
An introduction to relational
program verification

Suggested Citation: Gilles Barthe (2020), “An introduction to relational program
verification”, : Vol. xx, No. xx, pp 1–1. DOI: 10.1561/XXXXXXXXX.

Gilles Barthe

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

Contents

1 An introduction to relational verification 2

I Deterministic computations 4

2 First-order logic 5

3 The While programming language 6
3.1 Syntax . 6

3.1.1 Types . 6
3.1.2 Expressions . 7
3.1.3 Statements . 8

3.2 Semantics . 9
3.2.1 Types . 9
3.2.2 Memories . 10
3.2.3 Expressions . 10
3.2.4 Statements . 11

3.3 Instrumented semantics 12
3.3.1 Control flow . 13
3.3.2 Cost . 13

4 Hoare Logic 15
4.1 Assertions . 15
4.2 Judgments . 15
4.3 Proof system . 16

4.3.1 Structural rules 16
4.4 Soundness and relative completeness 17
4.5 Verification condition generation 17
4.6 Examples . 18

4.6.1 Exponentiation 18
4.6.2 Fast exponentiation 20
4.6.3 Sums . 20

5 Relational Hoare Logic 22
5.1 Relational assertions . 22
5.2 Judgments . 23
5.3 Proof system . 23

5.3.1 Structural rules 24
5.3.2 Two-sided rules 25
5.3.3 One-sided rules 27
5.3.4 Soundness and relative completeness 28

5.4 Verification condition generation 29
5.5 Comparison with product programs 30

5.5.1 Sequential product program 31
5.5.2 Synchronous product program 32
5.5.3 Relational Hoare Logic with explicit product programs 33

6 Equivalence and robustness 37
6.1 Simple examples . 37
6.2 Translation validation . 39
6.3 More examples with a general rule for loops 39
6.4 Sensitivity . 40

7 Information flow and program counter security 41
7.1 Information flow . 41

7.1.1 Non-interference from relational Hoare logic 42
7.1.2 Automating non-interference proofs 42

7.1.3 Embedding information flow typing 44
7.2 Program counter security 45

7.2.1 Secure comparison 47
7.2.2 Square-and-always multiply 48
7.2.3 Finding smallest value in array and insertion sort . 50
7.2.4 Square and multiply 50

8 Relative cost 53

9 Cartesian Hoare Logic 54

II Probabilistic computations 55

10 Probability sub-distributions 56
10.1 Distributions . 56
10.2 Monadic structure of distributions 57
10.3 The partial order of sub-distributions 57
10.4 Expectation . 58

11 The pWhile programming language 59
11.1 Syntax . 59

11.1.1 Types . 59
11.1.2 Expressions . 59
11.1.3 Statements . 60

11.2 Semantics . 61
11.2.1 Types . 61
11.2.2 Expressions . 61
11.2.3 Statements . 61

11.3 Termination . 63
11.4 Further reading . 64

12 Union Bound Logic 65
12.1 Judgments and validity 65
12.2 Soundness and completeness 68
12.3 Examples . 68
12.4 Further reading . 68

13 Probabilistic couplings 70
13.1 Definition . 70
13.2 Basic properties . 71
13.3 Bijective couplings . 73
13.4 From couplings to probabilistic inequalities 74
13.5 Closure properties . 77
13.6 Strassen’s Theorem and limits of couplings 78
13.7 An inductive characterization of R-liftings 79
13.8 Further reading . 80

14 Probabilistic Relational Hoare Logic 81

15 Probabilistic non-interference 82

16 Probabilistic product programs 83

III Adversarial computations 84

17 Adversaries 85

18 The PRF/PRP Switching Lemma 86

19 Encryption 87

20 Signatures 88

IV Epilogue 89

21 Conclusion 90

References 91

An introduction to relational
program verification
Gilles Barthe1

1Max Planck Institute for Security and Privacy

ABSTRACT

Gilles Barthe (2020), “An introduction to relational program verification”, : Vol. xx,
No. xx, pp 1–1. DOI: 10.1561/XXXXXXXXX.

1
An introduction to relational verification

Program verification has traditionally focused on the class of trace
properties. One of the most fundamental trace property is (functional)
correctness. Informally, and excluding for now the possibility that pro-
gram executions may go wrong or not terminate, a program is correct if
its output as expected. The notion of expected output can take several
meanings: it may mean that the output is a mathematical function of
its input (for instance it takes as input a list and outputs the list sorted
in ascending order) or is appropriately related to the input (for instance
it takes as input a list and outputs a position that holds a position of
the list that holds a minimal element of that list—if such an element
exists). These different meanings can be made precise using assertions.
Informally, an assertion is a logical formula Φ that defines a subset of
program states. Different notions of correctness can then be captured
by triples of the form c : Φ ⇒ Ψ, stating that every execution of a
statement c started with an initial state which satisfies the assertion Φ,
called pre-condition, concludes with a final state that satisfies the asser-
tion Ψ, called the post-condition. Hoare Logic provides a proof system
for reasoning about such triples. The proof system is compositional, i.e.
a triple about statement c can be derived from properties of fragments

2

3

of c. The next chapter provides a brief account of Hoare logic.
However, many program properties from the literature escape the

class of trace properties. An important class of properties that go beyond
trace properties are so-called relational properties. These properties
consider pairs of executions. These executions can be of the same
program with different inputs or of two different programs with equal or
different inputs. Arguably, the most fundamental relational property is
program equivalence: two programs are equivalent iff they produce the
same output when executed on the same input. Relational properties
also play a very prominent role in reasoning about program security. For
instance, consider a setting where variables are either public or secrets;
in such a setting, we may require that programs are non-interfering, i.e.
the final values of public variables should not leak information about
the initial values of secret variables. This can be made more precise
by requiring every two executions starting from initial states whose
public values coincide terminate in final states whose public values also
coincide. We can make the statement precise using relational assertions.
In the same way that assertions are logical formulae Φ that define
a subset of program states, relational assertions are formulae Φ that
define a relation on program states. We can then consider quadruples
of the form c1 ∼ c2 : Φ ⇒ Ψ, stating that every pair of executions
of statements c1 and c2 started with initial states which satisfy the
relational assertion Φ, called relational pre-condition, concludes with
final states that satisfiy the relational assertion Ψ, called the relational
post-condition. For instance, program equivalence is modelled as

c1 ∼ c2 : =⇒ =

where = denotes equality of states, whereas non-interference is modelled
as

c ∼ c : =L ⇒ =L
where =L relates pairs of states that coincide on their public variables.

Part I

Deterministic
computations

2
First-order logic

5

3
The While programming language

We consider a core imperative language While with assignments, se-
quencing, conditionals and while loops. We give denotational semantics
for statements of the language. Moreover, we introduce instrumented
semantics to reason about control flow and cost of statements. Our
semantics uses elementary mathematical tools; more elegant (but equiv-
alent) definitions of the semantics can be obtained using basic tools
from domain theory, and monads.

3.1 Syntax

3.1.1 Types

Our programming language is simply typed, i.e. types are built from
base types and constructors. Examples of base types are booleans and
integers; examples of type constructors include lists and finite maps.

Definition 3.1 (Types). Let T0 be a set of base types and let CT be a
set of type constructors, such that each element T ∈ CT has an arity
k ∈ N. The set T of types is defined by the following syntax:

6

3.1. Syntax 7

σ ::= b base type
| T (σ1, . . . , σn) type constructor

3.1.2 Expressions

Expressions of the language are deterministic and built from variables
and operators. Examples of operators include the usual constants and
operations for arithmetic, lists, finite maps, etc.

Definition 3.2 (Expressions). Let Op be a set of operators. We assume
that every operator f ∈ Op comes with a declaration of the form
f : σ1× . . .×σn → τ that determines the number and types of elements
it takes, and the type of the output. Moreover, let Vars be a set
of variables. We assume that each variable x comes equipped with a
declaration of the form x : σ that defines its type. The set Expr of
expressions is defined by the following syntax:

e ::= x variable
| f(e1, . . . , en) operator

The set vars(e) of variables of an expression e is defined inductively
by the clauses:

vars(x) = {x}
vars(f(e1, . . . , en)) =

⋃
1≤i≤n vars(ei)

The substitution e[e′/x] of an expression e′ for a variable x in an
expression e is defined inductively by the clause:

y[e′/x] =
{
y if y 6= x

e′ if y = x

f(e1, . . . , en)[e′/x] = f(e1[e′/x], . . . , en[e′/x])

We equip expressions with a type system which ensures that func-
tions receive arguments of compatible types. The typing rules for ex-

8 The While programming language

pressions are straightforward:

x : σ
` x : σ

[Var]

` e1 : σ1 . . . ` en : σn f : σ1 × . . .× σn → τ

` f(e1, . . . , en) : τ
[Op]

3.1.3 Statements

Statements are built from assignments, conditionals, loops, and sequenc-
ing.

Definition 3.3 (Statements). The set Cmd of statements is defined by
the following syntax:

c ::= abort abort
| skip do nothing
| x := e deterministic assignment
| c; c sequencing
| if e then c else c conditional
| while e do c while loop

Statements are equipped with a type system, which ensures that
expressions are assigned to variables of compatible types and that
guards of conditionals and loops are booleans. The typing rules are
straightforward (Figure 3.1).

It is often useful to know which variables are read and modified by
a statement. The formal definition of depending and modified variables
is given below.

Definition 3.4 (Depending and modified variables). The set dep(c) of
depending variables of a statement c is defined by the clauses:

dep(x := e) = vars(e)
dep(c1; c2) = dep(c1) ∪ dep(c2)

dep(if e then c1 else c2) = vars(e) ∪ dep(c1) ∪ dep(c2)
dep(while e do c) = vars(e) ∪ dep(c)

3.2. Semantics 9

` skip
[Skip]

` x : σ ` e : σ
` x := e

[Ass]

` c1 ` c2

` c1; c2
[Seq]

` e : B ` c1 ` c2

` if e then c1 else c2
[Cond]

` e : B ` c
` while e do c

[While]

Figure 3.1: Typing rules for statements

The set mod c of modified variables of a statement c is defined by the
clauses:

mod(x := e) = {x}
mod(c1; c2) = mod(c1) ∪mod(c2)

mod(if e then c1 else c2) = mod(c1) ∪mod(c2)
mod(while e do c) = mod(c)

3.2 Semantics

3.2.1 Types

We assume that each type has a set-theoretical interpretation, defined
inductively over the structure of types.

Definition 3.5 (Interpretation of types). Suppose given a set-theoretical
interpretation JbK ∈ Set for every base type b ∈ T0, and a set-theoretical
interpretation JT K : Setk → Set for every type constructor T ∈ CT of
arity k. The interpretation for types is defined inductively by the clause:

JT (σ1, . . . , σn)K = JT K(Jσ1K, . . . , JσnK)

10 The While programming language

3.2.2 Memories

Memories are mapping from variables to elements of the interpretation
of their type.

Definition 3.6 (Memory). A memory is a mapping m from variables
to values, such that for every variable x ∈ Vars of type σ, we have
m(x) ∈ JσK. We let Mem denote the set of memories.

We adopt standard notation for memory update: given a memory
m, a variable x of type σ and a value v ∈ JσK, we let m[x← v] denote
the unique memory such that for every variable y

m[x← v](y) =
{
v if x = y

m(y) otherwise

Definition 3.7. Local equivalence of memories Let X be a set of vari-
ables. Two memoriesm andm′ are equivalent w.r.t.X, writtenm =X m′

iff m(x) = m′(x) for every x ∈ X.

Note that we sometimes use {(X) to denote the complement of X.
Thus, m ={(X) m

′ iff m(x) = m′(x) for every x /∈ X.

3.2.3 Expressions

The semantics of expressions is parametrized by a memory and defined
by structural induction.

Definition 3.8 (Semantics of expressions). Suppose given a set-theoretical
interpretation JfK ∈ Jσ1K×. . .×JσnK→ JτK for every f : σ1×. . .×σn → τ .
The semantics of an expression e with respect to a memory m is defined
by the clauses:

JxKm = m(x)
Jf(e1, . . . , en)Km = JfK(Je1Km, . . . , JenKm)

The following lemma establishes the correctness of vars(e).

Lemma 3.1. If m1 =vars(e) m2 then JeKm1
= JeKm2

.

3.2. Semantics 11

3.2.4 Statements

We now turn to give a denotational semantics to statements. The
semantics is partial, i.e. may take a special value ⊥ to denote non-
termination.

Definition 3.9 (Semantics of statements). The denotational semantics
JsK of a statement s is a function that assigns to every memory m ∈
Mem an element JsKm ∈Mem⊥, where X⊥ = X t{⊥}. The definition
of JsKm is given in Figure 3.2, where we use the following convention:

let m′ = mo in g(m′) ={
m′ if mo = m 6= ⊥ and g(m) = m′ 6= ⊥
⊥ otherwise

We briefly comment on the definition of the semantics. The semantics
of abort is the error memory ⊥. The semantics of skip is simply the
identity—do nothing. The semantics of a deterministic assignment is a
map that takes as input an inital memory m and returns the memory
obtained by updating m with the value v resulting from the evaluation
e in memory m. The semantics of a sequential composition is defined as
the composition of the semantics of the first and second statements. The
semantics of conditional statements is straightforward: given a memory
m, one evaluates the guard e of the conditional in m, and return the
output Jc1Km of the true branch if the guard evaluates to tt and the
output Jc2Km of the false branch if the guard evaluates to ff. Finally, the
semantics of while loops is defined as follows: given a memory m, one
evaluates the guard the guard e of the conditional in m, and returns
m if the guard is false; else one repeats the process with the output
JcKm of the loop guard. The process stops when the loop guard returns
false; if this never happens, then one outputs ⊥. Formally, the clause for
loops is defined as the least upper bound of its finite approximations.
For this, we use the following convention: for every statement c and
boolean expression e, we define the lower iterations of whilec i do e by
the clauses:

whilen e do c = whilen e do c; if e then abort
while0 e do c = skip

whilen+1 e do c = if b then (c; whilen e do c)

12 The While programming language

It is easy to see that the sequence of memories Jwhilei e do cKm is
increasing and thus has a least upper bound.

JabortKm = ⊥
JskipKm = unit(m)

Jx := eKm = unit(m[x← JeKm])
Jc1; c2Km = let m′ = Jc1Km in Jc2Km′

Jif e then c1 else c2Km =

Jc1Km if JeKm = tt
Jc2Km if JeKm = ff

Jwhile e do cKm = sup
i∈N

Jwhilei e do cKm

Figure 3.2: Denotational semantics of statements

The following lemmas capture the correctness of dep and mod.

Lemma 3.2. If m1 =dep(c) m2 then JcKm1
= JcKm2

.

Lemma 3.3. If JcKm = m′ then m ={(mod(c)) m
′.

We conclude this section by introducing notations for terminating
programs.

Definition 3.10 (Termination). A statement c is terminating on initial
memory m, written c,m ⇓, if JcKm 6= ⊥. A statement c is terminating,
written term(c), if c,m ⇓ for every initial memory m.

By convention a terminating program cannot return ⊥ so abort is
considered non-terminating.

3.3 Instrumented semantics

It is often useful to enrich the semantics of statements to reason about
properties other than functional behavior. In this section, we instrument
the denotational semantics of statements to keep track of their control-
flow decisions, and of their cost.

3.3. Instrumented semantics 13

3.3.1 Control flow

We instrument the semantics of statements to track their control-flow.
The instrumented semantics returns an additional list of booleans
(indicating for each control-flow statement, i.e. loop or conditional,
whether execution followed the true or the false branch). Therefore the
instrumented semantics of c is the function

JcKcf
m : Mem→ (Mem× B∗)⊥

defined by the clauses of Figure 3.3, where we use the convention for
g : Mem→ (Mem× B∗)⊥:

letm = mcf in g(m) =
{

(m′, cf + cf ′) if mcf = (m, cf) and g(m) = (m′, cf ′)
⊥ otherwise

and by abuse of notation for g : Mem→Mem⊥:

let m′ = mcf in g(m) =
{

(m′, cf) if mcf = (m, cf) and g(m) = m′

⊥ otherwise
We briefly comment on the clauses for conditionals and control-flow.
Note that the clause for conditionals extends the list of booleans, i.e.
leakage, with a new boolean to record which branch has been taken. As
for the baseline semantics, the clause for loops is defined using a least
fixed point.

3.3.2 Cost

We instrument the semantics of statements to track their cost. The
instrumented semantics considers an extended language with a new
construct tick k, where k ∈ N, and returns an additional number repre-
senting the execution cost of the statement. Therefore the instrumented
semantics of c is the function

JcKcost
m : Mem→ (Mem× N)⊥

defined by the clauses of Figure 3.4, where we use the following conven-
tion:

let m′ = mk in g(m′) ={
(m′, κ+ κ′) if mk = (m,κ) and g(m) = (m′, κ′)
⊥ otherwise

14 The While programming language

JskipKcf
m = (m, ε)

Jx := eKcf
m = (m[x← JeKm], ε)

Jc1; c2Kcf
m = let mcf = Jc1Kcf

m in Jc2Kcf
mcf

Jif e then c1 else c2Km =

let mpc = Jc1Kcf
m in λm′.(m′, tt) if JeKm = tt

let mpc = Jc2Kcf
m in λm′.(m′,ff) if JeKm = ff

Jwhile e do cKcf
m = sup

i∈N
Jwhilei e do cKcf

m

Figure 3.3: Control-Flow instrumented semantics of statements

JskipKcost
m = (m, 0)

JskipKcost
m = (m, 0)

Jx := eKcost
m = (m[x← JeKm], 0)

Jtick kKcost
m = (m, JkKm)

Jc1; c2Kcost
m = let mc′ = Jc1Kcost

m in Jc2Kcost
m′

Jif e then c1 else c2Km =

Jc1Kcost
m if JeKm = tt

Jc2Kcost
m if JeKm = ff

Jwhile e do cKcost
m = sup

i∈N
Jwhilei e do cKcost

m

Figure 3.4: Cost instrumented semantics of statements

4
Hoare Logic

4.1 Assertions

Assertions are first-order formulae built from program variables. The
interpretation of an assertion φ is a subset JφK of memories, i.e. JφK ⊆
Mem. The interpretation of formulae is given in ??.

4.2 Judgments

Judgments of Hoare logic are of the form

c : Φ⇒ ψ

and relate a program c with a pre-condition Φ and a post-condition ψ.
Informally, a judgment is valid if for JcK maps memories satisfying the
pre-condition to memories satisfying the post-condition. We focus on
partial correctness:

Definition 4.1 (Valid judgment). The judgment c : Φ ⇒ ψ is valid,
written |= c : Φ ⇒ ψ, if for every memory m such that m ∈ JΦK and
JcKm 6= ⊥, we have JcKm ∈ JψK.

15

16 Hoare Logic

` c : Φ′ ⇒ Ψ′ |= Φ =⇒ Φ′ |= Ψ′ =⇒ Ψ
` c : Φ⇒ Ψ

[HL-Conseq]

` c : Φ⇒ Ψ vars(Θ) ∩mod(c) = ∅
` c : Φ ∧Θ⇒ Ψ ∧Θ

[HL-Frame]

` c : Φ ∧ e = tt⇒ Ψ ` c : Φ ∧ e = ff ⇒ Ψ
` c : Φ⇒ Ψ

[HL-Case]

∀x : T. ` c : Φ⇒ Ψ
` c : ∃x : T.Φ⇒ Ψ

[HL-Exists]

Figure 4.1: Hoare Logic: structural rules

4.3 Proof system

We now present a proof system for deriving valid Hoare triples. The
proof system combines structural rules, which apply independently
of the shape of programs, and construct-specific rules. There is one
construct-specific rule for each form of statement.

4.3.1 Structural rules

The [Conseq] rule is known as the rule of consequence, and can be used
for weakening the post-condition and strengthening the pre-condition.

The [Frame] rule allows to strengthen simultaneously the pre-
condition and the post-condition of a valid judgment with an assertion
Θ such that vars(Θ) is disjoint from mod(c), where the set vars(Θ) of
free variables of Θ is defined in the usual way (??).

The [Case] rule allows proving a judgment by case analysis on a
boolean expression e.

The [Exists] rule is similar to the [Case] rule, excepts that it
considers the case where the pre-condition is an existential statement.
It allows to prove a judgment by supposing the existence of a witness.

4.4. Soundness and relative completeness 17

` skip : Ψ⇒ Ψ [HL-Skip]

` x := e : Ψ[e/x]⇒ Ψ
[HL-Assn]

` c : Φ⇒ Θ ` c′ : Θ⇒ Ψ
` c; c′ : Φ⇒ Ψ

[HL-Seq]

` c : Φ ∧ e⇒ Ψ ` c′ : Φ ∧ ¬e⇒ Ψ
` if e then c else c′ : Φ⇒ Ψ

[HL-Cond]

` c : Θ ∧ e⇒ Θ
` while e do c : Θ⇒ Θ ∧ ¬e

[HL-While]

Figure 4.2: Proof system for Hoare logic

4.4 Soundness and relative completeness

The proof system is sound, i.e every derivable judgment is valid.

Theorem 4.1. If ` c : Φ⇒ Ψ then |= c : Φ⇒ Ψ.

The converse is called relative completeness, and may hold under
the assumption that the assertion language is sufficiently rich. We
refer the reader to e.g. (Winskel, 1993) for a detailed proof of relative
completeness.

4.5 Verification condition generation

A common approach to automating Hoare Logic is to generate a set
of verification conditions (VC) whose validity entails validity of Hoare
triples. These verification conditions can be computed using a precon-
dition calculus, which traverses the program backwards and computes
for every statement c and postcondition ψ a precondition φ and a
set of verification conditions Ξ. The definition of the calculus is given
in Figure 4.3. The clauses for all constructs except loops match the
corresponding rule in Hoare logic; note that the set of verification con-
ditions for compound statements is the union of the set of verification

18 Hoare Logic

conditions for sub-statements. The clause for loops is more interesting.
Indeed, computing a precondition for loops requires a loop invariant,
i.e. an assertion that is preserved by the loop body. In this chapter, we
assume that loop invariants are provided by an external oracle invgen
that takes as input a loop and a post-condition, and returns an assertion
intended to be a loop invariant that entails (with the negation of the
loop guard) the post-condition. The latter is captured by introducing a
new verification condition.

Given a Hoare triple c : Φ⇒ Ψ, we define

VC(c : Φ⇒ Ψ) 4= {Φ =⇒ Φ0 | Φ0 ∈ vcgen
(
c,Ψ, ∅

)
}

Verification condition generation is sound with respect to Hoare logic,
i.e. validity of verification conditions entails provability of Hoare triples.

Theorem 4.2. If |= VC(c : Φ⇒ Ψ), then ` c : Φ⇒ Ψ.

The converse is not true, due to our simplified presentation of
verification condition generation.

4.6 Examples

We consider examples which we reuse throughout the following chapters.

4.6.1 Exponentiation

The following example computes exponentiation:

exp(n, k : N) : N
r := 1;
i := 0;
while i < k do r := n ∗ r; i := i+ 1;
return r

We can derive the following Hoare triple:

` exp : n ≥ 0 ∧ k > 1⇒ r = nk

The proof follows from taking r = ni ∧ i ≤ k as an invariant. One
concludes with the rule of consequence.

4.6. Examples 19

vcgen (skip, ψ,Ξ) = (ψ,Ξ)
[VC-Skip]

vcgen (x := e, ψ,Ξ) = (ψ[e/x],Ξ)
[VC-Assn]

vcgen
(
c′, ψ,Ξ

)
= (ψ0,Ξ0) vcgen (c, ψ0,Ξ0) = (φ,Ξ1)

vcgen
(
c; c′, ψ,Ξ

)
= (φ,Ξ1)

[VC-Seq]

vcgen
(
c′, ψ,Ξ

)
= (φ1,Ξ1)

vcgen
(
c′, ψ,Ξ

)
= (φ2,Ξ2)

Ξ0 = Ξ1 ∪ Ξ2

vcgen
(

if b then c else c′, ψ,Ξ
)

= (b =⇒ φ1 ∧ ¬b =⇒ φ2,Ξ0)
[VC-Cond]

invgen(while b do c, ψ) = φ

vcgen (c, φ,Ξ) = (φ0,Ξ0)
Ξ1 = Ξ0 ∪ {φ ∧ ¬b =⇒ ψ, φ ∧ b =⇒ φ0}

vcgen (while b do c, ψ,Ξ) = (φ,Ξ1)
[VC-While]

Figure 4.3: Verification condition generation

20 Hoare Logic

4.6.2 Fast exponentiation

One can also consider a more efficient algorithm for computing expo-
nentiation:

fastexp(n, k : N) : N
if k = 0 then return 1;
r := 1;
while k > 1 do

if even(n) then
n := n ∗ n;
n := n/2;

else
r := n ∗ r;
n := n ∗ n;
n := (n− 1)/2;

r := x ∗ r;
return r

We can also derive the following Hoare triple:

` fastexp : n ≥ 0 ∧ k > 1⇒ r = nk

4.6.3 Sums

Our final example (shown in Figure 4.4) sums n natural numbers
p, p + k, p + 2k. We can prove different Hoare triples about this
statement, e.g.

` sum : p = 1 ∧ k = 1 ∧ n ≥ 0⇒ s = n(n− 1)
2

This statement is proved using as loop invariant

s = i(i+ 1)
2 ∧ i ≤ n

More generally, one can prove

` sum : p ≥ 0 ∧ k ≥ 0 ∧ n ≥ 0⇒ s = p · n+ k · n(n− 1)
2

4.6. Examples 21

sum(p, k, n : N) : N
s := 0;
i := 0;
while i < n do s := s+ p; p := p+ k; i := i+ 1;
return s

Figure 4.4: Partial sum of integers

5
Relational Hoare Logic

Our central tool for reasoning about the relationship between two
programs is Relational Hoare Logic (Benton, 2004).

5.1 Relational assertions

Relational assertions are first-order formulae whose interpretation is
taken over two memories. Therefore, basic relational assertions are of the
form P (t1, . . . , tn) where the predicate P is specified in the underlying
theory, and the relational expressions t1, . . . , tn are built from function
symbols of the underlying theory, logical variables and tagged variables
of the form x〈1〉 and x〈2〉 where x is a program variable. Here the tags
〈1〉 and 〈2〉 are used to indicate that the interpretation of x should
be taken in the first and second memory respectively. Therefore, in
particular, the relational assertion x〈1〉 = x〈2〉 captures the fact that
the value of x in the left memory is equal to the value of x in the right
memory.

The interpretation of a relational assertion Φ is a relation JΦK ⊆
Mem×Mem consisting of all the set of pairs of memories (m1,m2) for
whichΦ holds. The definition is similar (modulo the use of two memories

22

5.2. Judgments 23

to interpret tagged variables) to ??.

Notation 5.1. For every expression e, we let e〈1〉 and e〈2〉 denote the
generalized expressions obtained by tagging every variable in e with a
〈1〉 and 〈2〉 respectively. For instance, if e is x+ y then e〈1〉 is defined
as x〈1〉+ y〈1〉.

Then, every assertion φ yields two relational assertions φ〈1〉 and
φ〈2〉, with the expected relational interpretation; Jφ〈1〉K(m1,m2) = JφKm1
and Jφ〈2〉K(m1,m2) = JφKm2

.

Notation 5.2. For every R ⊆ A × A, we let R⊥ ⊆ A⊥ × A⊥ be the
smallest relation such that R⊥ ⊥ ⊥ and for every a1, a2 ∈ A, R a1 a2
implies R⊥ a1 a2.

5.2 Judgments

Judgments of relational Hoare logic are of the form

c1 ∼ c2 : Φ⇒ Ψ

and relate two programs, c1 and c2, w.r.t. a pre-condition Φ and a
post-condition Ψ. Informally, a judgment is valid if for every pair of
memories m1 and m2 related by Φ, the memories Jc1Km1

and Jc2Km2
are

related by Ψ⊥.

Definition 5.1 (Valid judgment). The judgment c1 ∼ c2 : Φ ⇒ Ψ is
valid, written |= c1 ∼ c2 : Φ⇒ Ψ, if for every pair of memories (m1,m2)
such that (m1,m2) ∈ JΦK, we have (Jc1Km1

, Jc2Km2
) ∈ JΨK⊥.

Note that the notion of valid judgment enforces co-termination. If
|= c1 ∼ c2 : Φ ⇒ Ψ is valid and (m1,m2) ∈ JΦK, then c1,m1 ⇓ iff
c2,m2 ⇓.

5.3 Proof system

We now present a proof system for deriving Hoare quadruples. The
proof rules are split into three groups:

structural rules: these rules can be applied independently of the
shape of the programs;

24 Relational Hoare Logic

2-sided rules: these rules requires that the two programs have a spe-
cific and corresponding shape (for instance, the two programs
must be a deterministic assignment; or the two programs must be
a conditional statement). There is one single rule for each form of
statement;

1-sided rules: these rules requires that one of the two programs has a
specific shape. There are two rules per for each form of statement;
a left rule requiring that the left statement of the judgment has the
desired shape, and a right rule requiring that the right statement
has the desired shape.

5.3.1 Structural rules

Figure 5.1 presents structural rules. We briefly comment on each rule.
The [Hoare] rule allows to derive relational Hoare judgments from

Hoare judgments of individual programs.
The [False] rule states that arbitrary programs are related, when

the precondition is provably false. The rule is derivable from the [Hoare]
and the [False] rule from Hoare logic (the rule is admissible, and can
be proved by induction on the structure of the statement).

The [Conseq] rule is similar to the one from Hoare Logic, and
can be used for weakening the post-condition and strengthening the
pre-condition.

The [Frame] rule allows to strengthen simultaneously the pre-
condition and the post-condition of a valid judgment with an assertion
Θ, provided the variables modified by the two statements of the judgment
are disjoint from vars(Θ), where the definition of vars is similar to ??1.

The [Case] rule is similar to the one from Hoare Logic, and allows
proving a judgment by case analysis on the value of a boolean expression
e.

The [Exists] rule is is similar to the one from Hoare Logic, and
allows to prove a judgment whose precondition is an existential by
supposing the existence of a witness.

1The soundness of the rule relies on the relational counterpart of ??:
(m1, m2) =vars(Φ) (m′

1, m′
2) implies JΦK(m1,m2) iff JΦK(m′

1,m′
2).

5.3. Proof system 25

The [Trans] rule introduces an intermediate program c to relate
two programs c1 and c2. It requires proving judgments for c1 and c, and
for c and c2. The pre- and post-condition of the conclusion use relation
composition, defined by

(R ◦ S)(x, z) 4= ∃y. R(x, y) ∧ S(y, z)

The [Struct] rule allows replacing programs by provably equivalent
programs. The rule depends on an auxiliary judgment of the form
Φ |= c ≡ c′, where Φ is a relational assertion, and which states that c
and c′ are equivalent (i.e. yield equal memories) for every two pairs
of memories that satisfy Φ. We leave the proof system for program
equivalence unspecified.

5.3.2 Two-sided rules

Figure 5.2 presents two-sided rules. We briefly comment on each rule.
The [Assn] rule states that an assertion is valid after two assign-

ments, if the original pairs of memories satisfies the assertion obtained
by substituting in place of the variables being assigned the (tagged)
expressions of the assignments.

The [Seq] rule for sequential composition requires that the left
and right statements are sequential compositions and that there exists
an intermediate assertion Θ that is a valid postcondition for the first
statements and a valid precondition for the second statements. This
rule is the relational counterpart of the rule for sequential composition
in Hoare logic.

The [Cond] rule considers two conditional statements that execute
in lockstep. Specifically, it requires that the pre-condition Φ implies that
the guards of the two conditional statements are logically equivalent.
The premises of the rule ensure that that both the true branches of
the statements and the false branches of the statements are related by
pre-condition Φ (strengthened by the guard of the conditionals or their
negation) and the same post-condition Ψ. Therefore the two conditional
statements are related by the pre-condition Φ and the post-condition
Ψ.

26 Relational Hoare Logic

` c1 : Φ1 ⇒ Ψ1
` c2 : Φ2 ⇒ Ψ2

∀m1 ∈ JΦ1K. c1,m1 ⇓
∀m2 ∈ JΦ2K. c2,m2 ⇓

` c1 ∼ c2 : Φ1〈1〉 ∧ Φ2〈2〉 ⇒ Ψ1〈1〉 ∧Ψ2〈2〉
[RHL-Hoare]

term(c1) term(c2)
` c1 ∼ c2 : ⊥ ⇒ Ψ

[RHL-False]

` c1 ∼ c2 : Φ′ ⇒ Ψ′ |= Φ =⇒ Φ′ |= Ψ′ =⇒ Ψ
` c1 ∼ c2 : Φ⇒ Ψ

[RHL-Conseq]

` c1 ∼ c2 : Φ⇒ Ψ
vars(Θ) ∩ (mod(c1)〈1〉 ∪mod(c2)〈2〉) = ∅

` c1 ∼ c2 : Φ ∧Θ⇒ Ψ ∧Θ
[RHL-Frame]

` c1 ∼ c2 : Φ ∧ e = tt⇒ Ψ ` c1 ∼ c2 : Φ ∧ e = ff ⇒ Ψ
` c1 ∼ c2 : Φ⇒ Ψ

[RHL-Case]

∀x : T. ` c1 ∼ c2 : Φ⇒ Ψ
` c1 ∼ c2 : ∃x : T.Φ⇒ Ψ

[RHL-Exists]

` c1 ∼ c : Φ⇒ Ψ ` c ∼ c2 : Φ′ ⇒ Ψ′

` c1 ∼ c2 : Φ ◦ Φ′ ⇒ Ψ ◦Ψ′
[RHL-Trans]

` c1 ∼ c2 : Φ⇒ Ψ Φ |= c1 ≡ c′1 Φ |= c2 ≡ c′2
` c′1 ∼ c′2 : Φ⇒ Ψ

[RHL-Struct]

Figure 5.1: Structural rules

5.3. Proof system 27

` skip ∼ skip : Ψ⇒ Ψ [RHL-Skip]

` c1 ∼ c2 : Φ⇒ Θ ` c′1 ∼ c′2 : Θ⇒ Ψ
` c1; c′1 ∼ c2; c′2 : Φ⇒ Ψ

[RHL-Seq]

` x1 := e1 ∼ x2 := e2 : Ψ[e1〈1〉/x1〈1〉][e2〈2〉/x2〈2〉]⇒ Ψ
[RHL-Assn]

|= Φ =⇒ e1〈1〉 = e2〈2〉
` c1 ∼ c2 : Φ ∧ e1〈1〉 ⇒ Ψ
` c′1 ∼ c′2 : Φ ∧ ¬e1〈1〉 ⇒ Ψ

` if e1 then c1 else c′1 ∼ if e2 then c2 else c′2 : Φ⇒ Ψ
[RHL-Cond]

|= Θ =⇒ e1〈1〉 = e2〈2〉 ` c1 ∼ c2 : Θ ∧ e1〈1〉 ⇒ Θ
` while e1 do c1 ∼ while e2 do c2 : Θ⇒ Θ ∧ ¬e1〈1〉

[RHL-While]

Figure 5.2: Two-sided rules

The [While] rule considers two while loops that execute in lockstep.
Specifically, it requires that there exists a relational loop invariant
Θ that is initially valid and preserved by one iteration of the two
loop bodies, and such that the loop guards are equivalent for any two
memories satisfying the invariant. Upon termination, i.e. in the output
distributions, both loop guards are false and the loop invariant is valid.

In the remainder of this monograph, we shall informally refer to two-
sided relational Hoare logic as the set of 2-sided rules plus all structural
rules except [Struct].

5.3.3 One-sided rules

Figure 5.3 presents left rules (right rules are similar). In all cases, except
for the rule for conditionals, the program on the right is a skip statement.

The [Assg-L] rule states that an assertion Ψ is a valid post-condition,
if the initial pair of memories satisfy the assertion Ψ[e〈2〉/x〈1〉].

The [Cond-L] rule considers a conditional statement on the left

28 Relational Hoare Logic

` x1 := e1 ∼ skip : Ψ[e1〈1〉/x1〈1〉]⇒ Ψ
[RHL-Assg-L]

` c1 ∼ c2 : Φ ∧ e1〈1〉 ⇒ Ψ
` c′1 ∼ c2 : Φ ∧ ¬e1〈1〉 ⇒ Ψ

` if e1 then c1 else c′1 ∼ c2 : Φ⇒ Ψ
[RHL-Cond-L]

` c1 ∼ skip : Θ ∧ e1〈1〉 ⇒ Θ
∀m1 m2, (m1,m2) ∈ Θ⇒ while e1 do c1,m1 ⇓
` while e1 do c1 ∼ skip : Θ⇒ Θ ∧ ¬e1〈1〉

[RHL-While-L]

Figure 5.3: One-sided (left) rules

and an arbitrary statement to the right. It performs a case analysis on
the guard of the conditional statement and matches its true and false
branch against the right statement.

The [While-L] rule requires each iteration of the loop body pre-
serves an invariant Θ, and that the loop is almost surely terminating.
If the initial pair of memories satisfy Θ, then upon termination, i.e. in
the output distributions, the loop guard is false and the loop invariant
is valid.

Note that there is no one-sided rule for sequential composition.

Remark 5.1. The proof system is not minimal, in the sense that some
rules can be derived from others. For instance, Barthe et al. (2017) prove
that, given a sufficiently strong proof system for structural equivalence
on programs, all one-sided rules except [While-L] can be derived from
their two-sided counterpart. Similarly, all uses of the one-sided rule for
loops [While-L] can be avoided by proving the loop in Hoare logic and
using the rule [Hoare] afterwards.

5.3.4 Soundness and relative completeness

The proof system is sound, in the sense that the conclusions of all the
proof rules are valid judgments, provided the premises of the rules are
valid judgments and the side-conditions, if any, hold.

5.4. Verification condition generation 29

Proposition 5.1. Every derivable judgment ` c1 ∼ c2 : Φ ⇒ Ψ is
valid, i.e. for every pair of memories (m1,m2), (m1,m2) ∈ JΦK implies
(Jc1Km1

, Jc2Km2
) ∈ JΨK⊥.

The proof is by induction on the structure of derivations. The
only interesting case is for loops. We prove by induction on i that
(m1,m2) ∈ JΘK implies

(J(if e1 then c1 else skip)iKm1
, J(if e2 then c2 else skip)iKm2

) ∈ JΘK⊥

Therefore by definition of the denotational semantics for loops, it follows
that (m1,m2) ∈ JΘK implies

(Jwhile e1 do c1Km1
, Jwhile e2 do c2Km2

) ∈ (JΘK ∧ ¬e1〈1〉)⊥

The converse of soundness, also called relatively complete by anology
with Hoare logic, may hold for terminating programs, provided the
assertion language is sufficiently rich. In Section 5.5, we also show that
relational Hoare logic is relatively complete w.r.t. Hoare logic, in a
precise mathematical sense.

5.4 Verification condition generation

The verification condition generation algorithm for relational judgments
takes as inputs two statements c1 and c2 and two relational assertions
Φ and Ψ and returns a set of relational verification conditions whose
validity entails the validity of the relational judgment |= c1 ∼ c2 : Φ⇒
Ψ.

The natural strategy for computing relational preconditions is to
traverse both programs in lockstep. The lockstep rules for relational
preconditions are given in Figure 5.4. Note that each rule requires that
the two programs have the same top-level construct, so that in effect
relational preconditions are only defined for pairs of programs that are
structurally equivalent.

The most interesting cases are the computation of preconditions
for conditionals and loops. They both require the guards of the two
statements to be equivalent, so that relational preconditions are non-
trivial only for pairs of programs that have the same control flow.

30 Relational Hoare Logic

Additionally, the rule for loops requires the existence of a loop invariant,
which is provided by an external oracle rinvgen that takes as input two
loops and a relational post-condition, and a relational assertion intended
to be a relational loop invariant that entails equivalence of guard and
(with the negation of the loop guard) the post-condition.

Given a Hoare quadruple c1 ∼ c2 : Φ⇒ Ψ, we define

RVC(|= c1 ∼ c2 : Φ⇒ Ψ) 4= {Φ =⇒ Φ0 | Φ0 ∈ rvcgen
(
c1, c2,Ψ, ∅

)
}

Verification condition generation is sound with respect to Hoare logic,
i.e. validity of verification conditions entails provability of Hoare triples.

Theorem 5.1. If |= RVC(|= c1 ∼ c2 : Φ⇒ Ψ), then |= c1 ∼ c2 : Φ⇒ Ψ.

The converse is not true, i.e. the afore-defined algorithm for relational
verification condition generation is incomplete; in particular, it does
not provide any support for one-sided reasoning. This incompleteness
can be resolved by introducing additional rules for one-sided reasoning,
such as:

rvcgen
(
c1
c2

, ψ,Ξ
)

= (φ,Ξ)

rvcgen
(
c′1
c2

, ψ,Ξ
)

= (φ′,Ξ′)

φ0
4= b1〈1〉 =⇒ φ ∧ ¬b1〈1〉 =⇒ φ′

rvcgen
(

if b1 then c1 else c′1
c2

, ψ,Ξ
)

= (φ0,Ξ ∪ Ξ′)
[RVC-Cond-L]

and carefully controlling their application so that the computation of
the precondition remains deterministic. However, lockstep computation
of precondition suffices for many purposes.

5.5 Comparison with product programs

Another common method to prove relational properties for a pair of
programs c1 and c2 is to build a product program c that emulates
the behavior of the two programs. In this section, we review basic
constructions of product programs and formalize their connections with
relational Hoare logic.

5.5. Comparison with product programs 31

For the sake of simplicity, we henceforth assume that programs
c1 and c2 operate (i.e. read and write) on syntactically disjoint sets
Vars1 and Vars2 of variables, i.e. dep(c1) ∪ mod(c1) ⊆ Vars1 and
dep(c2) ∪ mod(c2) ⊆ Vars2, with Vars1 ∪ Vars2 = ∅. Under this
assumption, and restricting our attention to relational assertions built
from tagged variables x1〈1〉 and x2〈2〉, where x1 ∈ Vars1 and x2 ∈
Vars2 respectively, we can view every relational assertion as a standard
assertion.

5.5.1 Sequential product program

The simplest form of product program is sequential composition, often
known as self-composition (BartheDR04).

Definition 5.2 (Sequential product). The sequential product of programs
c1 and c2 is the program c1; c2.

Because the two programs operate on disjoint set of variables, it is
immediate that their sequential composition emulates their behavior,
whenever both programs terminate. This is formalized by the following
proposition.

Proposition 5.2 (Soundness and completeness of sequential product). For
every memory m, we have:

• c1; c2,m ⇓ iff c1,m ⇓ and c2,m ⇓;

• if c1; c2,m ⇓, then Jc1; c2Km =Vars1 Jc1Km and Jc1; c2Km =Vars2

Jc2Km.

Moreover, two statements satisfy a relational Hoare specification iff
their sequential product program verifies the same specification viewed
as a Hoare triple.

Proposition 5.3. The following are equivalent:

• |= c1 ∼ c2 : Φ⇒ Ψ is valid in relational Hoare logic;

• |= c1; c2 : Φ⇒ Ψ is valid in Hoare logic;

32 Relational Hoare Logic

assuming that for every (m1,m2) ∈ JΦK, we have c1,m1 ⇓ and c2,m2 ⇓.

Furthermore, it is easy to prove that provability of the sequen-
tial product in Hoare logic entails provability of the two programs in
relational Hoare logic. Indeed, assuming provability of the product pro-
gramin Hoare logic, observe that there exists an intermediate assertion
Θ such that ` c1 : Φ ⇒ Θ and ` c2 : Θ ⇒ Ψ. One can prove by
induction on c that ` c : Φ ⇒ Θ implies ` c ∼ skip : Φ ⇒ Θ and
` skip ∼ c : Φ ⇒ Θ to conclude—both relational statements assume
the canonical interpretation of assertions as relational assertions. It
is more challenging to give a method to transfrom derivations in rela-
tional Hoare logic into derivations for the sequential product program
in Hoare logic. One can give a non-constructive argument based on
relative completeness but the key point is that some proofs are easier
relationally.

5.5.2 Synchronous product program

Another simple form of self-composition is the synchronous product
program, which forces programs to execute in lockstep. The basic idea
is developed by Zaks and Pnueli (2008), under the name cross-product.
Here we follow the presentation of (Barthe et al., 2011; Barthe et al.,
2016a) and consider an extended programming language with a construct
assert e. The denotational semantics of assert e is given by the clause:

Jassert eKm =
{
m if JeKm = tt
⊥ if JeKm = ff

Definition 5.3 (Synchronous product). A program c is the synchronous
product of programs c1 and c2, if the judgment c1 × c2 → c can be
derived inductively by the clauses of Figure 5.5.

Note that the definition of synchronous products is partial, i.e.
product programs may not exist. However, synchronous products are
unique whenever they exist. Moreover, the synchronous product of two
statements that are provably related by a relational Hoare specification
is always defined, and verifies this same specification—viewed as a Hoare
triple. The converse also holds.

5.5. Comparison with product programs 33

Proposition 5.4. The following are equivalent:

• ` c1 ∼ c2 : Φ⇒ Ψ is derivable in two-sided relational Hoare logic;

• there exists c such that c1 × c2 → c and ` c : Φ⇒ Ψ is derivable
in Hoare logic.

Barthe et al. (2016a) extend the rules of synchronous product pro-
grams to match the 1-sided rules of relational Hoare logic, and show
that the correspondence from Proposition 5.4 extends to this richer
setting.

5.5.3 Relational Hoare Logic with explicit product programs

Derivations in relational Hoare logic implicitly construct a product
program. This can be captured by considering a proof system with
judgments of the form

|= c1 ∼ c2 : Φ⇒ Ψ c

The proof rules of the logic are given in Figure 5.6—rules are only
given for some structural rules. This proof system is equivalent to the
method proposed in (Barthe et al., 2016a) to combine construction of
the product program and verification in Hoare logic. Note that the rules
from Figure 5.6 are a special case of the proof system from (Barthe
et al., 2017).

34 Relational Hoare Logic

rvcgen
(

skip
skip , ψ,Ξ

)
= (ψ,Ξ)

[RVC-Skip]

rvcgen
(
x1 := e1
x2 := e2

, ψ,Ξ
)

= (ψ[e1〈1〉/x1〈1〉][e2〈2〉/x2〈2〉],Ξ)
[RVC-Ass]

rvcgen
(
c′1
c′2

, ψ,Ξ
)

= (ψ0,Ξ0) rvcgen
(
c1
c2

, ψ0,Ξ0

)
= (φ,Ξ1)

rvcgen
(
c1; c′1
c2; c′2

, ψ,Ξ
)

= (φ,Ξ1)
[RVC-Seq]

rvcgen
(
c1
c2

, ψ,Ξ
)

= (φ,Ξ1)

rvcgen
(
c′1
c′2

, ψ,Ξ
)

= (φ′,Ξ2)

φ0
4= b1〈1〉 = b2〈2〉 ∧ b1〈1〉 =⇒ φ ∧ ¬b1〈1〉 =⇒ φ′

rvcgen
(

if b1 then c1 else c′1
if b2 then c2 else c′2

, ψ,Ξ
)

= (φ0,Ξ1 ∪ Ξ2)
[RVC-Cond]

rinvgen(while b1 do c1,while b2 do c2, ψ) = φ

φ =⇒ b1〈1〉 = b2〈2〉

rvcgen
(
c1
c2

, φ,Ξ
)

= (φ0,Ξ0)

Ξ1
4= Ξ0 ∪ {φ ∧ ¬b1〈1〉 =⇒ ψ, φ ∧ b1〈1〉 =⇒ φ0}

rvcgen
(

while b1 do c1
while b2 do c2

, ψ,Ξ
)

= (φ,Ξ1)
[RVC-While]

Figure 5.4: Verification condition generation

5.5. Comparison with product programs 35

skip× skip→ skip
(P-Skip)

(x1 := e1)× (x2 := e2)→ x1 := e1;x2 := e2
(P-Ass)

c1 × c2 → c c′1 × c′2 → c′

c1; c′1 × c2; c′2 → c; c′
(P-Seq)

c1 × c2 → c c′1 × c′2 → c′

(if b1 then c1 else c′1)
×

(if b2 then c2 else c′2)
→ assert b1 = b2; if b1 then c else c′

(P-Cond)

c1 × c2 → c c′ , c; assert b1 = b2

(while b1 do c1)
×

(while b2 do c2)
→ assert b1 = b2; while b1 do c′

(P-While)

Figure 5.5: Synchronous product programs

36 Relational Hoare Logic

` c1 : Φ1 ⇒ Ψ1
` c2 : Φ2 ⇒ Ψ2

∀m1 ∈ JΦ1K. c1,m1 ⇓
∀m2 ∈ JΦ2K. c2,m2 ⇓

`
c1
∼
c2

: Φ1〈1〉 ∧ Φ2〈2〉 ⇒ Ψ1〈1〉 ∧Ψ2〈2〉 c1; c2

[xRHL-Hoare]

`
c1
∼
c2

: Φ′ ⇒ Ψ′ c

|= Φ =⇒ Φ′ |= Ψ′ =⇒ Ψ

`
c1
∼
c2

: Φ⇒ Ψ c

[xRHL-Conseq]

`
c1
∼
c2

: Φ ∧ e⇒ Ψ c `
c1
∼
c2

: Φ ∧ ¬e⇒ Ψ c′

`
c1
∼
c2

: Φ⇒ Ψ if e then c else c′
[xRHL-Case]

`
c1
∼
c2

: Φ⇒ Θ c `
c′1
∼
c′2

: Θ⇒ Ψ c′

`
c1; c′1
∼

c2; c′2
: Φ⇒ Ψ c; c′

[xRHL-Seq]

|= Φ =⇒ e1〈1〉 = e2〈2〉

`
c1
∼
c2

: Φ ∧ e1〈1〉 ⇒ Ψ c

`
c′1
∼
c′2

: Φ ∧ ¬e1〈1〉 ⇒ Ψ c′

`
if e1 then c1 else c′1

∼
if e2 then c2 else c′2

: Φ⇒ Ψ if e1 then c else c′
[xRHL-Cond]

|= Θ =⇒ e1〈1〉 = e2〈2〉

`
c1
∼
c2

: Θ ∧ e1〈1〉 ⇒ Θ c

`
while e1 do c1

∼
while e2 do c2

: Θ⇒ Θ ∧ ¬e1〈1〉 while e1 do c

[xRHL-While]

`
c1
∼
c2

: Φ ∧ e1〈1〉 ⇒ Ψ c

`
c′1
∼
c2

: Φ ∧ ¬e1〈1〉 ⇒ Ψ c′

`
if e1 then c1 else c′1

∼
c2

: Φ⇒ Ψ if e1 then c else c′
[xRHL-Cond-L]

`
c1
∼

skip
: Θ ∧ e1〈1〉 ⇒ Θ c1

∀m1 m2, (m1,m2) ∈ Θ⇒ while e1 do c1,m1 ⇓

`
while e1 do c1

∼
skip

: Θ⇒ Θ ∧ ¬e1〈1〉 while e1 do c1

[xRHL-While-L]

Figure 5.6: Proof rules with explicit products

6
Equivalence and robustness

This chapter illustrates the use of relational Hoare logic for proving
equivalence of programs. In particular, we show how relational Hoare
logic can be used for translation validation, i.e. showing that a program
is equivalent to its optimized form. We then show how relational Hoare
logic can be used for proving so-called program robustness.

6.1 Simple examples

We start with a simple example that illustrates the benefits of rela-
tional reasoning. We consider monotonicity of sum from Figure 4.4.
Monotonicity in the first argument is captured by the judgement:

sum ∼ sum : p〈1〉 ≤ p〈2〉 ∧ k〈1〉 = k〈2〉 ∧ n〈1〉 = n〈2〉 ⇒ s〈1〉 ≤ s〈2〉

Informally, the validity of the judgment can be derived from the validity
of the logical formula

p1 ≤ p2 =⇒ p1 · n+ k · n(n− 1)
2 ≤ p2 · n+ k · n(n− 1)

2
The validity of the judgment can be proved using Relational Hoare
Logic, with relational loop invariant

s〈1〉 ≤ s〈2〉 ∧ k〈1〉 = k〈2〉 ∧ n〈1〉 = n〈2〉

37

38 Equivalence and robustness

Of course, we can also prove the validity of the statement using the
rule of consequence and the [Hoare] rule to connect with the Hoare
judgments from Chapter 4. However, as previously noted, proving the
correctness of sum in Hoare logic requires quadratic invariants.

Similarly, one can prove that sum is monotonic in its second argu-
ment. However, it is more challenging to prove that sum is monotonic
in its third argument:

sum ∼ sum : n〈1〉 ≤ n〈2〉 ∧ p〈1〉 = p〈2〉 ∧ k〈1〉 = k〈2〉 ⇒ s〈1〉 ≤ s〈2〉

even though the validity of the statement can be argued informally in
the same way as for the first and second arguments. The problem is
due to the fact that the logic does not provide 2-sided rules to reason
about loops that perform different numbers of iterations. This limitation
can be alleviated to some extent using the [RHL-Struct] rule, or by
adding a more general rule which allows loops to perform different
numbers of iterations, as in (Barthe et al., 2017). For instance, one can
add the following axiom:

while b do c ≡ while b ∧ b′ do c; while b do c

and use the [RHL-Struct] rule to prove that sum is monotonic in its
last argument.

A similar problem arises when trying to prove:

sum ∼ sum : p〈1〉 = 0 ∧ p〈2〉 = 1 ∧ k〈1〉 = k〈2〉 ∧ n〈1〉 = n〈2〉+ 1⇒ s〈1〉 = s〈2〉

because the loops will do a different number of iterations—even though
the additional iteration adds 0 and thus has the effect of a skip. This
can be resolved by adding the following axiom:

while b do c ≡ if b then (c; while b do c)

Nevertheless, it is not always possible to use 2-sided rules for simplifying
relational proofs. For instance, proving equivalence between exp and
fastexp is best proved using [RHL-Hoare], and showing that the two
programs compute exponentiation.

6.2. Translation validation 39

6.2 Translation validation

[GB1]: Induction variable strength reduction, loop unswitching, code
sinking

6.3 More examples with a general rule for loops

An alternative to the [Struct] rule is to use a rule for loops that does
not require the two programs to make the same number of iterations.
We only present a simplified rule, and refer the reader to (Barthe et al.,
2017) for the most general rule:

Θ =⇒ (e1 ∨ e2) = e

Θ ∧ e =⇒ ⊕{p0, p1, p2}
Θ ∧ p0 ∧ e =⇒ e1 = e2

Θ ∧ p1 ∧ e =⇒ e1
Θ ∧ p2 ∧ e =⇒ e2

term(while (e1 ∧ p1) do c1)
term(while (e2 ∧ p2) do c2)

|= if e1 then c1 ∼ if c2 then e2 : Θ ∧ p0 ⇒ Θ
|= c1 ∼ skip : Θ ∧ e1 ∧ p1 ⇒ Θ
|= skip ∼ c2 : Θ ∧ e2 ∧ p2 ⇒ Θ

|= while e1 do c1 ∼ while e2 do c2 : Θ⇒ Θ ∧ ¬e1 ∧ ¬e2

The rule interleaves synchronous and asynchronous executions of
the loop bodies, as reflected by its last three premises. The first set
of premises defines the conditions under which interleavings must be
considered. The first premise specifies an expression e, which may
mention variables from both sides, that holds true exactly when at least
one of the guards is true. Next, the next premise states that whenever e is
valid, exactly one of the tests p0, p1, and p2 must hold—this is captured
by the notation ⊕{p0, p1, p2}. These tests must satisfy some additional
conditions, given in the third, fourth, and fifth premises, and guide the
analysis of the loop bodies. If p0 holds, then both guards should be
equal and we can execute the two sides one iteration, preserving the
loop invariant Θ. If p1 holds and the right loop has not terminated
yet, then the left loop also has not terminated yet (i.e., e2 holds), we

40 Equivalence and robustness

may execute the left loop one iteration. If p2 holds and the left loop
has not terminated yet (i.e., e1 holds), then the right loop also has
not terminated yet and we may execute the right loop one iteration.
The sixth and seven premises deal with termination. Note that some
condition on termination is needed for soundness of the logic: if the left
loop terminates while the right loop does not terminates, it is impossible
to relate the two loops. So, we require that the first and second loops
are terminating assuming p1 and p2 respectively. This ensures that there
are only finitely many steps where we execute the left or right loop
separately.

Using this new rule, we can deal with several new examples.

6.4 Sensitivity

7
Information flow and program counter security

This chapter explores applications of relational Hoare logic to informa-
tion flow security and program counter security.

7.1 Information flow

One of the main motivations for the development of relational Hoare
logic is information flow security. The main goal of information flow
security is to establish that programs do not reveal any confidential
information during execution. In this chapter, we consider a basic infor-
mation flow policy called (X ,Y)-non-interference. Informally, (X ,Y)-
non-interference considers a setting in which confidential information is
initially stored in variables in {(X), and where an attacker can observe
the final values of variables in Y. The guarantee is that the attacker
will not learn anything about the secrets.

Definition 7.1 (Non-interference). A statement c is (X ,Y) non-interfering,
written NIX ,Y(c), iff for every memories m1, m2, m′1 and m′2 such that
JcKm1

= m′1 and JcKm2
= m′2, we have

m1 =X m2 =⇒ m′1 =Y m′2

41

42 Information flow and program counter security

dep#
skip(Y) = Y

dep#
c;c′(Y) = dep#

c (dep#
c′ (Y))

dep#
x:=e(Y) = Y[e/x]

dep#
if b then c else c′(Y) =

{
Y if(mod(c) ∪mod(c′)) ∩ Y = ∅
vars(b) ∪ dep#

c (Y) ∪ dep#
c′ (Y) otherwise

dep#
while b do c(Y) =

{
Y ifmod(c) ∩ Y = ∅
Y ′ otherwise and Y, vars(b), dep#

c (Y ′) ⊆ Y ′

where
Y[e/x] =

{
Y if x /∈ Y
Y \ {x} ∪ vars(e) if x ∈ Y

Figure 7.1: Backwards information flow analysis

We note that our definition of non-interference only considers ter-
minating executions—for this reason it is generally called termination-
insensitive non-interference in the literature.

7.1.1 Non-interference from relational Hoare logic

It immediately follows from the soundness of relational Hoare logic that
it can be used for proving non-interference. More generally, one can
characterize non-interference using Hoare quadruples.

Proposition 7.1 (Non-interference as Hoare quadruples).

• If |= c ∼ c : =X ⇒ =Y then NIX ,Y(c).

• Conversely, if NIX ,Y(c) and term(c) then |= c ∼ c : =X ⇒ =Y .

7.1.2 Automating non-interference proofs

In practice, it is often desirable to automate non-interference proofs
using a variant of the precondition calculus, or a forward algorithm
similar to symbolic evaluation. We review the backwards approach here.

7.1. Information flow 43

The backwards analysis takes as input a statement c and a set of
variables Y and returns another set of variables dep#

c (Y) such that

|= c ∼ c : =dep#
c (Y) ⇒ =Y

The rules are given in Figure 7.1. We comment on some of the most
interesting rules.

The rule for assignment distinguishes whether the assigned variable
x is in the set Y or not. In the former case, it is removed from the set
and the set of free variables of the assigned expression is added instead.
In the latter case, the set is not modified.

The rule for while loops requires the existence of a set Y ′ such that

Y ∪ vars(b) ∪ dep#
c (Y ′ ∪ vars(b))) ⊆ Y ′

Informally, this requires that =Y ′ is an invariant for the loop and entails
the equivalence of guards; moreover, it must also satisfy Y ⊆ Y ′ so
that =Y can be established as a valid post-condition using the rule of
consequence.

Such a set Y ′ always exists; take Y ′ to be the set of all variables.
However, it is desirable to select the smallest possible set Y ′; one way
to compute Y ′ is as follows: first, set Y0 = Y ∪ vars(b) and compute
Y1 = dep#

c (Y0). If Y1 ⊆ Y0, then set Y ′ = Y0. Else, set Y1 = Y0 ∪ Y1
and repeat the process until hitting some k such that Yk+1 ⊆ Yk. If
such a k is found before some fixed number of iterations K, set Y ′ = Yk.
Else, set Y ′ to be the set of all variables.

The correctness of dep# is stated w.r.t. relational Hoare Logic.

Proposition 7.2 (Correctness of dep#). For every statement c and set
of variables Y, the judgment

` c ∼ c : =dep#
c (Y) ⇒ =Y

is derivable in relational Hoare logic and hence

|= c ∼ c : =dep#
c (Y) ⇒ =Y

The analysis is incomplete, for several reasons. For example, the rule
for assignments requires equivalence for the variables of the assigned

44 Information flow and program counter security

expression; this is too strong in practice, e.g. if e 4= x − x + y or
e = 0×x+y. Similarly, the rule for conditionals requires equivalence for
the variables of the guard, even if no variables in Y is modified by the
branches of the statements. Finally, the iterative process to compute
the set of variables for a loop may not converge within the prescribed
number of iterations, and may thus lead to an overly conservative set
of variables.

7.1.3 Embedding information flow typing

Information flow security is often proved using a type system. Here we
consider a simple type system inspired from (Volpano and Smith, 1997).
Let H be a subset of confidential variables, and let L = {(H). We say
that an expression e is high, written ` e : H, if vars(e)∩H 6= ∅, and low,
written ` e : L, otherwise. The typing rules are of the form ` c : τ cmd,
where τ ∈ {H,L}. We assume that L ≤ H.

The typing rules are given in Figure 7.2. The subtyping rule [IF-Sub]
allows to view a statement of type H cmd as a statement of type L cmd.
The rule [IF-Ass] for assignments requires that the security level of the
variable is higher than the level of the assigned expression. The rule
[IF-Seq] for sequential composition can be used to compose typable
statements of the same level. The rule [IF-Cond] for conditionals
requires that the security level of the branches is equal (or with the
subtyping rule higher) than the security level of the guard. Finally, the
rule [IF-While] for loops requires that the security level of the loop
bodyis equal (or with the subtyping rule higher) than the security level
of the guard.

Lemma 7.1.

• If ` c : H cmd then mod(c) ⊆ H.

• If ` c : L cmd then dep#
c (L) ⊆ L.

Both are proved by induction on the derivation. As a corollay, we
recover soundness of the type system.

Proposition 7.3 (Embedding information flow typing). If ` c : τ cmd,
then NIL,L(c).

7.2. Program counter security 45

` x : τ ` e : τ ′ tau′ ≤ τ
` x := e : τ cmd

[IF-Ass]

` c : τ cmd ` c′ : τ cmd
` c; c′ : τ cmd

[IF-Seq]

` b : τ ` c : τ cmd ` c′ : τ cmd
` if b then c else c′ : τ cmd

[IF-Cond]

` b : τ ` c : τ cmd
` while b do c : τ cmd

[IF-While]

` c : H cmd
` while b do c : L cmd

[IF-Sub]

Figure 7.2: Information flow typing

The proof of the embedding follows from the correctness of dep#

(Proposition 7.2).

7.2 Program counter security

A common practice to minimize the risks of side-channel attacks against
security implementations is to write programs that do not branch on
secrets. Molnar et al. (2005) formalize this measure by introducing a
simple but useful model, which they coin the program counter security
model. The program counter security model is based on the instrumented
semantics of programs from Section 3.3.1. In addition to returning the
program’s output, the instrumented semantics also tracks the sequence
of control-flow decisions taken by the program during execution. This
sequence of booleans represents the information leaked to the adversary
during execution. A program is then said to be secure in the program
counter security model if its leakage does not depend on secrets.

Definition 7.2 (Program counter security). A statement c is program
counter secure w.r.t. a relational assertion Φ iff for every pair of memories
(m1,m2) ∈ JΦK such that Jc1Kcf

m1
= (m′1, `1) and Jc2Kcf

m2
= (m′2, `2), we

have `1 = `2.

46 Information flow and program counter security

As a special case, we say that a statement c is program counter
secure iff it is program counter secure w.r.t. the relational assertion >.

To reason about program counter security, we instrument programs
with ghost code that keeps track of their leakage, and we use Rela-
tional Hoare Logic to prove that programs are secure in the program
counter security model. The soundness and (relative) completeness of
the approach is captured by the following statements.

Proposition 7.4 (Verification of program counter security). Let Φ be a
relational assertion and let c be a statement. Let c` denote its instru-
mentation with a ghost variable ` that tracks control-flow. Then the
following are equivalent:

1. c is program counter secure w.r.t. Φ;

2. ` c` ∼ c` : Φ⇒ `〈1〉 = `〈2〉 is derivable in relational Hoare Logic;

3. |= RVC(c` ∼ c` : Φ⇒ `〈1〉 = `〈2〉);

The proof of relative completeness of the methods was first es-
tablished in Almeida et al., 2016 for a more complex property called
cryptographic constant-time. In the remainder of this chapter, we will
consider various relaxations of program counter security. Rather than
defining these relaxations in terms of the denotational semantics, we
will informally justify how to model them directly in relational Hoare
logic.

Interestingly, it is also possible to prove automatically program
counter security w.r.t. =X using a mild modification of dep# from the
previous section. The modification is shown in Figure 7.3. We have:

Proposition 7.5. If depcf
c`({`}) ⊆ X then

` c ∼ c : =X ⇒ ={`}

is derivable in relational Hoare logic and therefore c is program counter
secure w.r.t. =X .

7.2. Program counter security 47

depcf
skip(Y) = Y

depcf
c;c′(Y) = depcf

c (depcf
c′ (Y))

depcf
x:=e(Y) = Y[e/x]

depcf
if b then c else c′(Y) = vars(b) ∪ depcf

c (Y) ∪ depcf
c′ (Y)

depcf
while b do c(Y) = Y ′ if Y, vars(b), depcf

c (Y ′) ⊆ Y ′

where
Y[e/x] =

{
Y if x /∈ Y
Y \ {x} ∪ vars(e) if x ∈ Y

Figure 7.3: Program counter security analysis

7.2.1 Secure comparison

Checking equality between secret values, e.g. passwords, is a basic
routine used to implement access control and many other security
mechanisms. However, the naive implementation of equality checking
for fixed-length bitstrings is not secure in the program counter security
model. Indeed, consider the following algorithm, which operates on two
bitstrings s1 and s2 of length n, instrumented with a list ` that models
leakage:

naivecompare(s1 : {0, 1}n, s2 : {0, 1}n) : {0, 1}
` := ε;
i := 0;
while i < n do
` := 1 :: `;
if s1[i] = s2[i] then ` := 1 :: `; i := i+ 1 else ` := 0 :: l; return 0;

` := 0 :: `;
return 1

Program counter security of naivecompare is equivalent to requiring
that the value of ` is equal for any two executions with arbitrarily
different values for s1 and s2. But one can see that algorithm returns
as soon as it encounters an index i where the two bitstrings differ and

48 Information flow and program counter security

sm(x : G, k : {0, 1}n) : G
` := ε;
y := 1;
i := 0;
while i < n do

if k[i] = 1 then ` := 1 :: `; y := y2 × x else ` := 0 :: l; y := y2;
i := i+ 1

` := 0 :: `;
return y

Figure 7.4: Square and multiply

hence the length of ` is equal to 2i. Therefore the program is not secure.
This issue is addressed by the next algorithm, which performs all

comparisons of individual bits:

compare(s1 : {0, 1}n, s2 : {0, 1}n) : {0, 1}
` := ε;
r := 1;
i := 0;
while i < n do
` := 1 :: `;
if s1[i] = s2[i] then ` := 1 :: ` else ` := 0 :: l; r := 0;

` := 0 :: `;
i := i+ 1

return r
Program counter security of compare is proved by deriving the RHL
judgment in the 2-sided fragment of relational Hoare logic:

` compare ∼ compare : > ⇒ `〈1〉 = `〈2〉

which can be proved by a straightforward application of two-sided rules.

7.2.2 Square-and-always multiply

Next, we consider the square and multiply algorithm to exponentiate
in a group. The algorithm takes as input a group element x and a

7.2. Program counter security 49

sam(x : G, k : {0, 1}n) : G
` := ε;
y := 1;
i := 0;
while i < n do
` := 1 :: `;
y1 := y2;
y2 := y1 × x;
y := (1− k[i]) · y1 + k[i] · y2;
i := i+ 1

` := 0 :: `;
return y

Figure 7.5: Square-and-always-multiply

fixed length bitstring k, and computes xk. The code of the algorithm
is shown in Figure 7.4. In this implementation, leakage depends on k
and thus the program is not secure in the program counter security
model with respect to k. This can be addressed by using a square and
always multiply algorithm, as shown in Figure 7.5, were b · x is a scalar
multiplication, with 0 · x = 0 and 1 · x = x.

Program counter security of sam is established by proving the RHL
judgment in two-sided relational Hoare logic:

` sam ∼ sam : > ⇒ `〈1〉 = `〈2〉

which can be proved by a straightforward application of two-sided rules.

50 Information flow and program counter security

7.2.3 Finding smallest value in array and insertion sort

As a simple example, consider the task of computing the minimum
value in an array of secret values:

min(a : Z[n]) : Z
` := ε;
y := a[0];
i := 1;
while i < n do
` := 1 :: `;
if a[i] < y then ` := 1 :: `; y := a[i] else ` := 0 :: `;
i := i+ 1

` := 0 :: `;
return y

The program is not secure in the program counter security model. Indeed,
the leakage of the 2-elements arrays [0, 1] and [[1, 0] differ. However,
we can define a relational assertion Φ which relates any two arrays
a, a′ : Z[n] such that for every 0 ≤ i, j < n, a[i] < a[j] iff a′[i] < a′[j].
Indeed, one can prove in the 2-sided fragment of relational Hoare logic:

`min ∼min : Φ⇒ `〈1〉 = `〈2〉

The proof uses as relational loop invariant:

∀i ≤ k < n. a[i]〈1〉 < y〈1〉 ⇔ a[i]〈2〉 < y〈2〉

In a similar way, consider the following program for insertion sort from
Figure 7.6. Insertion sort is not secure in the program counter model.
However, it is Φ-secure. This can be established by proving the RHL
judgment in the 2-sided fragment of relational Hoare logic:

` isort ∼ isort : Φ⇒ `〈1〉 = `〈2〉

7.2.4 Square and multiply

One may further weaken the security notion to require that leakages
are related by some relational assertion Ψ. Informally, Ψ captures how
much is leaked by program execution. In practice, this weaker notion of

7.2. Program counter security 51

isort(a : Z[n]) : Z[n]
` := ε;
i := 1;
while i < n do

` := 1 :: `;
j := i;
while j > 0 ∧ a[j − 1] > a[j] do

` := 1 :: `;
x := a[j];
a[j] := a[j − 1];
a[j − 1] := x;
j := j − 1;

end while
` := 0 :: `;
i := i+ 1;

end while
` := 0 :: `
return a

Figure 7.6: Insertion sort

52 Information flow and program counter security

security holds for related input states, so we require that for every two
executions starting from states related by Φ, leakages are related by Ψ.

For instance, let us return to the square and multiply program from
Figure 7.4. Now consider a malicious observer that is able to count the
number of multiplications and additions performed by the program. It
is easy to see that such an observer cannot distinguish between two
executions whose leakage is equal up to permutation. Therefore, we
define the relation l1 ≡π l2 to hold whenever the two lists are equal up
to permutation. We can prove:

` sm ∼ sm : hw(k〈1〉) = hw(k〈1〉)⇒ `〈1〉 ≡π `〈2〉

The proof is carried in relational Hoare logic with sound instances of the
[Struct] rule for program counter security. Specifically, we use notion
of program equivalences which allow to split and unroll loops and to
replace guards by equivalent guards. This allows to transform a loop
that performs n iterations into a loop that performs i − 1 iterations,
followed by the execution of the i and i+ 1 iterations, and then a loop
that performs the remaining iterations. We prove

|= sm ∼ sm : swap(j, k〈1〉, k〈2〉)⇒ `〈1〉 ≡π `〈2〉

where swap(j, k, k′) is a shorthand for

k[j] = k′[j + 1] ∧ k[j + 1] = k′[i] ∧ ∀j′ /∈ {j, j + 1}, k[j′] = k′[j′]

We use the key property:

l1 ≡π l2 =⇒ a :: a′ :: l1 ≡π a′ :: a :: l2

From the latter, we can apply structural rules, concretely [Exists] and
[Trans] to conclude.

8
Relative cost

53

9
Cartesian Hoare Logic

54

Part II

Probabilistic computations

10
Probability sub-distributions

10.1 Distributions

This section introduces the necessary background on probability the-
ory and distributions. For simplicity, we only consider discrete sub-
distributions.

Definition 10.1 (Sub-distributions). A (discrete) sub-distribution over
a set A is a function µ : A→ [0, 1] such that the mass |µ| =

∑
a∈A µ(a)

of µ is defined and verifies |µ| ≤ 1. In particular, the support of a sub-
distribution µ, defined as supp(µ) = {a ∈ A | µ(a) > 0}, is necessarily
countable, i.e. finite or countably infinite. The set of sub-distributions
over A is denoted by D(A).

We often use the following terminology. Sub-distributions of mass 1
are called (full) distributions; other sub-distributions are called proper
sub-distributions.

We next consider events. Events over a set A are subsets of A. The
probability of an event E w.r.t. a sub-distribution µ, written as Pµ[E],
is defined as

∑
x∈E µ(x). We almost exclusively use the following basic

facts about events:

• for every a ∈ A, Pµ[{a}] = µ(a) and 0 ≤ Pµ[{a}] ≤ 1;

56

10.2. Monadic structure of distributions 57

• for every E ⊆ A, 0 ≤ Pµ[E] ≤ 1;

• Pµ[∅] = 0;

• Pµ[A] = 1 if µ is a full distribution;

• for every events E and F , E ⊆ F implies Pµ[E] ≤ Pµ[F];

• for every events E and F , Pµ[E ∪ F] = Pµ[E]+Pµ[F]−Pµ[E ∩ F].

The statistical distance between two distributions µ1, µ2 ∈ D(A) by
the clause

TV(µ1, µ2) = max
E⊆A

∣∣Pµ1 [E]− Pµ2 [E]
∣∣

10.2 Monadic structure of distributions

Lawvere Lawvere, 1962 and Giry Gry82 were among the first to note
that distributions can be given a monadic structure. A similar construc-
tion can be given for the discrete sub-distributions that we consider.

Definition 10.2 (Monadic structure of sub-distributions). The unit of the
monad is the Dirac distribution, which assigns to every x ∈ A the Dirac
distribution 1x defined by the clause:

Punit(x)[{y}]
4=
{

1 if x = y

0 otherwise

The monadic composition takes as input a sub-distribution µ ∈ D(A)
and a mapping M : A → D(B) and yields a sub-distribution let a =
µ in M a ∈ D(B) defined by the clause:

Plet a=µ in M a[{b}]
4=

∑
a∈supp(µ)

µ(a) · PM(a)[{b}]

it is the image distribution of µ along M .

10.3 The partial order of sub-distributions

Sub-distributions are partially ordered by the pointwise inequality
inherited from reals: given any two sub-distributions µ, µ′ ∈ D(A), we

58 Probability sub-distributions

have µ ≤ µ′ iff µ(a) ≤ µ′(a) for every a ∈ A. Moreover, two sub-
distributions are equal iff they assign the same value (i.e., probability)
to each element in their domain: given any two sub-distributions µ, µ′ ∈
D(A), we have µ = µ′ iff µ(a) = µ′(a) for every a ∈ A. Note that µ = µ′

iff µ ≤ µ′ and µ′ ≤ µ.
We use two key facts about the partial order. First, equality and

inequality coincide for full distributions. This is used in some examples
to prove the existence of identity couplings.

Lemma 10.1. Let µ, µ′ ∈ D(A).

• If µ ≤ µ′ then |µ| ≤ |µ′|.

• If |µ| = 1 and µ ≤ µ′ then µ = µ′.

Second, every increasing sequence of sub-distributions converges to
its supremum. This is a simple consequence of the Monotone Conver-
gence Theorem for the reals.

Proposition 10.1 (Limit distribution). Let (µi)i∈N ∈ D(A) be an increas-
ing family of sub-distributions, i.e. for every i ∈ N, we have µi ≤ µi+1
or more explicitly for every a ∈ A:

Px∼µi [x = a] ≤ Px∼µi+1 [x = a]

Then the sequence Px∼µi [x = a] has a limit in [0, 1] for every a ∈ A.
The limit distribution of (µi)i, written limi→∞ µi, is defined by the
clause:

Px∼limi→∞ µi [x = a] = lim
i→∞

Px∼µi [x = a]

for every a ∈ A. It verifies limi(µi) = µ∞.

Formally the limit of the µi is defined w.r.t. statistical distance.

10.4 Expectation

The expectation Eµ[f] of a function f : A→ R+ w.r.t. a sub-distribution
µ ∈ D(A) is defined as

∑
x∈A µ(x)f(x) when this sum exists, and +∞

otherwise.
[GB2]: add properties as needed

11
The pWhile programming language

We now introduce the pWhile language, a probabilistic extension of
the While language from Chapter 3. The two languages only differ in
that pWhile features an instruction to sample from a distribution.

11.1 Syntax

We briefly describe how the set of types, expressions, and statements
are defined.

11.1.1 Types

The definition of types is similar to the one for While. We assume
given a distinguished constructor that maps every type σ in T to a type
D(σ) of (discrete) distributions over σ.

11.1.2 Expressions

We distinguish between expressions, whose definition is similar to the
one for While, and distribution expressions. For the latter, we assume
given a set of distribution operators. Typical examples of distribution
operators include uniform distributions and product distributions.

59

60 The pWhile programming language

Definition 11.1 (Distribution expressions). Let DOp be a set of distri-
bution operators. We assume that every operator f ∈ DOp comes with
a declaration of the form f : σ′1× . . .×σ′n′×D(σ1)× . . .×D(σn)→ D(τ)
that determines the number and types of elements it takes, and the type
of the output. The set DExpr of distribution expressions is defined by
the following syntax:

d ::=| f(e1, . . . , en′ , d1, . . . , dn)

Each distribution expression d has a distribution type of the form
D(σ) where σ ∈ T .

11.1.3 Statements

Statements are defined similarly to While, to the exception of two
statements for sampling from a distribution and aborting, i.e. returning
the empty distribution.

Definition 11.2 (Statements). The set Cmd of statements is defined
by the following syntax:

c ::= abort abort
| skip noop
| x := e deterministic assignment
| x $← d probabilistic assignment
| c; c sequencing
| if e then c else c conditional
| while e do c while loop

The typing rules for statements are extended in a straightforward
way (Figure 11.1). The definition of depending and modified variables
is also extended in the obvious way.

Definition 11.3 (Depending and modified variables). The set dep(c) of
depending variables of a statement c is extended by the clauses:

dep(x $← d) = vars(d)
dep(abort) = ∅

11.2. Semantics 61

` abort
[Abort]

` x : σ ` d : D(σ)
` x $← d

[Rand]

Figure 11.1: Typing rules for statements

The set mod(c) of modified variables of a statement c is extended by
the clauses:

mod(x $← d) = {x}
mod(abort) = ∅

11.2 Semantics

11.2.1 Types

The interpretation of types from Chapter 3 is extended with the clause:

JD(σ)K = D(JσK)

11.2.2 Expressions

For simplicity, we require that every distribution expression d is in-
trepreted as a full distribution (rather than a sub-distribution) over the
interpretation of its type.

Definition 11.4 (Semantics of expressions). Suppose given a set-theoretical
interpretation JfK ∈ Jσ1K× . . .× Jσn′K×DJσ1K× . . .×DJσnK→ DJτK for
every f : σ1 × . . .× σn′ × D(σ1)× . . .× D(σn)→ D(τ). The semantics
of a distribution expression e with respect to a memory m is defined by
the clauses:

Jf(e1, . . . , en′ , d1, . . . , dn)Km = JfK(Je1Km, . . . , JenKm, Jd1Km, . . . , JdnKm)

11.2.3 Statements

We now turn to give a denotational semantics to statements.

62 The pWhile programming language

Definition 11.5 (Semantics of statements). The denotational semantics
JsK of a statement s is a function that assigns to every memory m ∈
Mem a sub-distribution JsKm ∈ D(Mem). The definition of JsKm is
given in Figure 11.2.

The semantics of abort is the constant function that maps every
initial memory to the null sub-distribution, and the semantics of skip is
the function that maps every memory m to the Dirac distribution 1m.

The semantics of a deterministic assignment is a map that takes as
input an inital memory m and returns the Dirac distribution 1m[x←v],
where m[x← v] is the memory obtained by updating m with the value
v resulting from the evaluation e in memory m.

The semantics of a probabilistic assignment is defined in a similar
way. Concretely, the semantics of a probabilistic assignment is a map
that takes as input an inital memory m, evaluates the distribution
expression d in m, samples v from the resulting distribution and returns
the Dirac distribution 1m[x←v].

The semantics of a sequential composition is defined as the monadic
composition of the semantics of the first and second statements.

The semantics of conditional statements is straightforward: given
a memory m, one evaluates the guard e of the conditional in m, and
return the output sub-distribution Jc1Km of the true branch if the guard
evaluates to true and the output sub-distribution Jc2Km of the false
branch if the guard evaluates to false.

The semantics of while loops defined as the limit of its lower approx-
imations; the correctness of the definition relies on the existence of limit
distributions (Proposition 10.1).

It is interesting to note that the sequence Jwhilei e do cKm is not
converging. However, whenever |Jwhile e do cKm| = 1, the limit of
Jwhilei e do cKm exists, and coincides with the limit of Jwhilei e do cKm
. The proof of this fact is based on the observation that lower approxi-
mations are below approximations, so that the limit of their weight is
equal to 1, and on Theorem 10.1. This is used e.g. in the program logic
of (Barthe et al., 2018) to prove soundness for the rule for loops.

The following lemmas capture the correctness of dep and mod.

Lemma 11.1. If m1 =dep(c) m2 then JcKm1
= JcKm2

.

11.3. Termination 63

JabortKm = 0

JskipKm = unit(m)
Jx := eKm = unit(m[x← JeKm])
Jx $← dKm = let v = JdKm in unit(m[x← v])
Jc1; c2Km = let µ = Jc1Km in Jc2Kµ

Jif e then c1 else c2Km =
{

Jc1Km if JeKm = tt
Jc2Km if JeKm = ff

Jwhile e do cKm = sup
i∈N

µi

where µi =
(

let µ = J(if e then c)iKm in Jif e then abortKµ
)

Figure 11.2: Denotational semantics of statements

Lemma 11.2. If JcKm = µ and m′ ∈ supp(µ) then m ={(mod(c)) m
′.

11.3 Termination

Probabilistic programs exhibit a rich range of termination behaviors.
Almost sure termination is an important case when programs terminate
with probability 1.

Definition 11.6 (Almost sure termination). A statement c is almost
surely terminating, written ast(c), if |JcKm| = 1 for every initial memory
m.

It is easy to see that every loop-free program is almost surely termi-
nating; in fact, it satisfies a stronger property, called certain termination,
i.e. there exists n ∈ N so that the program completes its execution in less
than n steps on arbitrary inputs. Proving almost sure termination for
more general classes of programs can be achieved by a number of means,
including weakest preexpectation calculus (McIver et al., 2018) and
martingale-based reasoning (Chakarov and Sankaranarayanan, 2013;
Fioriti and Hermanns, 2015; Chatterjee et al., 2017).

64 The pWhile programming language

11.4 Further reading

The semantics of probabilistic programs has been studied extensively,
generally in the more broader context of continuous distributions and
often for programs that combine probabilities and non-determinism.
A landmark work of Kozen (1981) uses Banach fixpoint theorem and
measure-theoretical tools to give a denotational semantics for a purely
probabilistic language similar to ours. The probabilistic powerdomain
of Jones and Plotkin (1989) is the canonical formalism for the de-
notational semantics of programs with both probabilities and non-
determinism. Our semantics is intended to be more elementary, in the
sense that it focuses on discrete sub-distributions and that it only uses
the Monotone Convergence Theorem.
[GB3]: TODO: Aumann, QBS, conditioning

12
Union Bound Logic

We use the Union Bound logic from Barthe et al. (2016b) for bounding
the probability of events on output sub-distributions of probabilistic
programs. The logic is based on the union bound, a very simple but
effective tool from probability theory.

12.1 Judgments and validity

Judgments are of the form |=β c : φ⇒ ψ where c is a statement, φ, ψ
are assertions and β ∈ [0, 1] is a constant.

Informally, a judgment is valid if the probability of ¬ψ in JcKm is
upper bounded by β for every memory m that satisfies the precondition
φ.

Definition 12.1 (Valid judgment). The judgment |=β c : φ⇒ ψ is valid
if PJcK(m)[¬ψ] ≤ β for every memory m such that JφKm holds.

The proof rules for ubHL judgments include structural rules (Fig-
ure 12.1), and rules for each construct (Figure 12.2).

We briefly discuss the rules. The [False] rule allows us to conclude
that false holds with probability at most 0 in the final memory.

65

66 Union Bound Logic

[False]
|=1 c : ψ ⇒ ⊥

[Conseq]
|= φ′ =⇒ φ |= ψ =⇒ ψ′ β ≤ β′ |=β c : φ⇒ ψ

|=β′ c : φ′ ⇒ ψ′

[Frame]
vars(ψ) ∩mod(c) = ∅
|=0 c : ψ ⇒ ψ

[Case]
|=β c : φ1 ⇒ ψ |=β c : φ2 ⇒ ψ

|=β c : φ1 ∨ φ2 ⇒ ψ

[Exists]
∀x : T. |=β c : φ⇒ ψ

|=β c : ∃x : T. φ⇒ ψ

[And]
|=β1 c : φ⇒ ψ1 |=β2 c : φ⇒ ψ2

|=β1+β2 c : ψ ⇒ ψ1 ∧ ψ2

Figure 12.1: Structural ubHL proof rules

12.1. Judgments and validity 67

[Skip]
|=0 skip : ψ ⇒ ψ

[Assn]
|=0 x := e : ψ[e/x]⇒ ψ

[Rand]
∀m. JφKm =⇒ PJx $←dKm

[¬ψ] ≤ β

|=β x $← d(e) : φ⇒ ψ

[Seq]
|=β c : φ⇒ θ |=β′ c′ : θ ⇒ ψ

|=β+β′ c; c′ : φ⇒ ψ

[Cond]
|=β c : φ ∧ e⇒ ψ |=β c

′ : φ ∧ ¬e⇒ ψ

|=β if e then c else c′ : φ⇒ ψ

[While-CT]
|=β c : θ ∧ e⇒ θ |=0 (if e then c)n : φ⇒ ¬e

|=nβ while e do c : θ ∧ φ⇒ θ ∧ ¬e

[While-AST]
|=0 c : θ ∧ e⇒ θ |=β c : θ ∧ e⇒ ¬e β 6= 1

|=0 while e do c : θ ⇒ θ ∧ ¬e

Figure 12.2: Non-structural ubHL proof rules

The [Conseq] rule allows strengthening the pre-condition, weaken-
ing the post-condition, and increasing the index—this corresponds to
allowing a possibly higher probability of failure.

The frame rule [Frame] preserves assertions that do not mention
variables modified by the command. The conjunction rule [And] is
another instance of the union bound, allowing us to combine two post-
conditions while adding up the failure probabilities. The case rule [Case]
is the dual of [And] and takes the maximum failure probability among
two post-conditions when taking their disjunction. Finally,

The rule for random sampling [Rand] allows us to assume a propo-
sition ψ about the random sample provided that ψ fails with probability
at most β. This is a semantic condition which we introduce as an axiom
for each primitive distribution.

68 Union Bound Logic

The remaining rules are similar to the standard Hoare logic rules,
with special handling for the index. The sequence rule [Seq] states
that the failure probabilities of the two commands add together; this
is simply the union bound internalized in our logic. The conditional
rule [If] assumes that the indices for the two branch judgments are
equal—which can always be achieved via weakening—keeping the same
index for the conditional. Roughly, this is because only one branch of
the conditional is executed. The loop rule [While] simply accumulates
the failure probability β throughout the iterations; the side conditions
ensure that the loop terminates in at most k iterations except with
probability k · β.

12.2 Soundness and completeness

The logic is sound: if the premises of a proof rule are valid, and the
side-conditions, if any, hold, then the conclusions of the proof rule are
valid.

Proposition 12.1. Every derivable judgment |=β c : φ⇒ ψ is valid, i.e.
for every memory m, JφKm implies PJcKm

[¬ψ] ≤ β.

Unsurprisingly, the proof system is incomplete: there are valid judg-
ments that cannot be proved using the logic. Indeed, the union bound
principle is a simple tool, and it induces non-optimal bounds. Concen-
tration inequalities Dubhashi and Panconesi, 2009 is an active field of
research that studies advanced methods for improving these bounds,
and that is not captured by ubHL.

12.3 Examples

[GB4]: Add dice sampling and other examples

12.4 Further reading

There is a long line of research, spanning more than four decades,
on program logics for reasoning about general probabilistic properties

12.4. Further reading 69

both for purely probabilistic programs and for programs that combine
probabilities and non-deterministic choice. Kozen (1985) develops a
propositional dynamic logic for a purely probabilistic language; this work
has later been extended in many directions. Particularly, a long line of
work by McIver and Morgan, summarized in (McIver and Morgan, 2005),
develops a weakest pre-expectation calculus for a language with both
probabilities and non-determinism. Their work has also been extended
in many directions, with applications to security and to complexity
analysis. We recommend the reader to consult Kaminski, 2019 for a
detailed account of the latter.

13
Probabilistic couplings

13.1 Definition

Informally, a probabilistic coupling for two sub-distributions µ1 ∈ D(A1)
and µ2 ∈ D(A2) is a sub-distribution µ ∈ D(A1 × A2) which lets the
two sub-distributions share some randomness. Formally, the definition
of probabilistic coupling requires that the left and right projections of
µ (also known as its marginals, and defined formally below), coincide
with µ1 and µ2 respectively.

Definition 13.1 (Marginal sub-distributions). The first and second marginals
of a sub-distribution µ ∈ D(A1 × A2) are the two sub-distributions
π1(µ) ∈ D(A1) and π2(µ) ∈ D(A2) given by

π1(µ)(a1) =
∑
a2∈A2

µ(a1, a2) π2(µ)(a2) =
∑
a1∈A1

µ(a1, a2)

For our purposes, we are interested in probabilistic couplings that
lie within a given relation, to be thought as the post-condition of the
coupling.

Definition 13.2 (Probabilistic couplings). Let R ⊆ A1 ×A2 be a binary
relation. Let µ1 ∈ D(A1) and µ2 ∈ D(A2). A R-coupling for µ1 and µ2

70

13.2. Basic properties 71

is a discrete sub-distribution µ ∈ D(A1 × A2) such that the following
conditions are satisfied:

• marginals: π1(µ) = µ1 and π2(µ) = µ2

• support: supp(µ) ⊆ R

We write µ JR 〈µ1 & µ2〉 whenever µ is a R-coupling of µ1 and µ2.

For many purposes, it suffices to know the existence of a R-coupling.
This leads to the definition of R-lifting.

Definition 13.3 (Probabilistic lifting of a relation). Let R ⊆ A1 ×A2 be
a binary relation. The probabilistic lifting of the relation R is the binary
relation R] over D(A1) × D(A2) such that for every µ1 ∈ D(A1) and
µ2 ∈ D(A2), (µ1, µ2) ∈ R] iff there exists µ such that µ JR 〈µ1 & µ2〉.

13.2 Basic properties

The following is an important consequence of the definition of R-
couplings.

Lemma 13.1. If µ JR 〈µ1 & µ2〉 then |µ| = |µ1| = |µ2|.

Proof. We do the proof only for µ1 = µ

|µ1| =
∑
a1∈A1 µ1(a1) (by definition)

=
∑
a1∈A1 π1(µ)(a1) (marginals)

=
∑
a1∈A1

∑
a2∈A2 µ(a1, a2) (by definition)

=
∑

(a1,a2)∈A1×A2 µ(a1, a2)
= |µ| (by definition)

Conversely, >-couplings always exist for pairs of sub-distributions
whose mass coincide.

Lemma 13.2 (Existence of >-couplings). Let µ1 ∈ D(A1) and µ2 ∈
D(A2). If |µ1| = |µ2| then there exists µ ∈ D(A1 × A2) such that
µ J> 〈µ1 & µ2〉.

72 Probabilistic couplings

Proof. We need to exhibit a sub-distribution µ over A1 × A2 with
the desirable properties. It suffices to take a rescaling of the product
distribution:

µ(a1, a2) = µ1(a1) · µ2(a2)
|µ1|

There exist many >-couplings for probability sub-distributions with
the same mass; one interesting instance is the optimal coupling, when
A1 = A2 (see Exercise ??).

On the other hand, ⊥-couplings do not exist, except for the null
sub-distributions.

Lemma 13.3 (Non-existence of ⊥-couplings). Let µ1 ∈ D(A1) and µ2 ∈
D(A2). If µ J⊥ 〈µ1 & µ2〉 then |µ1| = |µ2| = 0.

Proof. The sub-distribution µ over A1 × A2 must necessarily be the
null sub-distribution. By the marginal conditions both µ1 and µ2 must
also be the null sub-distributions.

The next lemma shows that R-couplings are preserved under weak-
enings.

Lemma 13.4 (Monotonocity of couplings). Let µ1 ∈ D(A1) and µ2 ∈
D(A2) and µ ∈ D(A1 ×A2). Moreover let R,S ⊆ A1 ×A2 such that If
R ⊆ S. If µ JR 〈µ1 & µ2〉 then µ JS 〈µ1 & µ2〉.

Proof. The marginal conditions follow immediately from the assumption,
the support condition follows by transitivity of ⊆.

Conversely, one can strengthen the relation of the coupling, under
suitable conditions.

Lemma 13.5 (Strengthening couplings). Let µ1 ∈ D(A1) and µ2 ∈
D(A2) and µ ∈ D(A1 × A2). Moreover let R,S ⊆ A1 × A2 such that
R∩ (supp(µ1)× supp(µ2)) ⊆ S. If µ JR 〈µ1 & µ2〉 then µ JS 〈µ1 & µ2〉.

Proof. The marginal conditions follow immediately from the assump-
tion. For the support condition, the marginal conditions entail that
µ(a1, a2) = 0 whenever a1 /∈ supp(µ1) or a2 /∈ supp(µ2), so supp(µ) ⊆
(supp(µ1)× supp(µ2)).

13.3. Bijective couplings 73

The following lemma shows that couplings are not closed under
conjunction of relations.

Proposition 13.1. There exists R,S ⊆ A1 × A2 and µ1 ∈ D(A1) and
µ2 ∈ D(A2) such that (µ1, µ2) ∈ R] and (µ1, µ2) ∈ S] but (µ1, µ2) /∈
(R ∩ S)].

Proof. Consider A1 = A2 = {0, 1} and µ1 = µ2 = U{0,1} be the uniform
distribution over booleans. Moreover, let R be the diagonal relation, i.e.
for every (x1, x2) ∈ {0, 1} × {0, 1}, ((x1, x2) ∈ R iff x1 = x2 and let S
be its complement, i.e. for every (x1, x2) ∈ {0, 1} × {0, 1}, (x1, x2) ∈ S
iff x1 6= x2. We have µ JR 〈µ1 & µ2〉 and µ′ JS 〈µ1 & µ2〉, where µ and
µ′ are defined by the clauses:

µ(x1, x2) =
{

1
2 if x1 = x2
0 otherwise µ′(x1, x2) =

{
1
2 if x1 6= x2
0 otherwise

However, there exists no sub-distribution µ′′ such that µ′′ JR∩S 〈µ1 &
µ2〉, since R ∩ S = ∅, and therefore the above would entail |µ′′| = 0,
which contradicts πi(µ′′) = µi as |µi| = 1.

13.3 Bijective couplings

A common strategy to establish a R-coupling, with R ⊆ A1 × A2,
between two sub-distributions µ1 and µ2, is to exhibit a mapping
h : A1 → A2 that satisfies the following three conditions:

bijectivity: for every a1, a
′
1 ∈ supp(µ1), if h(a1) = h(a′1) then a1 = a′1,

and for every a2 ∈ supp(µ2), there exists a1 ∈ supp(µ1) such that
h(a1) = a2;

graph inclusion: for every a1 ∈ supp(µ1), (a1, h(a1)) ∈ R;

equal probabilities: for every a ∈ A1,

Px1∼µ1 [x1 = a] = Px2∼µ2 [x2 = h(a)]

(In particular, this entails that h(a) ∈ supp(µ2) for every a ∈
supp(µ1).)

74 Probabilistic couplings

We write h JR 〈µ1 & µ2〉 whenever the above conditions are satisfied.

Proposition 13.2. If h JR 〈µ1 & µ2〉 then µ JR 〈µ1 & µ2〉, where

Px∼µ[x = (a1, a2)] =
{

Px1∼µ1 [x1 = a1] if h(a1) = a2
0 otherwise

Proof. By inspection.

There are examples of couplings that cannot be established using
bijective couplings. Consider for instance the uniform distributions over
bitstrings of length ` and `+ `′ respectively. The two distributions are
R-coupled for the relation R defined by the clause (x, y) ∈ R iff x = [y]`,
but there is no bijective coupling between the two distributions.

13.4 From couplings to probabilistic inequalities

R-couplings enjoy many important properties. In what follows, we
summarize the properties that are of immediate importance for our
context.

Proposition 13.3 (Fundamental theorem of R-couplings). Let E1 ⊆ A1
and E2 ⊆ A2. Let R ⊆ A1 ×A2, such that for every (a1, a2) ∈ A1 ×A2,
(a1, a2) ∈ R implies a1 ∈ E1 =⇒ a2 ∈ E2. If (µ1, µ2) ∈ R] then

Pµ1 [E1] ≤ Pµ2 [E2]

Proof. Let µ such that µ JR 〈µ1 & µ2〉. By the support property of
couplings, we know that supp(µ) ⊆ R, and hence for every (x1, x2) ∈ A
such that µ(x1, x2) 6= 0, we have x1 /∈ E1 or x2 ∈ E2. It follows that
P(x1,x2)∼µ[x1 ∈ E1] ≤ P(x1,x2)∼µ[x2 ∈ E2]. By the marginal property of
couplings, it follows that Pµ1 [E1] ≤ Pµ2 [E2].

This theorem has many useful corollaries, which we list below. Many
of the corollaries are named after their applications in cryptographic
proofs.

Corollary 13.6 (Bridging step). Let E1 ⊆ A1 and E2 ⊆ A2. Let R ⊆
A1 × A2, such that for every (a1, a2) ∈ A1 × A2, (a1, a2) ∈ R implies
a1 ∈ E1 ⇔ a2 ∈ E2. If (µ1, µ2) ∈ R] then

Pµ1 [E1] = Pµ2 [E2]

13.4. From couplings to probabilistic inequalities 75

In many cases, the two events E1 and E2 of interest are the same.

Corollary 13.7 (Bridging step from equivalence relation). Let A1 = A2 =
A and R ⊆ A×A be an equivalence relation. If (µ1, µ2) ∈ R] then

Pµ1 [E] = Pµ2 [E]

for every E ⊆ A such that a1 ∈ E ∧ (a1, a2) ∈ R implies a2 ∈ E for
every a1, a2 ∈ A.

The next corollary involves two events E1 and E2 whose probability
we want to connect, and a third event F , called a failure event.

Corollary 13.8 (Failure event). Let E1 ⊆ A1 and E2, F ⊆ A2. Define
R ⊆ A1×A2 such that for every (a1, a2) ∈ A1×A2, (a1, a2) ∈ R implies
a1 ∈ E1 =⇒ a2 ∈ E2 ∪ F . If (µ1, µ2) ∈ R] then

Pµ1 [E1]− Pµ2 [E2] ≤ Pµ2 [F]

Proof. By proposition 13.3 we have Pµ1 [E1] ≤ Pµ2 [E2 ∪ F] and we have
Pµ2 [E2 ∪ F] ≤ Pµ2 [E2] + Pµ2 [F], the conclusion follows trivially.

The next corollary provides a symmetric version of the previous
corollary.

Corollary 13.9 (Delayed failure event). Let E1, F1 ⊆ A1 and E2, F2 ⊆ A2.
Define R ⊆ A1×A2 such that for every (a1, a2) ∈ A1×A2, (a1, a2) ∈ R
implies a1 ∈ E1 ∩ ¬F1 ⇔ a2 ∈ E2 ∩ ¬F2. If (µ1, µ2) ∈ R] then∣∣Pµ1 [E1]− Pµ2 [E2]

∣∣ ≤ max(Pµ1 [F1],Pµ2 [F2])

Proof. By corollary Theorem 13.6, we have Pµ1 [E1 ∩ ¬F1] = Pµ2 [E2 ∩ ¬F2],
by elementary reasoning:

∣∣Pµ1 [E1]− Pµ2 [E2]
∣∣ =

∣∣∣∣∣ Pµ1 [E1 ∩ F1] + Pµ1 [E1 ∩ ¬F1]
−Pµ2 [E2 ∩ F2]− Pµ2 [E2 ∩ ¬F2]

∣∣∣∣∣
=

∣∣Pµ1 [E1 ∩ F1]− Pµ2 [E2 ∩ F2]
∣∣

≤ max(Pµ1 [E1 ∩ F1],Pµ2 [E2 ∩ F2])
≤ max(Pµ1 [F1],Pµ2 [F2])

76 Probabilistic couplings

The following variant is also useful and proved in a similar way.

Corollary 13.10. Let S be a relation such that (a1, a2) ∈ S iff a1 ∈
F1 ⇔ a2 ∈ F2 and a1 /∈ F1 =⇒ a1 ∈ E1 ⇔ a2 ∈ E2. Prove that∣∣Pµ1 [E1]− Pµ2 [E2]

∣∣ ≤ Pµ1 [F1]

and ∣∣Pµ1 [E1]− Pµ2 [E2]
∣∣ ≤ Pµ1 [F2]

The following proposition states that lifting of equality on the
underlying set coincides with equality of distributions, and is useful to
fall back on standard probability reasoning when proving existence of
couplings.

Proposition 13.4 (Equality coupling). IfA1 = A2 = A, then (µ1, µ2) ∈=],
then (µ1, µ2) ∈=] iff µ1 = µ2, i.e. for every E ⊆ A,

Pµ1 [E] = Pµ2 [E]

Proof. The direct implication follows from the Fundamental Theorem
of R-Couplings. The existence of an identity coupling is shown by taking
as witness the sub-distribution µ such that

µ(a, b) =
{
µ1(a) if a = b

0 otherwise

In addition, the following lemma provides a method to decompose a
proof that two distributions are related by an equality coupling into a
proof that the two distributions are related by pointwise equality.

Proposition 13.5 (Pointwise equality coupling). For every µ1, µ2 ∈ D(A),
µ1 = µ2 iff (µ1, µ2) ∈ R]a for every a ∈ A, where (x1, x2) ∈ Ra iff x1 =
a⇔ x2 = a. If moreover µ1 is a full-distribution, then it suffices that
(µ1, µ2) ∈ S]a for every a ∈ A, where (x1, x2) ∈ Sa iff x1 = a⇒ x2 = a.

Proof. The direct implication is trivial, so we consider the reverse
implication. By Theorem 13.6, it follows that for every a ∈ A, we have
Px∼µ1 [x = a] = Px∼µ2 [x = a], hence the two sub-distributions are equal.

13.5. Closure properties 77

In case µ1 is a full distribution, (µ1, µ2) ∈ S]a implies Px∼µ1 [x = a] ≤
Px∼µ2 [x = a], from which we can again conclude equality of distributons.

The above proposition can be generalized to accommodate a failure
event.

Our final result is useful to establish that an event has probability
exactly 1

2 , assuming that the underlying distribution is full.

Proposition 13.6. Let µ ∈ D(A) be a full-distribution, and E ⊆ A. Let
(x1, x2, R) ∈ iff x1 ∈ E ⇔ x2 /∈ E. If (µ, µ) ∈ R] then Pµ[E] = 1

2 .

Proof. It follows from the Fundamental Theorem of R-Couplings that
Pµ[E] = Pµ[¬E]. Since µ is a full-distribution, it follows that Pµ[E] =
1
2 .

13.5 Closure properties

Couplings are closed under convex combinations.

Lemma 13.11 (Convex combinations of couplings). Let R ⊆ A1 × A2,
and let I be a finite set. Let (µi1)i∈I ∈ D(A1), (µi2)I ∈ D(A2) and
(µi)i∈I ∈ D(A1 × A2) such that µi JR 〈µi1 & µi2〉 for every i ∈ I. For
every (pi)i∈I ∈ [0, 1] such that

∑
i∈I pi ≤ 1, we have∑

i∈I
piµi JR 〈

∑
i∈I

piµi1 &
∑
i∈I

piµi2〉

where
∑
i∈I p

iµi is the sub-distribution defined by the clause (
∑
i∈I p

iµi)(a) =∑
i∈I p

iµi(a).

Couplings are closed under relation composition.

Lemma 13.12. Let R ⊆ A1 × A2 and S ⊆ A2 × A3. Let µ1 ∈ D(A1),
µ2 ∈ D(A2), and µ3 ∈ D(A3). Assume that µ JR 〈µ1 & µ2〉 and
µ′ JS 〈µ2 & µ3〉. Then there exists µ′′ ∈ D(A1×A3) such that µ′′ JR◦S
〈µ1 & µ3〉.

78 Probabilistic couplings

Proof. Take

µ′′(a1, a3) =
∑
a2

µ(a1, a2) · µ′(a2, a3)
µ2(a2)

where by convention 0
0 = 0.

Moreover, couplings are closed under monadic unit and monadic
composition. The following establishes that Dirac distributions of ele-
ments related by a relation R are R-coupled.

Lemma 13.13. Let R ⊆ A1×A2 and let (a1, a2) ∈ R. Then 1(a1,a2) JR
〈1a1 & 1a2〉.

The next theorem establishes that couplings are closed under se-
quential composition.

Theorem 13.14 (Sequential composition of couplings). Let R ⊆ A1×A2
and S ⊆ B1 ×B2. Let µ1 ∈ D(A1), µ2 ∈ D(A2), M1 : A1 → D(B1) and
M2 : A2 → D(B2). Assume that:

• µ JR 〈µ1 & µ2〉;

• M(a1, a2) JS 〈M1(a1) & M2(a2)〉 for every (a1, a2) ∈ A1 × A2
such that (a1, a2) ∈ R.

Then let a = µ in M a JS 〈let a1 = µ1 in M1 a1 & let a2 = µ2 in M2 a2〉.

13.6 Strassen’s Theorem and limits of couplings

(Strassen, 1965) gives an elegant characterization of the existence of
R-couplings. The following specializes his result to our simpler setting.

Theorem 13.15 (Strassen’s theorem). Let R ⊆ A1 × A2, µ1 ∈ D(A1)
and µ2 ∈ D(A2) such that |µ1| = |µ2| = 1. Then (µ1, µ2) ∈ R] iff
Pµ1 [X] ≤ Pµ2 [R(X)] for every X ⊆ A1, where R(X) = {a2 ∈ A2 |
∃a1 ∈ A1. a1 ∈ X ∧ (a1, a2) ∈ R} is the image of X under R.

By rescaling, the characterization readily extends to sub-distributions
µ1 and µ2 such that |µ1| = |µ2|.

Strassen’s Theorem is useful to provide alternative proofs to several
statements of this chapter. Another useful consequence of Strassen’s
Theorem is that existence of R-liftings carries to limits distributions.

13.7. An inductive characterization of R-liftings 79

Proposition 13.7 (Limits of R-liftings). Let (µn)n∈N ∈ D(A1) and
(νn)n∈N ∈ D(A2) be increasing sequences of sub-distributions over A1
and A2 respectively. Let R ⊆ A1 ×A2. If for any n ∈ N, (µn, νn) ∈ R]
then (µ∞, ν∞) ∈ R], where µ∞ = limi∈N µi and ν∞ = limi∈N νi .

Proof. By Strassen’s Theorem, it suffices to show that for every X ⊆
A1, we have µ∞(X) ≤ ν∞(R(X)) or equivalently, limi∈N µi(X) ≤
limi∈N νi(R(X)). The latter follows immediately from the fact that
for every i, µi(X) ≤ νi(R(X)), which follows from our hypothesis by
Strassen’s Theorem.

Note that a direct proof based on witnesses is more difficult, because
the limit of couplings of two increasing sequences of sub-distributions
may not exist. Indeed, consider the increasing sequences of sub-distributions
over booleans:

µi(tt) = µi(ff) = νi(tt) = νi(ff) = 1/2− 1/2i

Then we can define ρi as follows:

• if i is odd, then ρi(tt, tt) = ρi(ff, false) = 1/2−1/2i and ρi(ff, tt) =
ρi(tt, false) = 0

• if i is even, then ρi(tt, tt) = ρi(ff, false) = 0 and ρi(ff, tt) =
ρi(tt, false) = 1/2− 1/2i

Since ρi and ρi+1 have disjoint support for every i, their limit does not
exist.

13.7 An inductive characterization of R-liftings

R-liftings admit the following inductive relation:

(a1, a2) ∈ R
1(a1,a2) JR 〈1a1 & 1a2〉

[Dirac]

∀i ∈ I. µi JR 〈µi1 & µi2〉∑
i∈I

piµi JR 〈
∑
i∈I

piµi1 &
∑
i∈I

piµi2〉
[Convex]

80 Probabilistic couplings

Proposition 13.8 (Inductive characterization of R-couplings). µ JR
〈µ1 & µ2〉 iff the validity of the coupling can be established using
the inductive relation above.

Note that the soundness of the proof system uses the fact that
couplings are closed under convex combinations.

13.8 Further reading

[GB5]: TODO: Lindvall, Thorisson, Peres, etc

14
Probabilistic Relational Hoare Logic

81

15
Probabilistic non-interference

82

16
Probabilistic product programs

83

Part III

Adversarial computations

17
Adversaries

85

18
The PRF/PRP Switching Lemma

86

19
Encryption

87

20
Signatures

88

Part IV

Epilogue

21
Conclusion

90

References

Almeida, J. B., M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi
(2016). “Verifying Constant-Time Implementations”. In: 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, Au-
gust 10-12, 2016. Ed. by T. Holz and S. Savage. USENIX Association.
53–70. url: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/almeida.

Barthe, G., J. M. Crespo, and C. Kunz (2011). “Relational Verification
Using Product Programs”. In: FM 2011: Formal Methods - 17th
International Symposium on Formal Methods, Limerick, Ireland,
June 20-24, 2011. Proceedings. Ed. by M. J. Butler and W. Schulte.
Vol. 6664. Lecture Notes in Computer Science. Springer. 200–214.
doi: 10.1007/978-3-642-21437-0_17. url: https://doi.org/10.
1007/978-3-642-21437-0%5C_17.

Barthe, G., J. M. Crespo, and C. Kunz (2016a). “Product programs
and relational program logics”. J. Log. Algebr. Meth. Program.
85(5): 847–859. doi: 10.1016/j . jlamp.2016.05.004. url: https :
//doi.org/10.1016/j.jlamp.2016.05.004.

91

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-21437-0%5C_17
https://doi.org/10.1007/978-3-642-21437-0%5C_17
https://doi.org/10.1016/j.jlamp.2016.05.004
https://doi.org/10.1016/j.jlamp.2016.05.004
https://doi.org/10.1016/j.jlamp.2016.05.004

92 References

Barthe, G., T. Espitau, M. Gaboardi, B. Grégoire, J. Hsu, and P.
Strub (2018). “An Assertion-Based Program Logic for Probabilistic
Programs”. In: Programming Languages and Systems - 27th Euro-
pean Symposium on Programming, ESOP 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings.
Ed. by A. Ahmed. Vol. 10801. Lecture Notes in Computer Science.
Springer. 117–144. doi: 10 .1007/978- 3- 319- 89884- 1_5. url:
https://doi.org/10.1007/978-3-319-89884-1%5C_5.

Barthe, G., M. Gaboardi, B. Grégoire, J. Hsu, and P. Strub (2016b). “A
Program Logic for Union Bounds”. In: 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-
15, 2016, Rome, Italy. Ed. by I. Chatzigiannakis, M. Mitzenmacher,
Y. Rabani, and D. Sangiorgi. Vol. 55. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik. 107:1–107:15. doi: 10.4230/LIPIcs.
ICALP.2016.107. url: http://dx.doi.org/10.4230/LIPIcs.ICALP.
2016.107.

Barthe, G., B. Grégoire, J. Hsu, and P. Strub (2017). “Coupling proofs
are probabilistic product programs”. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. Ed. by G. Castagna
and A. D. Gordon. ACM. 161–174. url: http://dl.acm.org/citation.
cfm?id=3009896.

Benton, N. (2004). “Simple relational correctness proofs for static analy-
ses and program transformations”. In: Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2004, Venice, Italy, January 14-16, 2004. Ed. by
N. D. Jones and X. Leroy. ACM. 14–25. doi: 10.1145/964001.964003.
url: http://doi.acm.org/10.1145/964001.964003.

https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-89884-1%5C_5
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.107
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.107
http://dl.acm.org/citation.cfm?id=3009896
http://dl.acm.org/citation.cfm?id=3009896
https://doi.org/10.1145/964001.964003
http://doi.acm.org/10.1145/964001.964003

References 93

Chakarov, A. and S. Sankaranarayanan (2013). “Probabilistic Pro-
gram Analysis with Martingales”. In: Computer Aided Verification -
25th International Conference, CAV 2013, Saint Petersburg, Rus-
sia, July 13-19, 2013. Proceedings. Ed. by N. Sharygina and H.
Veith. Vol. 8044. Lecture Notes in Computer Science. Springer.
511–526. doi: 10 . 1007 / 978 - 3 - 642 - 39799 - 8 _34. url: https :
//doi.org/10.1007/978-3-642-39799-8%5C_34.

Chatterjee, K., P. Novotný, and D. Zikelic (2017). “Stochastic invariants
for probabilistic termination”. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. Ed. by G. Castagna
and A. D. Gordon. ACM. 145–160. url: http://dl.acm.org/citation.
cfm?id=3009873.

Dubhashi, D. P. and A. Panconesi (2009). “Concentration of measure
for the analysis of randomized algorithms”.

Fioriti, L. M. F. and H. Hermanns (2015). “Probabilistic Termination:
Soundness, Completeness, and Compositionality”. In: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2015, Mumbai, India, January
15-17, 2015. Ed. by S. K. Rajamani and D. Walker. ACM. 489–501.
doi: 10.1145/2676726.2677001. url: https://doi.org/10.1145/
2676726.2677001.

Jones, C. and G. D. Plotkin (1989). “A Probabilistic Powerdomain of
Evaluations”. In: Proceedings of the Fourth Annual Symposium on
Logic in Computer Science (LICS ’89), Pacific Grove, California,
USA, June 5-8, 1989. IEEE Computer Society. 186–195. doi: 10.
1109/LICS.1989.39173. url: http://dx.doi.org/10.1109/LICS.1989.
39173.

Kaminski, B. L. (2019). “Advanced weakest precondition calculi for
probabilistic programs”. PhD thesis. RWTH Aachen University,
Germany. url: http://publications.rwth-aachen.de/record/755408.

Kozen, D. (1981). “Semantics of Probabilistic Programs”. J. Comput.
Syst. Sci. 22(3): 328–350. doi: 10.1016/0022-0000(81)90036-2. url:
http://dx.doi.org/10.1016/0022-0000(81)90036-2.

https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-642-39799-8%5C_34
https://doi.org/10.1007/978-3-642-39799-8%5C_34
http://dl.acm.org/citation.cfm?id=3009873
http://dl.acm.org/citation.cfm?id=3009873
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1109/LICS.1989.39173
https://doi.org/10.1109/LICS.1989.39173
http://dx.doi.org/10.1109/LICS.1989.39173
http://dx.doi.org/10.1109/LICS.1989.39173
http://publications.rwth-aachen.de/record/755408
https://doi.org/10.1016/0022-0000(81)90036-2
http://dx.doi.org/10.1016/0022-0000(81)90036-2

94 References

Kozen, D. (1985). “A Probabilistic PDL”. J. Comput. Syst. Sci. 30(2):
162–178. doi: 10.1016/0022-0000(85)90012-1. url: http://dx.doi.
org/10.1016/0022-0000(85)90012-1.

Lawvere, F. W. (1962). “The category of probabilistic mappings”.
preprint.

McIver, A. and C. Morgan (2005). Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science. Springer.
isbn: 978-0-387-40115-7. doi: 10.1007/b138392. url: http://dx.doi.
org/10.1007/b138392.

McIver, A., C. Morgan, B. L. Kaminski, and J. Katoen (2018). “A new
proof rule for almost-sure termination”. PACMPL. 2(POPL): 33:1–
33:28. doi: 10.1145/3158121. url: https://doi.org/10.1145/3158121.

Molnar, D., M. Piotrowski, D. Schultz, and D. A. Wagner (2005).
“The Program Counter Security Model: Automatic Detection and
Removal of Control-Flow Side Channel Attacks”. In: Information
Security and Cryptology - ICISC 2005, 8th International Conference,
Seoul, Korea, December 1-2, 2005, Revised Selected Papers. Ed.
by D. Won and S. Kim. Vol. 3935. Lecture Notes in Computer
Science. Springer. 156–168. doi: 10.1007/11734727_14. url: https:
//doi.org/10.1007/11734727%5C_14.

Strassen, V. (1965). “The existence of probability measures with given
marginals”. The Annals of Mathematical Statistics: 423–439. url:
http://projecteuclid.org/euclid.aoms/1177700153.

Volpano, D. M. and G. Smith (1997). “A Type-Based Approach to
Program Security”. In: TAPSOFT’97: Theory and Practice of Soft-
ware Development, 7th International Joint Conference CAAP/FASE,
Lille, France, April 14-18, 1997, Proceedings. Ed. by M. Bidoit and
M. Dauchet. Vol. 1214. Lecture Notes in Computer Science. Springer.
607–621. doi: 10.1007/BFb0030629. url: https://doi.org/10.1007/
BFb0030629.

Winskel, G. (1993). The formal semantics of programming languages:
an introduction.

https://doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1007/b138392
http://dx.doi.org/10.1007/b138392
http://dx.doi.org/10.1007/b138392
https://doi.org/10.1145/3158121
https://doi.org/10.1145/3158121
https://doi.org/10.1007/11734727_14
https://doi.org/10.1007/11734727%5C_14
https://doi.org/10.1007/11734727%5C_14
http://projecteuclid.org/euclid.aoms/1177700153
https://doi.org/10.1007/BFb0030629
https://doi.org/10.1007/BFb0030629
https://doi.org/10.1007/BFb0030629

References 95

Zaks, A. and A. Pnueli (2008). “CoVaC: Compiler Validation by Program
Analysis of the Cross-Product”. In: FM 2008: Formal Methods, 15th
International Symposium on Formal Methods, Turku, Finland, May
26-30, 2008, Proceedings. Ed. by J. Cuéllar, T. S. E. Maibaum, and
K. Sere. Vol. 5014. Lecture Notes in Computer Science. Springer.
35–51. doi: 10.1007/978-3-540-68237-0_5. url: https://doi.org/
10.1007/978-3-540-68237-0%5C_5.

https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1007/978-3-540-68237-0%5C_5
https://doi.org/10.1007/978-3-540-68237-0%5C_5

Index

bridging step, 74

coupling, 70

det-term, 12

lifting, 71
lossless, 63

memory, 10
monadic bind, 57

sub-distribution, 56

96

	An introduction to relational verification
	I Deterministic computations
	First-order logic
	The While programming language
	Syntax
	Types
	Expressions
	Statements

	Semantics
	Types
	Memories
	Expressions
	Statements

	Instrumented semantics
	Control flow
	Cost

	Hoare Logic
	Assertions
	Judgments
	Proof system
	Structural rules

	Soundness and relative completeness
	Verification condition generation
	Examples
	Exponentiation
	Fast exponentiation
	Sums

	Relational Hoare Logic
	Relational assertions
	Judgments
	Proof system
	Structural rules
	Two-sided rules
	One-sided rules
	Soundness and relative completeness

	Verification condition generation
	Comparison with product programs
	Sequential product program
	Synchronous product program
	Relational Hoare Logic with explicit product programs

	Equivalence and robustness
	Simple examples
	Translation validation
	More examples with a general rule for loops
	Sensitivity

	Information flow and program counter security
	Information flow
	Non-interference from relational Hoare logic
	Automating non-interference proofs
	Embedding information flow typing

	Program counter security
	Secure comparison
	Square-and-always multiply
	Finding smallest value in array and insertion sort
	Square and multiply

	Relative cost
	Cartesian Hoare Logic

	II Probabilistic computations
	Probability sub-distributions
	Distributions
	Monadic structure of distributions
	The partial order of sub-distributions
	Expectation

	The pWhile programming language
	Syntax
	Types
	Expressions
	Statements

	Semantics
	Types
	Expressions
	Statements

	Termination
	Further reading

	Union Bound Logic
	Judgments and validity
	Soundness and completeness
	Examples
	Further reading

	Probabilistic couplings
	Definition
	Basic properties
	Bijective couplings
	From couplings to probabilistic inequalities
	Closure properties
	Strassen's Theorem and limits of couplings
	An inductive characterization of R-liftings
	Further reading

	Probabilistic Relational Hoare Logic
	Probabilistic non-interference
	Probabilistic product programs

	III Adversarial computations
	Adversaries
	The PRF/PRP Switching Lemma
	Encryption
	Signatures

	IV Epilogue
	Conclusion
	References

