
Programming language techniques
for high-assurance cryptography

Suggested Citation: Gilles Barthe (2017), “Programming language techniques for
high-assurance cryptography”, : Vol. xx, No. xx, pp 1–1. DOI: 10.1561/XXXXXXXXX.

Gilles Barthe

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

Contents

1 Introduction to probabilistic couplings 2
1.1 Distributions . 2
1.2 Events and probabilities 3
1.3 Couplings . 3
1.4 Bijective couplings . 7
1.5 From couplings to probabilistic inequalities 7
1.6 Couplings are closed under monadic operations 10
1.7 Alternative characterizations of couplings 11
1.8 Further reading . 12
1.9 Exercises . 12

2 Introductory examples 15
2.1 One-time pad . 16
2.2 Hashed ElGamal . 18
2.3 UP TO BAD EXAMPLE 22
2.4 Discussion . 22

3 Cryptographic games 23
3.1 Types . 23
3.2 Expressions . 24
3.3 Distribution expressions 27

3.4 Statements . 28
3.5 Termination . 33
3.6 Exercises . 33

4 Probabilistic Relational Hoare Logic 34
4.1 Relational assertions . 34
4.2 Judgments . 35
4.3 Probabilistic inequalities 36
4.4 Proof system . 37
4.5 Excercises . 46

5 Union Bound Logic 47
5.1 Judgments and validity 47
5.2 Soundness and completeness 50
5.3 Further reading . 50

6 Adversaries 52
6.1 Definition . 52
6.2 Semantics . 53
6.3 Relational reasoning about adversarial programs 55
6.4 Union bound reasoning about adversarial programs 56
6.5 Computational complexity and termination behavior 57

7 Tools 58
7.1 CertiCrypt . 58
7.2 EasyCrypt . 60
7.3 AutoGP . 63
7.4 ZooCrypt . 63
7.5 Computational Indistinguishibility Framework 64
7.6 Foundational Cryptography Framework 64

References 65

Programming language techniques
for high-assurance cryptography
Gilles Barthe1

1IMDEA Software Institute

ABSTRACT

Gilles Barthe (2017), “Programming language techniques for high-assurance cryp-
tography”, : Vol. xx, No. xx, pp 1–1. DOI: 10.1561/XXXXXXXXX.

1
Introduction to probabilistic couplings

1.1 Distributions

For simplicity, we only consider sub-distributions with a discrete support.

Definition 1.1 (Sub-distributions). A (discrete) sub-distribution over a
set A is a function µ : A→ [0, 1] such that:

• the support supp(µ) = {a ∈ A | µ(a) > 0} of µ is a discrete set;

• the mass |µ| =
∑
a∈A µ(a) of µ is defined and verifies |µ| ≤ 1.

Sub-distributions of mass 1 are called (full) distributions; other sub-
distributions are called proper sub-distributions. The set of sub-distributions
over A is denoted by D(A).

Sub-distributions are partially ordered by the pointwise inequality
inherited from reals: given any two sub-distributions µ, µ′ ∈ D(A), we
have µ ≤ µ′ iff µ(a) ≤ µ′(a) for every a ∈ A. Moreover, two sub-
distributions are equal iff they assign the same value (i.e., probability)
to each element in their domain: given any two sub-distributions µ, µ′ ∈
D(A), we have µ = µ′ iff µ(a) = µ′(a) for every a ∈ A. Note that µ = µ′

iff µ ≤ µ′ and µ′ ≤ µ.

2

1.2. Events and probabilities 3

The following lemma proves that equality and inequality coincide
for distributions.

Lemma 1.1. Let µ, µ′ ∈ D(A).

• If µ ≤ µ′ then |µ| ≤ |µ′|.

• If |µ| = 1 and µ ≤ µ′ then µ = µ′.

1.2 Events and probabilities

Events over a set A are subsets of A. The probability of an event E
w.r.t. a sub-distribution µ, written as Pµ[E], is defined as

∑
x∈E µ(x).

We almost exclusively use the following basic facts about events:

• for every event E, 0 ≤ Pµ[E] ≤ 1;

• Pµ[⊥] = 0;

• Pµ[>] = 1 if µ is a full distribution;

• for every events E and F , E ⊆ F implies Pµ[E] ≤ Pµ[F];

• for every events E and F , Pµ[E ∪ F] = Pµ[E]+Pµ[F]−Pµ[E ∩ F].

1.3 Couplings

Informally, a probabilistic coupling for two sub-distributions µ1 ∈ D(A1)
and µ2 ∈ D(A2) is a sub-distribution µ ∈ D(A1 × A2) which lets the
two sub-distributions share some randomness. Formally, the definition
of probabilistic coupling requires that the left and right projections of
µ (also known as its marginals, and defined formally below), coincide
with µ1 and µ2 respectively.

Definition 1.2 (Marginal sub-distributions). The first and second marginals
of a sub-distribution µ ∈ D(A1 × A2) are the two sub-distributions
π1(µ) ∈ D(A1) and π2(µ) ∈ D(A2) given by

π1(µ)(a1) =
∑
a2∈A2

µ(a1, a2) π2(µ)(a2) =
∑
a1∈A1

µ(a1, a2)

4 Introduction to probabilistic couplings

For our purposes, we are interested in probabilistic couplings that
lie within a given relation, to be thought as the post-condition of the
coupling.

Definition 1.3 (Probabilistic couplings). Let R ⊆ A1 ×A2 be a binary
relation. Let µ1 ∈ D(A1) and µ2 ∈ D(A2). A R-coupling for µ1 and µ2
is a discrete probability sub-distribution µ ∈ D(A1 ×A2) such that the
following conditions are satisfied:

• marginals: π1(µ) = µ1 and π2(µ) = µ2

• support: supp(µ) ⊆ R

We write µ JR 〈µ1 & µ2〉 whenever µ is a R-coupling of µ1 and µ2.

For many purposes, it suffices to know the existence of a R-coupling.
This leads to the definition of R-lifting.

Definition 1.4 (Probabilistic lifting of a relation). Let R ⊆ A1 ×A2 be a
binary relation. The probabilistic lifting of the relation R is the binary
relation R] over D(A1) × D(A2) such that for every µ1 ∈ D(A1) and
µ2 ∈ D(A2), (µ1, µ2) ∈ R] iff there exists µ such that µ JR 〈µ1 & µ2〉.

1.3.1 Properties of couplings

The following is an important consequence of the definition of R-
couplings.

Lemma 1.2. If µ JR 〈µ1 & µ2〉 then |µ| = |µ1| = |µ2|.

Proof. We do the proof only for µ1 = µ

|µ1| =
∑
a1∈A1 µ1(a1) (by definition)

=
∑
a1∈A1 π1(µ)(a1) (marginals)

=
∑
a1∈A1

∑
a2∈A2 µ(a1, a2) (by definition)

=
∑

(a1,a2)∈A1×A2 µ(a1, a2)
= |µ| (by definition)

Conversely, >-couplings always exist for pairs of sub-distributions
whose mass coincide.

1.3. Couplings 5

Lemma 1.3 (Existence of >-couplings). Let µ1 ∈ D(A1) and µ2 ∈ D(A2).
If |µ1| = |µ2| then there exists µ ∈ D(A1×A2) such that µ J> 〈µ1 & µ2〉.

Proof. We need to exhibit a sub-distribution µ over A1 × A2 with
the desirable properties. It suffices to take a rescaling of the product
distribution:

µ(a1, a2) = µ1(a1) · µ2(a2)
|µ1|

There exist many >-couplings for probability sub-distributions with
the same mass; one interesting instance is the optimal coupling, when
A1 = A2 (see Exercise 6).

On the other hand, ⊥-couplings do not exist, except for the null
sub-distributions.

Lemma 1.4 (Non-existence of ⊥-couplings). Let µ1 ∈ D(A1) and µ2 ∈
D(A2). If µ J⊥ 〈µ1 & µ2〉 then |µ1| = |µ2| = 0.

Proof. The sub-distribution µ over A1 × A2 must necessarily be the
null sub-distribution. By the marginal conditions both µ1 and µ2 must
also be the null sub-distributions.

The next lemma shows that R-couplings are preserved under weak-
enings.

Lemma 1.5 (Monotonocity of couplings). Let µ1 ∈ D(A1) and µ2 ∈
D(A2) and µ ∈ D(A1 ×A2). Moreover let R,S ⊆ A1 ×A2 such that If
R ⊆ S. If µ JR 〈µ1 & µ2〉 then µ JS 〈µ1 & µ2〉.

Proof. The marginal conditions follow immediately from the assumption,
the support condition follows by transitivity of ⊆.

Conversely, one can strengthen the relation of the coupling, under
suitable conditions.

Lemma 1.6 (Strengthening couplings). Let µ1 ∈ D(A1) and µ2 ∈
D(A2) and µ ∈ D(A1 × A2). Moreover let R,S ⊆ A1 × A2 such that
R∩ (supp(µ1)× supp(µ2)) ⊆ S. If µ JR 〈µ1 & µ2〉 then µ JS 〈µ1 & µ2〉.

6 Introduction to probabilistic couplings

Proof. The marginal conditions follow immediately from the assump-
tion. For the support condition, the marginal conditions entail that
µ(a1, a2) = 0 whenever a1 /∈ supp(µ1) or a2 /∈ supp(µ2), so supp(µ) ⊆
(supp(µ1)× supp(µ2)).

The following lemma shows that couplings are not closed under
conjunction of relations.

Proposition 1.1. There exists R,S ⊆ A1 × A2 and µ1 ∈ D(A1) and
µ2 ∈ D(A2) such that (µ1, µ2) ∈ R] and (µ1, µ2) ∈ S] but (µ1, µ2) /∈
(R ∩ S)].

Proof. Consider A1 = A2 = {0, 1} and µ1 = µ2 = U{0,1} be the uniform
distribution over booleans. Moreover, let R be the diagonal relation, i.e.
for every (x1, x2) ∈ {0, 1} × {0, 1}, ((x1, x2) ∈ R iff x1 = x2 and let S
be its complement, i.e. for every (x1, x2) ∈ {0, 1} × {0, 1}, (x1, x2) ∈ S
iff x1 6= x2. We have µ JR 〈µ1 & µ2〉 and µ′ JS 〈µ1 & µ2〉, where µ and
µ′ are defined by the clauses:

µ(x1, x2) =
{

1
2 if x1 = x2
0 otherwise µ′(x1, x2) =

{
1
2 if x1 6= x2
0 otherwise

However, there exists no sub-distribution µ′′ such that µ′′ JR∩S 〈µ1 &
µ2〉, since R ∩ S = ∅, and therefore the above would entail |µ′′| = 0,
which contradicts πi(µ′′) = µi as |µi| = 1.

The next proposition establishes that couplings are also closed under
convex combinations.

Lemma 1.7 (Convex combinations of couplings). Let R ⊆ A1 × A2,
and let I be a finite set. Let (µi1)i∈I ∈ D(A1), (µi2)I ∈ D(A2) and
(µi)i∈I ∈ D(A1 × A2) such that µi JR 〈µi1 & µi2〉 for every i ∈ I. For
every (pi)i∈I ∈ [0, 1] such that

∑
i∈I pi ≤ 1, we have∑

i∈I
piµi JR 〈

∑
i∈I

piµi1 &
∑
i∈I

piµi2〉

where
∑
i∈I p

iµi is the sub-distribution defined by the clause (
∑
i∈I p

iµi)(a) =∑
i∈I p

iµi(a).

1.4. Bijective couplings 7

1.4 Bijective couplings

A common strategy to establish a R-coupling, with R ⊆ A1 × A2,
between two sub-distributions µ1 and µ2, is to exhibit a mapping
h : A1 → A2 that satisfies the following three conditions:

bijectivity: for every a1, a
′
1 ∈ supp(µ1), if h(a1) = h(a′1) then a1 = a′1,

and for every a2 ∈ supp(µ2), there exists a1 ∈ supp(µ1) such that
h(a1) = a2;

graph inclusion: for every a1 ∈ supp(µ1), (a1, h(a1)) ∈ R;

equal probabilities: for every a ∈ A1,

Px1∼µ1 [x1 = a] = Px2∼µ2 [x2 = h(a)]

(In particular, this entails that h(a) ∈ supp(µ2) for every a ∈
supp(µ1).)

We write h JR 〈µ1 & µ2〉 whenever the above conditions are satisfied.

Proposition 1.2. If h JR 〈µ1 & µ2〉 then µ JR 〈µ1 & µ2〉, where

Px∼µ[x = (a1, a2)] =
{

Px1∼µ1 [x1 = a1] if h(a1) = a2
0 otherwise

Proof. By inspection.

There are examples of couplings that cannot be established using
bijective couplings. Consider for instance the uniform distributions over
bitstrings of length ` and `+ `′ respectively. The two distributions are
R-coupled for the relation R defined by the clause (x, y) ∈ R iff x = [y]`,
but there is no bijective coupling between the two distributions.

1.5 From couplings to probabilistic inequalities

R-couplings enjoy many important properties. In what follows, we
summarize the properties that are of immediate importance for our
context.

8 Introduction to probabilistic couplings

Proposition 1.3 (Fundamental theorem of R-couplings). Let E1 ⊆ A1
and E2 ⊆ A2. Let R ⊆ A1 ×A2, such that for every (a1, a2) ∈ A1 ×A2,
(a1, a2) ∈ R implies a1 ∈ E1 =⇒ a2 ∈ E2. If (µ1, µ2) ∈ R] then

Pµ1 [E1] ≤ Pµ2 [E2]

Proof. Let µ such that µ JR 〈µ1 & µ2〉. By the support property of
couplings, we know that supp(µ) ⊆ R, and hence for every (x1, x2) ∈ A
such that µ(x1, x2) 6= 0, we have x1 /∈ E1 or x2 ∈ E2. It follows that
P(x1,x2)∼µ[x1 ∈ E1] ≤ P(x1,x2)∼µ[x2 ∈ E2]. By the marginal property of
couplings, it follows that Pµ1 [E1] ≤ Pµ2 [E2].

This theorem has many useful corollaries, which we list below. Many
of the corollaries are named after their applications in cryptographic
proofs.

Corollary 1.8 (Bridging step). Let E1 ⊆ A1 and E2 ⊆ A2. Let R ⊆
A1 × A2, such that for every (a1, a2) ∈ A1 × A2, (a1, a2) ∈ R implies
a1 ∈ E1 ⇔ a2 ∈ E2. If (µ1, µ2) ∈ R] then

Pµ1 [E1] = Pµ2 [E2]

In many cases, the two events E1 and E2 of interest are the same.

Corollary 1.9 (Bridging step from equivalence relation). Let A1 = A2 = A

and R ⊆ A×A be an equivalence relation. If (µ1, µ2) ∈ R] then

Pµ1 [E] = Pµ2 [E]

for every E ⊆ A such that a1 ∈ E ∧ (a1, a2) ∈ R implies a2 ∈ E for
every a1, a2 ∈ A.

The next corollary involves two events E1 and E2 whose probability
we want to connect, and a third event F , called a failure event.

Corollary 1.10 (Failure event). Let E1 ⊆ A1 and E2, F ⊆ A2. Define
R ⊆ A1×A2 such that for every (a1, a2) ∈ A1×A2, (a1, a2) ∈ R implies
a1 ∈ E1 =⇒ a2 ∈ E2 ∪ F . If (µ1, µ2) ∈ R] then

Pµ1 [E1]− Pµ2 [E2] ≤ Pµ2 [F]

1.5. From couplings to probabilistic inequalities 9

Proof. By proposition 1.3 we have Pµ1 [E1] ≤ Pµ2 [E2 ∪ F] and we have
Pµ2 [E2 ∪ F] ≤ Pµ2 [E2] + Pµ2 [F], the conclusion follows trivially.

The next corollary provides a symmetric version of the previous
corollary.

Corollary 1.11 (Delayed failure event). Let E1, F1 ⊆ A1 and E2, F2 ⊆ A2.
Define R ⊆ A1×A2 such that for every (a1, a2) ∈ A1×A2, (a1, a2) ∈ R
implies a1 ∈ E1 ∩ ¬F1 ⇔ a2 ∈ E2 ∩ ¬F2. If (µ1, µ2) ∈ R] then∣∣Pµ1 [E1]− Pµ2 [E2]

∣∣ ≤ max(Pµ1 [F1],Pµ2 [F2])

By corollary Theorem 1.8, we have Pµ1 [E1 ∩ ¬F1] = Pµ2 [E2 ∩ ¬F2],
by elementary reasoning:

∣∣Pµ1 [E1]− Pµ2 [E2]
∣∣ =

∣∣∣∣∣ Pµ1 [E1 ∩ F1] + Pµ1 [E1 ∩ ¬F1]
−Pµ2 [E2 ∩ F2]− Pµ2 [E2 ∩ ¬F2]

∣∣∣∣∣
=

∣∣Pµ1 [E1 ∩ F1]− Pµ2 [E2 ∩ F2]
∣∣

≤ max(Pµ1 [E1 ∩ F1],Pµ2 [E2 ∩ F2])
≤ max(Pµ1 [F1],Pµ2 [F2])

The following proposition states that lifting of equality on the
underlying set coincides with equality of distributions, and is useful to
fall back on standard probability reasoning when proving existence of
couplings.

Proposition 1.4 (Equality coupling). If A1 = A2 = A, then (µ1, µ2) ∈=],
then (µ1, µ2) ∈=] iff µ1 = µ2, i.e. for every E ⊆ A,

Pµ1 [E] = Pµ2 [E]

Proof. The direct implication follows from the Fundamental Theorem
of R-Couplings. The existence of an identity coupling is shown by taking
as witness the sub-distribution µ such that

µ(a, b) =
{
µ1(a) if a = b

0 otherwise

10 Introduction to probabilistic couplings

In addition, the following lemma provides a method to decompose a
proof that two distributions are related by an equality coupling into a
proof that the two distributions are related by pointwise equality.

Proposition 1.5 (Pointwise equality coupling). For every µ1, µ2 ∈ D(A),
µ1 = µ2 iff (µ1, µ2) ∈ R]a for every a ∈ A, where (x1, x2) ∈ Ra iff x1 =
a⇔ x2 = a. If moreover µ1 is a full-distribution, then it suffices that
(µ1, µ2) ∈ S]a for every a ∈ A, where (x1, x2) ∈ Sa iff x1 = a⇒ x2 = a.

Proof. The direct implication is trivial, so we consider the reverse
implication. By Theorem 1.8, it follows that for every a ∈ A, we have
Px∼µ1 [x = a] = Px∼µ2 [x = a], hence the two sub-distributions are equal.
In case µ1 is a full distribution, (µ1, µ2) ∈ S]a implies Px∼µ1 [x = a] ≤
Px∼µ2 [x = a], from which we can again conclude equality of distributons.

The above proposition can be generalized to accommodate a failure
event.

1.6 Couplings are closed under monadic operations

Marginal sub-distributions are a specific case of image distributions,
when the function considered is taken to be a projection. In the general
case, every µ ∈ D(A) and f : A → B → [0, 1] induces a distribution
Eµ[f], called the image distribution of µ along f , and defined by the
clause:

Eµ[f](b) 4=
∑

a∈supp(µ)
µ(a) · f(a)(b)

Sub-distributions can be given a monadic structure.

Definition 1.5 (Monadic structure of sub-distributions). The unit of the
monad is the Dirac distribution, which assigns to every x ∈ A the Dirac
distribution 1x defined by the clause:

1x(y) 4=
{

1 if x = y

0 otherwise

1.7. Alternative characterizations of couplings 11

The monadic composition takes as input a sub-distribution µ ∈ D(A)
and a mappingM : A→ D(B) and returns a distribution Eµ[M] ∈ D(B)
defined by the clause:

Eµ[M](b) 4=
∑

a∈supp(µ)
µ(a)M(a)(b)

it is the image distribution of µ along M

More generally, the expectation Eµ[f] of a function f : A → R+

w.r.t. a sub-distribution µ ∈ D(A) is defined as
∑
x∈A µ(x)f(x) when

this sum exists, and +∞ otherwise.
We now prove that couplings are closed under monadic unit and

monadic composition. This is key to support compositional reasoning
and to prove soundness of pRHL.

The following establishes that Dirac distributions of elements related
by a relation R are R-coupled.

Lemma 1.12. Let R ⊆ A1 ×A2 and let (a1, a2) ∈ R. Then 1(a1,a2) JR

〈1a1 & 1a2〉.

The next theorem establishes that couplings are closed under se-
quential composition.

Theorem 1.13 (Sequential composition of couplings). Let R ⊆ A1 ×A2
and S ⊆ B1 ×B2. Let µ1 ∈ D(A1), µ2 ∈ D(A2), M1 : A1 → D(B1) and
M2 : A2 → D(B2). Assume that:

• µ JR 〈µ1 & µ2〉;

• M(a1, a2) JS 〈M1(a1) & M2(a2)〉 for every (a1, a2) ∈ A1 × A2
such that (a1, a2) ∈ R.

Then Eµ[M] JS 〈Eµ1 [M1] & Eµ2 [M2]〉.

1.7 Alternative characterizations of couplings

For completeness, we provide two alternative characterizations of cou-
plings. Although we do not use them directly, they are useful to build
intuition about couplings.

The first characterization is due to strassen1965existence

12 Introduction to probabilistic couplings

Theorem 1.14 (Strassen’s theorem). Let R ⊆ A1 × A2, µ1 ∈ D(A1)
and µ2 ∈ D(A2) such that |µ1| = |µ2| = 1. Then (µ1, µ2) ∈ R] iff
Pµ1 [X] ≤ Pµ2 [R(X)] for every X ⊆ A1, where R(X) = {a2 ∈ A2 |
∃a1 ∈ A1. a1 ∈ X ∧ (a1, a2) ∈ R} is the image of X under R.

By rescaling, the characterization readily extends to sub-distributions
µ1 and µ2 such that |µ1| = |µ2|.

The second characterization is based on the following inductive
relation:

(a1, a2) ∈ R
1(a1,a2) JR 〈1a1 & 1a2〉

[Dirac]

∀i ∈ I. µi JR 〈µi1 & µi2〉∑
i∈I

piµi JR 〈
∑
i∈I

piµi1 &
∑
i∈I

piµi2〉
[Convex]

Proposition 1.6 (Inductive characterization of R-couplings). µ JR 〈µ1 &
µ2〉 iff the validity of the coupling can be established using the inductive
relation above.

Note that the soundness of the proof system uses the fact that
couplings are closed under convex combinations.

1.8 Further reading

We refer the interested reader to (coupling-survey) for a gentle intro-
duction to probabilistic couplings.

1.9 Exercises

1. Variant of failure event lemma. Let S be a relation such that
(a1, a2) ∈ S iff a1 ∈ F1 ⇔ a2 ∈ F2 and a1 /∈ F1 =⇒ a1 ∈ E1 ⇔
a2 ∈ E2. Prove that∣∣Pµ1 [E1]− Pµ2 [E2]

∣∣ ≤ Pµ1 [F1]

and ∣∣Pµ1 [E1]− Pµ2 [E2]
∣∣ ≤ Pµ1 [F2]

1.9. Exercises 13

2. Lifting of equivalence relations. Let R be an equivalence relation
over A. Show that R-lifting coincides with equivalence of quotient
distributions are equal, i.e.

(µ1, µ2) ∈ R] ⇔ µ1/R = µ2/R

where µ1/R and µ2/R are the images of µ1 and µ2 under the
canonical mapping [.] : A → A/R. This equivalence is often
used in probabilistic process algebra for defining probabilistic
bisimulations. We refer the reader to the recent book of Deng
(2015) for a detailed account.

3. Composition of liftings. Show the following result, by exhibiting a
witness distribution. Then prove the same result using Strassen’s
theorem.

Let R ⊆ A1 × A2 and S ⊆ A2 × A3. Let µ1 ∈ D(A1), µ2 ∈
D(A2), and µ3 ∈ D(A3). Assume that µ JR 〈µ1 & µ2〉 and
µ′ JS 〈µ2 & µ3〉. Then there exists µ′′ ∈ D(A1 × A3) such that
µ′′ JR◦S 〈µ1 & µ3〉. Hint: take

µ′′(a1, a3) =
∑
a2

µ(a1, a2) · µ′(a2, a3)
µ2(a2)

where by convention 0
0 = 0.

4. Limit coupling. Let (µn)n∈N ∈ D(A) be an increasing sequence of
sub-distributions over A, i.e. µn(a) ≤ µn+1(a) for every a ∈ A and
n ∈ N. Let µ∞ ∈ D(A) such that µ∞(a) = limn→∞ µn(a) (note
that µ∞ is well-defined since every bounded increasing sequence
of real numbers has a limit; moreover, it satisfies the conditions
of sub-distributions.

Let R ⊆ A1×A2 and (µn)n∈N, (νn)n∈N two increasing sequences of
sub-distributions resp. on A1 and A2. If for any n ∈ N, (µn, νn) ∈
R] then (µ∞, ν∞) ∈ R].

(Note: the limit of couplings of two increasing sequences of sub-
distributions needs not exist. To see this, find two increasing
sequences of sub-distributions (µn1)n∈N and (µn2)n∈N, a sequence

14 Introduction to probabilistic couplings

of sub-distributions (µn)n∈N and two disjoint relations R and S,
such that for every even n and odd m,

µn JR 〈µn1 & µn2 〉 µn JS 〈µn1 & µn2 〉

By monotonicity of couplings, µp JR∪S 〈µp1 & µp2〉 for every p ∈ N.
However, (µn)n∈N has no limit.)

5. Convex combinations of couplings. Prove Lemma 1.7.

6. Optimal coupling. Let µ1, µ2 ∈ D(A) such that |µ1| = |µ2| = 1.
Define the sub-distribution µ0 ∈ D(A) and µ ∈ D(A×A) by the
clauses:

µ0(x) = min(µ1(x), µ2(x))

and

µ(x1, x2) =

 µ0(x1) if x1 = x2
(µ1(x1)−µ0(x1)) (µ2(x2)−µ0(x2))

λ if x1 6= x2

where λ is the total variation distance between µ1 and µ2, i.e.

λ = TV(µ1, µ2) = max
E⊆A

∣∣Pµ1 [E]− Pµ2 [E]
∣∣

Prove that µ is a >-coupling for (µ1, µ2) and Pµ[E] = λ, where
E is defined by the clause (x1, x2) ∈ E iff x1 6= x2.

Extend the definition of optimal coupling to sub-distributions
with equal mass.

2
Introductory examples

The game-based approach (Shoup, 2004; Halevi, 2005; Bellare and
Rogaway, 2006) is a methodology to decompose reductionist proofs
into a series of smaller steps. In a nutshell, a game-based proof is
structured as a sequence of hops; each hop involves two probabilistic
experiments, say G1 and G2 and two or more events over the output
sub-distribution of G1 or over the output sub-distribution of G2, and
establishes a probabilistic (in)equality of the following form:

bridging step: PG1 [E1] = PG2 [E2]. This imequality is often estab-
lished for a single event E, i.e. E = E1 = E2 and arises when
reasoning about two games G1 and G2 that are perfectly equiva-
lent;

lossy step: PG1 [E1] ≤ PG2 [E2]. This inequality arises in reduction
steps;

failure event step: PG1 [E1] − PG2 [E2] ≤ PG2 [F]. This inequalityis
often established for a single event E, i.e. E = E1 = E2 and arises
when reasoning about two games G1 and G2 that are conditionally
equivalent on a so-called failure event F in the second program;

15

16 Introductory examples

delayed failure event step:
∣∣PG1 [E]− PG2 [E′]

∣∣ ≤ max(PG1 [F1],PG2 [F2]).
This inequalityis often established for a single event E, i.e. E =
E1 = E2 and arises when reasoning about two games G1 and G2
that are conditionally equivalent on two failure events F1 and F2
in the first and second programs respectively.

By combining these inequalities with non-relational steps, which simplify
or compute a closed form for probabilities of the form PG[F], one can
establish reduction statements as discussed in the previous chapters.

2.1 One-time pad

One-Time Pad is a symmetric encryption scheme, parametrized by a
natural number ` that determines the size of its key, plaintext and
ciphertext spaces, and given by the following triple of algorithms:

Key Generation The key generation algorithm KG outputs a uni-
formly distributed key k in {0, 1}`;

Encryption Given a key k and a messagem ∈ {0, 1}`, E(k,m) outputs
the ciphertext c = k ⊕ m (⊕ denotes bitwise exclusive-or on
bitstrings);

Decryption Given a key k and a ciphertext c ∈ {0, 1}`, the decryption
algorithm outputs the message m = k ⊕ c.

Shannon (1949) defines perfect secrecy of an encryption scheme by
the condition that learning a ciphertext does not change any a priori
knowledge about the likelihood of messages. For our purposes, it is
more convenient to consider an alternative definition of perfect secrecy.
We say that (KG, E ,D) achieves perfect secrecy iff for every messages
m1 and m2, the distributions of ciphertexts obtained by encrypting
respectively m1 and m2 with a key k sampled uniformly at random are
statistically equal. This can be formalized using the game:

Game OTP(m) :
k ← KG();
c← E(k,m);

2.1. One-time pad 17

Perfect secrecy is then defined as follows: for every messages m1 and
m2, and ciphertexts c0,

POTP(m1)[c = c0] = POTP(m2)[c = c0]

Note that perfect secrecy entails that the advantage of a chosen-plaintext
adversary against One-Time Pad (defined using a variant of the IND-CPA
game for symmetric encryption) is null.

We now sketch a proof of perfect secrecy for One-Time Pad. The
key idea is to “coordinate” the two executions of the game OTP (re-
spectively with parameters m1 and m2), so that equality of the two
output distributions becomes self-evident. The crucial step here is to
“coordinate” the probabilistic assignments between the two executions,
in a way which forces the equality of the output distributions. In this
case, both executions have one probabilistic assignment k $← {0, 1}`,
which we must “coordinate”. We follow the idea of probabilistic cou-
plings and require that the two probabilistic assignments “share” their
randomness. Although there are many ways to share the randomness,
it is generally sufficient that one of the programs samples a value v
uniformly, and the other program uses as “random value” a value that
is computed deterministically from v. In this case, we apply so-called
optimistic sampling:

• in the first program, we sample the key k uniformly at random;

• in the second program, we define the key used for encryption as
k ⊕m1 ⊕m2.

Therefore, the ciphertext returned by the first program is k⊕m1, whereas
the ciphertext returned by the second program is (k ⊕m1 ⊕m2)⊕m2.
Since the two expressions are semantically equal, one concludes that
the two distributions are equal.

In order to make our argument rigorous, we must however give a
precise meaning to “share” randomness, and moreover we must prove
that randomness is shared correctly. We make the meaning of sharing
randomness precise using product programs. Informally, a product pro-
gram is a program that emulates the behavior of the two executions of

18 Introductory examples

the OTP game:
k ← KG();
k ← k ⊕m1 ⊕m2;
c← E(k,m1);
c← E(k,m2);

Here blue variables represent variables used in the first execution of the
OTP game whereas red variables represent variables used in the second
execution of the OTP game.

Product programs have an associated notion of correctness: a product
program is correct if the joint output sub-distributions of variables
tagged with ·1 and ·2 respectively are equal with the joint output sub-
distributions of variables of OTP(m1) and OTP(m2) respectively. It is
easy to prove that the product program above is correct.

A crucial property of couplings, and a consequence of the fundamen-
tal theorem of couplings, which will be introduced shortly, is that for
every two games G1 and G2, and for every variables x of G1 and x2 of
G2 with compatible types, and for every value v of compatible type, we
have:

PG1 [x1 = v] = PG2 [x2 = v]

provided x1 = x2 holds with probability 1 in the product program. In
our example, it is easy to see that the output distribution of the product
program satisfies c = c with probability 1, from which we deduce:

POTP(m1)[c = c0] = POTP(m2)[c = c0]

as required.

2.2 Hashed ElGamal

Hashed ElGamal is a public-key encryption scheme that can be built
from a cyclic group G and family (Hk)k∈K : G→ {0, 1}` of keyed hash
functions mapping elements in G to bitstrings of length `. Let q be the
order of G and let g be a generator of G. Key generation, encryption

2.2. Hashed ElGamal 19

Adversary B(α, β, γ) :
k $← K;
(m0,m1)← A1(α);
b $← {0, 1};
h← Hk(γ);
b′ ← A2(β, h⊕mb);
return b = b′

Adversary D(h) :
x $← Zq; y $← Zq;
(m0,m1)← A1(gx);
b $← {0, 1};
b′ ← A2(gy, h⊕mb);
return b = b′

Figure 2.1: Constructed adversaries for Hashed ElGamal

and decryption algorithms are defined as follows:

KG() 4= k $← K; x $← Zq; return ((k, x), (k, gx))
E((k, α),m) 4= y $← Zq; h← Hk(αy); return (gy, h⊕m)
D((k, x), (β, ζ)) 4= h← Hk(βx); return h⊕ ζ

The space of public keys is K ×G wheread the space of private keys is
K ×Zq. Moreover, the plaintext space is {0, 1}` whereas the ciphertext
space is G× {0, 1}`.

Hashed ElGamal achieves chosen-plaintext security (IND-CPA) as-
suming that the Decisional Diffie-Hellman assumption holds for G and
that (Hk)k∈K is entropy-smoothing.

Theorem 2.1 (Chosen-plaintext security of Hashed ElGamal). For every
adversary (A1,A2) against the chosen-plaintest security of Hashed
ElGamal, there exists an adversary D against the entropy-smoothness
of Hk and an adversary B against the decisional Diffie-Hellman for G
such that: ∣∣∣∣PIND-CPA[b = b′]− 1

2

∣∣∣∣ ≤ AdvB
DDH + AdvD

ES

The code of the adversaries D and B is given in Figure 2.1.

Note that the complexity of the constructed adversaries D and B is
similar to the complexity of A1 and A2.

We review the proof, using the game-based technique. The first step
of the proof is to observe that the instantiation of the DDH0 game

20 Introductory examples

with adversary B is semantically equivalent to the instantiation of the
IND-CPA game for Hashed ElGamal. To support this claim, we build a
product program for the DDH0 and IND-CPA games:

x $← Zq; y $← Zq;x← x; y ← y;
k $← K; k← k;
((m0,m1), (m0,m1))← A1(gx, gx);
b $← {0, 1}; b← b;
h← Hk(gxy);h← Hk(gxy);
v ← h⊕mb; v ← h⊕mb;
(b′, b′)← A2((gy, v), (gy, v));
return (b = b′, b = b′)

In this case, the two programs make exactly the same number of random
samplings, and the product program literally shares randomness; for
each random assignment to a variable x in the original program, we
perform the same random assignment to the variable x in the left
program, and copy the sampled value to x in place of performing a
random assignment on the right program.

Moreover, the two programs involve adversary calls, which must
thus be handled in the product construction. The solution is simply to
let adversaries take two copies of each input, and return two copies of
each output. We do not specify the code of adversaries, but require that
they return equal outputs if given equal inputs. Concretely, A1 should
be such that (m0,m1) = (m0,m1) if x = y, and A2 should be such that
b′ = b′ if (gy, v) = (gy, v).

The conditions on adversaries entail that b = b′ = b = b′ holds with
probability 1. By the fundamental theorem of couplings, it follows that
PIND-CPA[b = b′] = PDDH0 [d = 1].

Next, observe that the instantiation of the DDH1 game with adver-
sary B is semantically equivalent to the instantiation of the ES1 game
with adversaryD. To support this claim, we build a product program sim-
ilar to the previous step. This entails that PDDH1 [d = 1] = PES1 [d = 1].

To prepare for the final steps, observe that inlining the adversary
D in the ES0 game yield (up to renaming and swapping independent

2.2. Hashed ElGamal 21

instructions) the following game:

Game G :
k $← K;x $← Zq; y $← Zq;
(m0,m1)← A1(gx);
b $← {0, 1};
h $← {0, 1}`;
v ← h⊕mb;
b′ ← A2(gy, v);
return b = b′

Therefore, we have PES1 [d = 1] = PG[b = b′].
Next, we use optimistic sampling to replace the assignments of h and

v by semantically equivalent assignments, where this time v is sampled
uniformly, and h is defined from v:

Game G′ :
k $← K;x $← Zq; y $← Zq;
(m0,m1)← A1(gx);
b $← {0, 1};
v $← {0, 1}`;
h← v ⊕mb;
b′ ← A2(gy, v);
return b = b′

This step of optimistic sampling can be justified in the same way as for
one-time pad. We have:

PG[b = b′] = PG′ [b = b′]

At this point it is clear that the challenge does not depend on the bit
b and therefore its chances of returning the right guess is one half, i.e.
PG′ [b = b′] = 1

2 . It follows that

PES0 [d = 1] = 1
2

22 Introductory examples

By putting everything together, we get that:

AdvA
IND-CPA = |PIND-CPA[b = b′]− 1

2 |
= |PDDH0 [d = 1]− 1

2 |
≤ |PDDH0 [d = 1]− PDDH1 [d = 1]|+ |PDDH1 [d = 1]− 1

2 |
≤ AdvB

DDH + |PES1 [d = 1]− PES0 [d = 1]|
≤ AdvB

DDH + AdvD
ES

This concludes our proof. This example, while simple, exercises two
fundamental mechanisms of game-based security proofs: reductions,
in which games are instantiated with explicit adversaries and proved
equivalent to other games, and semantics-preserving transformations,
which restructure or simplify games without modifying their meaning.

2.3 UP TO BAD EXAMPLE

2.4 Discussion

We have sketched how product programs provide a rigorous method
for justifying game-based cryptographic proofs. While building prod-
uct programs explicitly is tractable for small examples, this approach
becomes untractable when considering (even slightly) more complex
examples. Fortunately, all of our proofs only use the existence of prod-
uct programs, or equivalently the existence of probabilistic couplings
between the two programs. Therefore, our verification methods will
leave product programs and probabilistic couplings implicit, and simply
assert their existence.

Note that the construction of probabilistic couplings is rarely made
explicit in cryptographic papers. To our knowledge, only a handful of
cryptographic papers use probabilistic couplings, and never with the
aim to justify game-based proofs.

3
Cryptographic games

We now introduce a probabilistic programming language pWhile for
writing games. The language is directly inspired from prior work on
code-based game-based security proofs and is sufficiently expressive for
modeling all the security notions and assumptions introduced in ??
and most cryptographic constructions. For now, our language does not
feature adversaries, and is thus not very useful for reasoning about
cryptography. In Chapter 6, we present an extension of the language
with adversaries.

3.1 Types

Our programming language adopts a strongly-typed discipline. This en-
tails that all expressions must be well-typed, variables must be assigned
expressions whose type is compatible with their own type, arguments of
of procedure calls must respect the signature of the procedure, and so
forth. Although we leave it explicit, types are potentially related by a
subtyping relation; for example, the type {0, 1}` of bitstrings of length
` is a subtype of the type {0, 1}∗ of bitstrings of arbitrary length.

Definition 3.1 (Types). Let Tbase be a set of base types and let CT be

23

24 Cryptographic games

a set of type constructors, such that each element T ∈ CT has an arity
k ∈ N. The set T of types is defined by the following syntax:

σ ::= b base type
| T (σ1, . . . , σn) type constructor
| σ1 × . . .× σn product type

Typical examples of type constructors are lists, finite maps, and the
error monad, which takes as input a type A and returns a type A⊥ that
contains all elements of A, and a distinguished element ⊥.

Remark 3.1. It is possible to extend the definition of types with a
constructor for function types, and to consider a richer type discipline
with (predicative) polymorphism. For the sake of clarity, we leave such
extensions out of our presentation.

We now define a set-theoretical interpretation of types. Note that
in many cases, base types have an intended interpretation; for instance,
the type {0, 1} will be interpreted as the type of booleans, and the type
list({0, 1}) will be interpreted as the set of boolean-valued lists. In other
cases, the interpretation is parametric; for instance, the type list({0, 1}`)
will be interpreted as the type of lists of bitstrings of length ` for some
`, and the type Zq will be interpreted as the set of integers modulo q
for some q.

Definition 3.2 (Interpretation of types). Suppose given a set-theoretical
interpretation JbK ∈ Set for every base type b ∈ Tbase, and a set-
theoretical interpretation JT K : Setk → Set for every type constructor
T ∈ CT of arity k. The interpretation for types is defined inductively
by the clauses:

Jσ1 × . . .× σnK = Jσ1K× . . .× JσnK
JT (σ1, . . . , σn)K = JT K(Jσ1K, . . . , JσnK)

3.2 Expressions

Expressions of the language are deterministic and built from variables,
constants, and operators. Operators include the usual constants and
operations for arithmetic, lists, finite maps, groups, etc.

3.2. Expressions 25

Definition 3.3 (Expressions). Let Op = Op0tOp1 be a set of operators,
where elements of Op0 are constants and elements of Op1 are functions.
Moreover, let Vars = Varsglob tVarsloc be a set of variables, where
elements of Varsglob are global variables and elements of Varsloc are
local variables. The set Expr of expressions is defined by the following
syntax:

e ::= x variable
| c constant
| f(e) application
| (e1, . . . , en) tuple
| πi(e) projection

The set vars(e) of variables of an expression e is defined inductively
by the clauses:

vars(x) = {x}
vars(c) = ∅

vars(f(e)) = vars(e)
vars((e1, . . . , en)) =

⋃
1≤i≤n vars(ei)

vars(πi(e)) = vars(e)

The substitution e[e′/x] of an expression e′ for a variable x in an
expression e is defined inductively by the clause:

x[e′/x] = e′

y[e′/x] = y if y 6= x

c[e′/x] = c

f(e)[e′/x] = f(e[e′/x])
(e1, . . . , en)[e′/x] = (e1[e′/x], . . . , en[e′/x])

πi(e)[e′/x] = πi(e[e′/x])

The typing discipline for expressions is parametrized by a set Γ of
variable, constant and function declarations. Variable declarations are
of the form x : σ, where x ∈ Vars and σ ∈ T . Constant declarations
are of the form c : σ, where c ∈ Op0 and σ ∈ T . Function declarations
of the form f : σ → τ , where f ∈ Op1 and σ, τ ∈ T . We require that
there is exactly one declaration per variable.

We equip expressions with a type system which primarily ensures
that functions receive arguments of compatible types. The typing rules

26 Cryptographic games

for expressions are straightforward:

(x : σ) ∈ Γ
` x : σ

[Var]

(c : σ) ∈ Γ
` c : σ

[Cst]

` e : σ (f : σ → τ) ∈ Γ
` f(e) : τ

[Fun]

` e1 : σ1 . . . ` en : σn
` (e1, . . . , en) : σ1 × . . .× σn

[Prod]

We next turn to defining the semantics of expressions. The semantics is
parametrized by a memory m, which maps variables to elements of the
interpretation of their type.

Definition 3.4 (Memory). A memory is a mapping m from the set Vars
of variables to values, such that for every variable x of type σ, we have
m(x) ∈ JσK. Each memory m implicitly induces a pair (mglob,mloc)
consisting of a global memory and a local memory respectively; the
domain of mglob is the set Varsglob of global variables, and the domain
of mloc is the set Varsloc of local variables. For every procedure F , we
assume given a default local memory mdef(F).

We adopt standard notation for memory update: given a memory
m, a variable x of type σ and a value v ∈ JσK, we let m[x← v] denote
the unique memory such that for every variable y

m[x← v](y) =
{
v if x = y

m(y) otherwise

We let Mem denote the set of memories.

Note that the set of memories is discrete, whenever the set of
variables is fixed, and all types are discrete. However, this is not strictly
required to define a semantics for probabilistic programs, since our
notion of discrete sub-distribution does not require that the underlying
set is discrete.

We now turn to the semantics of expressions.

3.3. Distribution expressions 27

Definition 3.5 (Semantics of expressions). Suppose given a set-theoretical
interpretation JcK ∈

⋂
σs.t.c:σ JσK for each constant c ∈ Op0 and

JfK ∈
⋂
σ→τs.t.f :σ→τ JσK → JτK for each function f ∈ Op1. The se-

mantics of an expression e with respect to a memory m is defined by
the clauses:

JxKm = m(x)
JcKm = JcK

Jf(e)Km = JfK(JeKm)
J(e1, . . . , en)Km = (Je1Km, . . . , JenKm)

3.3 Distribution expressions

We assume given a set D of base distributions and define the set of
distributions

Definition 3.6 (Distribution expressions). The set DExpr of distribution
expressions is defined by the following syntax:

d ::=| bernp Bernoulli distribution
| UX uniform distribution
| d1 × . . .× dn product distribution

where p ∈ [0, 1] and X is a constant finite set or finite type.

Typical examples of uniform distributions are sampling from a bit
b, sampling uniformly over integers modulo q (i.e. elements of Zq),
non-zero integers modulo q (i.e. elements of Z∗q), bitstrings of length `.

Each distribution expression d has a distribution type of the form
D(σ) where σ is a type. Moreover, we assume that every distribution
expression d is intrepreted as a full distribution over the interpretation
of its type. Note that, since all distributions are constant, the semantics
JdK of a distribution expression is not parametrized by a memory.

Remark 3.2. In contrast to Barthe et al. (2009), we only consider
probabilistic samplings over full, constant, distributions. This restriction
greatly simplifies the exposition of the next chapters, notably for defining
a termination analysis and proof rules of the program logics, and is
satisfied by all standard examples from the cryptography literature.

28 Cryptographic games

3.4 Statements

Statements are built from deterministic assignments, probabilistic as-
signments, conditionals, loops, sequencing, and procedure calls. For
simplicity of exposition, we require that procedure calls are not recur-
sive.

Definition 3.7 (Statements). Let Proc be a set of procedure names.
The set Cmd of statements is defined by the following syntax:

c ::= abort abort
| skip noop
| x← e deterministic assignment
| x $← d probabilistic assignment
| c; c sequencing
| if e then c else c conditional
| while e do c while loop
| x← F(e) procedure call

Notation 3.1. When there is no risk of confusion, we write x $← X

instead of x $← UX .

A program is a list of procedure declarations, which fix the local vari-
ables, including formal parameters, the body and the return expression
of procedures.

Definition 3.8 (Program). A program P is given by a set Proc of
procedures, and for every F ∈ Proc a declaration of the form F(x) =
[X]c; return e, where x is a (tuple of) local variable(s), X is a set of
local variables such that x ∈ X, c is a statement called the body of
the procedure, and e is a return expression. Each program must have a
distinguished procedure, called its main procedure.

We let argsF , varsF , bodyF and resF denote the formal parameter,
local variables, body and return expression of the procedure F .

Programs are subject to well-formedness criteria: procedures should
only use local variables in their scope, and not perform recursive calls.
Well-formedness can be enforced with a simple proof system, that takes
as input a well-founded order on procedure names, with the main

3.4. Statements 29

procedure as its top elements and checks (among other things) that
calls are performed on smaller procedures with respect to this order.

Remark 3.3. The requirement that each procedure definition contains
exactly one return instruction mildly simplifies the definition of the pro-
gram semantics. Moreover, the requirement is without loss of generality:
statements with multiple return instructions can be transformed into
statements with a single return instruction. Nevertheless, we will relax
this requirement in examples, to improve the readability of games.

Statements are equipped with a type system, which ensures that
expressions and distributions are assigned to variables of compatible
types and that guards of conditionals and loops are booleans. The
typing rules are straightforward (Figure 3.1).

We now turn to give a denotational semantics to statements.

Definition 3.9 (Semantics of statements). The denotational semantics
JsK of a statement s is a function that assigns to every memory m ∈
Mem a sub-distribution JsKm ∈ D(Mem). The definition of JsKm is
given in Figure 3.2.

The semantics of abort is the constant function that maps every
initial memory to the null sub-distribution, and the semantics of skip is
the function that maps every memory m to the Dirac distribution 1m.

The semantics of a deterministic assignment is a map that takes as
input an inital memory m and returns the Dirac distribution 1m[x←v],
where m[x← v] is the memory obtained by updating m with the value
v resulting from the evaluation e in memory m.

The semantics of a probabilistic assignment is defined in a similar
way. Concretely, the semantics of a probabilistic assignment is a map
that takes as input an inital memory m, evaluates the distribution
expression d in m, samples v from the resulting distribution and returns
the Dirac distribution 1m[x←v].

The semantics of a sequential composition is defined as the monadic
composition of the semantics of the first and second statements.

The semantics of conditional statements is straightforward: given
a memory m, one evaluates the guard e of the conditional in m, and

30 Cryptographic games

` abort
[Abort]

` skip
[Skip]

` x : σ ` e : σ
` x← e

[Ass]

` x : σ ` d : D(σ)
` x $← d

[Rand]

` c1 ` c2

` c1; c2
[Seq]

` e : {0, 1} ` c1 ` c2

` if e then c1 else c2
[Seq]

` e : {0, 1} ` c
` while e do c

[While]

` bodyF
` resF : σ ` argsF : τ ` e : τ ` x : σ

` x← F(e)
[Call]

Figure 3.1: Typing rules for statements

3.4. Statements 31

return the output sub-distribution Jc1Km of the true branch if the guard
evaluates to true and the output sub-distribution Jc2Km of the false
branch if the guard evaluates to false.

The semantics of while loops relies on the existence of limit distribu-
tions.

Proposition 3.1. Let (µi)i∈N ∈ D(A) be an increasing family of sub-
distributions, i.e.

Px∼µi [x = a] ≤ Px∼µi+1 [x = a]

for every a ∈ A and n ≥ 1. In particular, it follows that the sequence
Px∼µi [x = a] has a limit in [0, 1] for every a ∈ A. The limit distribution
of (µi)i, written limi→∞ µi, is defined by the clause:

Px∼limi→∞ µi [x = a] = lim
i→∞

Px∼µi [x = a]

for every a ∈ A.

The semantics of a loop while e do c is defined as the limit of its
lower approximations, which will be defined by the above proposition.
For every i ∈ N, the i-th approximation of while e do c is defined
as the J(if e then c)iK, where cn is the i-fold sequential composition
of c. In effect, the i-th approximation is equal to the i-fold monadic
composition of Jif e then cK. One cannot apply Proposition 3.1 to prove
the existence of the limit of approximations, because they do not form an
increasing family. However, one can define the i-th lower approximation
of while e do c, by truncating from the i-th approximation all memories
that satisfy e, and on which the loop must be iterated further. Formally,
the i-th lower iteration of the loop while e do c is defined as

λm.Eξ∼J(if e then c)iKm
[Jif e then abortKξ]

This yields an increasing sequence of sub-distributions, and hence its
limit exists by Proposition 3.1. Although we do not use it in the seman-
tics, or in order to justify the soundness of proof rules, it is interesting
to note that whenever |Jwhile e do cKm| = 1, the limit of approximations
exists, and coincides with the limit of lower approximations. The proof
of this fact is based on the observation that lower approximations are

32 Cryptographic games

below approximations, so that the limit of their weight is equal to 1,
and on Theorem 1.1.

The semantics of a procedure call is defined in two steps. First, we
define the semantics of a procedure F as a function that takes as input
an initial memory and an initial value corresponding to the evaluation
of the parameter, computes the semantics of the loop body on the
memory (mglob,mdef(F)[argF←v]), yielding a memory m′, and returns
the memory ((m′glob,mloc) in which global variables have been updated
and local variables are restored to their original value, together with the
evaluation of the return expression e in memory m′. Procedure bodies
may themselves contain procedure calls, but the semantics is well-defined
on well-formed programs, because there exists a well-founded order on
procedures, and the calling relationship must respect this order.

JabortKm = 0

JskipKm = 1m

Jx← eKm = 1m[x←JeKm]

Jx $← dKm = Ev∼JdKm
[1m[x←v]]

Jc1; c2Km = Eξ∼Jc1K(m)[Jc2K(ξ)]

Jif e then c1 else c2Km =
{

Jc1Km if JeKm = >
Jc2Km if JeKm = ⊥

Jwhile e do cKm = sup
i∈N

(
Eξ∼J(if e then c)iKm

[Jif e then abortKξ]
)

Jx← F(e)Km = E(m′,v′)∼JF K(m,JeKm)
[1m′[x←v′]]

JFK(m,v) = let m0 = (mglob,mdef(F)[argF←v]) in
Em′∼JbodyF K

m0
[1((m′

glob,mloc),JeKm′)]

Figure 3.2: Denotational semantics of statements

Remark 3.4. The semantics of probabilistic programs has been stud-
ied extensively, generally in the more broader context of continuous

3.5. Termination 33

distributions and often for programs that combine probabilities and non-
determinism. A landmark work of Kozen (1981) uses Banach fixpoint
theorem and measure-theoretical tools to give a denotational semantics
for a purely probabilistic language similar to ours. The probabilistic
powerdomain of Jones and Plotkin (1989) is the canonical formalism
for the denotational semantics of programs with both probabilities and
non-determinism.

3.5 Termination

Probabilistic programs exhibit a rich range of termination behaviors.
Almost sure termination is an important case when programs terminate
with probability 1.

Definition 3.10 (Almost surely termination). A statement c is almost
surely terminating, written ast(c), if |JcKm| = 1 for every initial memory
m.

In Chapter 5, we define a logic that can be used to prove almost
sure termination of program with loops. However, it is already easy to
see that every loop-free program is almost surely terminating; in fact, it
satisfies a stronger property, called certain termination, i.e. there exists
n ∈ N so that the program completes its execution in less than n steps
on arbitrary inputs.

3.6 Exercises

1. Show that the semantics of a statement is indeed a discrete sub-
distribution, i.e. its support is discrete.

2. Show sampling from sub-distributions can always be simulated

3. Show abort has same semantics as while true do skip

4
Probabilistic Relational Hoare Logic

Our central tool for reasoning about the relationship between two games
is probabilistic Relational Hoare Logic (Barthe et al., 2009), a relational
program logic that can be used to prove the existence of probabilistic
couplings between the output distributions of two programs.

4.1 Relational assertions

Relational assertions are first-order formulae whose interpretation is
taken over two memories. Therefore, basic relational assertions are of the
form P (t1, . . . , tn) where the predicate P is specified in the underlying
theory, and the relational expressions t1, . . . , tn are built from function
symbols of the underlying theory, logical variables and tagged variables
of the form x〈1〉 and x〈2〉 where x is a program variable. Here the tags
〈1〉 and 〈2〉 are used to indicate that the interpretation of x should
be taken in the first and second memory respectively. Therefore, in
particular, the relational assertion x〈1〉 = x〈2〉 captures the fact that
the value of x in the left memory is equal to the value of x in the right
memory.

The interpretation of a relational assertion Φ in a pair of memories

34

4.2. Judgments 35

(m1,m2) is a boolean value JΦK(m1,m2). We also define the relation JΦK ⊆
Mem ×Mem consisting of all the set of pairs of memories (m1,m2)
such that JΦK(m1,m2) holds. The definition is standard (modulo the use
of two memories to interpret tagged variables) and ommitted. Note that
every relational assertion Φ depends on a set of variables vars(Φ) such
that for every (m1,m2) and (m′1,m′2), we have (m1,m2) = (m′1,m′2)
implies JΦK(m1,m2) iff JΦK(m′

1,m
′
2). The definition of vars is standard and

ommitted.
We also consider assertions; as usual, these are first-order formulae

built from program variables. The interpretation of an assertion φ in a
memorym is a boolean value JφKm. memories (m1,m2) is a boolean value
JφK(m1,m2). We let JφK ⊆Mem denote the set of memories m such that
JφKm holds. Every assertion φ yields two relational assertions φ〈1〉 and
φ〈2〉, with the expected relational interpretation; Jφ〈1〉K(m1,m2) = JφKm1
and Jφ〈2〉K(m1,m2) = JφKm2

.

Notation 4.1. For every expression e, we let e〈1〉 and e〈2〉 denote the
generalized expressions obtained by tagging every variable in e with a
〈1〉 and 〈2〉 respectively. For instance, if e is x+ y then e〈1〉 is defined
as x〈1〉+ y〈1〉.

4.2 Judgments

Judgments of probabilistic relational Hoare logic are of the form

|= c1 ∼ c2 : Φ⇒ Ψ

and relate two programs, c1 and c2, w.r.t. a pre-condition Φ and a
post-condition Ψ. Informally, a judgment is valid if for every pair of
initial memories m1 and m2 related by the pre-condition Φ, there exists
a Ψ-coupling that relates the sub-distributions Jc1Km1

and Jc2Km2
.

Definition 4.1 (Valid judgment). The judgment |= c1 ∼ c2 : Φ ⇒ Ψ
is valid if (Jc1Km1

, Jc2Km2
) ∈ JΨK] for every pair of memories (m1,m2)

such that JΦK(m1,m2) holds.

Asserting the existence of a coupling, rather than constructing it
explicitly, is sufficient for the class of applications considered in this

36 Probabilistic Relational Hoare Logic

monograph. One can however extend the notion of valid judgment and
the proof system to make the coupling explicit, in the form of a product
program (Barthe et al., 2017).

4.3 Probabilistic inequalities

The security of cryptographic constructions is ultimately captured
by probabilistic inequalities (quantified over adversaries). Fortunately,
pRHL judgments can be used to derive probabilistic (in)equalities,
when their post-conditions have an adequate form. Concretely, the next
lemmas are immediate consequences of the results from Chapter 1.

The following lemma establishes an inequality between the proba-
bility of two events in two different games and is useful, for instance, in
reduction steps.

Lemma 4.1. If |= c1 ∼ c2 : Φ ⇒ φ1〈1〉 =⇒ φ2〈2〉 then for every two
memories m1 and m2 such that JΦK(m1,m2) holds, we have:

PJc1Km1
[Jφ1K] ≤ PJc2Km2

[Jφ2K]

The next lemma establishes an upper bound between the difference
of probability of two events in two different games and is useful in failure
event steps.

Lemma 4.2. If |= c1 ∼ c2 : Φ ⇒ φ1〈1〉 =⇒ (φ2〈2〉 ∨ F 〈2〉) then for
every two memories m1 and m2 such that JΦK(m1,m2) holds, we have

PJc1Km1
[Jφ1K]− PJc2Km2

[Jφ2K] ≤ PJc2Km2
[JF K]

The previous lemma also has a symmetric version.

Lemma 4.3. If |= c1 ∼ c2 : Φ ⇒ (φ1〈1〉 ∧ F1〈1〉)⇐⇒ (φ2〈2〉 ∧ F2〈2〉)
then for every two memories m1 and m2 such that JΦK(m1,m2) holds, we
have

PJc1Km1
[Jφ1K]− PJc2Km2

[Jφ2K] ≤ max(PJc1Km1
[J¬F1K],PJc2Km2

[J¬F2K])

The next lemma establishes that an event has the same probability
in two different games and is useful in bridging steps.

4.4. Proof system 37

Lemma 4.4. If |= c1 ∼ c2 : Φ ⇒
∧
x∈X x〈1〉 = x〈2〉 then for every two

memories m1 and m2 such that JΦK(m1,m2) holds, and for every event φ
that only depends on X , we have

PJc1Km1
[JφK] = PJc2Km2

[JφK]

The next lemma establishes an upper bound on the difference of
probability of the same event in two different games, and is useful for
failure event steps.

Lemma 4.5. If |= c1 ∼ c2 : Φ ⇒ F 〈2〉 →
∧
x∈X x〈1〉 = x〈2〉 then for

every two memories m1 and m2 such that JΦK(m1,m2) holds, and for
every event φ that only depends on X , we have

PJc1Km1
[JφK]− PJc2Km2

[JφK] ≤ PJc2Km2
[JF K]

4.4 Proof system

We now present a proof system for deriving valid pRHL judgments.
The proof rules are split into three groups:

structural rules: these rules can be applied independently of the
shape of the programs;

2-sided rules: these rules requires that the two programs have a spe-
cific and corresponding shape (for instance, the two programs
must be a deterministic assignment; or the two programs must be
a conditional statement). There is one single rule for each form of
statement;

1-sided rules: these rules requires that one of the two programs has a
specific shape. There are two rules per for each form of statement;
a left rule requiring that the left statement of the judgment has the
desired shape, and a right rule requiring that the right statement
has the desired shape.

4.4.1 Structural rules

The [False] rule states that arbitrary programs are related, when the
precondition is provably false.

38 Probabilistic Relational Hoare Logic

The [Conseq] rule is similar to the rule of consequence in Hoare
Logic, and can be used for weakening the post-condition and strength-
ening the pre-condition.

The [Frame] rule allows to strengthen simultaneously the pre-
condition and the post-condition of a valid judgment with an assertion
Θ, provided the variables modified by the two statements of the judgment
do not appear in Θ. The formal definition of modified variables is given
below.

Definition 4.2 (Modified variables). The set mod c of modified variables
of a statement c by the clauses:

mod(x← e) = {x}
mod(x $← d) = {x}
mod(c1; c2) = mod(c1) ∪mod(c2)

mod(if e then c1 else c2) = mod(c1) ∪mod(c2)
mod(while e do c) = mod(c)

mod(x← f(e)) = {x} ∪modglob(bodyf)

where modglob(c) 4= mod(c) ∩Varsglob.

The [Case] rule allows proving a judgment by case analysis; specif-
ically, the validity of a judgment with pre-condition Φ1 ∨ Φ2 can be
established from the validity of two judgments, one where the pre-
condition is Φ1 and another one where the precondition is Φ2. The
rule is typically used for performing a case distinction on the value
of a boolean expression e; in this case, the original precondition is
strengthening with e in the first judgment and with ¬e in the second
judgment.

The [Exists] rule is similar to the [Case] rule, excepts that it
considers the case where the pre-condition is an existential statement.

The [Struct] rule allows replacing programs by provably equivalent
programs. The rule depends on an auxiliary judgment of the form
Φ |= c ≡ c′, where Φ is a relational assertion, and which states that c
and c′ are equivalent (i.e. yield equal distributions) for every two pairs
of memories that satisfy Φ. We leave the proof system for program
equivalence unspecified.

4.4. Proof system 39

|= c1 ∼ c2 : ⊥ ⇒ Ψ
[False]

|= c1 ∼ c2 : Φ′ ⇒ Ψ′ Φ =⇒ Φ′ Ψ′ =⇒ Ψ
|= c1 ∼ c2 : Φ⇒ Ψ

[Conseq]

|= c1 ∼ c2 : Φ⇒ Ψ vars(Θ) ∩ (mod(c1)〈1〉 ∪mod(c2)〈2〉) = ∅
|= c1 ∼ c2 : Φ ∧Θ⇒ Ψ ∧Θ

[Frame]

|= c1 ∼ c2 : Φ1 ⇒ Ψ |= c1 ∼ c2 : Φ2 ⇒ Ψ
|= c1 ∼ c2 : Φ1 ∨ Φ2 ⇒ Ψ

[Case]

∀x : T. |= c1 ∼ c2 : Φ⇒ Ψ
|= c1 ∼ c2 : ∃x : T.Φ⇒ Ψ

[Exists]

|= c1 ∼ c2 : Φ⇒ Ψ Φ |= c1 ≡ c′1 Φ |= c2 ≡ c′2
|= c′1 ∼ c′2 : Φ⇒ Ψ

[Struct]

Figure 4.1: Structural rules

40 Probabilistic Relational Hoare Logic

Remark 4.1. Not all intuitive structural rules are sound. In particular,
the following rule is not sound, because liftings are not closed under
conjunction (see Proposition 1.1).

|= c1 ∼ c2 : Φ⇒ Ψ1 |= c1 ∼ c2 : Φ⇒ Ψ2

|= c1 ∼ c2 : Φ⇒ Ψ1 ∧Ψ2

4.4.2 Two-sided rules

The [Assg] rule states that an assertion is valid after two assignments, if
the original pairs of memories satisfies the assertion obtained by substi-
tuting in place of the variables being assigned the (tagged) expressions
of the assignments.

The [Rand] rule requires that there exists a bijective coupling
between the two distributions of the left and right programs. Moreover,
in order for Ψ to be a valid post-condition, the initial memories should
satisfy that Ψ[v/x1〈1〉][h(v)/x2〈1〉] for every v ∈ T1

The [Seq] rule for sequential composition simply reflects the com-
positional property of couplings.

The [Cond] rule considers two conditional statements that execute
in lockstep. Specifically, it requires that the pre-condition Φ implies that
the guards of the two conditional statements are logically equivalent.
The premises of the rule ensure that that both the true branches of
the statements and the false branches of the statements are related by
pre-condition Φ (strengthened by the guard of the conditionals or their
negation) and the same post-condition Ψ. Therefore the two conditional
statements are related by the pre-condition Φ and the post-condition
Ψ.

The [While] rule considers two while loops that execute in lockstep.
Specifically, it requires that there exists a loop invariant Θ that is
initially valid and preserved by one iteration of the two loop bodies, and
such that the loop guards are equivalent for any two memories satisfying
the invariant. Upon termination, i.e. in the output distributions, both
loop guards are false and the loop invariant is valid.

The [Call] rule considers the case where the left and right state-
ments perform a procedure call, possibly with different procedures. It

4.4. Proof system 41

|= skip ∼ skip : Ψ⇒ Ψ [Skip]

|= c1 ∼ c2 : Φ⇒ Θ |= c′1 ∼ c′2 : Θ⇒ Ψ
|= c1; c′1 ∼ c2; c′2 : Φ⇒ Ψ

[Seq]

|= x1 ← e1 ∼ x2 ← e2 : Ψ[e1〈1〉/x1〈1〉][e2〈2〉/x2〈2〉]⇒ Ψ
[Assn]

h J 〈Jµ1K & Jµ2K〉
Φ 4= ∀v : T1, v ∈ supp(µ1) =⇒ Ψ[v/x1〈1〉][h(v)/x2〈2〉]

|= x1 $← d1 ∼ x2 $← d2 : Φ⇒ Ψ
[Rand]

Φ =⇒ e1〈1〉 = e2〈2〉
|= c1 ∼ c2 : Φ ∧ e1〈1〉 ⇒ Ψ |= c′1 ∼ c′2 : Φ ∧ ¬e1〈1〉 ⇒ Ψ
|= if e1 then c1 else c′1 ∼ if e2 then c2 else c′2 : Φ⇒ Ψ

[Cond]

Θ =⇒ e1〈1〉 = e2〈2〉 |= c1 ∼ c2 : Θ ∧ e1〈1〉 ⇒ Θ
|= while e1 do c1 ∼ while e2 do c2 : Θ⇒ Θ ∧ ¬e1〈1〉

[While]

Φ′ 4= Φ[e1〈1〉/argsF1〈1〉][e2〈2〉/argsF2〈2〉]
|= bodyF1 ∼ bodyF2

: Φ′ ⇒ Ψ[resF1〈1〉/x1〈1〉][resF2〈2〉/x2〈2〉]
|= x1 ← F1(e1) ∼ x2 ← F2(e2) : Φ′ ⇒ Ψ

[Call]

Figure 4.2: Two-sided rules

requires to establish a relation between the bodies of the two procedures,
under a strengthened pre-condition that sets the values of the formal
parameters to be equal to the arguments e1 and e2 of the procedure
calls, respectively.

4.4.3 One-sided rules

We only present left rules (right rules are similar). In all cases, except for
the rule for conditionals, the program on the right is a skip statement.

The [Assg-L] rule states that an assertion Ψ is a valid post-condition,

42 Probabilistic Relational Hoare Logic

if the initial pair of memories satisfy the assertion Ψ[e〈2〉/x〈1〉].
The [Rand-L] rule states that an assertion Ψ is a valid post-

condition, if the initial pair of memories satisfy the assertion ∀v ∈
supp(d1). Ψ[v/x〈1〉]. In this case, the rule treats random assignments
as a non-deterministic assignment, as there is no opportunity to couple
the random assignment on the left with a random assignment on the
right.

The [Cond-L] rule considers a conditional statement on the left
and an arbitrary statement to the right. It performs a case analysis on
the guard of the conditional statement and matches its true and false
branch against the right statement.

The [While-L] rule requires each iteration of the loop body preserves
an invariant Θ, and that the loop is almost surely terminating. If the
initial pair of memories satisfy Θ, then upon termination, i.e. in the
output distributions, the loop guard is false and the loop invariant is
valid.

The [Call-L] considers the case where the left statement performs
a procedure call, and where the right statement is arbitrary. The rule
requires to establish a relation between the body of the procedure and
the right statement, under a strengthened pre-condition that the value
of the formal parameters is equal to the argument e1 of the procedure
call.

Note that there is no one-sided rule for sequential composition.

Remark 4.2. Barthe et al. (2017) prove that, given a sufficiently strong
proof system for structural equivalence on programs, all one-sided rules
except [While-L] can be derived from their two-sided counterpart.

4.4.4 Soundness and completeness

The proof system is sound, in the sense that the conclusions of all the
proof rules are valid judgments, provided the premises of the rules are
valid judgments and the side-conditions, if any, hold. On the other
hand, the proof system is incomplete, in the sense that there are valid
judgments that may not be derived from the proof system.

One source of incompleteness is the rule for loops, which requires
that the two loops make the same number of iterations. It is possible

4.4. Proof system 43

|= x1 ← e1 ∼ skip : Ψ[e1〈1〉/x1〈1〉]⇒ Ψ
[Assg-L]

|= x1 $← d1 ∼ skip : ∀v1 ∈ supp(d1),Ψ[v/x1〈1〉]⇒ Ψ
[Rand-L]

|= c1 ∼ c2 : Φ ∧ e1〈1〉 ⇒ Ψ |= c′1 ∼ c2 : Φ ∧ ¬e1〈1〉 ⇒ Ψ
|= if e1 then c1 else c′1 ∼ c2 : Φ⇒ Ψ

[Cond-L]

|= c1 ∼ skip : Θ ∧ e1〈1〉 ⇒ Θ ast(while e1 do c1)
|= while e1 do c1 ∼ skip : Θ⇒ Θ ∧ ¬e1〈1〉

[While-L]

Φ′ 4= Φ[e1〈1〉/argsf1〈1〉]
|= bodyf1 ∼ skip : Φ′ ⇒ Ψ[x1〈1〉/resf1〈1〉]

|= x1 ← f1(e1) ∼ skip : Φ′ ⇒ Ψ
[Call-L]

Figure 4.3: One-sided (left) rules

to palliate for this incompleteness within the proof system described
above in two different ways: first, by using the one-sided rules for loops;
however, this is possible when the two programs have extremely well-
behaved termination behavior; second, by using the [Struct] rule to
perform standard loop optimizations that make structurally different
loops amenable to verification. Another solution, outside of the proof
system described above, is to use a more general rule for loops that does
not require the two programs to make the same number of iterations.
We only present a simplified rule, and refer the reader to (Barthe et al.,

44 Probabilistic Relational Hoare Logic

2017) for the most general rule:

Θ =⇒ (e1 ∨ e2) = e

Θ ∧ e =⇒ ⊕{p0, p1, p2}
Θ ∧ p0 ∧ e =⇒ e1 = e2

Θ ∧ p1 ∧ e =⇒ e1
Θ ∧ p2 ∧ e =⇒ e2

|while (e1 ∧ p1) do c1| = |while (e2 ∧ p2) do c2| = 1
|= if e1 then c1 ∼ if c2 then e2 : Θ ∧ p0 ⇒ Θ

|= c1 ∼ skip : Θ ∧ e1 ∧ p1 ⇒ Θ
|= skip ∼ c2 : Θ ∧ e2 ∧ p2 ⇒ Θ

|= while e1 do c1 ∼ while e2 do c2 : Θ⇒ Θ ∧ ¬e1 ∧ ¬e2

The rule interleaves synchronous and asynchronous executions of
the loop bodies, as reflected by its last three premises. The first set
of premises defines the conditions under which interleavings must be
considered. The first premise specifies an expression e, which may
mention variables from both sides, that holds true exactly when at least
one of the guards is true. Next, the next premise states that whenever e is
valid, exactly one of the tests p0, p1, and p2 must hold—this is captured
by the notation ⊕{p0, p1, p2}. These tests must satisfy some additional
conditions, given in the third, fourth, and fifth premises, and guide the
analysis of the loop bodies. If p0 holds, then both guards should be
equal and we can execute the two sides one iteration, preserving the
loop invariant Θ. If p1 holds and the right loop has not terminated
yet, then the left loop also has not terminated yet (i.e., e2 holds), we
may execute the left loop one iteration. If p2 holds and the left loop
has not terminated yet (i.e., e1 holds), then the right loop also has
not terminated yet and we may execute the right loop one iteration.
The sixth and seven premises deal with termination. Note that some
condition on termination is needed for soundness of the logic: if the left
loop terminates with probability 1 while the right loop terminates with
probability 0 (i.e., never), it is impossible to construct a valid coupling
since there is no distribution on pairs that has first marginal with weight
1 and second marginal with weight 0. So, we require that the first and
second loops are a.s. terminating assuming p1 and p2 respectively. This
ensures that with probability 1, there are only finitely many steps where

4.4. Proof system 45

we execute the left or right loop separately.

Remark 4.3. Barthe et al. (2017) prove that for deterministic programs,
the general rule for loops make the proof system relatively complete with
respect to self-composition. More precisely, for every two deterministic
and terminating programs c1 and c2 with disjoint sets of variables,

|= c1 ∼ c2 : Φ⇒ Ψ⇔|= Φ̄ : c1; c2 ⇒ Ψ̄

where Φ̄ and Ψ̄ are obtained from Φ and Ψ by erasing the tags of
variables.

Loops are not the sole source of incompleteness; the rule for random
assignments is also incomplete, for two reasons. First, the rule uses
bijective couplings, which are less general than couplings. One can
be lift this restriction by using a more general rule for probabilistic
assignments, as proposed in (Barthe et al., 2017). In our simplified
setting, their rule becomes:

µ J 〈Jd1K & Jd2K〉 Φ 4= ∀(v1, v2) ∈ supp(µ). Ψ[v1/x1〈1〉][v2/x2〈1〉]
|= x1 $← d1 ∼ x2 $← d2 : Φ⇒ Ψ

This rule is complete when considering two probabilistic assignments.
However, the proof system remains incomplete, due to the interactions
between probabilistic assignments and other constructions.

One source of incompleteness is the interaction between probabilistic
assignments and sequential composition. In general, it might not be
possible (even with the stronger rule above) to relate two sequences of
assignments of different lengths, or sequences of assignments of the same
length but which are performed over sets of a different size. For instance,
one cannot use the rule [Rand] only to relate the two statements:

x $← {0, 1}`1 ;x $← ′{0, 1}`2 ; return (x ‖ x′)

x $← {0, 1}`3 ;x $← ′{0, 1}`3 ; return (x ‖ x′)

even if `1 + `2 = `3 + `4.
It is not clear how to establish a coupling between the two statements,

even with the more general rule for probabilistic assignments. However,

46 Probabilistic Relational Hoare Logic

one could relate the two programs using the [Struct] and [Rand]
rules, given a sufficiently strong auxiliary proof system for program
equivalence.

4.5 Excercises

1. Let c1 and c2 be statements, and let Φ and Ψ be assertions such
that x /∈ vars(Φ) and x /∈ vars(Ψ) and x 6∈ vars(e). Prove that the
following rule is valid

|= if e then x $← µ; c1 else c2 ∼ c : Φ⇒ Ψ |µ| = 1
|= x $← µ; if e then c1 else c2 ∼ c : Φ⇒ Ψ

Show that the rule is unsound if |µ| 6= 1.

2. Composition. Prove that the following rule is sound

|= c1 ∼ c2 : Φ⇒ Ψ |= c2 ∼ c3 : Φ′ ⇒ Ψ′

|= c1 ∼ c3 : Φ′′ ⇒ Ψ′′
[Comp]

where Φ′′ = ∃z1 . . . zk.Φ[x1〈2〉, . . . , xk〈2〉/z1, . . . zk]∧Φ′[x1〈1〉, . . . , xk〈1〉/z1, . . . zk]

and Ψ is defined similarly.

3. Define a minimal set of structural rules so that all 1-sided rules
are derivable from 2-sided rules.

5
Union Bound Logic

We use the Union Bound logic from Barthe et al. (2016b) for bounding
the probability of events on output sub-distributions of probabilistic
programs. The logic is based on the union bound, a very simple but
effective tool from probability theory.

5.1 Judgments and validity

Judgments are of the form |=β c : φ⇒ ψ where c is a statement, φ, ψ
are assertions and β ∈ [0, 1] is a constant.

Informally, a judgment is valid if the probability of ¬ψ in JcKm is
upper bounded by β for every memory m that satisfies the precondition
φ.

Definition 5.1 (Valid judgment). The judgment |=β c : φ⇒ ψ is valid
if PJcK(m)[¬ψ] ≤ β for every memory m such that JφKm holds.

The proof rules for pHL judgments include structural rules (Fig-
ure 5.1), and rules for each construct (Figure 5.2).

We briefly discuss the rules.
The [False] rule allows us to conclude that false holds with proba-

bility at most 0 in the final memory.

47

48 Union Bound Logic

[False]
|=1 c : ψ ⇒ ⊥

[Conseq]
|= φ′ =⇒ φ |= ψ =⇒ ψ′ β ≤ β′ |=β c : φ⇒ ψ

|=β′ c : φ′ ⇒ ψ′

[Frame]
vars(ψ) ∩mod(c) = ∅
|=0 c : ψ ⇒ ψ

[Case]
|=β c : φ1 ⇒ ψ |=β c : φ2 ⇒ ψ

|=β c : φ1 ∨ φ2 ⇒ ψ

[Exists]
∀x : T. |=β c : φ⇒ ψ

|=β c : ∃x : T. φ⇒ ψ

[And]
|=β1 c : φ⇒ ψ1 |=β2 c : φ⇒ ψ2

|=β1+β2 c : ψ ⇒ ψ1 ∧ ψ2

Figure 5.1: Structural pHL proof rules

5.1. Judgments and validity 49

[Skip]
|=0 skip : ψ ⇒ ψ

[Assn]
|=0 x← e : ψ[e/x]⇒ ψ

[Rand]
∀m. JφKm =⇒ PJx $←dKm

[¬ψ] ≤ β

|=β x $← d(e) : φ⇒ ψ

[Seq]
|=β c : φ⇒ θ |=β′ c′ : θ ⇒ ψ

|=β+β′ c; c′ : φ⇒ ψ

[Cond]
|=β c : φ ∧ e⇒ ψ |=β c

′ : φ ∧ ¬e⇒ ψ

|=β if e then c else c′ : φ⇒ ψ

[While-CT]
|=β c : θ ∧ e⇒ θ |=0 (if e then c)n : φ⇒ ¬e

|=nβ while e do c : θ ∧ φ⇒ ψ ∧ ¬e

[While-AST]
|=0 c : θ ∧ e⇒ θ |=β c : θ ∧ e⇒ ¬e β 6= 1

|=0 while e do c : θ ⇒ θ ∧ ¬e

[Call]
φ′

4= φ[e/argsF] |=β bodyF : φ′ ⇒ ψ[x/resF]
|=β x← F(e) : φ′ ⇒ ψ

Figure 5.2: Non-structural pHL proof rules

The [Conseq] rule allows strengthening the pre-condition, weaken-
ing the post-condition, and increasing the index—this corresponds to
allowing a possibly higher probability of failure.

The frame rule [Frame] preserves assertions that do not mention
variables modified by the command. The conjunction rule [And] is
another instance of the union bound, allowing us to combine two post-
conditions while adding up the failure probabilities. The case rule [Case]
is the dual of [And] and takes the maximum failure probability among
two post-conditions when taking their disjunction. Finally,

The rule for random sampling [Rand] allows us to assume a proposi-

50 Union Bound Logic

tion ψ about the random sample provided that ψ fails with probability
at most β. This is a semantic condition which we introduce as an axiom
for each primitive distribution.

The remaining rules are similar to the standard Hoare logic rules,
with special handling for the index. The sequence rule [Seq] states
that the failure probabilities of the two commands add together; this
is simply the union bound internalized in our logic. The conditional
rule [If] assumes that the indices for the two branch judgments are
equal—which can always be achieved via weakening—keeping the same
index for the conditional. Roughly, this is because only one branch of the
conditional is executed. The loop rule [While] simply accumulates the
failure probability β throughout the iterations; the side conditions ensure
that the loop terminates in at most k iterations except with probability
k · β. To reason about procedure calls, standard (internal) procedure
calls use the rule [Call], which substitutes the argument and return
variables in the pre- and post-condition, respectively. External procedure
calls use the rule [Ext]. We do not have access to the implementation
of the procedure; we know just the type of the return value.

5.2 Soundness and completeness

The logic is sound: if the premises of a proof rule are valid, and the
side-conditions, if any, hold, then the conclusions of the proof rule are
valid. Unsurprisingly, the proof system is incomplete: there are valid
judgments that cannot be proved using the logic. Indeed, the union
bound principle is a simple tool, and it induces non-optimal bounds.
Concentration inequalities dubhashi2009concentration is an active
field of research that studies advanced methods for improving these
bounds, and that is not captured by pHL.

5.3 Further reading

There is a long line of research, spanning more than four decades,
on program logics for reasoning about general probabilistic properties
both for purely probabilistic programs and for programs that combine
probabilities and non-deterministic choice. Kozen (1985) develop a

5.3. Further reading 51

propositional dynamic logic for a purely probabilistic language; this work
has later been extended in many directions. Particularly, a long line of
work by McIver and Morgan, summarized in (McIver and Morgan, 2005),
develops a weakest pre-expectation calculus for a language with both
probabilities and non-determinism. Their work has also been extended
in many directions, with applications to security and to complexity
analysis.

6
Adversaries

Any formalism for reasoning about reductionist security proofs of cryp-
tographic constructions must provide support for reasoning about ad-
versaries. In this chapter, we introduce a generic formalization of adver-
saries, and show how the semantics of programs and the rules of the
program logic can be extended to accommodate adversaries.

6.1 Definition

Adversarial programs are programs with two classes of procedures:
program procedures, often simply called procedures, and adversarial
procedures, also called adversaries.

Definition 6.1 (Adversarial program). An adversarial program P is given
by a set Proc of procedures, with a distinguished main procedure, a
set AdvProc of adversarial procedures and a list of declarations of the
form F(x) = [X]c; return e, where x is a (tuple of) local variable(s), X
is a set of local variables such that x ∈ X, c is a statement called the
body of the procedure, and e is a return expression. We require that:

• there is exactly one declaration for each F ∈ Proc, and only the
main procedure can call adversaries;

52

6.2. Semantics 53

• there is at most one declaration for each A ∈ AdvProc, and
moreover the body of A can call procedures in a distinguished
subset Forcl of F or other adversaries;

• adversaries and procedures operate on two disjoint sets of variables:
program variables (both global and local), and adversary variables
(both global and local).

An adversarial program is abstract if there is no declaration for
adversaries and concrete if there is a declaration attached to each
adversary. Security notions and assumptions are expressed by abstract
adversarial programs; on the other hand, concrete adversarial programs
can be given a denotational semantics.

Remark 6.1. Some security notions limit the interactions between ad-
versaries. This can be achieved by assigning to each adversary read/write
permissions on adversarial variables; one can further refine these permis-
sions to be quantitative, and to specify an upper bound on the number
of reads or writes that an adversary can perform on a given variable.

Adversarial programs are naturally ordered by a refinement relation;
we say that an adversarial program P refines an adversarial program
P′ if they have the same sets of procedures and every declaration in P

is also a declaration in P′.
The notion of well-formed and well-typed program extends readily to

adversarial programs. For the former, we require that the call graph of
an adversarial program is well-founded, and that the separation between
adversary and program memory is enforced correctly.

6.2 Semantics

We give a denotational semantics of concrete adversarial programs,
similarly to Chapter 3 for plain programs. The semantics is parametrized
by a ressource policy, which imposes an upper bound on the number of
calls that an adversary can make to a procedure.

Definition 6.2 (Resource policy). A resource policy for an adversarial
program P is a family of natural numbers (qF)F ∈ Proc ∈ N which sets

54 Adversaries

the maximal number of calls that an adversary can make to procedure
F .

We also introduce the notion of history in order to model security
definitions. A simple notion of history suffices for our purposes. However,
the notion of history can be strengthened if required.

Definition 6.3 (History). An history for an adversarial program P is a
family of list of values (LF)F ∈ Proc ∈ N recording the list of input
and output values of adversarial calls to the procedure F .

Our semantics records the history of adversarial calls, and aborts
execution whenever an adversary exceeds the maximal number of allowed
calls on an oracle. Formally, the semantics of a concrete adversarial
program P with respect to a resource policy (qF)F∈Proc ∈ N is defined
as a function:

JPK : (Mem×AdvMem)→ D(Mem×AdvMem×Hist)⊥

The semantics is essentially unchanged from Chapter 3, although we
need to use the error monad to propagate the error ⊥ whenever it arises
in some part of the execution. The only interesting case is the semantics
of calls in an adversarial procedure; well-formedness implies that these
can either be oracle or adversary calls. We treat oracle calls; adversary
calls are treated similarly. The semantics is defined by case analysis:
if the adversary has already performed its maximal allowed number
of calls, then the call returns an error. Else, the execution proceeds
normally. We execute F ; since oracles do not perform adversarial calls,
the adversarial memory and the history need not be updated. We return
the output of executing F , with the adversarial variable x updated with
the return value of the oracle, and the history updated to record the
call. In the first case, when |LF | ≥ qF , we set

Jx← F(e)K(m,ma,h) = let v = JeKma
in

E(m′,v′)∼JF K(m,v)
[1(m′,ma[x←v′],h[LF←(v,v′)::LF])]

Finally, we say that a concrete adversarial P satisfies a resource
policy (qF)F ∈ Proc ∈ N if for every pair of memories (m,ma),

⊥ /∈ supp(JPK(m,ma))

6.3. Relational reasoning about adversarial programs 55

6.3 Relational reasoning about adversarial programs

The probabilistic Relational Hoare Logic from Chapter 4 extends to
adversarial programs.

Assertions are similar to pRHL, and are built over adversarial and
program variables. We also use a distinguished assertion eqmemA to
state that the memory of an abstract adversary A is equal in the two
executions.

A judgment |= c1 ∼ c2 : Φ ⇒ Ψ is valid iff |= c′1 ∼ c′2 : Φ ⇒ Ψ for
every concrete and compatible refinements c′1 and c′2 of c1 and c2. Here
the notion of compatibility states that c1 and c2 exactly have the same
set of abstract adversaries, and that they get the same declaration in
c′1 and c′2. It can be shown that all the rules of pRHL retain soundness
under this interpretation.

Remark 6.2. The notion of validity immediately entails the soundness
of a refinement rule, which states that a judgment remains valid when
replacing the left and right programs by compatible refinements. This
rule offers a rudimentary mechanism for compositional reasoning, and
in particular for chaining sequences of reductions and keeping the
constructed adversaries implicit. However, more powerful mechanisms
are required for large examples. We discuss the use of module systems
for compositional reasoning in Chapter 7.

The adversary rule in pRHL is intended to compare the behavior
of the same adversary in two different adversarial programs (with
compatible adversaries) and reflects the fact that adversaries are purely
probabilistic. Therefore, any two runs of the adversary will deliver equal
outputs whenever they receive equal inputs. Moreover, adversaries do
not modify the program state so every assertion which holds before
calling the adversary remains valid when the adversary returns. However,
adversaries may also interact with oracles, so we need to make our claim
more precise. Specifically, the pRHL rule for adversaries combines two
observations:

• adversaries will deliver equal queries and equal outputs whenever
they are given equal inputs and equal answers to their queries;

56 Adversaries

• adversaries will preserve relational invariants on program states
whenever these invariants are preserved by the oracles to which
the adversary is given access.

Concretely, the adversary rule is defined as follows:

[Adv]
∀F , y, z. |= y ← F(z) ∼ y ← F(z) : z〈1〉 = z〈2〉 ∧Ψ⇒ y〈1〉 = y〈2〉 ∧Ψ
|= x1 ← A(e1) ∼ x2 ← A(e2) : e〈1〉 = e〈2〉 ∧Θ⇒ x〈1〉 = x〈2〉 ∧Θ

where Θ 4= Ψ ∧ eqmemA. Note that the premise of the rule quantifies
universally over all procedures; in reality, we always reason relative to
a ressource policy, in which case it suffices to quantify over procedures
F that can be called by the adversary, i.e. such that qF 6= 0.

The soundness of the adversary rule can be argumented informally
by viewing an adversary as an arbitrary sequence of procedure calls; a
relational assertion Ψ is a valid invariant for an arbitrary sequence of
procedure calls if Ψ is a valid invariant for each procedure call; in order
to keep the adversary synchronized in the two programs, we further
require that procedure calls return equal values in the two programs,
whenever they are called with equal values.

6.4 Union bound reasoning about adversarial programs

The Union Bound Logic from Chapter 5 extends to adversarial programs.
A judgment |=β c : φ⇒ ψ is valid iff |=β c

′ : φ⇒ ψ for every concrete
refinement c′ of c. It can be shown that all the rules of pHL retain
soundness under this interpretation.

Moreover, one can define a rule for adversaries. The rule for adver-
saries is parametrized by a resource policy. Informally, suppose that
every call to an oracle F preserves the invariant θ with probability at
least 1− βF ; then a call to an adversary will preserve the invariant the
invariant θ with probability at least 1 −

∑
F∈Proc qFβF , where qF is

the maximal number of queries that A can make to the procedure F .
Formally, the rule for adversaries is:

[Adv]
∀F , y, z. |=βF y ← F(z) : θ ⇒ θ

|=∑
F∈Proc qFβF

x← A(e) : θ ⇒ θ

6.5. Computational complexity and termination behavior 57

The soundness of the rule is itself an immediate consequence of the
Union Bound principle.

6.5 Computational complexity and termination behavior

Our formalization does not impose any explicit requirement on the
computational complexity or termination behavior of adversaries.

7
Tools

This chapter reviews tools based on probabilistic relational Hoare Logic
and its variants. We first review tools that implement pRHL, then
discuss tools that generate automatically valid proofs in pRHL.

7.1 CertiCrypt

CertiCrypt (Barthe et al., 2009) is a foundational framework built on
top of the Coq proof assistant (Coq). CertiCrypt consists of two main
layers.

The lower layer consists of a deep embedding of a variant of the
pWhile language (with recursive procedure calls). CertiCrypt provides
two semantics of programs: an operational semantics and a denotational
semantics, which are proved equivalent. CertiCrypt also provides instru-
mented (operational and denotational) semantics, using a cost monad
for tracking the execution cost of programs. The instrumented semantics
are used for defining the class probabilistic polynomial-time programs.
All semantics use the Alea library for modelling sub-distributions Au-
debaud and Paulin-Mohring (2009);

The upper layer comprises a rich set of tools for manipulating or

58

7.1. CertiCrypt 59

reasoning about probabilistic programs. All the tools are implemented
in Coq, and are proven correct with respect to the program semantics.
The main tools are:

• a variant of probabilistic Relational Hoare Logic with shallow
assertions, i.e. assertions are Coq relations over memories. Cer-
tiCrypt also provides a relational weakest pre-condition calculus
for loop-free programs;

• automated tactics for syntatic failure events. The tactics apply
the Failure Event Lemma on two programs G1 and G2 that are
syntactically equal up to a syntactic failure event, modelled by
a boolean flag bad. The tactics checks that the code of the two
games differs only after program points setting the flag bad to
true and that bad is never reset to false afterwards. If this is the
case, it outputs a proof of

|PG1 [A]− PG2 [A]| ≤ max(PG1 [F],PG2 [F])

where F 4= bad = >;

• proof principles and program transformations based on depen-
dence analysis. CertiCrypt implements functions that perform
dependence analysis and compute for each statement c and set I
of initial variables an over-approximation of the set O of output
variables influenced by I, and dually for each statement c and
set O of ouput variables an over-approximation of the set I of
input variables on which the variables in O depend. These func-
tions are used for automating proofs of observational equivalence
of structurally similar programs, and for simplifying proof goals
in relational Hoare logic. In addition, the dependence analysis
provides an (incomplete) method for justifying code motion.

• program transformations based on dataflow analysis. CertiCrypt
implements a generic dataflow analysis over an abstract domain D,
modelled as a semi-lattice. Given transfer functions for assignment
and branching instructions, and abstract functions for operators of
the expression language, CertiCrypt yields a certified optimization

60 Tools

function that receives a statement c and an abstract pre-condition
δ ∈ D, and returns a statement c′ and an abstract post-condition
δ′, such that c and c′ are equivalent on memories for δ holds, and
δ′ holds after executing c (or c′). Abstract post-conditions are
used for stating formally the correctness of the optimizer:

|= c ∼ c′ : Φ⇒ Ψ

where Φ 4= λm1,m2. m1 = m2∧valid(δ,m1), Ψ =4= λm1,m2. m1 =
m2 ∧ valid(δ′,m1) and valid(δ, n) states that the memory m sat-
isfies the abstract value δ. The correctness of the optimizer is
proved using techniques from certified compilation Bertot et al.,
2004; Leroy, 2006.

• generic program transformations, including procedure inlining and
loop unrolling, and a domain-specific inter-procedural program
transformation for eager and lazy sampling. The latter automates
a custom proof system for swapping statements BartheGZ10

• a (non-relational) program logic for proving upper bounds on the
probability of events BartheGZ10 The logic shares the goals of
probabilistic Hoare logic, but is ad hoc and also less expressive.

CertiCrypt has been used to prove the security of several prominent
cryptographic constructions, including the Full Domain Hash signa-
ture (Zanella-Béguelin et al., 2009), the OAEP padding scheme (Barthe
et al., 2011b), the Boneh-Franklin identity-based encryption scheme (Barthe
et al., 2011c), zero-knowledge protocols (Barthe et al., 2010), and hash
functions into elliptic curves (Barthe et al., 2013c).

7.2 EasyCrypt

EasyCrypt (Barthe et al., 2011a; Barthe et al., 2013b) is a proof assistant
that combines interactive and automated proofs through a tactic-based
proof engine similar to Coq and a back-end to multiple theorem provers
and SMT solvers via the Why3 platform (Bobot et al., 2016). EasyCrypt
supports program logics for reasoning about probabilistic programs. The
main program logics supported by EasyCrypt are probabilistic Relational

7.2. EasyCrypt 61

Hoare Logic and (an extension of) probabilistic Hoare Logic. Both logics
are embedded into a higher-order logic in which top-level reasoning
is carried. In particular, the higher-order logic helps glueing together
probabilistic inequalities obtained using program logics, or proving
mathematical facts that are used by the program logic.

EasyCrypt also provides several mechanisms and proof techniques
that are not supported by CertiCrypt:

• an advanced module system for structuring proofs. The module
system significantly broadens the scope of formal reasoning, by
providing a useful abstraction mechanism for large proofs, and by
supporting hierarchical proofs. In the first case, the module system
opens the possibility to perform successive reductions locally
and to obtain the global constructed adversary automatically,
as often featured in pen-and-paper proofs; in absence of such a
mechanism, the constructred adversary would have to be carried
explicitly through the whole proof, which is at best undesirable,
and even potentially blocking. More fundamentally, the module
system opens the possibility to build hierarchical proofs. For
instance, one can first prove a general theorem using abstract
views of cryptographic primitives, then prove instantiations of
these primitives secure down to computational assumptions, and
then glue the two results together. This kind of modular reasoning
is essential for giving machine-checked security proofs of high-level
protocols.
Module types are used to declare the interface of modules: a set
of procedures, and their types. Modules themselves consist of a
set of procedures, and a memory (a set of global variables, shared
by all procedures of the module). A module satisfies a module
type if it implements all the procedures declared in the module
type. It is possible that a module implement procedures that are
not declared in their module type, but such procedures are not
exported outside of the module. Module types can also be used
to declare functors, i.e. modules parametrized by other modules.
Procedures of a functor can use procedures of the parameter
modules as oracles. For applications to cryptography, it is however

62 Tools

essential to control the interactions between the procedures of a
functor and the procedures of parameter modules; we use module
types for specifying which procedures of the parameter modules
can be accessed by the procedures of a functor. By itself, the
module system provides a mechanism for structuring the definition
of cryptographic experiments. For instance, adversaries, security
notions, and computational assumptions are all formalized using
model. However, the strength of the module system lies in its
logical status; specifically, the higher-order logic of EasyCrypt
supports (arbitrary) universal and existential quantification over
modules. This is the key to compositional reasoning, and is used
critically in the most advanced applications of EasyCrypt;

• a theory mechanisms that can be used for organizing and reusing
the axiomatizations of different algebraic and data structures
such as cyclic groups, finite fields, matrices, finite maps, lists or
arrays. In its simplest form, a theory consists of a collection of
type and operator declarations, and a set of axioms. However,
theories might also contain modules, allowing the definition of
libraries of standard games depending on abstract algebraic and
data structures.

Theories enjoy a cloning mechanism that is useful when formalizing
examples that involve multiple objects of the same nature, e.g.
cyclic groups in bilinear pairings. Moreover, operators of a theory
can be realized, i.e. instantiated by expressions, during cloning.
Cloning can also be used as a substitute for polymorphic modules.

• generic libraries of advanced cryptographic techniques, used for
hybrid arguments, eager/lazy sampling and random oracles.

EasyCrypt has been used to prove the security of several examples,
including the Cramer-Shoup encryption scheme (Barthe et al., 2011a),
the Merkle-Damgård iterative hash function design (Backes et al., 2012),
and the ZAEP encryption scheme (Barthe et al., 2012), the TLS hand-
shake protocol Bhargavan et al., 2014, a generic authenticated key
exchange protocol with instantiations to Nets and NAXOS (Barthe

7.3. AutoGP 63

et al., 2015), masked algorithms (Barthe et al., 2016a), and the Helios
voting system CortierDDSSW17

Remark 7.1. Early versions of EasyCrypt provided an extraction mech-
anism for generating an independently verifiable CertiCrypt proof of the
validity of pRHL judgments, conditioned by the validity of the formulae
discharged by the SMT solvers. This mechanism is no longer supported,
since EasyCrypt now offers the support of a full-fledged proof assistant.
In addition, early versions of EasyCrypt explored alternative trade-offs
between control and automation, and provided several automated com-
ponents: a verification condition generator for pRHL, together with
a rudimentary algorithm for inferring relational loop invariants and
adversary specifications; a rudimentary algorithm for synthesizing and
proving probability bounds.

7.3 AutoGP

7.4 ZooCrypt

The ZooCrypt framework (Barthe et al., 2013a) provides tools for auto-
matically analyzing and synthesizing padding-based encryption schemes.
The class of padding-based encryption schemes consists of public-key
encryption schemes built from one-way trapdoor permutations and
random oracles. In practice, these primitives are often instantiated with
the RSA function.

Even though these building blocks are relatively simple and well
understood, it is surprisingly difficult to find constructions that are
simple, minimize ciphertext expansion and support tight reductions to
the security of the employed one-way function. For example, Bellare
and Rogaway (1994) proved security against chosen-ciphertext attacks
(IND-CCA) for the OAEP scheme under the one-way assumption. Later
on, Shoup (2001) proved that it is impossible to reduce the security
of OAEP to one-wayness and the proof must therefore be flawed. To
regain confidence in the widely used OAEP scheme, Shoup (2001) and
Fujisaki et al. (2001) developed new proofs for OAEP under stronger
assumptions. Additionally, many schemes have been proposed that

64 Tools

improve on various aspects of OAEP, for example by providing security
under the weaker one-wayness assumption.

The goal of the ZooCrypt framework is to demonstrate that fully
automated game-based proofs and computer-aided design are feasible
in the domain of padding-based encryption schemes. ZooCrypt consists
of two components: an analyzer that can decide efficiently whether
an instance construction is secure, and a synthesizer that implements
a smart generation algorithm for candidate instances. The analyzer
combines efficient search procedures to prove the security of an instance
using a custom proof system, and attack finding procedures based on
symbolic models of cryptography. The custom proof system consists of
a small number of high level proof rules that formalize the game hops
used in such proofs. Using ZooCrypt, we have built a database that
contains more than one million padding-based encryption schemes. To
build this database, our tool has not only found many new schemes,
it has also rediscovered most schemes from the literature (including
proofs).

7.5 Computational Indistinguishibility Framework

7.6 Foundational Cryptography Framework

The Foundational Cryptography Framework (FCF) of Petcher and Mor-
risett (2015b) is an alternative formalization of pRHL in the Coq
proof assistant. In contrast to CertiCrypt, FCF provides a lightweight
formalization of the programming language, letting users take advan-
tage of the rich specification language of Coq for writing cryptographic
games. In Coq parlance, CertiCrypt supports a deep embedding of the
pWhile language, whereas FCF is inspired from shallow embedding;
however, the formalization of pWhile in FCF also contains elements of
a deep embedding in order to reason about the complexity of programs.
The approaches deliver different benefits in terms of expressiveness
and automation, and are difficult to compare. FCF has been used to
mechanize a proof of security for a searchable symmetric encryption
scheme (Petcher and Morrisett, 2015a), and for a proof of security of
the HMAC message authenthication code (Beringer et al., 2015).

References

Audebaud, P. and C. Paulin-Mohring. 2009. “Proofs of randomized
algorithms in Coq”. Sci. Comput. Program. 74(8): 568–589. doi:
10.1016/j.scico.2007.09.002. url: http://dx.doi.org/10.1016/j.scico.
2007.09.002.

Backes, M., G. Barthe, M. Berg, B. Grégoire, C. Kunz, M. Skoruppa, and
S. Zanella-Béguelin. 2012. “Verified Security of Merkle-Damgård”.
In: 25th IEEE Computer Security Foundations Symposium, CSF
2012, Cambridge, MA, USA, June 25-27, 2012. Ed. by S. Chong.
IEEE Computer Society. 354–368. doi: 10.1109/CSF.2012.14. url:
http://dx.doi.org/10.1109/CSF.2012.14.

Barthe, G., S. Belaid, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub,
and R. Zucchini. 2016a. “Strong Non-Interference and Type-Directed
Higher-Order Masking”. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016. Ed. by E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi. ACM. 116–129. doi: 10.
1145/2976749.2978427. url: http://doi.acm.org/10.1145/2976749.
2978427.

65

http://dx.doi.org/10.1016/j.scico.2007.09.002
http://dx.doi.org/10.1016/j.scico.2007.09.002
http://dx.doi.org/10.1016/j.scico.2007.09.002
http://dx.doi.org/10.1109/CSF.2012.14
http://dx.doi.org/10.1109/CSF.2012.14
http://dx.doi.org/10.1145/2976749.2978427
http://dx.doi.org/10.1145/2976749.2978427
http://doi.acm.org/10.1145/2976749.2978427
http://doi.acm.org/10.1145/2976749.2978427

66 References

Barthe, G., J. M. Crespo, B. Grégoire, C. Kunz, Y. Lakhnech, B.
Schmidt, and S. Zanella-Béguelin. 2013a. “Fully automated analy-
sis of padding-based encryption in the computational model”. In:
2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013. Ed. by
A. Sadeghi, V. D. Gligor, and M. Yung. ACM. 1247–1260. doi:
10.1145/2508859.2516663. url: http://doi .acm.org/10.1145/
2508859.2516663.

Barthe, G., J. M. Crespo, Y. Lakhnech, and B. Schmidt. 2015. “Mind
the Gap: Modular Machine-Checked Proofs of One-Round Key
Exchange Protocols”. In: Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part II. Ed. by E. Oswald and M. Fischlin.
Vol. 9057. Lecture Notes in Computer Science. Springer. 689–718.
doi: 10.1007/978-3-662-46803-6_23. url: http://dx.doi.org/10.
1007/978-3-662-46803-6_23.

Barthe, G., F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P.
Strub. 2013b. “EasyCrypt: A Tutorial”. In: Foundations of Security
Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures. Ed.
by A. Aldini, J. Lopez, and F. Martinelli. Vol. 8604. Lecture Notes
in Computer Science. Springer. 146–166. doi: 10.1007/978-3-319-
10082-1_6. url: http://dx.doi.org/10.1007/978-3-319-10082-1_6.

Barthe, G., M. Gaboardi, B. Grégoire, J. Hsu, and P. Strub. 2016b. “A
Program Logic for Union Bounds”. In: 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-
15, 2016, Rome, Italy. Ed. by I. Chatzigiannakis, M. Mitzenmacher,
Y. Rabani, and D. Sangiorgi. Vol. 55. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik. 107:1–107:15. doi: 10.4230/LIPIcs.
ICALP.2016.107. url: http://dx.doi.org/10.4230/LIPIcs.ICALP.
2016.107.

http://dx.doi.org/10.1145/2508859.2516663
http://doi.acm.org/10.1145/2508859.2516663
http://doi.acm.org/10.1145/2508859.2516663
http://dx.doi.org/10.1007/978-3-662-46803-6_23
http://dx.doi.org/10.1007/978-3-662-46803-6_23
http://dx.doi.org/10.1007/978-3-662-46803-6_23
http://dx.doi.org/10.1007/978-3-319-10082-1_6
http://dx.doi.org/10.1007/978-3-319-10082-1_6
http://dx.doi.org/10.1007/978-3-319-10082-1_6
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.107
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.107
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.107
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.107

References 67

Barthe, G., B. Grégoire, D. Hedin, S. Heraud, and S. Zanella-Béguelin.
2010. “A Machine-Checked Formalization of Sigma-Protocols”. In:
Proceedings of the 23rd IEEE Computer Security Foundations Sym-
posium, CSF 2010, Edinburgh, United Kingdom, July 17-19, 2010.
IEEE Computer Society. 246–260. doi: 10.1109/CSF.2010.24. url:
http://dx.doi.org/10.1109/CSF.2010.24.

Barthe, G., B. Grégoire, S. Heraud, F. Olmedo, and S. Zanella-Béguelin.
2013c. “Verified indifferentiable hashing into elliptic curves”. Journal
of Computer Security. 21(6): 881–917. doi: 10.3233/JCS-130476.
url: http://dx.doi.org/10.3233/JCS-130476.

Barthe, G., B. Grégoire, S. Heraud, and S. Zanella-Béguelin. 2011a.
“Computer-Aided Security Proofs for the Working Cryptographer”.
In: Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings. Ed. by P. Rogaway. Vol. 6841. Lecture Notes in Com-
puter Science. Springer. 71–90. doi: 10.1007/978-3-642-22792-9_5.
url: http://dx.doi.org/10.1007/978-3-642-22792-9_5.

Barthe, G., B. Grégoire, J. Hsu, and P. Strub. 2017. “Coupling proofs are
probabilistic product programs”. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. Ed. by G. Castagna
and A. D. Gordon. ACM. 161–174. url: http://dl.acm.org/citation.
cfm?id=3009896.

Barthe, G., B. Grégoire, Y. Lakhnech, and S. Zanella-Béguelin. 2011b.
“Beyond Provable Security Verifiable IND-CCA Security of OAEP”.
In: Topics in Cryptology - CT-RSA 2011 - The Cryptographers’
Track at the RSA Conference 2011, San Francisco, CA, USA, Febru-
ary 14-18, 2011. Proceedings. Ed. by A. Kiayias. Vol. 6558. Lecture
Notes in Computer Science. Springer. 180–196. doi: 10.1007/978-3-
642-19074-2_13. url: http://dx.doi.org/10.1007/978-3-642-19074-
2_13.

http://dx.doi.org/10.1109/CSF.2010.24
http://dx.doi.org/10.1109/CSF.2010.24
http://dx.doi.org/10.3233/JCS-130476
http://dx.doi.org/10.3233/JCS-130476
http://dx.doi.org/10.1007/978-3-642-22792-9_5
http://dx.doi.org/10.1007/978-3-642-22792-9_5
http://dl.acm.org/citation.cfm?id=3009896
http://dl.acm.org/citation.cfm?id=3009896
http://dx.doi.org/10.1007/978-3-642-19074-2_13
http://dx.doi.org/10.1007/978-3-642-19074-2_13
http://dx.doi.org/10.1007/978-3-642-19074-2_13
http://dx.doi.org/10.1007/978-3-642-19074-2_13

68 References

Barthe, G., B. Grégoire, and S. Zanella-Béguelin. 2009. “Formal certifi-
cation of code-based cryptographic proofs”. In: Proceedings of the
36th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2009, Savannah, GA, USA, January
21-23, 2009. Ed. by Z. Shao and B. C. Pierce. ACM. 90–101. doi:
10.1145/1480881.1480894. url: http://doi .acm.org/10.1145/
1480881.1480894.

Barthe, G., F. Olmedo, and S. Zanella-Béguelin. 2011c. “Verifiable
Security of Boneh-Franklin Identity-Based Encryption”. In: Provable
Security - 5th International Conference, ProvSec 2011, Xi’an, China,
October 16-18, 2011. Proceedings. Ed. by X. Boyen and X. Chen.
Vol. 6980. Lecture Notes in Computer Science. Springer. 68–83. doi:
10.1007/978-3-642-24316-5_7. url: http://dx.doi.org/10.1007/978-
3-642-24316-5_7.

Barthe, G., D. Pointcheval, and S. Zanella-Béguelin. 2012. “Verified
security of redundancy-free encryption from Rabin and RSA”. In:
the ACM Conference on Computer and Communications Security,
CCS’12, Raleigh, NC, USA, October 16-18, 2012. Ed. by T. Yu,
G. Danezis, and V. D. Gligor. ACM. 724–735. doi: 10.1145/2382196.
2382272. url: http://doi.acm.org/10.1145/2382196.2382272.

Bellare, M. and P. Rogaway. 1994. “Optimal Asymmetric Encryption”.
In: Advances in Cryptology - EUROCRYPT ’94, Workshop on the
Theory and Application of Cryptographic Techniques, Perugia, Italy,
May 9-12, 1994, Proceedings. Ed. by A. D. Santis. Vol. 950. Lec-
ture Notes in Computer Science. Springer. 92–111. doi: 10.1007/
BFb0053428. url: http://dx.doi.org/10.1007/BFb0053428.

Bellare, M. and P. Rogaway. 2006. “The Security of Triple Encryp-
tion and a Framework for Code-Based Game-Playing Proofs”. In:
Advances in Cryptology - EUROCRYPT 2006, 25th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Pro-
ceedings. Ed. by S. Vaudenay. Vol. 4004. Lecture Notes in Computer
Science. Springer. 409–426. doi: 10.1007/11761679_25. url: http:
//dx.doi.org/10.1007/11761679_25.

http://dx.doi.org/10.1145/1480881.1480894
http://doi.acm.org/10.1145/1480881.1480894
http://doi.acm.org/10.1145/1480881.1480894
http://dx.doi.org/10.1007/978-3-642-24316-5_7
http://dx.doi.org/10.1007/978-3-642-24316-5_7
http://dx.doi.org/10.1007/978-3-642-24316-5_7
http://dx.doi.org/10.1145/2382196.2382272
http://dx.doi.org/10.1145/2382196.2382272
http://doi.acm.org/10.1145/2382196.2382272
http://dx.doi.org/10.1007/BFb0053428
http://dx.doi.org/10.1007/BFb0053428
http://dx.doi.org/10.1007/BFb0053428
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/11761679_25

References 69

Beringer, L., A. Petcher, K. Q. Ye, and A. W. Appel. 2015. “Verified
Correctness and Security of OpenSSL HMAC”. In: 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015. Ed. by J. Jung and T. Holz. USENIX As-
sociation. 207–221. url: https : //www.usenix . org/conference/
usenixsecurity15/technical-sessions/presentation/beringer.

Bertot, Y., B. Grégoire, and X. Leroy. 2004. “A Structured Approach to
Proving Compiler Optimizations Based on Dataflow Analysis”. In:
Types for Proofs and Programs, International Workshop, TYPES
2004, Jouy-en-Josas, France, December 15-18, 2004, Revised Selected
Papers. Ed. by J. Filliâtre, C. Paulin-Mohring, and B. Werner.
Vol. 3839. Lecture Notes in Computer Science. Springer. 66–81. doi:
10.1007/11617990_5. url: http://dx.doi.org/10.1007/11617990_5.

Bhargavan, K., C. Fournet, M. Kohlweiss, A. Pironti, P. Strub, and
S. Z. Béguelin. 2014. “Proving the TLS Handshake Secure (As It
Is)”. In: Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part II. Ed. by J. A. Garay and R. Gennaro.
Vol. 8617. Lecture Notes in Computer Science. Springer. 235–255.
doi: 10.1007/978-3-662-44381-1_14. url: http://dx.doi.org/10.
1007/978-3-662-44381-1_14.

Bobot, F., J.-C. Filliâtre, C. Marché, G. Melquiond, and A. Paskevich1.
2016. url: http://why3.lri.fr/download/manual-0.87.3.pdf.

Cramer, R. and V. Shoup. 1998. “A Practical Public Key Cryptosystem
Provably Secure Against Adaptive Chosen Ciphertext Attack”. In:
Advances in Cryptology - CRYPTO ’98, 18th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 23-
27, 1998, Proceedings. Ed. by H. Krawczyk. Vol. 1462. Lecture Notes
in Computer Science. Springer. 13–25. doi: 10.1007/BFb0055717.
url: http://dx.doi.org/10.1007/BFb0055717.

Deng, Y. 2015. Semantics of Probabilistic Processes: An Operational
Approach. Jointly published with Shanghai Jiao Tong University
Press. Springer. isbn: 9783662451977. url: http://basics.sjtu.edu.
cn/~yuxin/publications/book/book.html.

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
http://dx.doi.org/10.1007/11617990_5
http://dx.doi.org/10.1007/11617990_5
http://dx.doi.org/10.1007/978-3-662-44381-1_14
http://dx.doi.org/10.1007/978-3-662-44381-1_14
http://dx.doi.org/10.1007/978-3-662-44381-1_14
http://why3.lri.fr/download/manual-0.87.3.pdf
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/BFb0055717
http://basics.sjtu.edu.cn/~yuxin/publications/book/book.html
http://basics.sjtu.edu.cn/~yuxin/publications/book/book.html

70 References

Fujisaki, E., T. Okamoto, D. Pointcheval, and J. Stern. 2001. “RSA-
OAEP Is Secure under the RSA Assumption”. In: Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings. Ed. by J. Kilian. Vol. 2139. Lecture Notes in Computer
Science. Springer. 260–274. doi: 10.1007/3-540-44647-8_16. url:
http://dx.doi.org/10.1007/3-540-44647-8_16.

Halevi, S. 2005. “A plausible approach to computer-aided cryptographic
proofs”. IACR Cryptology ePrint Archive. 2005: 181. url: http:
//eprint.iacr.org/2005/181.

Jones, C. and G. D. Plotkin. 1989. “A Probabilistic Powerdomain of
Evaluations”. In: Proceedings of the Fourth Annual Symposium on
Logic in Computer Science (LICS ’89), Pacific Grove, California,
USA, June 5-8, 1989. IEEE Computer Society. 186–195. doi: 10.
1109/LICS.1989.39173. url: http://dx.doi.org/10.1109/LICS.1989.
39173.

Kozen, D. 1981. “Semantics of Probabilistic Programs”. J. Comput.
Syst. Sci. 22(3): 328–350. doi: 10.1016/0022-0000(81)90036-2. url:
http://dx.doi.org/10.1016/0022-0000(81)90036-2.

Kozen, D. 1985. “A Probabilistic PDL”. J. Comput. Syst. Sci. 30(2):
162–178. doi: 10.1016/0022-0000(85)90012-1. url: http://dx.doi.
org/10.1016/0022-0000(85)90012-1.

Leroy, X. 2006. “Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant”. In: Proceedings of
the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2006, Charleston, South Carolina,
USA, January 11-13, 2006. Ed. by J. G. Morrisett and S. L. P.
Jones. ACM. 42–54. doi: 10.1145/1111037.1111042. url: http:
//doi.acm.org/10.1145/1111037.1111042.

McIver, A. and C. Morgan. 2005. Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science. Springer.
isbn: 978-0-387-40115-7. doi: 10.1007/b138392. url: http://dx.doi.
org/10.1007/b138392.

http://dx.doi.org/10.1007/3-540-44647-8_16
http://dx.doi.org/10.1007/3-540-44647-8_16
http://eprint.iacr.org/2005/181
http://eprint.iacr.org/2005/181
http://dx.doi.org/10.1109/LICS.1989.39173
http://dx.doi.org/10.1109/LICS.1989.39173
http://dx.doi.org/10.1109/LICS.1989.39173
http://dx.doi.org/10.1109/LICS.1989.39173
http://dx.doi.org/10.1016/0022-0000(81)90036-2
http://dx.doi.org/10.1016/0022-0000(81)90036-2
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://dx.doi.org/10.1007/b138392
http://dx.doi.org/10.1007/b138392
http://dx.doi.org/10.1007/b138392

References 71

Petcher, A. and G. Morrisett. 2015a. “A Mechanized Proof of Security
for Searchable Symmetric Encryption”. In: IEEE 28th Computer
Security Foundations Symposium, CSF 2015, Verona, Italy, 13-
17 July, 2015. Ed. by C. Fournet, M. W. Hicks, and L. Viganò.
IEEE Computer Society. 481–494. doi: 10.1109/CSF.2015.36. url:
http://dx.doi.org/10.1109/CSF.2015.36.

Petcher, A. and G. Morrisett. 2015b. “The Foundational Cryptography
Framework”. In: Principles of Security and Trust - 4th Interna-
tional Conference, POST 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015, Proceedings. Ed. by R. Focardi
and A. C. Myers. Vol. 9036. Lecture Notes in Computer Science.
Springer. 53–72. doi: 10.1007/978-3-662-46666-7_4. url: http:
//dx.doi.org/10.1007/978-3-662-46666-7_4.

Shannon, C. 1949. “Communication Theory of Secrecy Systems”. Bell
System Technical Journal. 28(Oct.): 656–715. url: http://ieeexplore.
ieee.org/document/6769090/.

Shoup, V. 2001. “OAEP Reconsidered”. In: Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference,
Santa Barbara, California, USA, August 19-23, 2001, Proceedings.
Ed. by J. Kilian. Vol. 2139. Lecture Notes in Computer Science.
Springer. 239–259. doi: 10.1007/3-540-44647-8_15. url: http:
//dx.doi.org/10.1007/3-540-44647-8_15.

Shoup, V. 2004. “Sequences of games: a tool for taming complexity in
security proofs”. IACR Cryptology ePrint Archive. 2004: 332. url:
http://eprint.iacr.org/2004/332.

Zanella-Béguelin, S., G. Barthe, B. Grégoire, and F. Olmedo. 2009.
“Formally Certifying the Security of Digital Signature Schemes”. In:
30th IEEE Symposium on Security and Privacy (S&P 2009), 17-
20 May 2009, Oakland, California, USA. IEEE Computer Society.
237–250. doi: 10.1109/SP.2009.17. url: http://dx.doi.org/10.1109/
SP.2009.17.

http://dx.doi.org/10.1109/CSF.2015.36
http://dx.doi.org/10.1109/CSF.2015.36
http://dx.doi.org/10.1007/978-3-662-46666-7_4
http://dx.doi.org/10.1007/978-3-662-46666-7_4
http://dx.doi.org/10.1007/978-3-662-46666-7_4
http://ieeexplore.ieee.org/document/6769090/
http://ieeexplore.ieee.org/document/6769090/
http://dx.doi.org/10.1007/3-540-44647-8_15
http://dx.doi.org/10.1007/3-540-44647-8_15
http://dx.doi.org/10.1007/3-540-44647-8_15
http://eprint.iacr.org/2004/332
http://dx.doi.org/10.1109/SP.2009.17
http://dx.doi.org/10.1109/SP.2009.17
http://dx.doi.org/10.1109/SP.2009.17

Index

bridging step, 17

coupling, 13

Decisional Diffie-Hellman, 27

efcma, 33

indcca, 31, 32

lifting, 13
lossless, 52

memory, 45
monadic bind, 19

oneway, 28

sub-distribution, 11

72

	Introduction to probabilistic couplings
	Distributions
	Events and probabilities
	Couplings
	Bijective couplings
	From couplings to probabilistic inequalities
	Couplings are closed under monadic operations
	Alternative characterizations of couplings
	Further reading
	Exercises

	Introductory examples
	One-time pad
	Hashed ElGamal
	UP TO BAD EXAMPLE
	Discussion

	Cryptographic games
	Types
	Expressions
	Distribution expressions
	Statements
	Termination
	Exercises

	Probabilistic Relational Hoare Logic
	Relational assertions
	Judgments
	Probabilistic inequalities
	Proof system
	Excercises

	Union Bound Logic
	Judgments and validity
	Soundness and completeness
	Further reading

	Adversaries
	Definition
	Semantics
	Relational reasoning about adversarial programs
	Union bound reasoning about adversarial programs
	Computational complexity and termination behavior

	Tools
	CertiCrypt
	EasyCrypt
	AutoGP
	ZooCrypt
	Computational Indistinguishibility Framework
	Foundational Cryptography Framework

	References

