f -pRHL Ojudg-
ment is valid iff for every pair of memories related by the pre-condition Ψ, the corresponding
pair of program output distributions is related by the (f, δ)-lifting of the post-condition Φ.

Definition 5.4 (Validity in f -pRHL). A judgment c1 ∼f,δ c2 : Ψ ⇒ Φ is valid, written

|= Oc1 ∼f,δ c2 : Ψ⇒ Φ, iff for every pair of memories m1,m2,

m1 Ψm2 =⇒ (Jc1K m1) L O

f,δ(Φ) (Jc2K m2).

f -pRHL Ojudgments provide a characterization of the f -divergences between proba-
bilistic programs. Concretely, judgments with the identity relation as post-condition can
be used to derive (f, δ)-closeness results.

Theorem 5.10. If |= Oc1 ∼f,δ c2 : Ψ⇒ ≡, then for all memories m1,m2,

m1Ψm2 =⇒ ∆ O

f (Jc1K m1, Jc2K m2) ≤ δ. (5.3)

The converse of this theorem, which holds true on account of Lemma 5.5, shows that
f -pRHL Ojudgments completely characterizes (f, δ)-closeness properties between proba-
bilistic programs.

Judgments with the identity relation as post-condition can also be used to model ap-
proximate information flow in a probabilistic setting. To see this, let Ψ be an equivalence

relation on initial states and assume for a moment that δ = 0 and ∆ O

f satisfies the identity

of indiscernibles (i.e. ∆ O

f (µ1, µ2) = 0 ⇐⇒ µ1 = µ2). Judgment |= Oc ∼f,δ c : Ψ ⇒ ≡

89

Chapter 5. Security Analysis based on Arbitrary f-divergences

entails that two initial states induce the same distribution of final states whenever they are
related by Ψ. In particular, this implies that an adversary who can observe the output of
c will only be able to determine the initial state up to its Ψ-equivalence class. If we drop

the initial assumptions about ∆ O

f and δ, the judgment models an approximate variant of
this information flow property of c.

f -pRHL Ocan also be used to derive continuity properties of probabilistic programs.
We assume a continuity model in which programs are executed on random inputs, i.e.
distributions of initial memories, and we use f -divergences as metrics to compare program
inputs and outputs.

Lemma 5.11. Let f1, f2, f3 ∈ F and γ ∈ R
≥0 such that (f1, f2, γ) strongly-composes into

f3. If |= Oc1 ∼f2,δ2 c2 : ≡ ⇒ ≡, then for any two distributions of initial memories µ1 and
µ2,

∆ O

f1
(µ1, µ2) ≤ δ1 =⇒ ∆ O

f3
(bind µ1 Jc1K, bind µ2 Jc2K) ≤ δ3,

where δ3 = δ1 + δ2 + γδ1δ2. The same result holds for weakly-composable f -divergences
provided w(µ1) = w(µ2) and w(Jc1Km) = w(Jc2Km) for every m ∈ M.

Finally, we can use judgments with arbitrary post-conditions to relate the probabilities
of single events in two programs.

Lemma 5.12. If |= Oc1 ∼f,δ c2 : Ψ⇒ Φ, then for every pair of Ψ-related memories m1,m2

and every pair of Φ-equivalent functions g1, g2 :M→ [0, 1],

(Jc2Km2)(g2) f

(

(Jc1Km1)(g1)

(Jc2Km2)(g2)

)

+ (Jc2Km2)(g2) f

(

(Jc1Km1)(g1)

(Jc2Km2)(g2)

)

≤ δ.

If we specialize g1 and g2 to the characteristic function of two events A and B, we
obtain a rule for relating the probabilities of A and B. In stating the rule, we use A (resp.
B) to denote the complementary event of A (resp. B).

m1Ψm2 |= Oc1 ∼f,δ c2 : Ψ⇒ Φ Φ =⇒ (A〈1〉⇐⇒B〈2〉)

Pr [c2(m2) : B] f
(

Pr[c1(m1):A]
Pr[c2(m2):B]

)

+ Pr[c2(m2) : B] B

(

Pr[c1(m1):A]
Pr[c2(m2):B]

)

≤ δ

[PrEq-∆ O

f
]

The validity of Lemma 5.12 rests on the fundamental property of the (f, δ)-lifting.
When discussing this property we have seen that an inequality like the one in the conclusion

of rule [PrEq-∆ O

f
] establishes certain closeness conditions between the probabilities p1 =

Pr [c1(m1) : A] and p2 = Pr [c2(m2) : B]. (Observe that, in general, we have Pr[c(m) :

E] = w(JcKm) − Pr [c(m) : E]; therefore the conclusion of rule [PrEq-∆ O

f
] reduces to a

formula on p1 and p2, only.) Specifically, we have seen that there exist functions m,M :
[0, 1] → [0, 1] such that for every p1 in [0, 1], both the values of p1 and p2 lie within the
interval [m(p1),M(p1)]. For the case of the statistical distance and Hellinger distance,
these closeness conditions are illustrated in Figure 5.2. The closeness conditions have also

90

5.2. A Relational Logic for f -divergences

been studied by Kifer & Lin [2010] in their effort to characterize all “sensible” definitions
of statistical privacy. They show, among others, that if f is self-composable, then M is a
concave function above the identity and m(p) = 1−M(1− p). This relationship between
m and M is reflected in the symmetry w.r.t. the identity of the shaded areas in Figure 5.2.

5.2.2 Proof System

Figure 5.3 presents a set of core rules for reasoning about the validity of f -pRHL Ojudg-
ments. All rules are transpositions of the α-pRHL rules listed in Figure 4.1.

The translation from α-pRHL to f -pRHL is straightforward. However, the f -pRHL
rules [s-seq] and [s-while] for the sequential composition and bounded loops include an
extra premise requiring the composability of the involved f -divergences. When composing
arbitrary f -divergences—contrary to the case of plain α-divergences—upper-bounds do not
just “add up”; for the computation of the final bound it is also necessary to account for
the product between the individual bounds (see Definition 5.2). This translates into more
compound final bounds for this pair of rules, namely δ3 = δ1 + δ2 + γδ1δ2 for [s-seq] and
δn = nδ +Rn for [s-while] (in α-pRHL we have δ3 = δ1 + δ2 and δn = nδ).

All the rules are thoroughly discussed in Section 4.2. We will only examine in more
detail the rule for bounded loops. Rule [s-while] relates two loops that execute in lockstep.
The bound it establishes depends on the maximal number of iterations of the loops; we
assume given a loop variant e that increases across iterations and guarantees the loop
termination upon exceeding a constant value n. We briefly explain the side conditions:
(f1, . . . , fn) is γ-strongly-composable iff (fi, f1, γ) strongly-composes into fi+1 for every
1 ≤ i < n. Moreover, (f1, . . . , fn) is monotonic iff fi ≤ fi+1 for 1 ≤ i < n; monotonicity
is required for those executions where the loops terminate in less than n iteration. Note
that the rule is given for n ≥ 2; specialized rules exist for n = 1 and n = 0.

Rules [s-seq] and [s-while] only deals with strongly-composable f -divergences. Their
counterparts for weakly-composable f divergences are presented in Figure 5.4. Both vari-
ants of the rules have the same structure, with the exception that those dealing with
weakly-composable f divergences include an extra side condition requiring that the output
distributions of the respective programs have the same mass. Formally, this requirement is
captured by the notion of program eq-weightness; given a relation over program states Θ,
we say that two programs c1 and c2 are eq-weighted w.r.t. Θ iff for all memories m1,m2, we
have m1 Θm2 =⇒ w(Jc1K m1) = w(Jc2K m2). Recall that for programs that are assertion
free and sample values from proper probability distributions, the mass of the output dis-
tribution represents the probability of termination. Therefore, for this class of programs
the eq-weightness relation can be understood as property on the termination behaviour
of programs; concretely, two programs are eq-weighted iff they terminate with the same
probability (modulo relational pre-condition).

Eq-weightness assertions can be derived within f -pRHL O, by considering an exact vari-

ant of the logic. By taking δ = 0 and choosing f so that ∆ O

f satisfies the identity of indis-

91

Chapter 5. Security Analysis based on Arbitrary f-divergences

∀m1,m2 • m1Ψm2 =⇒ (m1 {Je1KE m1/x1}) Φ (m2 {Je2KE m2/x2})
|= Ox1 ← e1 ∼f,0 x2 ← e2 : Ψ⇒ Φ

[assn]

∀m1,m2 • m1Ψm2 =⇒ ∆ O

f (Jd1KDE m1, Jd2KDE m2) ≤ δ

m1 Ψ
′m2

def

= ∃v1, v2 • (m1 {v1/x1})Ψ (m2 {v2/x2})
|= Ox1 $← d1 ∼f,δ x2 $← d2 : Ψ⇒ x1〈1〉 = x2〈2〉 ∧Ψ′

[rand]

Ψ =⇒ b1〈1〉 = b2〈2〉
|= Oassert b1 ∼f,0 assert b2 : Ψ⇒ Ψ ∧ b1〈1〉

[assert]
|= Oskip ∼f,0 skip : Ψ⇒ Ψ

[skip]

Ψ =⇒ b1〈1〉 = b2〈2〉
|= Oc1 ∼f,δ c2 : Ψ ∧ b1〈1〉 ⇒ Φ |= Oc′1 ∼f,δ c

′
2 : Ψ ∧ ¬b1〈1〉 ⇒ Φ

|= Oif b1 then c1 else c′1 ∼f,δ if b2 then c2 else c′2 : Ψ⇒ Φ
[cond]

(f1, . . . , fn) is γ-strongly-composable and monotonic

δn
def

= nδ +Rn where Rn
def

= γδ2
∑n−2

i=0 (i+ 1)(1 + γδ)n−2−i

Θ =⇒ b1〈1〉 = b2〈2〉 Θ ∧ e〈1〉 ≥ n =⇒ ¬b1〈1〉
|= Oc1 ∼f1,δ c2 : Θ ∧ b1〈1〉 ∧ e〈1〉 = k ⇒ Θ ∧ e〈1〉 > k

|= Owhile b1 do c1 ∼fn,δn while b2 do c2 : Θ ∧ e〈1〉 ≥ 0⇒ Θ ∧ ¬b1〈1〉
[s-while]

(f1, f2, γ) strongly-composes into f3 δ3
def

= δ1 + δ2 + γδ1δ2

|= Oc1 ∼f1,δ1 c2 : Ψ⇒Φ′ |= Oc′1 ∼f2,δ2 c′2 : Φ
′⇒Φ

|= Oc1; c
′
1 ∼f3,δ3 c2; c

′
2 : Ψ⇒ Φ

[s-seq]

Ψ =⇒ Ψ′ Φ′ =⇒ Φ f ≤ f ′ δ′ ≤ δ

|= Oc1 ∼f ′,δ′ c2 : Ψ
′ ⇒ Φ′

|= Oc1 ∼f,δ c2 : Ψ⇒ Φ
[weak]

|= Oc1 ∼f,δ c2 : Ψ ∧Θ⇒ Φ

|= Oc1 ∼f,δ c2 : Ψ ∧ ¬Θ⇒ Φ

|= Oc1 ∼f,δ c2 : Ψ⇒ Φ
[case]

Figure 5.3: Core proof rules of f -pRHL O.

cernible5, we obtain an specialization of f -pRHL Ofor exact—rather than approximate—
reasoning between probabilistic programs. A key property of this specialization is that a

judgment of the form |= Oc1 ∼f,0 c2 : Ψ⇒ true entails the eq-weightness of c1 and c2 w.r.t.
Ψ. Alternatively, we can rely on the exact logic pRHL to derive eq-weightness assertions,

since a judgment |= Oc1 ∼f,0 c2 : Ψ ⇒ Φ in this specialization of f -pRHL is equivalent to
the pRHL judgment |= c1 ∼ c2 : Ψ⇒ Φ.

5All f -divergences listed in Figure 5.1 satisfy the identity of indiscernible.

92

5.2. A Relational Logic for f -divergences

(c1, c2) eq-weighted w.r.t.Ψ ∧ b1〈1〉 ∧ b2〈2〉
(f1, . . . , fn) is γ-weakly-composable and monotonic

δn
def

= nδ +Rn where Rn
def

= γδ2
∑n−2

i=0 (i+ 1)(1 + γδ)n−2−i

Θ =⇒ b1〈1〉 = b2〈2〉 Θ ∧ e〈1〉 ≥ n =⇒ ¬b1〈1〉
|= Oc1 ∼f1,δ c2 : Θ ∧ b1〈1〉 ∧ e〈1〉 = k ⇒ Θ ∧ e〈1〉 > k

|= Owhile b1 do c1 ∼fn,δn while b2 do c2 : Θ ∧ e〈1〉 ≥ 0⇒ Θ ∧ ¬b1〈1〉
[w-while]

(c1, c2) eq-weighted w.r.t.Ψ (c′1, c
′
2) eq-weighted w.r.t.Φ′

(f1, f2, γ) weakly-composes into f3 δ3
def

= δ1 + δ2 + γδ1δ2

|= Oc1 ∼f1,δ1 c2 : Ψ⇒Φ′ |= Oc′1 ∼f2,δ2 c′2 : Φ
′⇒Φ

|= Oc1; c
′
1 ∼f3,δ3 c2; c

′
2 : Ψ⇒ Φ

[w-seq]

Figure 5.4: Proof rules of f -pRHL Ofor weakly-composable f -divergences.

We now analyze the soundness of our proof system of Figures 5.3 and 5.4. The sound-
ness proof follows the same line as that of the α-pRHL proof system, which was discussed
in Section 4.2 and formally verified in Coq. The proof rests basically on properties of the
(f, δ)-lifting. For instance, the crux of the soundness proofs of rules [rand] and [s-seq] is an
application of Lemmas 5.5 and 5.8, respectively. The soundness of rule [weak] relays on the
monotonicity property of the (f, δ)-lifting from Lemma 5.7 while the soundness of rules
[assn] and [skip] depends on a sufficient condition to build exact versions of the (f, δ)-lifting
(see Proposition 5.20 in Appendix 5.A).

5.2.3 Symmetric Logic

We can also define a symmetric version of f -pRHL Oby slightly modifying the definition

of the (f, δ)-lifting to include the additional requirement ∆ O

f (µR, µL) ≤ δ on the wit-
ness distributions µL and µR. Rigorously speaking, α-pRHL is instance of this symmetric
logic (and α-pRHL Ois an instance of f -pRHL O). All rules in the proof system of Fig-
ures 5.3 and 5.4 remain unchanged, except for the rule for random assignments [rand]

whose premise now requires the additional inequality ∆ O

f (Jd2KDE m2, Jd1KDE m1) ≤ δ to
be checked. Theorem 5.10 and Lemmas 5.11 and 5.12 are also adapted accordingly; for

instance Theorem 5.10 now allows deriving claims of the form ∆ O

f (Jc1K m1, Jc2K m2) ≤
δ ∧ ∆ O

f (Jc2K m2, Jc1K m1) ≤ δ.

The symmetric version of the logic can be understood in a more uniform manner as
being constructed using a symmetric notion of closeness between distributions, namely by

requiring that max{∆ O

f (µ1, µ2) ,∆ O

f (µ2, µ1)} ≤ δ for two distributions µ1 and µ2 to be

(f, δ)-close (cf. Equation (4.2)), rather than just requiring ∆ O

f (µ1, µ2) ≤ δ, as stated in

Definition 5.1, and consistently employed in the development of f -pRHL O.

93

Chapter 5. Security Analysis based on Arbitrary f-divergences

5.A Appendix

In this section we outline proofs of all the results in the present chapter. We first introduce
some auxiliary lemmas and then turn to the proofs.

5.A.1 Auxiliary Lemmas

Proposition 5.13 (Generalized Log-Sum Inequality). Let f : I → R be a convex function.
For any two sequences of non-negative numbers a1, . . . , an and b1, . . . , bn such that ai/bi
belongs to I for i = 1, . . . , n we have

∑

1≤i≤n

bi f

(

ai
bi

)

≥ b f
(a

b

)

,

where a def

=
∑

1≤i≤n ai and b def

=
∑

1≤i≤n bi. The result remains valid for n = ∞ as long as
∑

1≤i≤∞ ai,
∑

1≤i≤∞ bi and
∑

1≤i≤∞ bi f(ai/bi) exist and are finite.

Proof. The generalized log-sum inequality is derived from the Jensen’s inequality (see
e.g. [Rockafellar, 1997, Th. 4.3]) as follows:

∑

1≤i≤n

bi f

(

ai
bi

)

= b
∑

1≤i≤n

bi
b
f

(

ai
bi

)

≥ b f

∑

1≤i≤n

bi
b

ai
bi

 = b f
(a

b

)

. �

Proposition 5.14. Let f : I → R be a convex function, differentiable at x0 ∈ I. Then

f(x) ≥ f(x0) + f ′(x0)(x− x0) ∀x ∈ I.

When f is not differentiable at x0, the above inequality remains valid if we replace f ′(x0)
with any value in the interval [f ′

−(x0), f
′
+(x0)].

Proof. See e.g. [van Tiel, 1984, Th. 1.6]. �

Proposition 5.15. For every f, g ∈ F , c ∈ R, µ1, µ2 ∈ D(A) and equivalence relation
R ⊆ A×A,

i) g(t) = f(t)− c (t− 1) =⇒ ∆ O

g (µ1, µ2) = ∆ O

f (µ1, µ2)− c (w(µ1)− w(µ2));

ii) f ≤ g =⇒ ∆ O

f (µ1, µ2) ≤ ∆ O

g (µ1, µ2);

iii) ∆ O

f (µ1, µ2) ≥ ∆ O

f (µ1/R, µ2/R).

Proof. i) follows from a straightforward computation; ii) is immediate from the definition of
f -divergences and the non-negativity of f and g; finally iii) is a corollary of Proposition 5.13.

�

Proposition 5.16. For every α ≥ 1 and µ1, µ2 in D(A),

∆ O

α (µ1, µ2) = µ1(A0)− αµ2(A0),

where A0 = {a ∈ A | µ1(a) ≥ αµ2(a)}.

94

5.A. Appendix

Proof. It follows the same lines as that of Lemma 4.16. �

Proposition 5.17. Let µ ∈ D(A) satisfy predicate range P µ. Then, for any M : A →
D(B), any predicate Q over B and any pair of functions f, g : A→ [0, 1],

i) (∀a • P (a) =⇒ f(a) = g(a)) =⇒ µ(f) = µ(g);

ii) (∀a • P (a) =⇒ rangeQM(a)) =⇒ rangeQ (bind µM).

Proof.
i) From the definition of range we have

µ(f) =
∑

a∈A
µ(a) f(a) =

∑

a∈A
P (a)

µ(a) f(a) =
∑

a∈A
P (a)

µ(a) g(a) =
∑

a∈A
µ(a) g(a) = µ(g).

ii) Let b ∈ B such that

(bind µM)(b) =
∑

a∈A
µ(a)M(a)(b) =

∑

a∈A
P (a)

µ(a)M(a)(b) > 0.

Then, there must exists a′ ∈ A such that P (a′) and M(a′)(b) > 0. By hypothesis
∀a • P (a) =⇒ rangeQM(a), formula rangeQM(a′) holds, which implies Q(b). �

Proposition 5.18. Let (f1, f2, γ) strongly-compose into f3. Then for all predicate R ⊆ A,
all µ1, µ2 ∈ D(A) such that rangeR µ1 and rangeR µ2, and all M1,M2 : A→ D(B),

∆ O

f3
(bind µ1 M1, bind µ2M2) ≤ ∆ O

f1
(µ1, µ2) + sup

a|R(a)
∆ O

f2
(M1(a),M2(a))

+γ∆ O

f1
(µ1, µ2) sup

a|R(a)
∆ O

f2
(M1(a),M2(a)) .

The result remains valid when f1, f2 and f3 satisfy only weak-composability, provided
w(µ1) = w(µ2) and w(M1(a)) = w(M2(b)) for all pair of R-related a, b.

Proof. Consider the mappings M ′
1,M

′
2 : A→ D(B) such that M ′

1(a) = M1(a) if R(a) and
M ′

1(a) = µ0 otherwise. Then we have

∆ O

f3
(bind µ1M1, bind µ2M2) ≤ ∆ O

f3

(

bind µ1M
′
1, bind µ2M

′
2

)

since bind µiMi = bind µiM
′
i for i = 1, 2. The proof concludes by applying the definition

of f -divergence composability in the RHS of the above equation and observing that

sup
a

∆ O

f2

(

M ′
1(a),M

′
2(a)

)

= sup
a|R(a)

∆ O

f2
(M1(a),M2(a)) . �

95

Chapter 5. Security Analysis based on Arbitrary f-divergences

Proposition 5.19. Given R ⊆ A×B, we let Iδf (R) be the relation over D(A)×D(B) that
satisfies the following rules:

aR b k′ f
(

k
k′

)

≤ δ

*a+k Iδf (R) *b+k
′

µi Iδif (R)µ′
i ∀i∈I

∑

i∈I δi ≤ δ
(
∑

i∈I µi

)

Iδf (R)
(
∑

i∈I µ
′
i

)

(In the RHS rule we assume that distributions
∑

i∈I µi and
∑

i∈I µ
′
i are well defined, i.e.

∑

i∈I w(µi) ≤ 1 and
∑

i∈I w
(

µ′
i

)

≤ 1). Then given µ ∈ D(A) and µ′ ∈ D(B),

µ Iδf(R)µ′

if and only if µ and µ′ can be decomposed as

µ =
∑

i∈I
*ai+

ki and µ′ =
∑

i∈I
*bi+

k′i

for some index set I, ai in A, bi in B and ki, k
′
i in [0, 1], where

ai Rbi for all i∈I and
∑

i∈I
k′i f

(

ki
k′i

)

≤ δ.

Proof. The “if” direction is immediate. The “only if” direction can be proved by induction
on the height of the derivation trees. Formally, the induction argument relays on the
notion of rank of a lifting. The rank of a lifting µ Iδf (R)µ′ is defined as the height of the

shortest derivation tree that relates µ and µ′. Observe that if the rank of µ Iδf (R)µ′ is n,

then µ Iδf (R)µ′ was derived either with an application of the LHS rule, and the purported
decomposition of µ and µ′ is immediate, or with an application of the RHS rule, and each
of the liftings µi Iδif (R)µ′

i in its premise has rank strictly less than n. We can thus use
well-founded induction on the rank of the liftings to prove the “only if” direction of the
proposition. �

Proposition 5.20. For any relation R ⊆ A×B and k ∈ [0, 1],

aR b =⇒ *a+k L O

f,0(R) *b+k.

Proof. The proof is straightforward by considering distribution k−1(*a+k × *b+k) as the left

and right witness of the lifting *a+k L O

f,0(R) *b+k if k > 0 and distribution µ0 if k = 0. �

5.A.2 Proofs

Proof of Proposition 5.1. First, we show that g does belong to F . The convexity of g fol-
lows from the fact that convex functions are closed under addition and linear functions are
convex. The continuity of g at 0 and the fact that it vanishes at 1 follow from f satisfying
the same properties. The non-negativity of g can be derived using Proposition 5.14. A

96

5.A. Appendix

direct application of this proposition says that g(t) ≥ g(1) + g′(1) (t − 1); the result fol-
lows from g(1) = g′(1) = 0. To conclude observe that the purported relationship between

∆ O

f (µ1, µ2) and ∆ O

g (µ1, µ2) can be proved with an application of Proposition 5.15.i). �

Proof of Lemma 5.2. The result follows from the reasoning below.

∆ O

f (bind µ1M, bind µ2 M)

=
∑

b∈B
(bind µ2M)(b) f

(

(bind µ1M)(b)

(bind µ2M)(b)

)

=
∑

b∈B

∑

a∈A
µ2(a)M(a)(b)

 f

(

∑

a∈A µ1(a)M(a)(b)
∑

a∈A µ2(a)M(a)(b)

)

(1)

≤
∑

b∈B

∑

a∈A
µ2(a)M(a)(b) f

(

µ1(a)M(a)(b)

µ2(a)M(a)(b)

)

(2)
=
∑

a∈A
µ2(a) f

(

µ1(a)

µ2(a)

)

w(M(a)) ≤ ∆ O

f (µ1, µ2) .

Here inequality (1) is an instance of Proposition 5.13 and step (2) holds by a simple
reordering of the terms in the series. �

Proof of Lemma 5.3. Verifying that ADα belongs to F whenever α ≥ 1 is a simple matter.
For proving the main claim we rely on Proposition 5.16.

∆ O

ADα
(µ1, µ2) =

∑

a∈A
µ2(a)max

{

µ1(a)

µ2(a)
− α, 0

}

=
∑

a∈A
µ1(a)≥α µ2(a)

µ1(a)− αµ2(a) = ∆ O

α (µ1, µ2) .

�

Proof of Theorem 5.4.

α-distance: see Lemma 4.17.

Statistical Distance: composability follows from the reasoning below:

∆ O

SD
(bind µ1M1, bind µ2M2)

=
∑

b∈B

1

2

∣

∣

∣

∣

∣

∣

∑

a∈A
µ1(a)M1(a)(b) −

∑

a∈A
µ2(a)M2(a)(b)

∣

∣

∣

∣

∣

∣

=
∑

b∈B

1

2

∣

∣

∣

∣

∣

∣

∑

a∈A
(µ1(a)− µ2(a))M1(a)(b) +

∑

a∈A
µ2(a) (M1(a)(b)−M2(a)(b))

∣

∣

∣

∣

∣

∣

97

Chapter 5. Security Analysis based on Arbitrary f-divergences

≤
∑

b∈B

1

2

∑

a∈A
|µ1(a)− µ2(a)| M1(a)(b) +

∑

a∈A
µ2(a) |M1(a)(b)−M2(a)(b)|

=
∑

a∈A

1

2
|µ1(a)− µ2(a)| w(M1(a)) +

∑

a∈A
µ2(a)

∑

b∈B

1

2
|M1(a)(b) −M2(a)(b)|

≤ ∆ O

SD
(µ1, µ2) + sup

a
∆ O

SD
(M1(a),M2(a)) .

Kullback-Leibler: We use the simplified form
∑

a∈A ν1(a) ln
(

ν1(a)
ν2(a)

)

from Figure 5.1 to com-

pute the Kullback-Leibler divergence between any pair of distributions ν1 and ν2. (Ob-
serve that the term w(ν2) − w(ν1) vanishes since the notion of weak-composability
considers only distributions ν1 and ν2 with the same mass.) Then we have

∆ O

KL
(bind µ1 M1, bind µ2M2)

=
∑

b∈B

∑

a∈A
µ1(a)M1(a)(b)

 ln

(

∑

a∈A µ1(a)M1(a)(b)
∑

a∈A µ2(a)M2(a)(b)

)

(1)

≤
∑

b∈B

∑

a∈A
µ1(a)M1(a)(b) ln

(

µ1(a)M1(a)(b)

µ2(a)M2(a)(b)

)

=
∑

a∈A
µ1(a) ln

(

µ1(a)

µ2(a)

)

w(M1(a)) +
∑

a∈A
µ1(a)

∑

b∈B
M1(a)(b) ln

(

M1(a)(b)

M2(a)(b)

)

≤ ∆ O

KL
(µ1, µ2) + sup

a
∆ O

KL
(M1(a),M2(a)) .

Here, the inequality step (1) holds by Proposition 5.13.

Hellinger distance: the proof of composability rests on two auxiliary properties. The

first is an alternative characterization of the Hellinger distance, namely, ∆ O

HD
(ν, ν ′) =

1
2(w(ν1) + w(ν2)) −

∑

a

√

ν(a) ν ′(a). The second is identity
√

µ1(a)µ2(a) =

µ3(a) − µ2(a)HD
(

µ1(a)
µ2(a)

)

, where µ3(a)
def

= 1
2(µ1(a) + µ2(a)). Furthermore, let us define

wµ
def

= w(µ1) = w(µ2) and wM
def

= w(M1(a)) = w(M2(a)) for every a ∈ A. Then

∆ O

HD
(bind µ1M1, bind µ2M2)

= wµwM −
∑

b∈B

√

(

∑

a∈A
µ1(a)M1(a)(b)

)(

∑

a∈A
µ2(a)M2(a)(b)

)

(1)

≤ wµwM −
∑

b∈B

∑

a∈A

√

µ1(a)M1(a)(b)µ2(a)M2(a)(b)

= wµwM −
∑

a∈A

√

µ1(a)µ2(a)
∑

b

√

M1(a)(b)M2(a)(b)

98

5.A. Appendix

= wµwM −
∑

a∈A

(

µ3(a)− µ2(a)HD

(

µ1(a)

µ2(a)

))

(

wM −∆ O

HD
(M1(a),M2(a))

)

≤ wM ∆ O

HD
(µ1, µ2) +

∑

a∈A
µ3(a)∆ O

HD
(M1(a),M2(a))

≤ ∆ O

HD
(µ1, µ2) + sup

a
∆ O

HD
(M1(a),M2(a)) .

In the above reasoning, step (1) is justified by the Cauchy-Schwarz inequality.

χ2-distance: Using the same argument as for the proof of the α-distance composability
(see Lemma 4.17), we have

∆ O

χ2
(bind µ1M1, bind µ2M2) ≤ ∆ O

χ2
(θ1, θ2) ,

where distributions θ1, θ2 ∈ D(A×B) are defined as θ1(a, b)
def

= µ1(a)M1(a)(b) and

θ2(a, b)
def

= µ2(a)M2(a)(b). Now let us bound ∆ O

χ2
(θ1, θ2). To this end, we rely on the

characterization of the χ2-distance ∆ O

χ2
(ν1, ν2) =

∑

a∈A
ν21(a)
ν2(a)

− w(ν1) when w(ν1) =

w(ν2). Moreover, we define wµ
def

= w(µ1) = w(µ2) and wM
def

= w(M1(a)) = w(M2(a)) for
every a ∈ A.

∆ O

χ2
(θ1, θ2) =

∑

(a,b)∈A×B

µ2
1(a)M

2
1 (a)(b)

µ2(a)M2(a)(b)
− wµwM

=
∑

a∈A

µ2
1(a)

µ2(a)

∑

b∈B

M2
1 (a)(b)

M2(a)(b)
− wµwM

=
∑

a∈A

µ2
1(a)

µ2(a)

(

∆ O

χ2
(M1(a),M2(a)) + wM

)

− wµwM

≤

∑

a∈A

µ2
1(a)

µ2(a)

(

sup
a

∆ O

χ2
(M1(a),M2(a)) + wM

)

−wµwM

=

(

∆ O

χ2
(µ1, µ2) + wµ

)(

sup
a

∆ O

χ2
(M1(a),M2(a)) + wM

)

− wµwM

≤ ∆ O

χ2
(µ1, µ2) + sup

a
∆ O

χ2
(M1(a),M2(a)) . �

Proof of Lemma 5.5.
“Only If” direction: Let µL and µR be a pair of left and right witnesses of the lifting

µ1 L O

f,δ(R)µ2. Then we have range R µL, range R µR, π1(µL) = µ1, π2(µR) = µ2 and

∆ O

f (µL, µR) ≤ δ. Now

∆ O

f (µ1/R, µ2/R)

99

Chapter 5. Security Analysis based on Arbitrary f-divergences

=
∑

A0∈A/R

µ2(A0) f

(

µ1(A0)

µ2(A0)

)

=
∑

A0∈A/R

π2(µR)(A0) f

(

π1(µL)(A0)

π2(µR)(A0)

)

(1)
=

∑

A0∈A/R

π1(µR)(A0) f

(

π1(µL)(A0)

π1(µR)(A0)

)

= ∆ O

f

(

π1(µL)
A/R, π1(µR)

A/R
)

(2)

≤ ∆ O

f (π1(µL), π1(µR))
(3)

≤ ∆ O

f (µL, µR) ≤ δ.

To justify equality π2(µR)(A0) = π1(µR)(A0) in step (1) we apply Proposition 5.17.i) with
hypothesis range R µR. Steps (2) and (3) are direct applications of Proposition 5.15.iii)
and Lemma 5.2 respectively.
“If” direction: We propose

µL(a1, a2) =

µ1(a1)µ2(a2)

µ2([a1])
if a1Ra2 ∧ µ2([a1]) 6= 0

0 otherwise

µR(a1, a2) =

µ1(a1)µ2(a2)

µ1([a2])
if a1Ra2 ∧ µ1([a2]) 6= 0

0 otherwise

as witnesses for the lifting µ1 L O

f,δ(R)µ2. We now verify the properties that µL and µR

must meet. Property rangeR µL ∧ rangeR µR follows immediately from the definitions of
µL and µR. Some simple computations yield π1(µL) = µ1 and π2(µR) = µ2. Finally, we

bound ∆ O

f (µL, µR) as follows:

∆ O

f (µL, µR) =
∑

(a1,a2)∈A×A

µR(a1, a2) f

(

µL(a1, a2)

µR(a1, a2)

)

(1)
=

∑

(a1,a2)∈R
µR(a1, a2) f

(

µL(a1, a2)

µR(a1, a2)

)

(2)
=

∑

A0∈A/R

∑

a1∈A0

∑

a2∈A0

µR(a1, a2) f

(

µL(a1, a2)

µR(a1, a2)

)

(3)
=

∑

A0∈A/R

∑

a1∈A0
µ2([a1])6=0

∑

a2∈A0
µ1([a2])6=0

µ1(a1)µ2(a2)

µ1([a2])
f

(

µ1([a2])

µ2([a1])

)

=
∑

A0∈A/R

1

µ1(A0)
f

(

µ1(A0)

µ2(A0)

)

∑

a1∈A0
µ2([a1])6=0

µ1(a1)
∑

a2∈A0
µ1([a2])6=0

µ2(a2)

≤
∑

A0∈A/R

µ2(A0) f

(

µ1(A0)

µ2(A0)

)

= ∆ O

f (µ1/R, µ2/R) ≤ δ.

100

5.A. Appendix

Here (1) holds since rangeR µR; (2) is a sum reordering while (3) holds because for every
equivalence class A0 ∈ A/R, µ1(A0) = 0 implies µL(a1, a2) = µR(a1, a2) = 0 for every
a1, a2 ∈ A0, and similarly for µ2. �

Proof of Lemma 5.6. Let µL and µR be a pair of left and right witnesses of the lifting

µ1 L O

f,δ(R)µ2. Then we have range R µL ∧ range R µR, π1(µL) = µ1 ∧ π2(µR) = µ2 and

∆ O

f (µL, µR) ≤ δ. Now

µ2(g2) f

(

µ1(g1)

µ2(g2)

)

+ µ2(g2) f

(

µ1(g1)

µ2(g2)

)

= π2(µR)(g2) f

(

π1(µL)(g1)

π2(µR)(g2)

)

+ π2(µR)(g2) f

(

π1(µL)(g1)

π2(µR)(g2)

)

(1)
= π1(µR)(g1) f

(

π1(µL)(g1)

π1(µR)(g1)

)

+ π1(µR)(g1) f

(

π1(µL)(g1)

π1(µR)(g1)

)

=

∑

a∈A
π1(µR)(a) g1(a)

 f

(

∑

a∈A π1(µL)(a) g1(a)
∑

a∈A π1(µR)(a) g1(a)

)

+

∑

a∈A
π1(µR)(a) g1(a)

 f

(

∑

a∈A π1(µL)(a) g1(a)
∑

a∈A π1(µR)(a) g1(a)

)

(2)

≤
∑

a∈A
π1(µR)(a) f

(

π1(µL)(a)

π1(µR)(a)

)

= ∆ O

f (π1(µL), π1(µR))

(3)

≤ ∆ O

f (µL, µR) ≤ δ.

Step (1) amounts to showing that π1(µR)(g1) = π2(µR)(g2) and π1(µR)(g1) = π2(µR)(g2).
We prove each equality applying Proposition 5.17.i) and the premises of each application
are are discharged using hypotheses rangeRµR and g1 =R g2. Steps (2) and (3) are direct
applications of Proposition 5.13 and Lemma 5.2. �

Proof of Lemma 5.7. The proof proceeds by taking the witnes distributions from

µ1 L O

f,δ(R)µ2 to relate µ1 and µ2 by L O

f ′,δ′(R
′), and relies on the monotoniticy of the

f -divergences w.r.t. f (see Proposition 5.15.ii)) and the monotonicity of operator rangeR
w.r.t. predicate R. �

Proof of Lemma 5.8. Let µL ∈ D(A×B) (resp. µR) be a left (resp. right) witness for the

lifting µ1L O

f1,δ1
(R)µ2 and let ML : A×B → D(A′×B′) (resp. MR) map R1-related values

a, b to a right (resp. left) witness distribution for the lifting M1(a)L O

f2,δ2
(R2)M2(b). (The

action of ML and MR over pairs outside R1 is irrelevant for our purposes.) Then we have

i) rangeR1 µL ∧ rangeR1 µR;

ii) π1(µL) = µ1 ∧ π2(µR) = µ2;

101

Chapter 5. Security Analysis based on Arbitrary f-divergences

iii) ∆ O

f1
(µL, µR) ≤ δ1;

iv) aR1 b =⇒ rangeR2 ML(a, b) ∧ rangeR2 MR(a, b);

v) aR1 b =⇒ π1(ML(a, b)) = M1(a) ∧ π2(MR(a, b)) = M2(b);

vi) aR1 b =⇒ ∆ O

f2
(ML(a, b),MR(a, b)) ≤ δ2.

We claim that distributions bind µLML and bind µRMR are valid left and right witnesses

for the lifting (bind µ1M1)L O

f3,δ3
(R2) (bind µ2M2). First, properties rangeR2 (bind µLML)

and range R2 (bind µR MR) follow from Proposition 5.17.ii) and hypotheses i) and iv).
Second, in view of hypothesis ii), equality π1(bind µLML) = bind µ1 M1 can be restated
as π1(bindµLML) = bindπ1(µL)M1 and follows from an application of Proposition 5.17.i)
with hypotheses i) and v); equality π2(bind µR MR) = bind µ2M2 is shown with a similar

reasoning. Finally, the upper bound ∆ O

f3
(bind µLML, bind µR MR) ≤ δ3 is derived from

Proposition 5.18 using hypotheses i), iii) and vi). �

Proof of Lemma 5.9. Lemma 5.9 can be paraphrased by saying that µ L O

f,δ(R)µ′ if and

only if µIδf (R)µ′, where Iδf (R) is defined as in Proposition 5.19. To prove this equivalence

we adopt the alternative characterization of Iδf (R) given in Proposition 5.19.
“Only if” direction: Let µL, µR ∈ D(A×B) be a pair of right and left witnesses for the

lifting µ L O

f,δ(R)µ′; then we have

i) rangeR µL ∧ rangeR µR;

ii) π1(µL) = µ ∧ π2(µR) = µ′;

iii) ∆ O

f (µL, µR) ≤ δ.

The proof proceeds by taking the index set I = R and for each (α, β) ∈ I,

a(α,β) = α b(α,β) = β k(α,β) = µL(α, β) k′(α,β) = µR(α, β)

and showing that they satisfy properties µ =
∑

i∈I *ai+
ki , µ′ =

∑

i∈I *bi+
k′i , ai Rbi for all

i ∈ I and
∑

i∈I k
′
i f
(

ki
k′i

)

≤ δ. The first property about the decomposition of µ and µ′ is

derived from the reasoning below (and from a similar reasoning for the decomposition of
µ′):

∑

i∈I
*ai+

ki(a) =
∑

(α,β)∈R
*α+µL(α,β)(a) =

∑

(a,β)∈R
µL(a, β)

(1)
= π1(µL)(a)

(2)
= µ(a).

Here equalities (1) and (2) holds in view of hypotheses i) and ii), respectively. The second
property relating ai and bi is immediate from the definition of the index set I. The last

property
∑

i∈I k
′
i f
(

ki
k′i

)

≤ δ follows from hypotheses i) and iii).

“If” direction: Assume that µ and µ′ can be decomposed as µ =
∑

i∈I *ai+
ki and µ′ =

∑

i∈I *bi+
k′i for some index set I, ai in A, bi in B and ki, k

′
i in [0, 1], where ai Rbi for all

102

5.A. Appendix

i ∈ I and
∑

i∈I k
′
i f
(

ki
k′i

)

≤ δ. We conclude that µL O

f,δ(R)µ′ by showing that distributions

µL, µR ∈ D(A×B) defined as

µL(a, b)
def

=
∑

i∈I
(ai,bi)=(a,b)

ki and µR(a, b)
def

=
∑

i∈I
(ai,bi)=(a,b)

k′i

are valid left and right witnesses of the lifting. To prove that range R µL, consider a pair
(a, b) such that µL(a, b) > 0. There must exists an index i ∈ I such that ki > 0 and
(a, b) = (ai, bi). From hypothesis aiRbi for all i ∈ I we conclude that aR b, which entails
formula range R µL. In a similar way we show that rangeR µR. The equivalence between
π1(µL) and µ is justified as follows:

π1(µL)(a) =
∑

b∈B

∑

i∈I
(ai,bi)=(a,b)

ki =
∑

i∈I
ai=a

ki =
∑

i∈I
*ai+

ki (a) = µ(a).

We prove the counterpart equivalence π2(µR) = µ′ following a similar reasoning. Finally

the closeness condition ∆ O

f (µL, µR) ≤ δ is derived from the computations below.

∆ O

f (µL, µR) =
∑

(a,b)∈A×B
µR(a, b) f

(

µL(a, b)

µR(a, b)

)

=
∑

(a,b)∈A×B

(

∑

i∈I
(ai,bi)=(a,b)

k′i

)

f

∑

i∈I
(ai,bi)=(a,b)

ki
∑

i∈I
(ai,bi)=(a,b)

k′i

(1)

≤
∑

(a,b)∈A×B

∑

i∈I
(ai,bi)=(a,b)

k′i f
(

ki
k′i

)

=
∑

i∈I
k′i f

(

ki
k′i

)

≤ δ.

In the reasoning above, inequality (1) holds in view of Proposition 5.13. �

Proof of Theorem 5.10. The proof follows immediately from the definition of judgement
validity and an application of Lemma 5.5, taking as equivalence relation the equality over
program memories. �

Proof of Lemma 5.11. Assume that (f1, f2, γ) strongly-composes into f3 and let µ1, µ2 ∈
D(M) be a pair of distributions of initial memories such that ∆ O

f1
(µ1, µ2) ≤ δ1. Then, by

Lemma 5.5, we have

µ1 L O

f1,δ1(≡)µ2.

On the other hand, the validity of judgment c ∼f2,δ2 c : ≡ ⇒ ≡ states that for every pair
of memories m1,m2 ∈ M,

m1 ≡ m2 =⇒ (JcK m1) L O

f2,δ2(≡) (JcK m2).

103

Chapter 5. Security Analysis based on Arbitrary f-divergences

A direct application of Lemma 5.8 yields

(bind µ1 Jc1K) L O

f2,δ2(≡) (bind µ1 Jc2K),

which, on account of Lemma 5.5, gives the desired (f3, δ3)-closeness condition

∆ O

f3

(

JcK# µ1, JcK
µ2

)

≤ δ3. �

Proof of Lemma 5.12. The proof is straightforward from the definition of judgement va-
lidity and Proposition 5.6. �

104

6
Related Work and Conclusions

6.1 Related Work

Formal Verification of Hash Functions and Elliptic Curve Cryptography. De-
spite their widespread use, hash functions and elliptic curves have received little attention
from the formal verification community. To our best knowledge, our work from Chapter 3
provides the first machine-checked proof of security for a cryptographic primitive based on
elliptic curves, and the first proof of security for a cryptographic hash function.

Previous works on the formalization of elliptic curves include [Hurd et al., 2006] and
[Théry & Hanrot, 2007]. Hurd et al. report on the verification in HOL of the group axioms
and an application to the functional correctness of ElGamal encryption. Théry & Hanrot
use Coq to formalize the group axioms, and show how the formalization of elliptic curves
can be used to build efficient reflective tactics for testing primality.

Other works on the formalization of hash functions include [Backes et al., 2012] and
[Toma & Borrione, 2005]. Toma & Borrione use ACL2 to reason about functional proper-
ties of SHA-1, while Backes et al. use EasyCrypt [Barthe et al., 2011b] to prove that, under
certain assumptions, the Merkle-Damgård construction is collision-resistant and indiffer-
entiable from a random oracle.

Recently, Bacelar Almeida et al. [2012] has reported on a certified compiler of Zero-
Knowledge protocols. The verification is done in CertiCrypt and relies on the fragment of
α-pRHL used to reason about statistical distance.

Differential Privacy. There is a vast body of work on differential privacy; we refer,
e.g., to [Dwork, 2008, 2011] for an account of some of the latest developments in the field.
In particular, there have been several proposals of methods for reasoning about differen-
tial privacy on the basis of different languages and models of computation; these methods
are based on runtime verification, such as Pinq [McSherry, 2009] or Airavat [Roy et al.,
2010], type systems [Gaboardi et al., 2013; Reed & Pierce, 2010], or deductive verifica-
tion [Chaudhuri et al., 2011]. We briefly overview each of them and refer the reader

105

Chapter 6. Related Work and Conclusions

to [Pierce, 2012] for a survey thereof.

The Privacy Integrated Queries (Pinq) platform [McSherry, 2009] supports reasoning
about the privacy guarantees of programs in a simple SQL-like language. The reasoning
is based on the sensitivity of basic queries such as Select and GroupBy, the differential
privacy of building blocks such as NoisySum and NoisyAvg, and meta-theorems for their
sequential and parallel composition. Airavat [Roy et al., 2010] leverages these building
blocks for distributed computations based on MapReduce.

The linear type system of [Reed & Pierce, 2010] extends sensitivity analysis to a higher-
order functional language. By using a suitable choice of metric and probability monads,
the type system also supports reasoning about probabilistic, differentially private compu-
tations. In [Gaboardi et al., 2013] the type system is extended with dependent types to
reason about computations whose sensitivity depends on run-time information. As in Pinq,
the soundness of the type systems makes use of known composition theorems and relies on
assumptions about the sensitivity/differential privacy of nontrivial building blocks, such
as arithmetic operations, conditional swap operations, or the Laplacian mechanism. While
the type systems can handle functional data structures, they do not allow for analyzing
programs with conditional branching. Work on the automatic derivation of sensitivity
properties of imperative programs [Chaudhuri et al., 2011] addresses this problem and can
(in conjunction with the Laplacian mechanism) be used to derive differential privacy guar-
antees of programs with control flow.

In contrast to the above techniques, our framework supports reasoning about differ-
ential privacy guarantees from first principles. In particular, our extension of CertiCrypt
enabled us to prove (rather than to assume) the correctness of Laplacian, Gaussian and
Exponential mechanisms, and the differential privacy of complex interleavings of (not nec-
essarily differentially private) probabilistic computations. This comes at a price in au-
tomation; while the above systems are mostly automated, reasoning in α-pRHL in general
cannot be fully automated.

Tschantz et al. [2011] consider the verification of privacy properties based on I/O-
automata. They focus on the verification of the correct use of differentially private san-
itization mechanisms in interactive systems, where the effect of a mechanism is soundly
abstracted using a single, idealized transition. Our verification-based approach shares
many similarities with this method. In particular, their definition of differential privacy is
also based on a notion of lifting that closely resembles the one we use to define validity in
α-pRHL, and their unwinding-based verification method can be regarded as an abstract,
language-independent, equivalent of α-pRHL. However, their method, like the rest of the
reviewed techniques, is currently limited to reason about standard differential privacy; our
logic α-pRHL enables reasoning about both standard and approximate differential privacy.

Distance between Probabilistic Computations. The problem of computing the dis-
tance between two probabilistic computations has been addressed in different areas of
computer science, including machine learning, stochastic systems, and security.

Methods for computing the distance between probabilistic automata (PA) have been

106

6.1. Related Work

studied by Cortes et al. [2007, 2008]. Their work is motivated by machine learning appli-
cations and shows that it is possible to compute certain distance measures between PA
by solving a generalized version of the single-source shortest-path problem over weighted
graphs. This reduction is proved valid for the Kullback-Leibler divergence, the Hellinger
distance and the Lp distances, for even values of p; algorithms for computing exact values
and approximations of these distance measures are provided.

Quantitative versions of approximate (bi)simulation relations can also be used to en-
dow PA with a notion of distance. This approach has been investigated, among others, by
Segala & Turrini [2007] and by Tracol et al. [2011]. As our work, their (bi)simulation rela-
tions rest on a notion of approximate relation lifting. The simulation of Segala & Turrini
is carefully tailored to reason about cryptographic protocols and satisfies transitivity and
good compositionality properties. The (bi)simulation of Tracol et al. is less sophisticated
and admits a logical characterization. The liftings underlying both (bi)simulation relations
can be obtained as slight variants of our (α, δ)-lifting for the case α = 1.

Approximate probabilistic bisimulation has also been studied by Pierro et al. [2005] in
the context of quantitative information flow. In their work, probabilistic transition systems
are interpreted as bounded linear maps between Hilbert spaces and approximate bisimu-
lation is defined in terms of the norm of such maps; an statistical interpretation of their
notion of approximate bisimulation is also discussed. Recently, the connections between
quantitative information flow and differential privacy have been explored by Barthe & Köpf
[2011] and by Alvim et al. [2011].

The sequential composition operator of our probabilistic language expands errors in a
“controlled” manner (see f -pRHL rule [s-seq] in Figure 5.3). This behaviour of language
operators is connected with the notion of non-expansiveness from [Tini, 2010]. In his work,
Tini studies conditions that guarantee good compositionality properties of approximate
bisimulations w.r.t. the operators of probabilistic process algebras. These conditions are
given as syntactical constrains on the set of admissible rules for defining the semantics of
the operators.

Relational Program Verification. Program logics have a long tradition and have
been used effectively to reason about functional correctness of programs. In contrast,
the quantitative security notions that we consider in this dissertation are usually defined
as 2-safety properties [Clarkson & Schneider, 2010; Terauchi & Aiken, 2005], that is, (uni-
versally quantified) properties about two runs of a program. There have been several
proposals for applying program logics to 2-safety, but most of these proposals are confined
to deterministic programs.

Program products [Barthe et al., 2011a; Zaks & Pnueli, 2008] conflate two programs
into a single one embedding the semantics of both. Product programs allow reduc-
ing the verification of 2-safety properties to the verification of safety properties on the
product program, which can be done using standard program verification methods. Self-
composition [Barthe et al., 2004] is a specific instance of product programs.

Benton [2004] develops a relational Hoare logic (RHL) for a core imperative language

107

Chapter 6. Related Work and Conclusions

and shows how it can be used to reason about information flow properties and correct-
ness of compiler optimizations. Amtoft & Banerjee [2004] and Amtoft et al. [2006] develop
specialized relational logics for information flow. Backes et al. [2009] compute relational
weakest preconditions as a basis for quantifying information leaks. Further applications
of relational program verification include determinism [Burnim & Sen, 2009] and robust-
ness [Chaudhuri et al., 2011].

Barthe et al. [2009b] extend Benton’s logic to a probabilistic setting (pRHL) and use
this logic for verifying game-based cryptographic proofs in the interactive proof-assistant
Coq (see Chapter 2). In order to increase the automation level of these proofs, Barthe et al.
[2011b] develop EasyCrypt, a tool that verifies automatically pRHL judgments using SMT
solvers and a verification condition generator. In a follow-up work, Barthe et al. [2013a]
extend EasyCrypt with support for reasoning about α-pRHL judgments and probabilistic
operators. This extension is used to build automated proofs of differential privacy for some
of the case studies reported in Chapter 4 and interactive game-based proofs of computa-
tional differential privacy for 2-party computations [Mironov et al., 2009].

Probabilistic Program Verification. Reif [1980], Kozen [1985] and Feldman & Harel
[1984] were among the first to develop axiomatic logics for probabilistic computations.
This line of work was further developed by Jones [1993], Morgan et al. [1996], den Hartog
[1999], and more recently by Chadha et al. [2007]. Although their expressiveness varies,
these logics are sufficiently expressive to reason about the probability of events in distri-
butions generated by probabilistic programs. For instance, these logics have been used
for proving termination of random walks, and correctness of probabilistic primality tests.
As generalizations of Hoare logics, these logics are tailored towards trace properties rather
than 2-safety properties. It should be possible to develop relational variants of these logics
or to use self-composition for reasoning about (quantitative) 2-safety properties.

Hurd was among the first to develop a machine-checked framework to reason about
probabilistic programs [Hurd, 2003; Hurd et al., 2005]. His formalization is based on the
standard notion of σ-algebra, and partly follows earlier formalizations in Mizar. Building on
Hurd’s work, Coble [2010] and Mhamdi et al. [2010, 2011] formalized integration theory in
the HOL proof assistant. Coble [2008] also used the formalization to reason about privacy
of solutions to the Dining Cryptographers problem. In contrast, our work is based on the
ALEA library [Audebaud & Paulin-Mohring, 2009], which follows a monadic approach to
discrete probabilities. The library has been used to formally verify several examples of
probabilistic termination; more recently, it has also been used to reason about the security
of watermarking algorithms.

6.2 Conclusion and Future Work

From a technological perspective, the last few years have been marked by a steady increase
in the sensitivity of the tasks that we entrust to computer systems. As a result, providing
trustworthiness guarantees for these systems has become a primary concern. Designed

108

6.2. Conclusion and Future Work

to ensure the highest level of assurance, the verified security methodology has proved an
effective approach in this regard. However, it has been limited to the verification of a
reduced number of security properties in the area of cryptography. In this dissertation,
we have pushed the methodology’s boundaries to allow for the formal, computer-aided
analysis of an important class of quantitative security properties that remained out of its
scope.

More specifically, we have focused on quantitative 2-safety properties, which require
reasoning simultaneously about two different runs of a system and establishing a (quan-
titative) similarity condition between them. In order to verify this kind of properties, we
have adopted a deductive approach: we model systems as probabilistic imperative programs
and we follow Benton’s approach of using relational Hoare logics to reason about 2-safety
properties; we use the Coq proof assistant to discharge the generated proof obligations.

Our main technical contribution is f -pRHL, a quantitative relational Hoare logic for
reasoning about f -divergences between probabilistic programs. f -divergences are a well-
studied family of distance measures between probability distributions and serve as our
basis for comparing program executions; the comparison is specified as an upper bound for
the distance between the outputs generated by the executions of two programs, modulo
relational pre and post-condition.

This program logic provides a uniform approach for reasoning about an important class
of quantitative security notions such as differential privacy, approximate probabilistic non-
interference and indifferentiability. Nevertheless, in order to make the presentation more
incremental, we have introduced different quantitative logics aimed at reasoning about
specific program properties and then we have shown how they can be recovered from our
full-fledged relation Hoare logic f -pRHL.

We have confirmed the effectiveness of our approach through several case studies that
have been fully formalized in Coq, using an extension of CertiCrypt. These case studies con-
cisely illustrate some remarkable features of our approach. The case study of Chapter 3
demonstrates that our framework admits security analyses that involve specialized and
complex reasonings from specific fields and blends well with large mathematical libraries.
The case studies of Chapter 4 show that our technique for reasoning about differential
privacy improves on the scope of all previous techniques. These techniques are resticted to
standard differential privacy and algorithms that achieve privacy by combining basic mech-
anisms thorough sequential or parallel composition; instead, our program logic f -pRHL
(or its framgment α-pRHL) can handle both standard and approximate differential privacy
as well as algorithms that achieve privacy in an ad-hoc manner.

The scope of our logic f -pRHL is not limited to the verification of security properties,
only. It can be used to reason in general about any property that is stated as a closeness
condition between the output generated by two executions of a program (or eventually
two different programs) modulo relational pre-condition; formally this corresponds to the
class of quantitative 2-safety properties captured by formula (5.3). It remains as future
work to investigate further applications of the logic outside the realm of security. Due to
the extensive use that they make of f -divergences, we beleive that machine learning and

109

Chapter 6. Related Work and Conclusions

information theory would be fruitful areas to explore.
Another application of the logic that would be beneficial to investigate is the continuity

analysis of (probabilistic) programs. The major challenge here is to account for the situa-
tion where perturbations in a program input lead to divergent control-flows. A promising
starting point would be the work of Chaudhuri et al. [2010, 2011], who have studied this
problem for the case of deterministic programs.

Besides exploring further applications of our framework, we believe that there is still
much room for its improvement. One remarkable property of our framework is its generality
and flexibility to reason about relational properties from first principles. Unfortunately, this
affects negatively its automation capabilities. We believe that important future research
efforts should focus on this direction. A first step has already been taken by Barthe et al.
[2013a, 2011b] who combine the use of SMT solvers and a verification condition generator
to somewhat automate the reasoning about pRHL and α-pRHL judgments; the task of
generating invariants for handling loops is, however, fully delegated to the user. There is
a vast body of work on invariant inference; it would be interesting to study how we can
transpose this work to our (probabilistic relational) setting.

Another limitation of our framework is its confinement to the analysis of programs
that sample values from discrete domains. This is because CertiCrypt, the base of our
formalization, builds on the representation of distributions provided by the ALEA li-
brary [Audebaud & Paulin-Mohring, 2009], which cannot model continuous distributions.
The applicability of our framework could be significantly broadened if we extend this li-
brary to continuous distributions.

110

Bibliography

Ali, S. M. & Silvey, S. D. (1966). A general class of coefficients of divergence of one distri-
bution from another. Journal of the Royal Statistical Society. Series B (Methodological)
28(1), 131–142.

Alvim, M., S., Andres, M., E., Chatzikokolakis, K. & Palamidessi, C. (2011). On the
relation between Differential Privacy and Quantitative Information Flow. In: 38th In-
ternational Colloquium on Automata, Languages and Programming - ICALP 2011, vol.
6756 of Lecture Notes in Computer Science. Springer.

Amtoft, T., Bandhakavi, S. & Banerjee, A. (2006). A logic for information flow in object-
oriented programs. In: 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2006. New York: ACM.

Amtoft, T. & Banerjee, A. (2004). Information flow analysis in logical form. In: SAS.

Audebaud, P. & Paulin-Mohring, C. (2009). Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589.

Bacelar Almeida, J., Barbosa, M., Bangerter, E., Barthe, G., Krenn, S. & Zanella Béguelin,
S. (2012). Full proof cryptography: verifiable compilation of efficient zero-knowledge pro-
tocols. In: Proceedings of the 2012 ACM conference on Computer and communications
security, CCS ’12. ACM.

Backes, M., Barthe, G., Berg, M., Grégoire, B., Kunz, C., Skoruppa, M. & Zanella Béguelin,
S. (2012). Verified security of Merkle-Damgård. In: 25th IEEE Computer Security
Foundations Symposium, CSF 2012. IEEE Computer Society.

Backes, M., Köpf, B. & Rybalchenko, A. (2009). Automatic discovery and quantification
of information leaks. In: 30th IEEE Symposium on Security and Privacy, S&P 2009.
IEEE Computer Society.

Barthe, G., Crespo, J. M. & Kunz, C. (2011a). Relational verification using product
programs. In: Proceedings of the 17th international conference on Formal methods,
FM’11. Berlin, Heidelberg: Springer-Verlag.

Barthe, G., Danezis, G., Grégoire, B., Kunz, C. & Béguelin, S. Z. (2013a). Verified com-
putational differential privacy with applications to smart metering. In: 26th IEEE
Computer Security Foundations Symposium, CSF 2013. IEEE Computer Society.

111

Bibliography

Barthe, G., D’Argenio, P. & Rezk, T. (2004). Secure information flow by self-composition.
In: 17th IEEE Workshop on Computer Security Foundations, CSFW 2004. Washington:
IEEE Computer Society.

Barthe, G., Grégoire, B., Heraud, S. & Zanella Béguelin, S. (2009a). Formal certification
of ElGamal encryption. A gentle introduction to CertiCrypt. In: 5th International
Workshop on Formal Aspects in Security and Trust, FAST 2008, vol. 5491 of Lecture
Notes in Computer Science. Heidelberg: Springer.

Barthe, G., Grégoire, B., Heraud, S. & Zanella-Béguelin, S. (2011b). Computer-aided
security proofs for the working cryptographer. In: Advances in Cryptology – CRYPTO
2011, vol. 6841 of Lecture Notes in Computer Science. Heidelberg: Springer.

Barthe, G., Grégoire, B., Lakhnech, Y. & Zanella Béguelin, S. (2011c). Beyond provable
security. Verifiable IND-CCA security of OAEP. In: Topics in Cryptology – CT-RSA
2011, vol. 6558 of Lecture Notes in Computer Science. Heidelberg: Springer.

Barthe, G., Grégoire, B. & Zanella-Béguelin, S. (2009b). Formal certification of code-based
cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009. New York: ACM.

Barthe, G., Grégoire, B. & Zanella Béguelin, S. (2010). Programming language techniques
for cryptographic proofs. In: 1st International Conference on Interactive Theorem Prov-
ing, ITP 2010, vol. 6172 of Lecture Notes in Computer Science. Heidelberg: Springer.

Barthe, G. & Köpf, B. (2011). Information-theoretic bounds for differentially private
mechanisms. In: 24rd IEEE Computer Security Foundations Symposium, CSF 2011.
Los Alamitos: IEEE Computer Society.

Barthe, G., Köpf, B., Olmedo, F. & Zanella-Béguelin, S. (2012). Probabilistic relational
reasoning for differential privacy. In: 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012. New York: ACM.

Barthe, G., Köpf, B., Olmedo, F. & Zanella-Béguelin, S. (2013b). Probabilistic relational
reasoning for differential privacy. ACM Transactions on Programming Languages and
Systems 35(3).

Barthe, G., Olmedo, F. & Zanella Béguelin, S. (2011d). Verifiable security of Boneh-
Franklin identity-based encryption. In: 5th International Conference on Provable Secu-
rity, ProvSec 2011, vol. 6980 of Lecture Notes in Computer Science. Heidelberg: Springer.

Bartzia, E.-I. (2011). A Formalization of Ellptic Curves. Master’s thesis, Université de
Vincennes-Saint Denis – Paris VIII.

Bellare, M. & Rogaway, P. (1993). Random oracles are practical: a paradigm for designing
efficient protocols. In: 1st ACM Conference on Computer and Communications Security,
CCS 1993. New York: ACM.

112

Bibliography

Bellare, M. & Rogaway, P. (2006). The security of triple encryption and a framework for
code-based game-playing proofs. In: Advances in Cryptology – EUROCRYPT 2006, vol.
4004 of Lecture Notes in Computer Science. Heidelberg: Springer.

Benton, N. (2004). Simple relational correctness proofs for static analyses and program
transformations. In: 31st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2004. New York: ACM.

Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H. & Tibouchi, M. (2010).
Efficient indifferentiable hashing into ordinary elliptic curves. In: Advances in Cryptology
– CRYPTO 2010, vol. 6223 of Lecture Notes in Computer Science. Springer.

Burnim, J. & Sen, K. (2009). Asserting and checking determinism for multithreaded
programs. In: ESEC/SIGSOFT FSE.

Canetti, R., Goldreich, O. & Halevi, S. (2004). The random oracle methodology, revisited.
J. ACM 51(4), 557–594.

Chadha, R., Cruz-Filipe, L., Mateus, P. & Sernadas, A. (2007). Reasoning about proba-
bilistic sequential programs. Theoretical Computer Science 379(1-2), 142–165.

Chan, T.-H. H., Shi, E. & Song, D. (2010). Private and continual release of statistics. In:
37th International colloquium on Automata, Languages and Programming, ICALP 2010,
vol. 6199 of Lecture Notes in Computer Science. Heidelberg: Springer.

Chaudhuri, S., Gulwani, S. & Lublinerman, R. (2010). Continuity analysis of programs.
In: Proceedings of the 37th annual ACM SIGPLAN-SIGACT Symposium on Principles
of programming languages. New York, NY, USA: ACM.

Chaudhuri, S., Gulwani, S., Lublinerman, R. & Navidpour, S. (2011). Proving programs
robust. In: 19th ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing and 13rd European Software Engineering Conference, ESEC/FSE 2011. New York:
ACM.

Clarkson, M. R. & Schneider, F. B. (2010). Hyperproperties. Journal of Computer Security
18(6), 1157–1210.

Coble, A. R. (2008). Formalized information-theoretic proofs of privacy using the hol4
theorem-prover. In: Privacy Enhancing Technologies.

Coble, A. R. (2010). Anonymity, information, and machine-assisted proof. Tech.
Rep. UCAM-CL-TR-785, University of Cambridge, Computer Laboratory. URL
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-785.pdf.

Cortes, C., Mohri, M. & Rastogi, A. (2007). Lp distance and equivalence of probabilistic
automata. Int. J. Found. Comput. Sci. 18(4), 761–779.

113

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-785.pdf

Bibliography

Cortes, C., Mohri, M., Rastogi, A. & Riley, M. (2008). On the computation of the relative
entropy of probabilistic automata. Int. J. Found. Comput. Sci. 19(1), 219–242.

Csiszár, I. (1963). Eine informationstheoretische ungleichung und ihre anwendung auf
den beweis der ergodizitat von markoffschen ketten. Publications of the Mathematical
Institute of the Hungarian Academy of Science 8, 85–108.

den Hartog, J. (1999). Verifying probabilistic programs using a hoare like logic. In: ASIAN.

Deng, Y. & Du, W. (2011). Logical, metric, and algorithmic characterisations of proba-
bilistic bisimulation. Tech. Rep. CMU-CS-11-110, Carnegie Mellon University.

Deng, Y., Glabbeek, R., Hennessy, M. & Morgan, C. (2009). Testing finitary probabilistic
processes. In: CONCUR 2009 - Concurrency Theory, vol. 5710 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, pp. 274–288.

Desharnais, J., Laviolette, F. & Tracol, M. (2008). Approximate analysis of probabilistic
processes: Logic, simulation and games. In: 5th International Conference on Quantita-
tive Evaluation of Systems, QEST 2008. IEEE Computer Society.

Dwork, C. (2006). Differential privacy. In: 33rd International Colloquium on Automata,
Languages and Programming, ICALP 2006, vol. 4052 of Lecture Notes in Computer
Science. Heidelberg: Springer.

Dwork, C. (2008). Differential privacy: A survey of results. In: Theory and Applications
of Models of Computation, vol. 4978 of Lecture Notes in Computer Science. Heidelberg:
Springer.

Dwork, C. (2011). A firm foundation for private data analysis. Commun. ACM 54(1),
86–95.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I. & Naor, M. (2006a). Our data,
ourselves: Privacy via distributed noise generation. In: Advances in Cryptology – EU-
ROCRYPT 2006, vol. 4004 of Lecture Notes in Computer Science. Heidelberg: Springer.

Dwork, C., McSherry, F., Nissim, K. & Smith, A. (2006b). Calibrating noise to sensitivity
in private data analysis. In: 3rd Theory of Cryptography Conference, TCC 2006, vol.
3876 of Lecture Notes in Computer Science. Heidelberg: Springer.

Dwork, C., Rothblum, G. N. & Vadhan, S. P. (2010). Boosting and differential privacy.
In: Symposium on Foundations of Computer Science – FOCS 2010. IEEE.

Ebanks, B., Sahoo, P. & Sander, W. (1998). Characterizations of Information Measures.
World Scientific.

Feldman, Y. A. & Harel, D. (1984). A probabilistic dynamic logic. J. Comput. Syst. Sci.
28(2), 193–215.

114

Bibliography

Fleischmann, E., Gorski, M. & Lucks, S. (2010). Some observations on indifferentiability.
In: Information Security and Privacy, vol. 6168 of Lecture Notes in Computer Science.
Heidelberg: Springer.

Fouque, P.-A. & Tibouchi, M. (2010). Deterministic encoding and hashing to odd hyperel-
liptic curves. In: 4th International Conference on Pairing-Based Cryptography, Pairing
2010, vol. 6487 of Lecture Notes in Computer Science. Heidelberg: Springer.

Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A. & Pierce, B. C. (2013). Linear depen-
dent types for differential privacy. In: 40th ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages, POPL 2013. New York: ACM.

Galindo, D. (2005). Boneh-Franklin identity based encryption revisited. In: 32nd Interna-
tional Colloquium on Automata, Languages and Programming, ICALP 2005,, vol. 3580
of Lecture Notes in Computer Science. Heidelberg: Springer.

Goguen, J. A. & Meseguer, J. (1982). Security policies and security models. In: IEEE
Symposium on Security and Privacy.

Goldreich, O. (2002). Zero-knowledge twenty years after its invention. Tech. Rep. TR02-
063, Electronic Colloquium on Computational Complexity.

Goldwasser, S. & Micali, S. (1984). Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299.

Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E. & Théry, L. (2007). A modular formal-
isation of finite group theory. In: 20th International Conference on Theorem Proving in
Higher Order Logics, TPHOLs 2007, vol. 4732 of Lecture Notes in Computer Science.
Heidelberg: Springer.

Gupta, A., Ligett, K., McSherry, F., Roth, A. & Talwar, K. (2010). Differentially pri-
vate combinatorial optimization. In: 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010. SIAM.

Haeberlen, A., Pierce, B. C. & Narayan, A. (2011). Differential privacy under fire. In: 20th
USENIX Security Symposium. Berkeley: USENIX Association.

Hankerson, D., Vanstone, S. & Menezes, A. (2004). Guide to Elliptic Curve Cryptography.
Springer Professional Computing. Springer.

Hartshorne, R. (1977). Algebraic Geometry. Graduate Texts in Mathematics. Springer-
Verlag.

Hurd, J. (2003). Formal verification of probabilistic algorithms. Tech. Rep.
UCAM-CL-TR-566, University of Cambridge, Computer Laboratory. URL
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-566.pdf.

115

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-566.pdf

Bibliography

Hurd, J., Gordon, M. & Fox, A. (2006). Formalized elliptic curve cryptography. In: High
Confidence Software and Systems, HCSS 2006.

Hurd, J., McIver, A. & Morgan, C. (2005). Probabilistic guarded commands mechanized
in HOL. Theor. Comput. Sci. 346(1), 96–112.

Icart, T. (2009). How to hash into elliptic curves. In: Advances in Cryptology – CRYPTO
2009, vol. 5677 of Lecture Notes in Computer Science. Springer.

Icart, T. (2010). Algorithms Mapping into Elliptic Curves and Applications. Ph.D. thesis,
Université du Luxembourg.

Jones, C. (1993). Probabilistic Non-Determinism. Ph.D. thesis, University of Edinburgh.

Jonsson, B., Yi, W. & Larsen, K. G. (2001). Probabilistic extensions of process algebras. In:
Handbook of Process Algebra (Bergstra, J., Ponse, A. & Smolka, S., eds.). Amsterdam:
Elsevier, pp. 685–710.

Kifer, D. & Lin, B.-R. (2010). Towards an axiomatization of statistical privacy and util-
ity. In: 29th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of database
systems, PODS ’10. New York: ACM.

Kozen, D. (1985). A probabilistic pdl. J. Comput. Syst. Sci. 30(2), 162–178.

Maurer, U., Renner, R. & Holenstein, C. (2004). Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: 1st Theory of
Cryptography Conference, TCC 2004, vol. 2951 of Lecture Notes in Computer Science.
Heidelberg: Springer.

McSherry, F. & Talwar, K. (2007). Mechanism design via differential privacy. In: 48th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2007. Washington:
IEEE Computer Society.

McSherry, F. D. (2009). Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: 35th SIGMOD International Conference on Management
of Data, SIGMOD 2009. New York: ACM.

Mhamdi, T., Hasan, O. & Tahar, S. (2010). On the formalization of the lebesgue integration
theory in hol. In: ITP.

Mhamdi, T., Hasan, O. & Tahar, S. (2011). Formalization of entropy measures in hol. In:
ITP.

Mironov, I., Pandey, O., Reingold, O. & Vadhan, S. (2009). Computational differential
privacy. In: Advances in Cryptology – CRYPTO 2009, vol. 5677 of Lecture Notes in
Computer Science. Heidelberg: Springer.

116

Bibliography

Morgan, C., McIver, A. & Seidel, K. (1996). Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353.

Nikolov, A., Talwar, K. & Zhang, L. (2012). The geometry of differential privacy: the
sparse and approximate cases. CoRR abs/1212.0297.

Nowak, D. (2009). On formal verification of arithmetic-based cryptographic primitives.
In: 11th International Conference on Information Security and Cryptology, ICISC 2008,
vol. 5461 of Lecture Notes in Computer Science. Springer.

Pardo, M. & Vajda, I. (1997). About distances of discrete distributions satisfying the data
processing theorem of information theory. Information Theory, IEEE Transactions on
43(4), 1288–1293.

Pierce, B. C. (2012). Differential privacy in the programming languages community. Invited
tutorial at DIMACS Workshop on Recent Work on Differential Privacy across Computer
Science.

Pierro, A. D., Hankin, C. & Wiklicky, H. (2005). Measuring the confinement of probabilistic
systems. Theor. Comput. Sci. 340(1), 3–56.

Pitt, L. (1985). A simple probabilistic approximation algorithm for vertex cover. Tech.
Rep. TR-404, Yale University.

Reed, J. & Pierce, B. C. (2010). Distance makes the types grow stronger: a calculus for
differential privacy. In: 15th ACM SIGPLAN International Conference on Functional
programming, ICFP 2010. New York: ACM.

Reif, J. H. (1980). Logics for probabilistic programming (extended abstract). In: STOC.

Ristenpart, T., Shacham, H. & Shrimpton, T. (2011). Careful with composition: Limita-
tions of the indifferentiability framework. In: Advances in Cryptology – EUROCRYPT
2011, vol. 6632 of Lecture Notes in Computer Science. Heidelberg: Springer.

Rockafellar, R. (1997). Convex Analysis. Princeton mathematical series. Princeton Uni-
versity Press.

Roy, I., Setty, S. T. V., Kilzer, A., Shmatikov, V. & Witchel, E. (2010). Airavat: security
and privacy for MapReduce. In: 7th USENIX Conference on Networked Systems Design
and Implementation, NSDI 2010. Berkeley: USENIX Association.

Sahai, A. & Vadhan, S. (1999). Manipulating statistical difference. In: Randomization
Methods in Algorithm Design, DIMACS Workshop, 1997, vol. 43 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science. American Mathematical
Society.

117

Bibliography

Segala, R. & Turrini, A. (2007). Approximated computationally bounded simulation rela-
tions for probabilistic automata. In: 20th IEEE Computer Security Foundations Sym-
posium, CSF 2007. IEEE Computer Society.

Shallue, A. & van de Woestijne, C. (2006). Construction of rational points on elliptic curves
over finite fields. In: 7th International Symposium on Algorithmic Number Theory,
ANTS-VII, vol. 4076 of Lecture Notes in Computer Science. Heidelberg: Springer.

Shoup, V. (2001). OAEP reconsidered. In: Advances in Cryptology – CRYPTO 2001, vol.
2139 of Lecture Notes in Computer Science. Heidelberg: Springer.

Shoup, V. (2004). Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332.

Shoup, V. (2009). A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, second ed.

Silverman, J. H. (2009). The Arithmetic of Elliptic Curves, vol. 106 of Graduate Texts in
Mathematics. Heidelberg: Springer, 2nd ed.

Steinberger, J. (2012). Improved security bounds for key-alternating ciphers via hellinger
distance. Cryptology ePrint Archive, Report 2012/481. http://eprint.iacr.org/.

Terauchi, T. & Aiken, A. (2005). Secure information flow as a safety problem. In: 12th
International Symposium on Static Analysis, SAS 2005, vol. 3672 of Lecture Notes in
Computer Science. Heidelberg: Springer.

The Coq development team (2010). The Coq Proof Assistant Reference Manual Version
8.3. Online – http://coq.inria.fr.

Théry, L. & Hanrot, G. (2007). Primality proving with elliptic curves. In: 20th Interna-
tional Conference on Theorem Proving in Higher Order Logics, TPHOLs 2007, vol. 4732
of Lecture Notes in Computer Science. Heidelberg: Springer.

Tini, S. (2010). Non-expansive ǫ-bisimulations for probabilistic processes. Theoretical
Computer Science 411(22-24), 2202–2222.

Toma, D. & Borrione, D. (2005). Formal verification of a SHA-1 circuit core using ACL2.
In: 18th International Conference on Theorem Proving in Higher Order Logics, TPHOLs
2005, vol. 3603 of Lecture Notes in Computer Science. Heidelberg: Springer.

Tracol, M., Desharnais, J. & Zhioua, A. (2011). Computing distances between probabilistic
automata. In: Proceedings of QAPL, vol. 57 of EPTCS.

Tschantz, M. C., Kaynar, D. & Datta, A. (2011). Formal verification of differential privacy
for interactive systems. Electronic Notes in Theoretical Computer Science 276, 61–79.

118

http://eprint.iacr.org/
http://coq.inria.fr

Bibliography

van Tiel, J. (1984). Convex analysis: an introductory text. Wiley.

Zaks, A. & Pnueli, A. (2008). Covac: Compiler validation by program analysis of the
cross-product. In: FM.

Zanella Béguelin, S. (2010). Formal Certification of Game-Based Cryptographic Proofs.
Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris – Mines ParisTech.

Zanella Béguelin, S., Grégoire, B., Barthe, G. & Olmedo, F. (2009). Formally certifying
the security of digital signature schemes. In: 30th IEEE Symposium on Security and
Privacy, S&P 2009. Los Alamitos: IEEE Computer Society.

119

	Abstract
	Abstract (Spanish Version)
	Introduction
	Problem Overview
	Dissertation Contributions
	Dissertation Outline

	CertiCrypt Overview
	Representation of Distributions
	The pWhile Language
	Adversarial Model
	Reasoning Tools

	Security Analysis based on the Statistical Distance
	Statistical Distance
	Weak Notions of Program Equivalence
	A Logic for Bounding the Statistical Distance
	Approximate Observational Equivalence

	Indifferentiable Hash Functions into Elliptic Curves
	Construction of Indifferentiable Hash Functions
	Application to Elliptic Curves

	Security Analysis based on the bold0mu mumu 2005/06/28 ver: 1.3 subfig package-distance
	Preliminaries
	Skewed Distance between Distributions
	Differential Privacy
	Approximate Lifting of Relations to Distributions

	Approximate Relational Hoare Logic
	Validity and Privacy
	Logic
	An Asymmetric Variant of -pRHL
	Sequential and Parallel Composition Theorems

	Case Studies
	Laplacian, Gaussian and Exponential Mechanisms
	Statistics over Streams
	k-Median
	Minimum Vertex Cover

	Appendix
	Auxiliary Lemmas
	Proofs

	Security Analysis based on Arbitrary -divergences
	Preliminaries
	The Family of f-divergences
	The Composition of f-divergences
	Lifting Relations to Distributions

	A Relational Logic for f-divergences
	Judgments
	Proof System
	Symmetric Logic

	Appendix
	Auxiliary Lemmas
	Proofs

	Related Work and Conclusions
	Related Work
	Conclusion and Future Work

	Bibliography

