
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable D2.3

Report on Type Systems

Due date of deliverable: 2007-09-01 (T0+24)

Actual submission date: 2007-10-04

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: TUD

Revision of Deliverable 2.1

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

MOBIUS Deliverable D2.3. Report on Type Systems

Contributions and Revision Table

Contributions

Site Contributed to Chapter

INRIA 2, 3

CTH 2

IC 2, 4

TUD (previously RWTH) 1, 2, 5

LMU 3

UEDIN 3

UPM 3

ETH 4

Revision Table

Chapter Difference to Deliverable 2.1

1 revision of chapter

2

revision of chapter including

• general overview about the specific problem arising with unstructured programs

• new results about types for programs in a concurrent (multithreaded) bytecode lan-
guage

• extension of the type system: new results for multithreading, and

• new results for distributed programs in a bytecode language

3

revision of chapter including

• extension of the heap space type system to loops and exceptions; integration with
MOBIUS base logic

• extension of the permission logic with loops; analysis of constraint resolution

• new results about an external resource tracking and control library

• extension of the execution time analysis to other costs; transfer to bytecode

4

revision of chapter including

• refined results about Universe types formalization (UJ)

• summary of refined results about UJ and concurrency

• new results about generic Universe types

• new results about multiple ownership

5 replacement

2

MOBIUS Deliverable D2.3. Report on Type Systems

Executive Summary:
Report on Type Systems

This document summarises deliverable D2.3 of project FP6-015905 (MOBIUS), co-funded by the European
Commission within the Sixth Framework Programme. Full information on this project, including the con-
tents of this deliverable, is available online at http://mobius.inria.fr.

We present final results that were obtained during the first two years of the MOBIUS project in WP2,
Tasks 2.1 (Types for Information flow Security), 2.3 (Types for Basic Resource Policies), and 2.5 (Alias
Control Types). Type systems are an enabling technology for the MOBIUS Proof-Carrying Code architecture.
We developed type systems for properties in all three domains, both at the level of bytecode and at higher
language levels. We improved property coverage and language coverage as well as flexibility and scalability of
type systems. The aspects of the bytecode language that we address include, for example, objects, exceptions,
methods, and concurrency. For information flow control, we enforce a noninterference-like property. The
adaption to concurrent programs (multithreading as well as distribution) made it necessary to revise the
definition of the security property, but we preserved the underlying intuition as much as possible. The
results are published in [27, 29, 30, 31, 115, 103, 104, 150, 151, 179, 178] and additional details are given
in [32, 105, 152]. For resource control, we statically enforce bounds on the resource consumption, generate
generic cost relations between input and resource consumption, and restrict the resource access through the
MIDP-API. We cover generic cost properties for program runs as well as properties depending on single
instructions such as API-calls. The results are published in [7, 8, 9, 10, 21, 40, 44, 88, 119, 118, 120, 137].
For alias control we cover generic class definitions and improve flexibility by permitting multiple ownership.
The results are published in [68, 69, 128, 60, 54, 132] and additional details are given in [67, 73, 131].

Deliverable D2.3, the Report on Type Systems, is based on and substantially extends deliverable D2.1,
the Intermediate Report on Type Systems. For Task 2.1, D2.3 additionally contains a general overview about
the specific problem arising with unstructured programs and the new results for concurrent programs in a
bytecode language including results for multithreading and distribution. For Task 2.3, D2.3 additionally
contains the new results for the MOBIUS base logic implementation of a heap space type system, the
permission analysis, the external resource tracking and control library with the bulk messaging example,
and the generic cost analysis for Java bytecode. For Task 2.5, D2.3 additionally contains more refined
results about topological and encapsulation properties of Universe types in Java (UJ), the new results about
extending Universe types in order to avoid races, generic Universe types, and multiple ownership.

3

http://mobius.inria.fr

MOBIUS Deliverable D2.3. Report on Type Systems

Contents

1 Introduction 7

2 Types for Information Flow Security 8

2.1 Security Types for Sequential Bytecode . 8

2.1.1 Security policy . 9

2.1.2 Dealing with unstructured programs . 10

2.1.3 Type system . 12

2.1.4 Non interference theorem . 20

2.1.5 Related work . 23

2.2 Security Types for Multithreaded Bytecode . 26

2.2.1 Introduction . 26

2.2.2 Syntax and semantics of multithreaded programs . 27

2.2.3 Security policy . 31

2.2.4 Type system . 31

2.2.5 Soundness . 31

2.2.6 Instantiation . 34

2.2.7 Related work . 39

2.2.8 Conclusions on security types for multithreaded bytecode 39

2.3 Extensions of the Type System . 39

2.3.1 Extensions of Type Systems for Multithreaded Bytecode 39

2.3.2 Types for Distributed Bytecode . 46

3 Types for Basic Resource Policies 50

3.1 Heap consumption . 50

4

MOBIUS Deliverable D2.3. Report on Type Systems

3.2 Permission analysis . 60

3.2.1 The Java MIDP security model . 61

3.2.2 The structure of permissions . 62

3.2.3 Program model . 64

3.2.4 Operational semantics . 65

3.2.5 Static analysis of permission usage . 66

3.2.6 Constraint solving . 67

3.2.7 Towards relational permission analysis . 70

3.3 Explicit Accounting of External Resources . 70

3.3.1 Monitoring External Resources in MIDP . 71

3.3.2 A Type System for Resource Safety . 74

3.3.3 Related Work . 80

3.3.4 Future Work . 80

3.4 Cost Analysis of Java Bytecode . 81

3.4.1 The Java Bytecode Language . 82

3.4.2 From Bytecode to Control Flow Graphs . 82

3.4.3 Recursive Representation with Flattened Stack . 84

3.4.4 Size Relations for Cost Analysis . 86

3.4.5 Cost Relations for Java Bytecode . 88

3.4.6 Experiments in Cost Analysis of Java Bytecode . 90

3.4.7 Conclusions and Future Work . 97

4 Alias Control Types 98

4.1 UJ: Type Soundness for Universe Types . 98

4.1.1 UJ Source Language . 100

4.1.2 Universes and Owners . 101

4.1.3 Operational Semantics . 104

4.1.4 Topological Types . 106

4.1.5 Encapsulation . 110

4.1.6 Conclusion . 114

4.2 Universe Types for Race-free programs . 114

5

MOBIUS Deliverable D2.3. Report on Type Systems

4.3 Generic Universe Types . 116

4.3.1 Main Concepts . 118

4.3.2 Static Checking . 121

4.3.3 Runtime Model . 128

4.3.4 Properties . 132

4.3.5 Conclusions . 133

4.4 Multiple Ownership . 134

4.4.1 The Benefits of Putting Objects into Boxes . 135

4.4.2 MOJO . 143

4.4.3 Effects . 149

4.4.4 Conclusion . 153

5 Conclusions 154

6

MOBIUS Deliverable D2.3. Report on Type Systems

Chapter 1

Introduction

This deliverable reports the results on type systems for Mechanisms for Safe Information Flow (Chapter 2),
Basic Resource Policies (Chapter 3), and Alias Control (Chapter 4).

This deliverable includes contributions from all MOBIUS partners involved in the Tasks covered by Tasks
2.1 (Types for information flow security), 2.3 (Types for basic resource policies), and 2.5 (Alias control types),
namely INRIA, CTH, IC, RWTH, TUD, LMU, UEDIN, UPM, and ETH. This deliverable supersedes deliverable
D2.1, the Intermediate Report on Type Systems.

Types are syntactically defined, automatically decidable assertions about program behaviour. The type
systems developed here guarantee adherence to security and resource-related properties of mobile code. The
soundness of a type system must be proved independently and anew for each type system developed. Type
systems are an enabling technology for the MOBIUS Proof-Carrying Code (PCC) architecture because they
are intuitive, automatic and scalable. Hence improvements of program coverage and language coverage as
well as of flexibility and scalability, as they are presented in this deliverable, are important steps to build
the MOBIUS PCC-architecture.

Chapter 2 describes a type system for security policies that control the flow of information in sequential
bytecode programs and extensions of this type system for concurrent programs. In the development of the
type system, we exploited many ideas that were first developed for simpler languages. The security type
system presented in this deliverable is the first that can be applied to a realistic, low-level language such
as Java bytecode that includes features such as objects, exceptions, methods and concurrency. In this way,
type-based information flow security becomes applicable within MOBIUS.

Chapter 3 describes various type systems and static analyses for controlling resources, notably execution
time, heap space, and access to external resources. Again, we strived for maximising the re-use of pre-
existing work from within the consortium, but considerable adaptions and extensions were carried out to
meet the MOBIUS requirements regarding language coverage and threat models. The work presented here
improves and substantially extends the possible control on Java bytecode and the MIDP-API.

Chapter 4 differs from the previous two chapters in that the property guaranteed here is less intuitive
to grasp in this case and alias control is to be seen as an auxiliary device to help other analyses and
methodologies to fulfil their more tangible goals. In a nutshell, alias control introduces the ownership
relation between objects and guarantees that certain kinds of accesses to an object are performed only by its
owners. While this kind of property is trivial in a purely functional or procedural setting, it becomes delicate
in the presence of pointers and aliasing as we find them in the JVM, hence in MOBIUS. Once established,
alias control can then be instantiated in a number of ways, e.g., it can contribute to maintenance of security
levels by requiring that owners of any object have the security level required to access it.

7

MOBIUS Deliverable D2.3. Report on Type Systems

Chapter 2

Types for Information Flow Security

This chapter presents the security type system for bytecode to enforce information flow security, developed
in the context of the MOBIUS project. Section 2.1 presents the type system that enforces information
flow security for sequential bytecode. The type system is defined for bytecode with objects, methods
and exceptions. Section 2.2 makes this type system applicable to concurrent, multithreaded programs.
Section 2.3 presents further extensions to the type system improving its applicability for concurrent systems.

2.1 Security Types for Sequential Bytecode

The purpose of this section is to present a type system to enforce confidentiality of object-oriented ap-
plications executing on a sequential Java-like virtual machine, and to show that the type system enforces
non-interference.

Information-flow policy Any information flow policy must specify1 a lattice of security levels. The
choice of the lattice depends on the nature of the property to be enforced, i.e. confidentiality or integrity,
and on the granularity of the policy. In addition, any information flow policy must state the observational
capabilities of the attacker. Many different models have been considered in the literature; in our work, we
focus on attackers that can only observe the input and output of programs. Since we are dealing with an
object-oriented virtual machine, the input is the set of parameters of the method and the initial heap, and
the output is the result value and the final heap.

Policies and modularity In order to ensure its scalability and its compatibility with dynamic class load-
ing, the Java bytecode verifier performs modular verification, and verifies each method independently using
method signatures to simulate method calls and returns at type level. Thence, an important requirement
of our work is that our information-flow type system should also operate on a method per method basis,
and thus we are led to attach security signatures to methods; the idea of considering security signatures to
methods is not new, and can be found e.g. in [22].

Virtual machine Our type system applies to a stack-based virtual machine that features Java-bytecode-
like instructions for stack and heap manipulation, method invocation and exception handling. We follow
closely the formal definition of the JVM semantics given in the Bicolano project [141]. The most significant

1Information flow security requirements relevant to global computing have been specified in MOBIUS deliverable 1.1 [123].

8

MOBIUS Deliverable D2.3. Report on Type Systems

difference from the Java Virtual Machine is the assumption of an unbounded memory for the heap, but this
is a standard assumption in formal verification. In this section we focus on sequential bytecode. Extensions
to multithreading will be considered in the Sections 2.2 and 2.3.1. Moreover, we do not consider arrays, but
an extension of this work for arrays can be found in [29]. Arrays require a different treatment than field
accesses because of their dynamic nature. For example, we have to prevent an attacker to learn the value
of a high index iH by exploiting a low array reference aL and looking at the result of an array access aL[iH].
Finally, we do not consider subroutines, but this will be discussed when presenting future extensions of this
work.

Our analysis is proven correct2, and encompasses some major features of the JVM: objects, exceptions,
and method calls. The work builds upon known techniques, especially from [22] and [25], but solves a
number of non-trivial difficulties due to the complexity of the language (unstructured code, fine grain
exception handling, ...).

Preliminaries We let A? denote the set of A-stacks for every set A. We use hd and tl and :: and ++ to
denote the head and tail and cons and concatenation operations on stacks.

Throughout the paper, we assume a given lattice (S,≤,t,u) of security levels.

2.1.1 Security policy

A program in the JVM is composed of a set of classes. Each class includes a set of fields and a set of
methods, including a distinguished method main that is the first one to be executed. Each method includes
its code (set of labeled bytecode instructions), a table of exception handlers, and a signature that gives the
type of its arguments and of its result3. We note Handler(i, C) = t when there is a handler at program point
t for exception of class (or a subclass of) C thrown at program point i. We note Handler(i, C) ↑ when there
is no handler for exception of class (or a subclass of) C thrown at program point i.

A method takes a list of arguments, and may terminate normally by returning a value, or abnormally
by returning an exception object if an uncaught exception occurred during execution, or may loop infinitely.
We do not consider “wrong” executions that get stuck, as such executions are eliminated by bytecode
verification. The semantics of methods is captured by judgments of the form (hi, lv) ⇓m (r, hf), meaning
that executing the method m with initial heap hi and parameters lv yields the final heap hf and the result
r, where r is either a return value, or an exception object. The definition of this judgment can be found in
the Bicolano [141] formal semantics.

The security policy is based on the assumption that the attacker can only draw observations on the
input/output behavior of methods. On the other hand, we adopt a termination insensitive policy which
assumes that the attacker is unable to observe non-termination of programs. Formally, the policy is given
by a lattice (S,≤,t,u) of security levels, and:

• a security level kobs ∈ S that determines the observational capabilities of the attacker. Essentially, the
attacker can observe fields, local variables, and return values whose level is below kobs;

• a global policy ft : F → S that attaches a security level to fields (we let F denote the set of fields).
The global policy is used to determine a notion of equivalence ∼ between heaps. Intuitively, two heaps
h1 and h2 are equivalent if h1(l).f = h2(l).f for all locations l and fields f s.t. ftf ≤ kobs; the formal
definition of heap indistinguishability is rather involved and deferred to Section 2.1.4;

2Proofs can be consulted in a companion report [28]
3Methods may have a void return type, in which case they return no value. However, our description assumes for the sake

of simplicity that all methods return a value upon normal termination.

9

MOBIUS Deliverable D2.3. Report on Type Systems

• local policies for each method (we let M denote the set of methods). In a setting where exceptions

are ignored, local policies are expressed using security signatures of the form kv
kh−→ kr where kv

provides the security levels of the method’s local variables (including method’s arguments4), kh is the
effect of the method on the heap, and kr (called output level) is a list of security levels of the form
{n : kn, e1 : ke1 , . . . en : ken}, where kn is the security level of the return value and ei is an exception
class that might be propagated by the method in a security environment (or due to an exception-
throwing instruction) of level ki. In the rest of the paper we will write kr[n] instead of kn and kr[ei]
instead of kei . The vector kv of security levels is used to determine a notion of indistinguishability ∼kv

between arrays of parameters, whereas the output level is used to define a notion of indistinguishability
∼kr between execution outputs.

Essentially, a method is safe w.r.t. a signature kv
kh−→ kr if:

1. two terminating runs of the method with ∼kv -equivalent inputs, i.e. inputs that cannot be distin-
guished by an attacker, and equivalent heaps, yield ∼kr-equivalent results, i.e. results that also cannot
be distinguished by the attacker,

2. the method does not perform field updates on fields whose security level is below kh—as a consequence,
it cannot modify the heap in a way that is observable by an attacker that has access to fields whose
security level is below kh.

Formally, the security condition is expressed relative to the operational semantics of the JVM, which is
captured by judgments of the form (hi, lv) ⇓m (r, hf), meaning that executing the method m with initial
heap hi and parameters lv yields the final heap hf and the result r.

Then, we say that a method m is safe w.r.t. a signature kv
kh−→ kr if its method body does not perform

field updates on fields of level lower than kh and if furthermore it satisfies the following non-interference
property: for all heaps hi, hf , h

′
i, h
′
f , arrays of parameters a and a′, and results r and r′,

(hi,a) ⇓m (r, hf)
(h′i,a

′) ⇓m (r′, h′f)

hi ∼ h′i
a ∼kv a′

 ⇒ hf ∼ h′f ∧ r ∼kr r
′

There are two important underlying choices in this security condition: first, the security condition focuses
on input/output behaviors, and so does not consider the case of executions that loop infinitely; however,
it also does not consider “wrong” executions that get stuck, as such executions are eliminated by bytecode
verification. Second, the security condition is defined on methods, and not on programs, as we aim for a
modular verification technique in the spirit of bytecode verification.

2.1.2 Dealing with unstructured programs

Preventing direct flows with stack types. Any sound information flow type system must prevent
direct information leakages that occur through assigning secret values to public variables. In a high level
language, avoiding such indirect flows is ensured by setting appropriate rules for assignments; in a typical
type system for a high-level language [173], the typing rule for assignments is of the form

` e : k k ≤ vt(x)

` x := e : vt(x)

4JVM programs use a fragment of their local variables to store parameter values.

10

MOBIUS Deliverable D2.3. Report on Type Systems

where vt(x) is the security given to variable x by the policy and k is an upper bound of the security level of
the variables occurring in the expression e. The constraint k ≤ vt(x) ensures that the value stored in x does
not depend of any variable whose security level is greater than that of x, and thus that there is no illicit
flow to x.

In a low level language where intermediate computations are performed with an operand stack, direct
information flows are prevented by assigning a security level to each value in the operand stack, via a so-
called stack type, and by rejecting programs that attempt storing a value in a low variable when the top of
the stack type is high:

P [i] = load x

i ` st⇒ vt(x) :: st

P [i] = store x k ≤ vt(x)

i ` k :: st⇒ st

where st represents a stack type (a stack of security levels) and ⇒ represents a relation between the stack
type before execution and the stack type after execution of load. P [i] represents here the current instruction
at program point i.

For instance, xL = yH is rejected by any sound information flow type system for a while language,
because the constraint H ≤ L generated by the typing rule for assignment is violated. Likewise, the low
level counterpart

load yH
store xL

cannot be typed as the typing rule for load forces the top of the stack type to high after executing the
instruction, and the typing rule for store generates the constraint H ≤ L.

Preventing indirect flows via security environments Any sound information flow type system must
also prevent information leakages that occur through the control flow of programs. In a high level language,
avoiding such indirect flows is ensured by setting appropriate rules for branching statements; in a typical
type system for a high-level language [173], the typing rule for if statements is of the form

` e : k ` c1 : k1 ` c2 : k2 k ≤ k1, k2

` if e then c1 else c2 : k

and ensures that the write effects of c1 and c2 are greater than the guard of the branching statement.

To prevent illicit flows in a low-level language, one cannot simply enforce local constraints in the typing
rules for branching instructions: one must also enforce global constraints that prevent low assignments and
updates to occur under high guards. In order to express the global constraints that are necessary to enforce
soundness, we rely on additional information about the program, namely control dependence regions (cdr)
which approximate the scope of branching statements. The cdr information:

• is defined relative to a binary successor relation 7→⊆ PP × PP between program points, and a set
PPr of return points. The successor relation and the set of return points are defined according to the
semantics of instructions. Intuitively, j is a successor of i if performing one-step execution from a state
whose program point is i may lead to a state whose program point is j. Likewise, j is a return point
if it corresponds to a return instruction. In the sequel, we write i 7→ if i ∈ PPr;

• is captured by a function that maps a branching program point i (i.e. a program point with two or
more successors) to a set of program points region(i), called the region of i, and by a partial function
that maps branching program points to a junction point jun(i).

The intuition behind regions and junction points is that region(i) includes all program points executing
under the guard of i and that jun(i), if it exists, is the sole exit from the region of i; in particular, whenever

11

MOBIUS Deliverable D2.3. Report on Type Systems

jun(i) is defined there should be no return instruction in region(i). The properties to be satisfied by control
dependence regions, called SOAP properties (Safe Over Approximation Properties), are further discussed
in the next sections.

In the type system, we use cdr information in conjunction with a security environment that attaches
to each program point a security level, intuitively the upper bound of all the guards under which the
program point executes. More precisely, programs are checked against a security environment se and global
constraints arise in the type system as side conditions in the typing rules for branching statements. For
instance, the rule for if bytecode is of the form:

P [i] = ifeq j ∀j′ ∈ region(i), k ≤ se(j′)
i ` k :: st⇒ · · ·

In order to prevent indirect flows, the typing rules for instructions with write effects, e.g. store and
putfield, must check that the security level of the variable or field to be written is at least as high as the
current security environment. For instance, the rule for store becomes:

P [i] = store x k t se(i) ≤ vt(x)

i ` k :: st⇒ st

The combination of both rules allows to prevent indirect flows. For instance, the standard example of
indirect flow if (yH) {xL = 0; } else {xL = 1; } is compiled in our low-level language as

load yH
ifeq l1
push 0
store xL
goto l2

l1 : push 1
store xL

l2 : . . .

By requiring that se(i) ≤ vt(x) in the store rule and by requiring a global constraint on the security
environment in the rule for ifeq, the type system ensures that the above program will be rejected: se(i)
must be H if the store instruction is under the influence of a high ifeq, and thus the transition for the store
instruction cannot be typed.

2.1.3 Type system

In this section, we define an information flow type system that guarantees safety of all methods in a program.

Extra security annotations

Bytecode verification for secure information flow requires not only verification of direct flows such as as-
signments of high values to low memories, but also verification of implicit flows, such as assignments to low
memories in branches of the program that depend on high values. Tracking information flow via control flow
in a structured language without exceptions is easy since the analysis can exploit control structure [?, 22].
For unstructured low level code, such as Java bytecode, implicit flows can be tracked using extra security
annotations.

12

MOBIUS Deliverable D2.3. Report on Type Systems

Pm[i] ∈ {binop op, push c, pop, load x, store x, ifeq j}

i 7→∅ i+ 1

Pm[i] ∈ {ifeq j, goto j}

i 7→∅ j

Pm[i] = return

i 7→∅

Pm[i] ∈ {getfield f, putfield f, throw, invokevirtual mID} Handler(i,NullPointer) = t

i 7→NullPointer t

Pm[i] ∈ {getfield f, putfield f, throw, invokevirtual mID} Handler(i,NullPointer) ↑
i 7→NullPointer

Pm[i] = throw C ∈ classanalysis(m, i) Handler(i, C) = t

i 7→C t

Pm[i] = throw C ∈ classanalysis(m, i) Handler(i, C) ↑
i 7→C

Pm[i] = invokevirtual mID C ∈ excanalysis(mID) Handler(i, C) = t

i 7→C t

Pm[i] = invokevirtual mID C ∈ excanalysis(mID) Handler(i, C) ↑
i 7→C

Figure 2.1: Successor relation

Class and exception analysis The class analysis returns an over-approximation of classes of exceptions
of a program point while the exception analysis gives a superset of the escaping exceptions of each method.
For the soundness of the information flow type system, we assume that both the class-analysis and the
exception-analysis are in the trusted computing base. The type system exploits the information of these
analyses to restrict the static flow graph of a program and hence reject less non-interferent programs.

Control dependence regions An analysis of control dependence regions (cdr) gives information about
dependencies between blocks in the program due to conditional or exceptional instructions. This analysis
can be statically approximated [30, 145]. These regions are used by the type system to prevent implicit
flows.

A control dependence region for a branching instruction at program point i must include at least those
program points that will not be reachable in all executions, or more precisely those program points that will
be reachable in executions depending on instruction found in i. A junction point for a program point i is
a program point that is not included in its control dependence region, but that is reachable from program
points in the control dependence region and that will always be executed if program point i is executed first
(however the junction point of i does not depend on the result of the execution of instruction at program
point i).

In order to obtain a more accurate cdr analysis in presence of multiple exceptions, the analysis of regions
is computed on top of the class analysis to refine the set of exceptions that can be thrown by the throw
instruction.

The correctness of the cdr analysis is expressed using the successor relation 7→m on program points. The
relation is decorated by an element (called tag) in {∅} + C in order to reflect the nature of the underlying
semantics step: ∅ for a normal step and E ∈ C for a step where an exception of class E has been thrown.

The definition of this new relation is given in Figure 2.1. This relation can be statically computed thanks
to the handler function of each method.

Intuitively, i 7→τ j means that there is an instruction at program point i whose execution is of kind τ
and may lead to the program point j in the same method. i 7→τ means that the execution of method m
may end at program point i (normal return or uncaught exception). The formal definition of 7→ is given
in Figure 2.1 . Successors of a throw instruction are approximated thanks to the class analysis result and
successors of a invokevirtual thanks to the exception analysis result of the called method.

13

MOBIUS Deliverable D2.3. Report on Type Systems

Formally, cdr results are associated not only to program points but also to tags:

regionm : PP × ({∅}+ C)→ ℘(PP) junm : PP × ({∅}+ C) ⇀ PP

We call return point a point i such that there exists τ ∈ {∅}+C with i 7→τ . When necessary will write i 7→ j
for ∃τ, i 7→τ j. The following definition captures the expected properties of the cdr structure.

SOAP1: for all program points i, j, k and tags τ such that i 7→ j, i 7→τ k and j 6= k (i is hence a branching
point), k ∈ region(i, τ) or k = jun(i, τ);

SOAP2: for all program points i, j, k and tags τ , if j ∈ region(i, τ) and j 7→ k, then either k ∈ region(i, τ)
or k = jun(i, τ);

SOAP3: for all program points i, j and tags τ , if j ∈ region(i, τ) (or i = j) and j is a return point then
jun(i, τ) is undefined;

SOAP4: for all program points i and tags τ1, τ2, if jun(i, τ1) and jun(i, τ2) are defined and jun(i, τ1) 6=
jun(i, τ2) then jun(i, τ1) ∈ region(i, τ2) or jun(i, τ2) ∈ region(i, τ1);

SOAP5: for all program points i, j and tags τ , if j ∈ region(i, τ) (or i = j) and j is a return point then
for all tags τ ′ such that jun(i, τ ′) is defined, jun(i, τ ′) ∈ region(i, τ).

Junction points uniquely delimit ends of regions. SOAP1 expresses that successors of branching points
belong to (or end) the region associated with the same kind as their successor relation. SOAP2 says that a
successor of a point in a region is either still in the same region, or it is the junction point at its end. SOAP3
forbids junction points for a region which contains (or starts with) a return point. SOAP4 and SOAP5
express properties between region of a same program point but with different tags. SOAP4 says that if two
differently tagged regions end in distinct points, the junction point of one must belong to the region of the
other. SOAP5 imposes that the junction point of a region must be within every region which contains (or
starts with) a return point and possesses a different tag.

These conditions allow to program a straightforward checker in order to verify that a given cdr result
verifies them. Figure 2.2 presents an example of safe cdr for an abstract transition system.

i

E2

region(i, E1)

region(i, ∅)

jun(i, E2)

jun(i, E1)

region(i, E2)

E1 ∅

jun(i, ∅)

Figure 2.2: Example of cdr. Only relevant tags are presented here.

14

MOBIUS Deliverable D2.3. Report on Type Systems

Typing judgment and typing rules

Typing rules impose constraints on stack types (stack of security levels) and security environments (mapping
from program points to security levels). Stack types are used to track the security level of an expression
whose evaluation has been compiled into a sequence of stack manipulations. Security environments give
for each program point the security level of branching conditions on which its accessibility depends and are
used to prevent implicit flow leaks.

The typing judgment considered is of the form

Γ, region, se, sgn, i `τ st1 ⇒ st2 Γ, region, se, sgn, i `τ st1 ⇒

where Γ is a table of method signatures, region a cdr result for the method under verification, se a security
environment, sgn the security signature of the current method, i the current program point, τ the tag of
the current transition, and st1, st2 two stack types.

The table Γ of method signatures is necessary for typing rules involving method calls — as in bytecode
verification, we use the signature of other methods to perform the analysis in a modular way. This table
associate to each method identifier5 mID and security level k ∈ S, a security signature Γm[k]. This signature
gives the security policy of the method m called on object of level k (as in the type system [22] for source
program). This allows a more flexible type system than having only one signature per method.

Figure 2.3 presents some selected typing rules. The full set of rules is available in a companion report
[28].

Below we comment this selection of rules:

• The typing rule for ifeq requires that the result stack type is lifted (liftk is the point-wise extension to
stack types of λl. kt l) with the level of the guard, i.e. the top of the input stack type. It is necessary
to perform this lifting operation to avoid illicit flows through operand stack leakages.

The following example illustrates why we need to lift the operand stack. This is a contrived example
because it does not correspond to any simple source code, but it is nevertheless accepted by a standard
bytecode verifier.

push 0
push 1
load yH

l1 : ifeq l2
swap
pop
goto l3

l2 : pop

 region(l1)

l3 : store xL

In this example, the final value of variable xL is equal to the value of yH . So the program is interferent.
It is nevertheless rejected by our type system, thanks to the lift of the operand stack at point l1 that
constrain the top of the stack at point l3 to be a high value (store rule then prevents the assignment
from high to low).

• The transfer rule for return requires se(i) ≤ kr that avoids return instructions under the guard of
expressions with a security level greater than kr[n]. In addition, the rule requires that the value on
top of the operand stack has a security level below kr[n], since it will be observed by the attacker.

5Associating signatures with a method identifier (i.e. a method name, a class name and a type signature) instead of a
method allows to enforce that overriding of a method preserve its declared security signatures.

15

MOBIUS Deliverable D2.3. Report on Type Systems

Pm[i] = ifeq j ∀j′ ∈ region(i, ∅), k ≤ se(j′)

Γ, region, se,ka
kh−→ kr, i `∅ k :: st⇒ liftk(st)

Pm[i] = return k t se(i) ≤ kr[n]

Γ, region, se,ka
kh−→ kr, i `∅ k :: st⇒

Pm[i] = invokevirtual mID ΓmID [k] = k′a
k′
h−→ k′r

k t kh t se(i) ≤ k′h length(st1) = nbArguments(mID)

k ≤ k′a[0] ∀i ∈ [0, length(st1)− 1], st1[i] ≤ k′a[i+ 1]

ke =
⊔
{ k′r[e] | ∃e ∈ excanalysis(mID),∃t ∈ PP,Handler(i, e) = t }

∀j ∈ region(i, ∅), k t ke ≤ se(j)

Γ, region, se,ka
kh−→ kr, i `∅ st1 :: k :: st2 ⇒ liftktke ((k′r[n] t se(i)) :: st2)

Pm[i] = invokevirtual mID ΓmID [k] = k′a
k′
h−→ k′r

k t kh t se(i) ≤ k′h length(st1) = nbArguments(mID)

k ≤ k′a[0] ∀i ∈ [0, length(st1)− 1], st1[i] ≤ k′a[i+ 1]

e ∈ excanalysis(mID) ∀j ∈ region(i, e), k t k′r[e] ≤ se(j) Handler(i, e) = t

Γ, region, se,ka
kh−→ kr, i `e st1 :: k :: st2 ⇒ (k t k′r[e]) :: ε

Pm[i] = invokevirtual mID ΓmID [k] = k′a
k′
h−→ k′r

k t kh t se(i) ≤ k′h length(st1) = nbArguments(mID)

k ≤ k′a[0] ∀i ∈ [0, length(st1)− 1], st1[i] ≤ k′a[i+ 1]

e ∈ excanalysis(mID) k t k′r[e] ≤ kr[e] ∀j ∈ region(i, e), k t k′r[e] ≤ se(j) Handler(i, e) ↑

Γ, region, se,ka
kh−→ kr, i `e st1 :: k :: st2 ⇒

P [i] = putfield f k1 t se(i) t k2 ≤ ft(f) kh ≤ ft(f)
∀j ∈ region(i, ∅), k2 ≤ se(j)

Γ, region, se,ka
kh−→ kr, i `∅ k1 :: k2 :: st ⇒ liftk2

st

Pm[i] = putfield f k1 t se(i) t k2 ≤ ft(f)
∀j ∈ region(i,NullPointer), k2 ≤ se(j) Handler(i,NullPointer) = t

Γ, region, se,ka
kh−→ kr, i `NullPointer k1 :: k2 :: st ⇒ k2 t se(i) :: ε

Pm[i] = putfield f k1 t se(i) t k2 ≤ ft(f)
k2 ≤ kr[NullPointer] ∀j ∈ region(i,NullPointer), k2 ≤ se(j) Handler(i,NullPointer) ↑

Γ, region, se,ka
kh−→ kr, i `NullPointer k1 :: k2 :: st ⇒

Pm[i] = getfield f ∀j ∈ region(i, ∅), k ≤ se(j)

Γ, region, se,ka
kh−→ kr, i `∅ k :: st ⇒ liftk((ft(f) t se(i)) :: st)

Pm[i] = getfield f ∀j ∈ region(i,NullPointer), k ≤ se(j) Handler(i,NullPointer) = t

Γ, region, se,ka
kh−→ kr, i `NullPointer k :: st ⇒ k t se(i) :: ε

Pm[i] = getfield f Handler(i,NullPointer) ↑ k ≤ kr[NullPointer]

Γ, region, se,ka
kh−→ kr, i `NullPointer k :: st ⇒

Pm[i] = throw e ∈ classanalysis(i) ∪ {NullPointer}
∀j ∈ region(i, e), k ≤ se(j) Handler(i, e) = t

Γ, region, se,ka
kh−→ kr, i `e k :: st ⇒ k t se(i) :: ε

Pm[i] = throw e ∈ classanalysis(i) ∪ {NullPointer}
k ≤ kr[NullPointer] ∀j ∈ region(i, e), k ≤ se(j) Handler(i, e) ↑

Γ, region, se,ka
kh−→ kr, i `e k :: st ⇒

Figure 2.3: Selected typing rules

16

MOBIUS Deliverable D2.3. Report on Type Systems

The following example illustrates the need for preventing return instructions in high regions. It corre-
sponds to a source program like if (yH) {return 0; } else {return 1; }.

load yH
l1 : ifeq l2

push 0
return

l2 : push 1
return

 region(l1)

This program is interferent because there is a return in a high ifeq. This program is rejected by the
type system thanks to the ifeq rule which lifts the security environment, and the return rule which
prevents the program from returning in a high security environment.

• The transfer rule for putfield requires that k1 ≤ ft(f), where k1 is the security type of the object of the
field, in order to prevent an explicit flow from a high value to a low field. The constraint se(i) ≤ ft(f)
prevents an implicit flow caused by an assignment to a low field in a high security environment. The
constraint k2 ≤ ft(f) prevents modifying low fields of high objects that are alias to a low object.
Finally, the constraint kh ≤ ft(f) prevents modification of field with a level not greater than the heap
effect of the current method.

The following example illustrates this last point. It corresponds to a source program like

C xL = new C();
zH = yH ? new C() : xL;
zH.fL = 1;

We assume that C is a class that has a low field named fL. Let xL be a low variable and yH , zH high
variables.

new C
store xL
load yH

l1 : ifeq l2
new C
goto l3

l2 : load xL

 region(l1)

l3 : store zH
load zH
push 1
putfield fL

In this program, depending on the test on yH , variable xL and zH might be aliases to the same object
(of class C). Hence, the assignment to field fL might have side effect on the object in xL. This program
is rejected thanks to the putfield rule which avoids this type of leaks due to alias (with the constraint
k2 ≤ ft(f) preventing assignments to low fields from high target objects).

• In the rule for getfield f the value pushed on the operand stack has a security level at least greater
than ft(f) and the level k of the location (to prevent explicit flows) and at least greater than se(i) for
implicit flows.

• The typing rule for virtual call contains several constraints. The heap effect level of the called method
is constrained in several manners. The goal of the constraint k ≤ k′h is to avoid invocation of methods
with low effect on the heap with high target objects. Two different target objects (in two executions)
may mean that the body of the method to be executed is different in each execution. If the effect of
the method is low (kh ≤ kobs), then low memory is differently modified in both executions, leading to

17

MOBIUS Deliverable D2.3. Report on Type Systems

leak of information. The constraint se(i) ≤ k′h prevents implicit flows (low assignment in high regions)
during execution of the called method. The constraint kh ≤ k′h prevents the called method to update
fields with a level lower that kh. It allows to avoid invocation of methods with low effect on the heap
by a method with high effect.

Constraints k ≤ k′a[0] and ∀i ∈ [0, length(st1)− 1], st1[i] ≤ k′a[i+ 1] link argument levels with formal
parameter levels.

In the first typing rule, the next stack type is lifted with level k t ke. Lifting with level k avoids
indirect flows because of null pointer exception on the current object. ke is greater that all levels of
the exceptions that may escape from the called method. If abnormal termination of the called method
reveals secret information then ke is high and the next stack type must be high too. The security level
of the return value is (k′r[n] t se(i)). k′r[n] corresponds to the level of the return value in the context
of the called method. se(i) prevents implicit flow on the result after the virtual call.

The second and the third typing rule are parameterised by an exception e that may be caught by the
called method. In the second rule, this exception is caught in the current method while in the third it
is not. In both rule ktk′r[e] gives an upper-bound on the information that can be gained by observing
if the called method reached the point i+ 1. This level is hence used to constrain region(i, e), the top
of the stack when e is caught and the security level kr[e] when it is not.

Typable programs

A program P is typable with respect to a table Γ and a family of safe cdr results (regionm)m (one by
method), written region ` P : Γ, if for each declared method m and for each security signature sgn of m
(w.r.t. Γ) there exist S ∈ PP → S? and a security environment se such that Γ, region ` m : sgn, S, se. We
define Γ, region ` m : sgn, S, se as follows:

• S0 contains the empty stack type;

• for all program points i in m and j s.t i 7→τ j there is st such that Γ, region, se, sgn, i `τ Si ⇒ st and
st v Sj .

• if i 7→τ then Γ, region, se, sgn, i `τ Si ⇒.

The definition of a typable program is stated to ensure that runs of typable programs verify at each
step the constraints imposed by the typing rules, provided they are called with parameters that respect the
signature of their main method.

Typability of a method against its signature can be performed via a dataflow analysis based on Kildall’s
algorithm [85]. The analysis takes as inputs the local and global policies, the method table, the cdr structure,
the security environment, the current signature, and either returns a type S : PP → S?, or a tag indicating
that type-checking has failed.

Assuming that the lattice of security levels satisfy the ascending chain property, i.e. that there is no
infinite sequence of security levels

k1 < k2 < k3 . . .

it follows from the monotonicity of the typing rules that the analysis terminates.

We conclude this section by mentioning that there are alternatives to the definition of typable methods,
and to verifying typability. One dimension of choice lies in the precision in the analysis: whereas our analysis
is monovariant, our earlier work [25] adopted a polyvariant analysis in which types assign to each program

18

MOBIUS Deliverable D2.3. Report on Type Systems

point a set of stack types. Polyvariant analyses rely on the finiteness of the set of stack types to guarantee
termination. They type more programs, but yield less compact types.

Typable example

The following method may throw two kinds of exceptions: an exception of class C if the parameter x is true
and of class NullPointer in the other case. The first exception depends on x while the second depends
both on x and y. Normal return depends on y and x because execution terminates normally only if y is not
null and x is false.

int m(boolean x,C y) throws C {

if (x) {throw new C();}

else {y.f = 3;};

return 1;

}

At the bytecode level we obtain the following method:

0 : load x
1 : ifeq 4
2 : new C
3 : throw
4 : load y
5 : push 3
6 : putfield f
7 : const 1
8 : return

Such a method is typable with the signature

m : (x : L, y : H)
H−→ {n : H, C : L, NullPointer : H}

thanks to the cdr6, the stack types and the security environment given below:

i region(i, ·) jun(i, ·) Si se(i)

0 ∅ 1 ε L
1 {2, 3, 4, 5, 6, 7, 8} undef L :: ε L
2 ∅ 3 ε L
3 ∅ undef L :: ε L
4 ∅ 5 ε L
5 ∅ 6 H :: ε L
6 {7, 8} undef L :: H :: ε L
7 ∅ 8 ε H
8 ∅ undef H :: ε H

6In this example, it is safe to take the same cdr for all tags, so we do not distinguish them here.

19

MOBIUS Deliverable D2.3. Report on Type Systems

The next method gives an example of code with method invocation where fine grain exception handling
is necessary. To keep the example short, we here give a compressed version of a compiled code.

foo :
0 load xL
1 load yH
2 invokevirtual m
3 store zH
4 load oL
5 push 1
6 putfield fL

handler : [0, 2],NullPointer→ 3

i region(i, ∅) jun(i, ∅) region(i,NP) jun(i,NP) region(i, C) jun(i, C) Si se(i)

0 ∅ 1 ∅ 1 ∅ 1 ε L
1 ∅ 2 ∅ 2 ∅ 2 L :: ε L
2 ∅ 3 ∅ 3 {3, 4, 5, 6, . . .} . . . H :: L :: ε L
3 ∅ 4 ∅ 4 ∅ 4 H :: ε L
4 ∅ 5 ∅ 5 ∅ 5 ε L
5 ∅ 6 ∅ 6 ∅ 6 H :: ε L
6 {. . . } . . . {. . . } . . . {. . . } . . . L :: L :: ε L

Update oL.fL = 1 at point 6 is accepted if and only if se(5) and se(6) are low. Thanks to the fine grain
regions, typing rule for virtual call only propagate exception levels of m in distinct regions:

∀j ∈ region(i,NullPointer) = ∅, kr[NullPointer] = H ≤ se(j)
∀j ∈ region(i, C) = {3, 4, 5, 6, . . .}, kr[C] = L ≤ se(j)

It follows that se(5) and se(6) are low and the update is accepted by our type system.

2.1.4 Non interference theorem

Memory model

The memory model is summarised in Figure 2.4. During the execution of a method values manipulated by
the JVM are either numerical values (taken in a set N), locations (taken in an infinite set L), or simply the
null constant. Method computation is done on states of the form 〈h, pc, ρ, s〉 where h is the heap of objects,
pc is the current program point, ρ is the set of local variables and s the operand stack. Heaps are modelled
as a partial function h : L ⇀ O, where the set O of objects is modelled as C × (F ⇀ V), i.e. a class name
and a partial function from fields to values. A set of local variables is a mapping ρ ∈ X → V from local
variables to values. Operand stacks are lists of values. A method execution terminates on final states. A
final state is either a pair (〈v〉v, h) ∈ V × Heap (normal termination), or a pair (〈l〉e, h) ∈ L × Heap (the
method execution terminates because of an exception thrown on an object pointed by a location l, but not
caught in this method).

20

MOBIUS Deliverable D2.3. Report on Type Systems

V = N + L+ {null} values
LocalVar = X → V local variables
OpStack = V∗ operand stacks

O = C × (F ⇀ V) objects
Heap = L⇀ O heap
State = Heap× PP × LocalVar×OpStack states

FinalState = (V + L)× Heap final states

with

N : the set of numerical values
L : the set of locations
X : the set of variable names
C : the set of class names
F : the set of field names

Figure 2.4: Memory model of the JVM

Indistinguishability

The observational power of the attacker is formally defined by various indistinguishability relations ∼D on
each different semantic sub-domains D of the JVM memory.

The manipulation of dynamically allocated values requires to parameterise the indistinguishability rela-
tions: two locations/values can be considered indistinguishable at a low level, even if they are different. In
this case, we require these values to be in correspondence with respect to a permutation between locations,
following the approach proposed by Banerjee and Naumann [22]. Such a permutation models the difference
of allocation history between two states. This permutation is defined with the help of a partial bijection β
on locations. The partial bijection maps low objects allocated in the heap of the first state to low objects
allocated in the heap of the second state. Each indistinguishability relation is hence parameterised by a
partial function β ∈ L⇀ L.

Definition 2.1.1 (Value indistinguishability). Given two values v1, v2 ∈ V, and a partial function β ∈ L⇀
L value indistinguishability v1 ∼Vβ v2 is defined by the clauses:

null ∼Vβ null
v ∈ N
v ∼Vβ v

v1, v2 ∈ L β(v1) = v2

v1 ∼Vβ v2

Value indistinguishability is extended point wise to local variable maps (for low variables, i.e. local with
low security levels according to kv).

Definition 2.1.2 (Local variables indistinguishability). Two local variable maps ρ1, ρ2 ∈ LocalVar are
indistinguishable with respect to a partial function β ∈ L ⇀ L and a type annotation for local variables kv

if and only if for all x ∈ X , kv(x) ≤ kobs ⇒ ρ1(x) ∼Vβ ρ2(x). We denote this fact: ρ1 ∼LocalVar
β,kv

ρ2

The definition of object indistinguishability is similar.

Definition 2.1.3 (Object indistinguishability). Two objects o1, o2 ∈ O are indistinguishable with respect to
a partial function β ∈ L⇀ L and a type annotation for fields ft if and only if

21

MOBIUS Deliverable D2.3. Report on Type Systems

• o1 and o2 are objects of the same class;

• for all fields f ∈ dom(o1), ft(f) ≤ kobs ⇒ o1(f) ∼Vβ o2(f).

We note this fact: o1 ∼Oβ,ft o2

Note that because o1 and o2 are objects of the same class we have dom(o1) = dom(o2) and o2(f) is well
defined.

Heap indistinguishability requires β to be a bijection between the low domains (i.e. locations reachable
from low local variables) of the considered heaps.

Definition 2.1.4 (Heap indistinguishability). Two heaps h1 and h2 are indistinguishable with respect to a

partial function β ∈ L⇀ L, written h1 ∼Heap
β h2, if and only if:

• β is a bijection between dom(β) and rng(β);

• dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2);

• for every l ∈ dom(β), h1(l) ∼Oβ,ft h2(β(l)).

Definition 2.1.5 (Final state indistinguishability). Given a partial function β ∈ L⇀ L, a level l ∈ S, and
a type annotation ft for fields, an output level kr (for normal termination and termination by an uncaught
exception), indistinguishability of two final states is defined by the clauses:

h1 ∼Heap
β,ft h2 kr[n] ≤ kobs ⇒ v1 ∼Vβ v2

(〈v1〉v, h1) ∼FinalState
β,ft,kr

(〈v2〉v, h2)

h1 ∼Heap
β,ft h2 class(h1, l1) : k ∈ kr k ≤ kobs l1 ∼Vβ l2

(〈l1〉e, h1) ∼FinalState
β,ft,kr

(〈l2〉e, h2)

h1 ∼Heap
β,ft h2 class(h1, l1) : k ∈ kr k 6≤ kobs

(〈l1〉e, h1) ∼FinalState
β,ft,kr

(〈v2〉e, h2)

h1 ∼Heap
β,ft h2 class(h2, l2) : k ∈ kr k 6≤ kobs

(〈v1〉e, h1) ∼FinalState
β,ft,kr

(〈l2〉e, h2)

h1 ∼Heap
β,ft h2 class(h1, l1) : k1 ∈ kr class(h2, l2) : k2 ∈ kr k1 6≤ kobs k2 6≤ kobs

(〈l1〉e, h1) ∼FinalState
β,ft,kr

(〈l2〉e, h2)

Formal definition of non-interference

Here we give the semantic definition of non-interfering JVM programs. We rely on the following semantic
judgement: p : s ⇓m fs with p a program, m a method of p, s a state and fs a final state. This means that if
an execution of method m (taken in a program p) is run on a state s, it terminates on a final state fs. The
exact definition of this bigstep semantics is formally defined in the Bicolano project [141].

Definition 2.1.6 (Secure method). A method m (in a program p) is said secure with respect to a signature

ka
kh−→ kr (and a type annotation ft for fields) if and only if for all arrays of local variables ρ1, ρ2 ∈ LocalVar,

for all heaps h1, h2 ∈ Heap, for all final states (ret1, h
′
1), (ret2, h

′
2) ∈ FinalState, for all partial function

β ∈ L ⇀ L such that ρ1 ∼LocalVar
β,kr

ρ2, h1 ∼Heap
β,ft h2, 〈h1, 0, ρ1, ε〉 ⇓m (ret1, h

′
1) and 〈h2, 0, ρ2, ε〉 ⇓m (ret2, h

′
2)

the following properties hold:

• there exists a partial function β′ ∈ L ⇀ L such that β ⊆ β′ and final states (ret1, h
′
1) and (ret2, h

′
2)

are indistinguishable with respect to β′, ft and output level kr: (ret1, h
′
1) ∼FinalState

β′,ft,kr
(ret2, h

′
2);

22

MOBIUS Deliverable D2.3. Report on Type Systems

• no modification under level kh is done on h1 and h2: for all field f ∈ F such that kh 6≤ ft(f),

– for all locations l ∈ L such that h1(loc).f is defined then h′1(loc).f is defined and equal to h1(loc).f ;

– for all locations l ∈ L such that h2(loc).f is defined then h′2(loc).f is defined and equal to h2(loc).f .

A method is said secure if it is secure with respect to all its signatures.

The set of security signatures of a method m is defined as PoliciesΓ(m) = { Γm[k] | k ∈ S }. We use it
to define the notion of safe program.

Definition 2.1.7 (Non-interfering program). A program is safe with respect to a table of method signature
Γ if for all its method m, m is secure with respect to all signatures in PoliciesΓ(m).

In order to better understand the notion of partial function β in the definition of secure method, we end
this section with a simpler property verified by particular secure methods.

Lemma 2.1.8. Let m a method (in a program p) that returns a numerical value and is secure with respect to

a signature ka
kh−→ kr. Let h, h1, h2 some heaps, ρ1, ρ2 two arrays of local variables such that for all variables

x, ft(x) ≤ kobs implies ρ1(x) = ρ2(x) (parameters are equal for low variables) and n1, n2 two numeric values
such that

〈h, 0, ρ1, ε〉 ⇓m (n1, h1) and 〈h, 0, ρ2, ε〉 ⇓m (n2, h2)

Then, if kr[n] ≤ kobs, both returned values are equal: n1 = n2.

Type system soundness

Theorem 2.1.9. Let p be a program and Γ a table of signatures. If there exists a family of safe cdr results
(regionm)m such that p is well-typed with respect to Γ and (regionm)m then p is non-interfering with respect
to Γ.

The proof is given in the companion report [28].

2.1.5 Related work

We refer to the survey article of Sabelfeld and Myers [156] for a more complete account of recent developments
in language-based security, and only focus on related work that deals with low-level languages, or develops
ideas that are relevant to consider in future work.

For convenience, we separate related work between works that deal with typed assembly languages, and
higher-order low-level languages and finally with the JVM and Java. Related work about concurrency will
be considered in the next sections of this deliverable.

Typed assembly languages

The idea of typing low-level programs and ensuring that compilation preserves typing is not original to
information flow, and has been investigated in connection with type-directed compilation. Morrisett, Walker,
Crary and Glew [125] develop a typed assembly language (TAL) based on a conventional RISC assembly
language, and show that typable programs of System F can be compiled into typable TAL programs.

23

MOBIUS Deliverable D2.3. Report on Type Systems

The study of non-interference for typed assembly languages has been initiated by Medel, Bonelli, and
Compagnoni [47], who developed a sound information flow type system for a simple assembly language called
SIFTAL. A specificity of SIFTAL is to introduce pseudo-instructions that are used to enforce structured
control flow using a stack of continuations; more concretely, the pseudo-instructions are used to push or
retrieve linear continuations from the continuation stack. Unlike the stack of call frames that is used in
the JVM to handle method calls, the stack of continuations is used for control flow within the body of a
method. The use of pseudo-instructions allows to formulate global constraints in the type system, and thus
to guarantee non-interference. More recent work by the same authors [117] and by Yu and Islam [180] avoids
the use of pseudo-instructions. In addition, Yu and Islam consider a richer assembly language and prove
type-preserving compilation for an imperative language with procedures.

Higher-order low-level languages

Zdancewic and Myers [181] develop a sound information flow type system for a CPS calculus that uses
linear continuations and prove type-preservation for a linear CPS translation from an imperative higher-
order language inspired from SLAM [87] to their CPS language, providing thus one early type-preservation
result for information flow. The use of linear continuations in the CPS translation is essential to guarantee
type-preserving compilation.

In a similar line of work, Honda and Yoshida [91] develop a sound information flow type system for the π-
calculus and prove type-preserving compilation for the Dependency Core Calculus [1] and for an imperative
language inspired from Volpano and Smith [173]. Furthermore, they derive soundness of the source type
systems from the soundness of the type system for the π-calculus. As in the work of Zdancewic and Myers,
linearity is used crucially to ensure that the compilation is type-preserving.

JVM

Lanet et al. [45] provide an early study of information flow for the JVM. Their method consists of specifying
in the SMV model checker an abstract transition semantics of the JVM that manipulates security levels,
and that can be used to verify that an invariant that captures the absence of illicit flows is maintained
throughout the (abstract) program execution. Their method is directed towards smart card applications,
and thus only covers a sequential fragment of the JVM. While their method has been used successfully to
detect information leaks in a case study involving multi-application smartcards, it is not supported by any
soundness result. In a series of papers initiating with [42], Bernardeschi and co-workers also propose to use
abstract interpretation and model-checking techniques to verify secure information.

In a predecessor to the work presented in this chapter, Barthe, Basu and Rezk [25] propose a sound
information flow type system for a simple assembly language that closely resembles the imperative fragment
(i.e. expressive enough for compiling programs written in a simple imperative language) of the JVM studied
in this paper, and show type-preserving compilation for the imperative language and type system of [173].
Later, Barthe and Rezk [30] extend this work to a language with objects and a simplified treatment of
exceptions, and Barthe, Naumann and Rezk [27] show type-preserving compilation for a Java-like language
with objects and a simplified treatment of exceptions.

Genaim and Spoto [81] have shown how to represent information flow for Java bytecode through boolean
functions; the representation allows checking via binary decision diagrams. Their analysis is fully automatic
and does not require that methods are annotated with security signatures, but it is less efficient than type
checking.

24

MOBIUS Deliverable D2.3. Report on Type Systems

Java

Jif is an extension of Java with information flow types developed by Myers and co-workers. Jif builds
upon the decentralized label model and offers a flexible and expressive framework to define information flow
policies. The rich set of features supported by Jif has proved useful in realistic case studies such as an
implementation of mental poker [?], but makes it difficult to prove that the information flow type system is
sound.

Banerjee and Naumann [22] develop a sound information flow type system for a fragment of Java with
objects and methods. The type system is simpler than Jif:

• due to the absence of certain language features such as exceptions. For example, their return signatures
are reduced to a single level, since abnormal termination is not considered.

• by design. For example, there is no mechanism for information release.

The type system has been formally verified in PVS [135], and [168] presents a type inference algorithm that
dispenses users of writing all security annotations.

More recently, Hammer, Krinke and Snelting [84] have developed an information flow analysis based on
control dependence regions; they use path conditions to achieve precision in their analysis, and to exhibit
security leaks if the program is insecure. Their approach is automatic and flow-sensitive, but less efficient
than type-based approach.

Both the type systems of [133] and of [22] rely on the assumption that references are opaque, i.e. the
only observations that an attacker can make about a reference are those about the object to which it
points. However, Hedin and Sands [?] have recently observed that the assumption is invalidated by methods
from the Java API, and exhibited a Jif program that does not use declassification but leaks information
through invoking API methods. Their attack relies on the assumption that the function that allocates
new objects on the heap is deterministic; however, this assumption is perfectly reasonable and satisfied by
many implementations of the JVM. In addition to demonstrating the attack, Hedin and Sands show how a
refined information flow type system can thwart such attacks for a language that allows to cast references
as integers. Intuitively, their type system tracks the security level of references as well as the security levels
of the fields of the object it points to.

Logical analysis of non-interference for Java

In a different line of work, several authors have investigated the use of program logics to enforce non-
interference of Java programs. Darvas and co-workers [63] use dynamic logic to verify information flow
policies of Java Card programs. One of their encodings of non-interference is based on the idea of self-
composition (see also [?]), where the program is composed with a renaming of itself to ensure properties
that involve two executions of a program. The idea of self-composition has also been put in practice by
Dufay and co-workers [74], who used an extension of the Krakatoa tool [116] with self-composition primitives
to verify that data mining programs from the open source repository weka adhere to privacy policies cast in
terms of information flow. Both [63, 74] are application-oriented and do not attempt to provide a theoretical
study of self-composition for Java. In a recent article, Naumann [136] sets out the details of self-composition
in presence of a dynamically allocated heap; in short, one main issue tackled by Naumann is the definition
of a meaningful notion of “renaming” for the heap.

Independently, Banerjee and his co-workers [15] develop a logic that allows to verify non-interference
without resorting to self-composition. The logic, which is tailored to object-oriented languages, handles the

25

MOBIUS Deliverable D2.3. Report on Type Systems

heap using independence assertions inspired from separation logic.

Declassification

Information flow type systems have not found substantial applications in practice, in particular because
information flow policies based on non-interference are too rigid and do not authorize information release.
In contrast, many applications often release deliberately some amount of sensitive information. Typical
examples of deliberate information release include sending an encrypted message through an untrusted
network, or allowing confidential information to be used in statistics over large databases. In a recent
survey [159], A. Sabelfeld and D. Sands provide an overview of relaxed policies that allow for some amount of
information release, and a classification along several dimensions, for example who releases the information,
and what information is released. A first solution to an integrated control for multiple dimensions of
declassification is developed in [146, 111].

2.2 Security Types for Multithreaded Bytecode

2.2.1 Introduction

Information flow for multithreaded low-level programs has not been addressed so far. It is especially con-
cerning because multithreaded bytecode is ubiquitous in mobile code scenarios. For example, multithreading
is used for preventing screen lock-up in mobile applications [109]. In general, creating a new thread for long
and/or potentially blocking computation, such as establishing a network connection, is a much recommended
pattern [101].

This section is the first to propose a framework for enforcing secure information flow for multithreaded
low-level programs. We present an approach for deriving security-type systems that provably guarantee
noninterference. On the code consumer side, these type systems can be used for checking the security of
programs before running them.

Our solution goes beyond guarantees offered by security-type checking to code consumers. To this end,
we have developed a framework for security-type preserving compilation, which allows code producers to
derive security types for low-level programs from security types for source programs. This makes our solution
practical for the scenario of untrusted mobile code. Moreover, even if the code is trusted (and perhaps even
immobile), compilers are often too complex to be a part of the trusted computing base. Security-type
preserving compilation removes the need to trust the compiler, because the type annotations of compiled
programs can be checked directly at bytecode level.

The single most attractive feature of our framework is that security is guaranteed by source type systems
that are no more restrictive than ones for sequential programs. This might be counterintuitive: there
are covert channels in the presence of threads, such as internal timing channels [174], that do not arise
in a sequential setting. Indeed, special primitives for interacting with the scheduler have been designed
(e.g., [150]) in order to control these channels. The pinnacle of our framework is that such primitives are
automatically introduced in the compilation phase. This means that source-language programmers do not
have to know about their existence and that there are no restrictions on dynamic thread creation at the
source level. At the target level, the prevention of internal timing leaks does not introduce unexpected
behaviours: the effect of interacting with the scheduler may only result in disallowing certain interleavings.
Note that disallowing interleavings may, in general, affect the liveness properties of a program. Such a trade-
off between between liveness and security is shared with other approaches (e.g., [164, 174, 162, 163, 150]).

26

MOBIUS Deliverable D2.3. Report on Type Systems

For an example of an internal timing leak, consider a simple two-threaded source-level program, where
hi is a sensitive (high) and lo is a public (low) variable:

if hi {sleep(100)}; lo := 1 ‖ sleep(50); lo := 0

If hi is originally non-zero, the last command to assign to lo is likely to be lo := 1. If hi is zero, the last
command to assign to lo is likely to be lo := 0. Hence, this program is likely to leak information about hi
into lo. In fact, all of hi can be leaked into lo via the internal timing channel, if the timing difference is
magnified by a loop (see, e.g., [149]).

In order for the timing difference of the thread that branches on hi not to make a difference in the
interleaving of the assignments to lo, we need to ensure that the scheduler treats the first thread as “hidden”
from the second thread: the second thread should not be scheduled until the first thread reaches the junction
point of the if. We will show that the compiler enforces such a discipline for the target code so that the
compilation of such source programs as above is free of internal timing leaks.

Our work benefits from modularity, which is three-fold. First, the framework has the ability to mod-
ularly extend sequential semantics. This grants us with language-independence from the sequential part.
Further, the framework allows modular extensions of sequential security type systems. Finally, security type
preserving compilation is also a modular extension of the sequential counterpart.

To illustrate the applicability of the framework, we instantiate it with some scheduler examples. These
examples clarify what is expected of a scheduler to prevent internal timing leaks. Also, we give an instan-
tiation of the source language with a simple imperative language, as well as an instantiation of the target
language with a simple assembly language that features an operand stack, conditions, and jumps. As we
will discuss, these instantiations are for illustration only: we expect our results to apply to languages close
to Java and Java bytecode, respectively.

Our approach pushes the feasibility of replacing trust assumptions by type checking for mobile-code
security one step further. It is especially encouraging that we inherit the main benefit of recent results on
enforcing secure information flow by security-type systems [29]: compatibility with bytecode verification,
and no need to trust the compiler.

2.2.2 Syntax and semantics of multithreaded programs

This section sets the scene by defining the syntax and semantics for multithreaded programs. We introduce
the notion of secure schedulers that help dealing with covert channels in the presence of multithreading.

Syntax and program structure. Assume we have a set Thread of thread identifiers, a partially ordered
set Level of security levels, a set LocState of local states and a set GMemory of global memories. The definition
of programs is parameterised by a set of sequential instructions SeqIns. The set of all instructions extends
SeqIns by a dynamic thread creation primitive start pc that spawns a new thread with a start instruction at
program point pc.

Definition 2.2.1 (Program). A program P consists of a set of program points P, with a distinguished
entry point 1 and a distinguished exit point exit, and an instruction map insmapP : P \ {exit} → Ins, where
Ins = SeqIns ∪ {start pc} with pc ∈ P \ {exit}. We sometimes write P [i] instead of insmapP i.

Each program has an associated successor relation 7→⊆ P ×P (see Section 2.1.2). The successor relation
describes possible successor instructions in an execution. We assume that exit is the only program point
without successors, and that any program point i s.t. P [i] = start pc is not branching, and has a single

27

MOBIUS Deliverable D2.3. Report on Type Systems

successor, denoted by i+1 (if it exists); in particular, we do not require that i 7→ pc. As common, we let 7→?

denote the reflexive and transitive closure of the relation 7→ (similar notation is used for other relations).

Definition 2.2.2 (Initial program points). The set Pinit of initial program points is defined as: {i ∈ P |
∃j ∈ P, P [j] = start i} ∪ {1}.

We assume the attacker level k ∈ Level partitions all elements of Level into low and high elements.
Low elements are no more sensitive than k: an element ` is low if ` ≤ k. All other elements (including
incomparable ones) are high. We assume that the set of high elements is not empty. This partition reduces
the set Level to a two-element set {low , high}, where low < high, which we will adopt without loss of
generality.

Programs come equipped with a security environment [25] that assigns a security level to each program
point and is used to prevent implicit flows [65]. The security environment is also used by the scheduler to
select the thread to execute.

Definition 2.2.3 (Security environment, low, high, and always high program points).

1. A security environment is a function se : P → Level.

2. A program point i ∈ P is low, written L(i), if se(i) = low; high, written H(i), if se(i) = high; and
always high, written AH (i), if se(j) = high for all points j such that i 7→? j.

Semantics. The operational semantics for multithreaded programs is built from an operational semantics
for sequential programs and a scheduling function that picks the thread to be executed among the currently
active threads. The scheduling function takes as parameters the current state, the execution history, and
the security environment.

Definition 2.2.4 (State).

1. The set SeqState of sequential states is a product LocState× GMemory of the local state LocState and
global memory GMemory sets.

2. The set ConcState of concurrent states is a product (Thread ⇀ LocState) × GMemory of the partial-
function space (Thread ⇀ LocState), mapping thread identifiers to local states, and the set GMemory
of global memories.

It is convenient to use accessors to extract components from states: we use s · lst and s · gmem to denote
the first and second components of a state s. Then, we use s · act to denote the set of active threads, i.e.,
s · act = Dom(s · lst). We sometimes write s(tid) instead of s · lst(tid) for tid ∈ s · act. Furthermore, we
assume given an accessor pc that extracts the program counter for a given thread from a local state.

We follow a concurrency model [150] that lets the scheduler distinguish between different types of threads.
A thread is low (resp., high) if the security environment marks its program counter as low (resp., high). A
high thread is always high if the program point corresponding to the program counter is always high. A
high thread is hidden if it is high but not always high. (Intuitively, the thread is hidden in the sense that the
scheduler will, independently from the hidden thread, pick the following low threads.) Formally, we have
the following definitions:

s · lowT = {tid ∈ s · act | L(s · pc(tid))}
s · highT = {tid ∈ s · act | H(s · pc(tid))}
s · ahighT = {tid ∈ s · act | AH (s · pc(tid))}
s · hidT = {tid ∈ s · act | H(s · pc(tid)) ∧ ¬AH (s · pc(tid))}

28

MOBIUS Deliverable D2.3. Report on Type Systems

A scheduler treats different classes of threads differently. To see what guarantees are provided by the
scheduler, it is helpful to foresee what discipline a type system would enforce for each kind of threads.
From the point of view of the type system, a low thread becomes high while being inside of a branch of a
conditional (or a body of a loop) with a high guard. Until reaching the respective junction point, the thread
may not have any low side effects. In addition, until reaching the respective junction point, the high thread
must be hidden by the scheduler: no low threads may be scheduled while the hidden thread is alive. This
prevents the timing of the hidden thread from affecting the interleaving of low side effects in low threads. In
addition, there are threads that are spawned inside of a branch of a conditional (or a body of a loop) with
a high guard. These threads are always high: they may not have any low side effects. On the other hand,
such threads do not have to be hidden in the same way: they can be interleaved with both low and high
threads. Recall the example from Section 2.2.1. The intention is that the scheduler treats the first thread
(which is high while it is inside the branch) as “hidden” from the second (low) thread: the second thread
should not be scheduled until the first thread reaches the junction point of the if.

We proceed to defining computation history and secure schedulers, which operate on histories as param-
eters.

Definition 2.2.5 (History).

1. A history is a list of pairs (tid, `) where tid ∈ Thread and ` ∈ Level. We denote the empty history by
εhist.

2. Two histories h and h′ are indistinguishable, written h
hist∼ h′, if h|low = h′|low , where h|low is obtained

from h by projecting out pairs with the high level in the second component.

We denote the set of histories by History. We now turn to the definition of a secure scheduler. The
definition below is of a more algebraic nature than that of [150], but captures the same intuition, namely
that a secure scheduler: i) always picks an active thread; ii) chooses a high thread whenever there is one
hidden thread; and iii) only uses the names and levels of low and the low part of histories to pick a low
thread.

Definition 2.2.6 (Secure scheduler). A secure scheduler is a function pickt : ConcState×History ⇀ Thread,
subject to the following constraints, where s, s′ ∈ ConcState and h, h′ ∈ History:

1. for every s such that s · lowT ∪ s · highT 6= ∅, pickt(s, h) is defined, and pickt(s, h) ∈ s · act;

2. if s · hidT 6= ∅, then pickt(s, h) ∈ s · highT; and

3. if h
hist∼ h′ and s · lowT = s′ · lowT, then 〈pickt(s, h), `〉 :: h

hist∼ 〈pickt(s′, h′), `′〉 :: h′, where ` =
se(s · pc(pickt(s, h))) and `′ = se(s′ · pc(pickt(s′, h′))).

Example 1. Consider a round-robin policy: pickt(s, h) = rr(AT , last(h)), where AT = s·act, and the partial
function last(h) returns the identity of the most recently picked thread recorded in h (if it exists). Given
a set of thread ids, an auxiliary function rr returns the next thread id to pick according to a round-robin
policy. This scheduler is insecure because low threads can be scheduled even if a hidden thread is present,
which violates req. 2 above.

Example 2. An example of a secure round-robin scheduler is defined below. The scheduler takes turns in
picking high and low threads.

pickt(s, h) =

rr(AT L, lastL(h)),

if h = εhist or
h = (tid,L) · h′ and AT H = ∅ and AT L 6= ∅ or
h = (tid,H) · h′ and hidT = ∅ and AT L 6= ∅

rr(AT H , lastH (h)),
if hidT 6= ∅ or
h = (tid,H) · h′ and AT L = ∅ and AT H 6= ∅ or
h = (tid,L) · h′ and AT H 6= ∅

29

MOBIUS Deliverable D2.3. Report on Type Systems

pickt(s, h) = ctid s · pc(ctid) = i P [i] ∈ SeqIns
〈s(ctid), s · gmem〉;seq σ, µ σ · pc 6= exit

s, h;conc s · [lst(ctid) := σ, gmem := µ], 〈ctid , se(i)〉 :: h

pickt(s, h) = ctid s · pc(ctid) = i P [i] ∈ SeqIns
〈s(ctid), s · gmem〉;seq σ, µ σ · pc = exit

s, h;conc s · [lst := lst \ ctid , gmem := µ], 〈ctid , se(i)〉 :: h

pickt(s, h) = ctid s · pc(ctid) = i P [i] = start pc
freshtse(i)(s) = ntid s(ctid) · [pc := i+ 1] = σ′

s, h;conc s · [lst(ctid) := σ′, lst(ntid) := λinit(pc)], 〈ctid , se(i)〉 :: h

Figure 2.5: Semantics of multithreaded programs

P [i] ∈ SeqIns se, i `seq s⇒ t

se, i ` s⇒ t

P [i] = start pc se(i) ≤ se(pc)
se, i ` s⇒ s

Figure 2.6: Typing rules

We assume that AT L and AT H are functions of s that extract the set of identifiers of low and high threads,
respectively, and the partial function last` returns the identity of the most recently picked thread at level
` recorded in h, if it exists. The scheduler may only pick active threads (cf. req. 1). In addition to the
alternation between high and low threads, the scheduler may only pick a low thread if there are no hidden
threads (cf. req. 2). The separation into high and low threads ensures that for low-equivalent histories, the
observable choices of the scheduler are the same (cf. req. 3).

To define the execution of multithreaded programs, we assume given a (deterministic) sequential ex-
ecution relation ;seq⊆ SeqState × SeqState that takes as input a current state and returns a new state,
provided the current instruction is sequential.

We assume given a function λinit : P → LocState that takes a program point and produces an initial
state with program pointer pointing to pc. We also assume given a family of functions fresht` that takes as
input a set of thread identifiers and generates a new thread identifier at level `. We assume that the ranges
of fresht` and fresht`′ are disjoint whenever ` 6= `′. We sometimes use fresht` as a function from states to
Thread.

Definition 2.2.7 (Multithreaded execution). One step execution ;conc⊆ (ConcState×History)×(ConcState×
History) is defined by the rules of Figure 2.5. We write s, h;conc s

′, h′ when executing s with history h leads
to state s′ and history h′.

The first two rules of Figure 2.5 correspond to non-terminating and terminating sequential steps. In the
case of termination, the current thread is removed from the domain of lst. The last rule describes dynamic
thread creation caused by the instruction start pc. A new thread receives a fresh name ntid from freshtse(i)
where se(i) records the security environment at the point of creation. This thread is added to the pool
of threads under the name ntid . All rules update the history with the current thread id and the security
environment of the current instruction. The evaluation semantics of programs can be derived from the
small-step semantics in the usual way. We let main be the identity of the main thread.

Definition 2.2.8 (Evaluation semantics). The evaluation relation ⇓conc⊆ (ConcState×History)×GMemory
is defined by the clause s, h ⇓conc µ iff ∃s′, h′. s, h ;?

conc s
′, h′ ∧ s′ · act = ∅ ∧ s′ · gmem = µ. We write

P, µ ⇓conc µ
′ as a shorthand for 〈f, µ〉, εhist ⇓conc µ

′, where f is the function {〈main, λinit(1)〉}.

30

MOBIUS Deliverable D2.3. Report on Type Systems

2.2.3 Security policy

Noninterference is defined relative to a notion of indistinguishability between global memories. For the
purpose of this section, it is not necessary to specify the definition of memory indistinguishability.

Definition 2.2.9 (Noninterfering program). Let ∼g be an indistinguishability relation on global memories.
A program P is noninterfering if for all memories µ1, µ2, µ

′
1, µ
′
2:

µ1 ∼g µ2 and P, µ1 ⇓ µ′1 and P, µ2 ⇓ µ′2 implies µ′1 ∼g µ′2

2.2.4 Type system

This section introduces a type system for multithreaded programs as an extension of a type system for
noninterference for sequential programs. In Section 2.2.5, we show that the type system is sound for
multithreaded programs, in that it enforces the noninterference property defined in the previous section. In
Section 2.2.6, we instantiate the framework to a simple assembly language.

Assumptions on type system for sequential programs. We assume given a set LType of local types
for typing local states, with a distinguished local type tinit to type initial states, and a partial order ≤ on
local types. Typing judgements in the sequential type system are of the form se, i `seq s⇒ t, where se is a
security environment, i is a program point in program P , and s and t are local types.

Typing rules are used to establish a notion of typable program 7; typable programs are assumed to satisfy
several properties that are formulated precisely in Section 2.2.5.

Type system for multithreaded programs. The typing rules for the concurrent type system have the
same form as those of the sequential type system and are given in Figure 2.6.

Definition 2.2.10 (Typable multithreaded program). A concurrent program P is typable w.r.t. type S :
P → LType and security environment se, written se,S ` P , if

1. Si = tinit for all initial program points i of P (initial program point of main threads or spawn threads);
and

2. for all i ∈ P and j ∈ P: i 7→ j implies that there exists s ∈ LType such that se, i ` Si ⇒ s and Sj ≤ s.

2.2.5 Soundness

The purpose of this section is to prove, under sufficient hypotheses on the sequential type system and
assuming that the scheduler is secure, that typable programs are noninterfering. Formally, we want to prove
the following theorem:

Theorem 2.2.11. If the scheduler is secure and se,S ` P , then P is noninterfering.

Throughout this section, we assume that P is a typable program, i.e., se,S ` P , and that the scheduler
is secure. Moreover, we state some general hypotheses that are used in the soundness proofs. We revisit
these hypotheses in Section 2.2.6 and show how they can be fulfilled.

7The notion of typable sequential program is a particular case of typable multithreaded program.

31

MOBIUS Deliverable D2.3. Report on Type Systems

State equivalence. In order to prove noninterference, we rely on a notion of state equivalence. The
definition is modular, in that it is derived from an equivalence between global memories ∼g and a partial
equivalence relation ∼l between local states. (Intuitively, partial equivalence relations on local and global
memories represent the observational power of the adversary.) In comparison to [29], equivalence between
local states (operand stacks and program counters for the JVM) is not indexed by local types, since these
can be retrieved from the program counter and the global type of the program.

Definition 2.2.12 (State equivalence). Two concurrent states s and t are:

1. equivalent w.r.t. local states, written s
lmem∼ t, iff s · lowT = t · lowT and for every tid ∈ s · lowT, we

have s(tid) ∼l t(tid).

2. equivalent w.r.t. global memories, written s
gmem∼ t, iff s · gmem ∼g t · gmem.

3. equivalent, written s ∼ t, iff s
gmem∼ t and s

lmem∼ t.

In order to carry out the proofs, we also need a notion of program counter equivalence between two
states.

Definition 2.2.13. Two states s and s′ are pc-equivalent, written, s
pc∼ s′ iff s · lowT = t · lowT and for every

tid ∈ s · lowT, we have s · pc(tid) = t · pc(tid).

Unwinding lemmas. In this section, we formulate unwinding hypotheses for sequential instructions and
extend them to a concurrent setting. Two kinds of unwinding statements are considered: a locally respects
unwinding result, which involves two executions and is used to deal with execution in low environments, and
a step consistent unwinding result, which involves one execution and is used to deal with execution in high
environments. From now on, we refer to local states and global memories as λ and µ, respectively.

Hypothesis 2.2.14 (Sequential locally respects unwinding). Assume λ1 ∼l λ2 and µ1 ∼g µ2 and λ1 · pc =
λ2 · pc. If 〈λ1, µ1〉;seq 〈λ′1, µ′1〉 and 〈λ2, µ2〉;seq 〈λ′2, µ′2〉, then λ′1 ∼l λ′2 and µ′1 ∼g µ′2.

In addition, we also need a hypothesis on the indistinguishability of initial local states.

Hypothesis 2.2.15 (Equivalence of local initial states). For every initial program point i, we have λinit(i) ∼l
λinit(i).

We now extend the unwinding statement to concurrent states; note that the hypothesis s′ · lowT = t′ · lowT
is required for the lemma to hold. This excludes the case of a thread becoming hidden in an execution and
not another (i.e., a high while loop).

Lemma 2.2.16 (Concurrent locally respects unwinding). Assume s ∼ t and hs
hist∼ ht and pickt(s, hs) =

pickt(t, ht) = ctid and s · pc(ctid) = t · pc(ctid). If s, hs ;conc s
′, hs′ and t, ht ;conc t

′, ht′, and s′ · lowT =

t′ · lowT, then s′ ∼ t′ and hs′
hist∼ ht′.

We now turn to the second, so-called step consistent, unwinding lemma. The lemma relies on the
hypothesis that the current local memory is high, i.e., invisible by the attacker. Formally, highness is
captured by a predicate High lmem(λ) where λ is a local state.

Hypothesis 2.2.17 (Sequential step consistent unwinding). Assume λ1 ∼l λ2 and µ1 ∼g µ2. Let λ1 ·pc = i.
If 〈λ1, µ1〉;seq 〈λ′1, µ′1〉 and High lmem(λ1) and H(i), then λ′1 ∼l λ2 and µ′1 ∼g µ2.

32

MOBIUS Deliverable D2.3. Report on Type Systems

Lemma 2.2.18 (Concurrent step consistent unwinding). Assume s ∼ t and hs
hist∼ ht and pickt(s, h) = ctid

and s · pc(ctid) = i and High lmem(s(ctid)) and H(i). If s, hs ;conc s
′, hs′ and s′ · lowT = t · lowT, then s′ ∼ t

and hs′
hist∼ ht.

The proofs of the unwinding lemmas are by a case analysis on the semantics of concurrent programs.

The next function. The soundness proof relies on the existence of a function next that satisfies several
properties. Intuitively, next computes for any high program point its minimal observable successor, i.e., the
first program point with a low security level reachable from it. If executing the instruction at program point
i can result in a hidden thread (high if or high while), then next(i) is the first program point such that
i 7→? next(i) and the thread becomes visible again.

Hypothesis 2.2.19 (Existence of next function). There exists a function next : P ⇀ P such that the next
properties (NeP) hold:

NePd) Dom(next) = {i ∈ P|H(i) ∧ ∃j ∈ P. i 7→? j ∧ ¬H(j)}
NeP1) i, j ∈ Dom(next) ∧ i 7→ j ⇒ next(i) = next(j)
NeP2) i ∈ Dom(next) ∧ j 6∈ Dom(next) ∧ i 7→ j ⇒ next(i) = j
NeP3) j, k ∈ Dom(next) ∧ i 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ∧ j 6= k ⇒ next(j) = next(k)
NeP4) i, j ∈ Dom(next) ∧ k 6∈ Dom(next) ∧ i 7→ j ∧ i 7→ k ⇒ next(j) = k

Intuitively, properties NeP1, NeP2, and NeP3 ensure that the next of instructions within an outermost
high conditional statement coincides with the junction point of the conditional; in addition, properties NeP1,
NeP2, and NeP4 ensure that the next of instructions within an outermost high loop coincides with the
exit point of the loop.

In addition to the above assumptions, we also need another hypothesis that relates the domain of next
to the operational semantics of programs. In essence, the hypothesis states that, under the assumptions of
the concurrent locally respects unwinding lemma, either the executed instruction is a low instruction, in
which case the program counter of the active thread remains equal after one step of execution, or that the
executed instruction is a high instruction, in which case the active thread is hidden in one execution (high
loop) or both (high conditional).

Hypothesis 2.2.20 (Preservation of pc equality). Assume s ∼ t; pickt(s, hs) = pickt(t, ht) = ctid; s(ctid) ·
pc = t(ctid) · pc; s, hs ;conc s

′, hs′; and t, ht ;conc t
′, ht′. Then, s′(ctid) · pc = t′(ctid) · pc; or s′(ctid) · pc ∈

Dom(next); or t′(ctid) · pc ∈ Dom(next).

The final hypothesis is about visibility by the attacker:

Hypothesis 2.2.21 (High hypotheses).

1. For every program point i, we have High lmem(λinit(i)).

2. If 〈λ, µ〉;seq 〈λ′, µ′〉 and High lmem(λ) and H(λ · pc) then High lmem(λ′).

3. If High lmem(λ1) and High lmem(λ2) then λ1 ∼l λ2.

Theorem 2.2.11 follows from the hypotheses above. For the proof details, we refer to the technical
report [32].

33

MOBIUS Deliverable D2.3. Report on Type Systems

e ::= x | n | e op e c ::= x := e | c; c | if e then c else c | while e do c | fork(c)

instr ::= binop op binary operation on stack
| push n push value on top of stack
| load x load value of x on stack
| store x store top of stack in variable x
| ifeq j conditional jump
| goto j unconditional jump
| start j creation of a thread

where op ∈ {+,−,×, /}, n ∈ Z, x ∈ X , and j ∈ P.

Figure 2.7: Source and target language
P [i] = push n

se, i `seq st⇒ se(i) :: st

P [i] = binop op

se, i `seq k1 :: k2 :: st⇒ (k1 t k2 t se(i)) :: st

P [i] = store x se(i) t k ≤ Γ(x)

se, i `seq k :: st⇒ st

P [i] = load x

se, i `seq st⇒ (Γ(x) t se(i)) :: st

P [i] = goto j

se, i `seq st⇒ st

P [i] = ifeq j ∀j′ ∈ reg(i), k ≤ se(j′)
se, i `seq k :: st⇒ liftk(st)

Figure 2.8: Transfer rules

2.2.6 Instantiation

In this section, we apply our main results to a simple assembly language with conditional jumps and
dynamic thread creation. We present the assembly language with a semantics and a type system for
noninterference but without considering concurrent primitives and plug these definitions into the framework
for multithreading. Then, we present a compilation function from a simple while-language with dynamic
thread creation into assembly code. The source and target languages are defined in Figure 2.7. The
compilation function allows us to easily define control dependence regions and junction points in the target
code. Function next is then defined using that information. Moreover, we prove that the obtained definition
of next satisfies the properties required in Section 2.2.5. Finally, we conclude with a discussion about how
a similar instantiation can be done for the JVM.

Sequential part of the language. The instantiation requires us to define the semantics and a type
system to enforce noninterference for the sequential primitives in the language. On the semantics side, we
assume that a local state is a pair 〈os, pc〉 where os is an operand stack, i.e., a stack of values, and pc is a
program counter, whereas a global state µ is a map from variables to values. The operational semantics is
standard and therefore we omit it. We also define λinit(pc) to be the local state 〈ε, pc〉, where ε is the empty
operand stack.

The enforcement mechanism consists of local types which are stacks of security levels, i.e., LType =
Stack(Level); we let tinit be the empty stack of security levels. Typing rules are summarised in Figure 2.8,
where liftk(st) denotes the point-wise extension of λk′. ktk′ to stacks of security levels, and reg : P ⇀ ℘(P)
denotes the region of branching points. We express the chosen security policy by assigning a security level
Γ(x) to each variable x.

Similarly to Section 2.1.3, the soundness of the transfer rules relies on some assumptions about control
dependence regions in programs. Essentially, these regions represent an over-approximation of the range of
branching points. This concept is formally introduced by the functions reg : P ⇀ ℘(P) and jun : P ⇀ P,
which respectively compute the control dependence region and the junction point for a given instruction.
Both functions need to satisfy some properties in order to guarantee noninterference in typable programs.
These properties are known as SOAP properties and where already defined in Section 2.1.3. In this section,

34

MOBIUS Deliverable D2.3. Report on Type Systems

E(x) = load x E(n) = push n E(e op e′) = E(e) :: E(e′) :: binop op

S(x := e, T) = (E(e) :: store x, T)

S(c1; c2, T) = let (lc1, T1) = S(c1, T); (lc2, T2) = S(c2, T1);
in (lc1 :: lc2, T2)

S(while e do c, T) = let le = E(e); (lc, T ′) = S(c, T);
in (goto (pc+ #lc+ 1) :: lc :: le :: ifeq (pc−#lc−#le),

T ′)
S(if e then c1 else c2, T) = let le = E(e); (lc1, T1) = S(c1, T); (lc2, T2) = S(c2, T1);

in (le :: ifeq (pc+ #lc2 + 2) :: lc2 :: goto (pc+ #lc1 + 1) ::

lc1, T2)
S(fork(c), T) = let (lc, T ′) = S(c, T); in (start (#T ′ + 2), T ′ :: lc :: return)

C(c) = let (lc, T) = S(c, []); in goto (#T + 2) :: T :: lc :: return

Figure 2.9: Compilation function

we will show that these properties can be guaranteed by compilation.

Concurrent extension. As shown in Definition 2.2.7, the concurrent semantics is obtained from the
semantics for sequential commands together with a transition for the instruction start. Moreover, the
sequential type system in Figure 2.8 is extended by the typing rules presented in Figure 2.6 to consider
concurrent programs.

The proof of noninterference for concurrent programs relies on the existence of the function next. Simi-
larly to the technique of [27], we name program points where control flow can branch or writes can occur.
We add natural number labels to the source language as follows:

c ::= [x := e]n | c; c | [if e then c else c]n | [while e do c]n | [fork(c)]n

This labelling allows us to define control dependence regions for the source code and use this information
to derive control dependence regions for the assembly code. We introduce two functions, sregion and tregion,
to deal with control dependence regions in the source and target code, respectively.

Definition 2.2.22 (function sregion). For each branching command [c]n, sregion(n) is defined as the set of
labels that are inside of the command c except for those ones that are inside of fork commands.

As in [27], control dependence regions for low-level code are defined based on the function sregion and a
compilation function. For a complete source program c, we define the compilation C(c) in Figure 2.9. We use
symbol # to compute the length of lists. Symbol :: is used to insert one element to a list or to concatenate
two existing lists. The current program point in a program is represented by pc. The function C(c) calls the
auxiliary function S which returns a pair of programs. The first component of that pair stores the compiled
code of the main program, while the second one stores the compilation code of spawned threads. We now
define control dependence regions for assembly code and respective junction points.

Definition 2.2.23 (function tregion). For a branching instruction [c]n in the source code, tregion(n) is
defined as the set of instructions obtained by compiling the commands [c′]n

′
, where n′ ∈ sregion(n). Moreover,

if c is a while loop, then n ∈ tregion(n). Otherwise, the goto instruction after the compilation of the else-
branch also belongs to tregion(n).

Junction points are computed by the function jun. The domain of this function consists of every branching
point in the program. We define jun as follows:

Definition 2.2.24 (junction points). For every branching point [c]n in the source program, we define
jun(n) = max{i|i ∈ tregion(n)}+ 1.

35

MOBIUS Deliverable D2.3. Report on Type Systems

`α c : E `α c′ : E

`α c ; c′ : E

` e : L `α c : E

`α [while e do c]nα : E

` e : L `α c : E `α c′ : E

`α [if e then c else c′]nα : E

` e : H `• c : E

`• [while e do c]n• : E

` e : H `• c : E `• c′ : E

`• [if e then c else c′]n• : E

`α c : E E = liftα(E, labels(c))

`α [fork(c)]nα : E

Assign
` e : k k t E(n) ≤ Γ(x)

`α [x := e]nα : E

Top-H-While
` e : H `• c : E E = liftH(E, sregion(n))

`◦ [while e do c]n• : E

Top-H-Cond
` e : H `• c : E `• c′ : E E = liftH(E, sregion(n))

`◦ [if e then c else c′]n• : E

Figure 2.10: Intermediate typing rules for high-level language commands

Having defined control dependence regions and junction points for low-level code, we proceed to defining
next. Intuitively, next is only defined for instructions that belong to regions corresponding to the outermost
branching points whose guards involved secrets. For every instruction i inside of an outermost branching
point [c]n, we define next(i) = jun(n). Observe that this definition captures the intuition about next given in
the beginning of Section 2.2.5. However, it is necessary to know, for a given program, what are the outermost
branching points whose guards involved secrets. With this in mind, we extend one of the type systems given
in [27] to identify such points. We add some rules for outermost branching points that involved secrets
together with some extra notations to know when a command is inside of one of those points or not.

A source program c is typable, written `◦ c : E, if its command part is typable with respect to E
according to the rules given in Figure 2.10. The typing judgement has the form `α [c]nα′ : E, where E is
a function from labels to security levels. Function E can be seen as a security environment for the source
code which allows to easily define the security environment for the target code. If R is a set of points,
then liftk(E,R) is the security environment E′ such that E′(n) = E(n) if n /∈ R and E′(n) = k t E(n)
for n ∈ R. For a given program c, labels(c) returns all the label annotations in c. Variable α denotes if c
is part of a branching instruction that branches on secrets (•) or public data (◦). Variable α′ represents
the level of the guards in branching instructions. The most interesting rules are TOP−H−COND and
TOP−H−WHILE . These rules can be only applied when the branching commands are the outermost
ones and when they branch on secrets. Observe that such commands are the only ones that are typable
considering α = ◦ and α′ = •. Moreover, the type system prevents explicit (via assignment) and implicit
(via control) flows [65]. To this end, the type system enforces the same constraints as standard security type
systems for sequential languages (e.g., [?]). Explicit flows are prevented by rule ASSIGN , while implicit
flows are ruled out by demanding a security environment of level H inside of commands that branch on
secrets. The type system guarantees information-flow security at the same time as it identifies the outermost
commands that branch on secrets. Function next is defined as follows:

Definition 2.2.25 (function next). For every branching point c in the source program such that `◦ [c]n• , we
have that ∀k ∈ tregion(n).next(k) = jun(n).

This definition satisfies the properties from Section 2.2.5, as shown by the following lemma.

Lemma 2.2.26. Definition 2.2.25 satisfies properties NePd and NeP1–4.

Notice that one does not need to trust the compiler in order to verify that properties NePd and NeP1–4
are satisfied. Indeed, these properties are intended to be checked independently from the compiler by code
consumers. We are now in condition to show the soundness of the instantiation.

36

MOBIUS Deliverable D2.3. Report on Type Systems

Corollary 2.2.27 (Soundness of the instantiation). Hypotheses 1–6 from Section 2.2.5 are satisfied by the
instantiation, and therefore the derived type system guarantees noninterference for multithreaded assembly
programs.

Hypotheses 1–3 follow from the unwinding lemmas of [25]; Hypothesis 4 from Lemma 2.2.26, and Hypothe-
ses 5 and 6 from the definitions of next and High lmem, respectively.

Type preserving compilation. The compilation of sequential programs is type-preserving, as shown
in previous work [27]. Our framework allows extending type-preservation to multithreading. Moreover,
it enables us to obtain a key non-restrictiveness result: although the source-level type system is no more
restrictive than a typical type system for a sequential language (e.g., [?]), the compilation of (possibly
multithreaded) typable programs is guaranteed to be typable at low-level. Due to the lack of space, we only
give an instantiation of this result to the source and target languages of this section:

Theorem 2.2.28. For a given source-level program c, assume nf (c) is obtained from c by replacing all
occurrences of fork(d) by d. If command nf (c) is typable under the Volpano-Smith-Irvine type system [?]
then se,S ` C(c) for some se and S.

This theorem and Theorem 2.2.11 entail the following corollary:

Corollary 2.2.29. If command nf (c) is typable under the Volpano-Smith-Irvine type system [?] then C(c)
is secure.

Java Virtual Machine. The modular proof technique developed in the previous section is applicable
to a Java-like language. If the sequential type system is compatible with bytecode verification, then the
concurrent type system is also compatible with it. This implies that Java bytecode verification can be
extended to perform security type checking. Note that the definition of a secure scheduler is compatible
with the JVM, where the scheduler is mostly left unspecified. Moreover, it is possible to, in effect, override
an arbitrary scheduler from any particular implementation of JVM with a secure scheduler that keeps track
of high and low threads as a part of an application’s own state (cf. [171]).

Note that the semantics of the multithreaded JVM obtained by the method described in Section 2.2.2
only partially reflects the JVM specification. In particular, it ignores object locks, which are used to
perform synchronization throughout program execution. Nevertheless, extending our framework to include
synchronization is relatively straightforward, as explained below.

Extension to synchronization Synchronization is of fundamental importance to concurrent programs.
In principle, the expressiveness of the languages described in this section allows synchronization of threads
by, for instance, implementing the Lamport’s bakery algorithm. This algorithm, as many others, is based
on busy waiting and consequently has a negative impact on performance. Conversely, blocked waiting,
which commonly underlies semaphore implementations, does not have that disadvantage. Semaphores, and
generally any other mechanism based on blocked waiting, can potentially affect the security of programs.
Therefore, it is important to provide policies regarding the use of these kind of mechanisms to preserve
confidentiality. For simplicity, we describe how to incorporate semaphores to the techniques described
previously.

More precisely, semaphores are special variables, written sem, that range over nonnegative integers and
can only be manipulated by two commands: wait(sem) and signal(sem) [72]. We assume, without losing
generality, that every semaphore variable is initialised with 0. For simplicity, we show the semantics of these
commands at the source level in Figure 2.11. A command c and a memory m together form a command

37

MOBIUS Deliverable D2.3. Report on Type Systems

〈|sem,m|〉 ↓ 0

〈|wait(sem),m|〉 ⊗sem
⇀ 〈|stop,m|〉

〈|sem,m|〉 ↓ n n > 0

〈|wait(sem),m|〉⇀ 〈|stop,m[sem 7→ n− 1]|〉

〈|signal(sem),m|〉 �sem
⇀ 〈|stop,m[sem 7→ n+ 1]|〉

Figure 2.11: Semantics for wait() and signal()

fork(wait(s2); l := 0; signal(p); signal(f));
fork(wait(s1); l := 1; signal(p); signal(f));
if (h ≥ l) then signal(s1); wait(p); signal(s2)

else signal(s2); wait(p); signal(s1)
wait(p); wait(f); wait(f);

Figure 2.12: Attack using semaphores

configuration 〈|c,m|〉. A semantic step has form 〈|c,m|〉 α
⇀ 〈|c′,m′|〉 that updates the command and memory in

the presence of a possible event α, where α ∈ {⊗sem,�sem}. Command wait(sem) blocks a thread if sem
has a value of 0, indicated by event ⊗sem, or decrements its value by 1 otherwise. Command signal(sem)
increments sem by 1 and triggers the event �sem.

Confidentiality of data might be compromised if commands related to semaphores are freely allowed in
programs. To illustrate this, we show an attack at the source language in Figure 2.12. The program contains
semaphore variables s1, s2, p, and f , and variables h and l to store secret and public data, respectively. The
code basically blocks and unblocks threads that assign to public variables in an order that depends on h.
That is, the execution of l := 1 is followed by l := 0 when h ≥ l, and l := 0 is followed by l := 1 otherwise.
As a result, some information about h is revealed. It is then clear that some restrictions about the use of
semaphore is needed in order to avoid such leaks.

It is relatively straightforward to extended the techniques describe previously to incorporate semaphores
to the framework (see [152] for further details). Firstly, we need to include semaphores to the sequential part
of the language as, for instance, we show in Figure 2.11. Secondly, threads that are blocked on semaphore
variables cannot be scheduled. Clearly, schedulers need to know when threads are blocked (or not) in order
to decide if they can be run. For this purpose, it is necessary to extend the scheduler state with a set of
blocked threads. Thirdly and lastly, the type system needs to enforce the secure use of semaphores. As
for variables, semaphores have associated security types (L or H) and are included in the corresponding
typing environment. In essence, we need two new typing rules. The first one establishes that signals to
any semaphore can be performed in low threads. However, signals to public semaphores cannot be done by
high threads. To illustrate why this restriction is imposed, we can think about signals on low semaphores
as updates on low variables, which must be avoided inside of high threads. The second rule imposes that
threads can only wait on semaphores that matches their security level. In other words, high and low threads
can only wait in high and low semaphores, respectively. Clearly, high threads should not wait on low
semaphores since, as before, it can be seen as updates to low variables. Besides that, waiting on semaphores
might affect the timing behaviour of threads. In particular, waiting on high semaphores might affect the
timing behaviour of thread depending on secret data and probably introducing internal timing leaks. For
this reason, low threads cannot perform wait operations on high semaphores.

38

MOBIUS Deliverable D2.3. Report on Type Systems

2.2.7 Related work

As discussed in Section 2.1.5, information flow type systems for sequential low-level languages, including
sequential fragments of JVML, and their relation to information flow type systems for structured source
languages, have been studied by several authors (e.g., [30, 81, 117, 27, 29, 25]). Nevertheless, the present
work provides, to the best of our knowledge, the first proof of noninterference for a concurrent low-level
language, and the first proof of type-preserving compilation for languages with concurrency.

This work exploits recent results on interaction between the threads and the scheduler [150] in order
to control internal timing leaks. Other approaches [164, 174, 162, 163] to handling internal timing rely on
protect(c) which, by definition, hides the internal timing of command c. It is not clear how to implement
protect() without modifying the scheduler (unless the scheduler is cooperative [151, 171]). It is possible
to prevent internal timing leaks by spawning dedicated threads for computations that involve secrets and
carefully synchronizing the resulting threads [149]. However, this implies high synchronization costs. Yet
other approaches prevent internal timing leaks in code by disallowing any races on public data [182, 95].
However, they wind up rejecting such innocent programs as lo := 0 ‖ lo := 1 where lo is a public variable.
Still other approaches prevent internal timing by disallowing low assignments after high branching [48, 14].
Less related work [4, 158, 153, 155, 103] considers external timing, where an attacker can use a stopwatch to
measure computation time. This work considers a more powerful attacker, and, as a price paid for security,
disallows loops branching on secrets. For further related work, we refer to an overview of language-based
information-flow security [156].

2.2.8 Conclusions on security types for multithreaded bytecode

We have presented a framework for controlling information flow in multithreaded low-level code. Thanks
to its modularity and language-independence, we have been able to reuse several results for sequential
languages. An appealing feature enjoyed by the framework is that security-type preserving compilation is
no more restrictive for programs with dynamic thread creation than it is for sequential programs. Primitives
for interacting with the scheduler are introduced by the compiler behind the scenes, and in such a way that
internal timing leaks are prevented.

We have demonstrated an instantiation of the framework to a simple imperative language and have
argued that our approach is amenable to extensions to object-oriented languages. The compatibility with
bytecode verification makes our framework a promising candidate for establishing mobile-code security via
type checking.

2.3 Extensions of the Type System

This section presents further extensions to the approach in Section 2.1. It proposes alternatives to Section 2.2
to increase the flexibility of information flow type systems and to augment the coverage of language features.

2.3.1 Extensions of Type Systems for Multithreaded Bytecode

Type System enforcing Strong Security for Multithreaded Bytecode

As presented in Section 2.2, we can directly use a security type system for sequential programs like in
Section 2.1 to enforce information flow security for multithreaded programs. This is sound, if we assume
a cooperative scheduler. That is, the scheduler uses notions from the security analysis (e.g. security
environment) to prevent internal timing leaks. Another approach is to prevent internal timing leaks by

39

MOBIUS Deliverable D2.3. Report on Type Systems

enforcing an adequate security condition on the multithreaded program itself. One such condition is the
strong security condition [158], that has further desirable properties [154]. We introduce a variant of the
strong security condition for multithreaded bytecode and provide a sound security type system.

Strong Security Condition We consider bytecode programs as presented in Section 2.1, with some
deviations. As presented there, we consider programs as sets of classes with methods. The methods consist
of lists of instructions. Additionally, each class contains a designated run-method, that can be used to fork
a new thread by executing a start-instruction. This is different from Section 2.2. There no methods are
considered and the start-instruction has a program point as its parameter. Another difference between this
section and Section 2.2 is the operational semantics for thread pools. A class of schedulers is defined there
while here a non-deterministic interleaving semantics is assumed, as we present below. We assume that
run-methods do not return a value, while other methods always return a value. As simplification, like in
Section 2.2, we do not consider exceptions in this section.

In contrast to the security condition Definition 2.1.7 in Section 2.1, the strong security condition is not
based on a big-step operational semantics, but on a small-step operational semantics. That is, the semantics
is defined as transitions ; between program configurations. A configuration consists of a heap and of a list of
thread states. Each thread state is a call stack of method frames. Each method frame consists of a program
counter, a mapping of method-local variables to values, and an operand stack. The thread-local part of the
operational semantics defines the possible transition in a given thread state for a given heap. Using the the
thread-local part of the operational semantics, the thread-global part of the operational semantics defines
the possible transitions in a given given list of thread states and a given heap. That is, if a transition is
possible for one thread state in the list together with the given heap then a transition exists for the whole
list and the heap, where the heap is modified like in the local transition and the respective thread state is
replaced by its corresponding result of the local transition.

As in Section 2.1 we assume a lattice of security levels. However, we assume slightly different observa-
tional capabilities of possible attackers. We assume the attacker to be able to observe the input and output
of the whole program, whereas we consider the initial heap as input and the final heap as output. We want
to prevent internal timing leaks caused by parallel composition.

To capture the observational capabilities on the different parts of the memory (heap, local variables,
operand stack), we adopt the indistinguishabilities ∼β of Subsection 2.1.4.8 To capture the observational
capabilities on the program execution we require an observational equivalence on alternative execution paths.
For instance, if the guard of a branching instruction depends on a secret then the two branches must be
observationally equivalent because, otherwise, an untrusted observer might be able to deduce the value of the
guard and, thereby, the secret. The PER model [157] even defines a program to be secure, if it is equivalent
to itself. The strong security condition is based on this idea. The definition of the strong security condition
uses the notion of a strong kobs-bisimulation uP ,ft,Γ,S

kobs
for kobs ∈ S. Here, we only introduce this bisimulation

informally because the formal definition is technically somewhat involved. The strong kobs-bisimulation is
defined as a relation between lists of program counter stacks. We consider such lists as the non-memory
parts of configurations. The intuition is, that uP ,ft,Γ,S

kobs
relates lists of program counter stacks, that behave

indistinguishability for a kobs-observer. The main properties of uP ,ft,Γ,S
kobs

are the following. Firstly, it is
symmetric. Secondly, the related lists have equal length, and each pair of program counter stacks on the
same position in both lists has equal length. Thirdly, it is a stepwise bisimulation, i.e. each step of one
side needs a matching step on the other side. This captures the logical timing behaviour, i.e. it captures
that we consider programs like the first example in Section 2.2.1 to be insecure. Fourthly, after each step,
the condition “resets” the memory, i.e. it has to be met for all indistinguishable memory pairs. Fifthly,
it is point-wise, i.e. the each step of one program counter stack needs a matching step of the program

8Actually, for the stack indistinguishability we consider a generalisation, where two stacks are indistinguishable, if their
projections on the visible elements are equal. This permits more precision for our second approach below.

40

MOBIUS Deliverable D2.3. Report on Type Systems

counter stack on the same position on the other side. These last two properties make the security condition
compositional and scheduler independent.

With this in mind we define the security condition as follows:

Definition 2.3.1 (Strong Security for Bytecode). A program P is strongly secure with respect to the global
policy ft : FP 7→ S, iff there is a table Γ and a S ∈ PP → S∗ such that S (1cmain) = ε and ∀kobs ∈ S :

1cmain uP ,ft,Γ,S
kobs

1cmain . Here 1cmain is the initial instruction of the main-method.

Type System Since security type systems are compositional by itself, most of the standard type rules
like in Section 2.1 already enforce the compositional character of the strong security condition. We do not
have to impose additional restrictions on the corresponding commands. The main rules we have to change
are the rules for possible branches: ifeq-instructions, method calls (possible branching by polymorphism)
and exceptions (not considered here).

To deal with ifeq-instructions, we refine the approach of control dependence regions (cdr). By lifting the
security environments for the regions, the previous type system already enforces that no visible assignments
occur in the branches. So what remains to be enforced is that the branches cannot be distinguished by
the number of their execution steps. To accomplish this we structure the control dependence region by
partitioning it according to the “distances” of programs points from the branching point. We define the
successor relation similar to the one in Section 2.1. We name the set of all branching points (program points
with ifeq-instruction) PP#. The successor relation 7→⊆ PP ×PP of the program P is the smallest relation
satisfying ∀i , i ′ ∈ PP : i 7→ i ′, if P [i] = goto i ′, ∀i , i ′ ∈ PP : i 7→ i ′, if P [i] = ifeq i ′ and ∀i ∈ PP : i 7→ i +1,
if ∀i ′ ∈ PP : P [i] 6= goto i ′ and P [i] 6= return.

Definition 2.3.2 (Region Stepping). Let the program P be given. Let region : PP# → ℘(PP) and jun :
PP# ⇀ PP be such that they satisfy the SOAP from Subsection 2.1.3. Let i ∈ PP#. Let n ∈ N. We call
region1(i), region2(i), . . . , regionn(i) ⊆ region(i) a region stepping of i iff

• region1(i), region2(i), . . . , regionn(i) is a disjoint partitioning of region(i),

• ∀i ′ ∈ PP : (i 7→ i ′ ⇒ i ′ ∈ region1(i)),9

• ∀m ∈ {1, . . . , n− 1} : ∀i ′ ∈ regionm(i) : ∀i ′′ ∈ PP : (i ′ 7→ i ′′ ⇒ i ′′ ∈ regionm+1(i)) and

• ∀i ′ ∈ regionn(i) : ∀i ′′ ∈ PP : (i ′ 7→ i ′′ ⇒ i ′′ = jun(i)).

We define the predicate steppable(i) for i ∈ PP# as “for i exists a region stepping”.

The intuition behind the region stepping is, that if for a given program point i there is a region stepping
with n “steps”, then all possible executions reaching i reach jun(i) after exactly another n+ 1 steps.

Figure 2.13 shows the type system. Note that most conditions of the rules are quite similar to the
conditions of the rules in Section 2.1. However, in the rule for the ifeq-instruction we additionally require
that i is steppable. Further, in the rule for the invokevirtual-instruction we additionally require that the
reference to the object of the called method has the security type L, the bottom element of the security
lattice. By this we ensure that for any two indistinguishable memories always the same method is called,
even if there is polymorphism. If one would allow different methods to be called, then there is the danger
that they would execute a different number of steps. As simplifying side effect of this additional condition
is, that we do not need to consider the heap effect of the method signature. We have two rules for the
return-instruction. The first is for return-instructions in run-methods, which do not return a value. The
second rule is for return-instructions in other methods.

9Note that i 7→ i ′ implies i ′ 6= jun(i) in this section.

41

MOBIUS Deliverable D2.3. Report on Type Systems

P [i] = prim op se(i), k1, k2 ≤ k

Γ, region, se,ka −→ kr, i ` k1 :: k2 :: st ⇒ k :: st

P [i] = push n

Γ, region, se,ka −→ kr, i ` st ⇒ se(i) :: st

P [i] = pop

Γ, region, se,ka −→ kr, i ` k :: st ⇒ st

P [i] = load x se(i),ka(x) ≤ k

Γ, region, se,ka −→ kr, i ` st ⇒ k :: st

P [i] = store x se(i), k ≤ ka(x)

Γ, region, se,ka −→ kr, i ` k :: st ⇒ st

P [i] = goto i ′

Γ, region, se,ka −→ kr, i ` st ⇒ st

P [i] = ifeq i ′ ∀i ′′ ∈ region(i) : k ≤ se(i ′′) steppable(i)

Γ, region, se,ka −→ kr, i ` k :: st ⇒ liftk (st)

P [i] = return ∃c ∈ CP : i ∈ PPc

Γ, region, se,ka −→ kr, i ` st ⇒
P [i] = return ∀c ∈ CP : i /∈ PPc k ≤ kr

Γ, region, se,ka −→ kr, i ` k :: st ⇒
P [i] = invokevirtual mID length(st1) = nbArguments(mID) se(i) = L
ΓmID

= ka
′ −→ k ′r ∀n ∈ {0 . . . length(st1)− 1} : st1[n] ≤ ka

′[n+ 1]

Γ, region, se,ka −→ kr, i ` st1 :: L :: st2 ⇒ k ′r :: st2

P [i] = start

Γ, region, se,ka −→ kr, i ` L :: st ⇒ st

P [i] = getfield f se(i), ft(f), k ′ ≤ k

Γ, region, se,ka −→ kr, i ` k ′ :: st ⇒ k :: st

P [i] = putfield f se(i), k1, k2 ≤ ft(f)

Γ, region, se,ka −→ kr, i ` k1 :: k2 :: st ⇒ st

P [i] = new c

Γ, region, se,ka −→ kr, i ` st ⇒ se(i) :: st

Figure 2.13: Typing rules to enforce strong security with a region stepping.

42

MOBIUS Deliverable D2.3. Report on Type Systems

We can now define typable programs.

Definition 2.3.3 (Typable Program). Let P be a program and ft a global policy. A method m ∈ MP is
typable by ka −→ kr, se,S with respect to Γ, region (denoted Γ, region ` m : ka −→ kr, se,S), if

• S (1m) = ε,

• for all program points i , i ′ in m such that i 7→ i ′ there is a stack type st such that Γ, region, se,ka −→
kr, i ` S (i) ⇒ st and st ≤ S (i ′) and

• for all program points i in m such that i 7→, we have Γ, region, se,ka −→ kr, i ` S (i) ⇒ .

The program P is typable by Γ with respect to region (denoted region ` P : Γ), if

∃se,Γ,S : ∀m ∈MP : ∀mID : (m ∈ mID ∧ Γ, region ` m : Γ(mID), se,S) .

We have the following soundness result.

Theorem 2.3.4 (Soundness of Type System for Strong Security). Let P be a program and ft be a global
policy. If there exist the functions region and jun such that they satisfy the SOAP, and region ` P : Γ,
then P is strongly secure.

Alternative Type System The cdr-approach as presented in Section 2.1 and the previous paragraph is
flexible and efficient. The regions can be provided according to the PCC-structure by the code producer.
Then the consumer only needs to check them for the SOAP before execution. Alternatively, depending on
its computing power, the consumer can compute them himself. However, one shortcoming of this approach
is, that in regions of high-branches no memory visible to the observer can be written to, even if there are
no visible differences between the branches. Further, in the case of enforcing the strong security conditions,
the region stepping requires all paths in the branches to have equal length, even if the length-difference of
some paths only depends on visible information.

To overcome these shortcomings, we propose a second, alternative approach, that replaces the control
dependence regions by a relation between program points, that depends on the instructions at these pro-
gram points. That is, we define a computable approximation of the strong kobs-bisimulation, the kobs-visible
equivalence relation: lP ,ft,Γ,S

kobs
⊇=, which is defined inductively. The definition of lP ,ft,Γ,S

kobs
is fairly straight-

forward, but the complete exposition of the formal definition is quite lengthy. Hence, we do not present
the complete definition here. As an illustration, we present two examples of the rules from this definition
in Figure 2.14. We use the function vislostkobs , which is defined such that it collects the stack-elements
that are visible in the first argument but not anymore in the second. The first rule relates two program
points with an identical store-instruction storing to a kobs-visible variable. The condition requires, that the
successive program points are related by lP ,ft,Γ,S

kobs
. Further, the premise that is expressed using vislostkobs

imposes restrictions on the stack-types of the successive program points, such that the indistinguishability
of operand stacks is preserved by execution at both program points. The second rule relates two program
points with ifeq-instructions, both branching on a kobs-visible element on the top of an operand stack. Like
the first rule, the second rule requires that corresponding successive program points are related by lP ,ft,Γ,S

kobs
.

On the whole, the type system is the same as in Figure 2.13, but without the conditions on the security
environment. The rule for the ifeq-instruction is as follows:

P [i] = ifeq i ′ ∀k ′ ∈ S : (k 6≤ k ′ ⇒ i + 1 lP ,ft,Γ,S
kobs

i ′)

i ` k :: st ⇒ st

We show the following theorem for the kobs-visible equivalence.

43

MOBIUS Deliverable D2.3. Report on Type Systems

P [i] = P [i ′] = store x i + 1 lP ,ft,Γ,S
kobs

i ′ + 1 ka[x] ≤ kobs

S (i + 1) = k :: st S (i ′ + 1) = k ′ :: st ′ vislostkobs(S (i), st) = vislostkobs(S (i), st ′)

i lP ,ft,Γ,S
kobs

i ′

P [i] = ifeq i∗ P [i ′] = ifeq i ′∗ i + 1 lP ,ft,Γ,S
kobs

i ′ + 1 i∗ lP ,ft,Γ,S
kobs

i ′∗

S (i) = k :: st S (i ′) = k ′ :: st ′ k , k ′ ≤ kobs

vislostkobs(st ,S (i + 1)) = vislostkobs(st ′,S (i ′ + 1))
vislostkobs(st ,S (i∗)) = vislostkobs(st ′,S (i ′∗))

i lP ,ft,Γ,S
kobs

i ′

Figure 2.14: Exemplary rules to define lP ,ft,Γ,S
kobs

.

Theorem 2.3.5 (Soundness of kobs-Visible Equivalence). Let ∀m ∈MP : Γ ` m : ka −→ kr,S. Then

lP ,ft,Γ,S
kobs

⊆uP ,ft,Γ,S
kobs

From this we can conclude the soundness of the type system.

Combining Calculus

Currently precision is one of the main problems for a sound analysis of information flow for multithreaded
programs. That is, for too many programs that should be considered secure the analysis fails to attest
security. On the one hand this is due to declassification (also called intentional information release). Many
security conditions and corresponding analysis techniques (including the ones presented in this chapter) do
not capture the notion of declassification. It is the goal of MOBIUS Task 2.2 to overcome this limitation
and to develop a good treatment of declassification for bytecode. On the other hand this imprecision is
inherent to to analysis techniques itself. We develop the combining calculus [115, 105] to increase precision
of the analysis by combining the strengths of various analysis techniques. We define plug-in rules for various
existing analysis techniques and combining rules. By this we can apply different analysis techniques to
different subprograms, depending on which analysis technique is able to attest security on which subprogram.
For example we have plug-in rules for a the strong security condition [158] and for observational determinism
[182].

Important for the instantiation of the combining calculus is a permissive security condition (baseline
condition) according to that the plug-in-rules as well as the combining rules are sound. We show the
soundness of the of the combining calculus in two settings. Firstly, in [115, 105] we consider a possibilistic
security condition. Secondly, in [105] we consider a probabilistic security condition assuming a uniform
probabilistic scheduler.

Assume some security conditions, here SC A and SC B and corresponding sound analysis techniques SA A
and SA B. Some security conditions (here SC A) can directly be used as plug-ins, some (here SC B) only
with additional conditions. Figure 2.3.1 visualises this scenario. As the ellipse for the combining calculus
indicates, it admits all programs that are SC A secure, all programs that are SC B secure and satisfies side
conditions and also some programs that are neither SC A or SC B secure, but that satisfy the baseline
security characterisation. The combining calculus analysis is sound with respect to a permissive baseline
security condition SC baseline and more precise than the analysis techniques SA A and SA B alone.

44

MOBIUS Deliverable D2.3. Report on Type Systems

SC A SC BSA A SA B

SC baseline

combining calculus

Figure 2.15: Scenario of Combining Calculus: organisation of security conditions (SC A, SC B, SC baseline)
and analyses (SA A, SA B, combining calculus)

Transforming Type Systems

Security type systems provide a basis for automating the information flow analysis of concrete programs. If
type checking succeeds then a program has secure information flow. If type checking fails then the program
might be insecure and should not be run. After a failed type check, the task of correcting the program
is often left to the programmer. Given the significance of the problem, it would be very desirable to have
automated tools that better support the programmer in this task. For the future, we envision a framework
for the information flow analysis that, firstly, gives more constructive advice on how a given program could
be improved and, secondly, in some cases automatically corrects the program, or parts thereof, without any
need for interaction by the programmer. In [103, 104] we focus on the second of these two aspects.

Obviously, one cannot allow an automatic transformation to modify programs in completely arbitrary
ways as the behaviour of the transformed program should resemble the behaviour of the original program
in some well-defined way. We capture such constraints by defining an equivalence relation on programs
and demanding that the transformed program is equivalent to the original program under this relation. As
we have seen in Section 2.3.1 with the definition of the strong security condition for bytecode, a second
equivalence relation can be used to capture the objective of a transformation. Similar to above we define
strong security with a strong low-bisimulation uL on lists of commands (thread pools). The problem of
removing implicit information leaks from a program can be viewed as the problem of making alternative
execution paths observationally equivalent.

In our approach, meta-variables are inserted into a program and are instantiated with programs during
the transformation. The problem of making two program fragments equivalent is cast as a unification prob-
lem, which allows us to automatically compute suitable substitutions using existing unification algorithms.
The approach is parametric in two equivalence relations. As semantics equivalence to be preserved by the
transformation we define ' as a weak possibilistic bisimulation. We identify a special set of of substitutions
called preserving, such that preserving substitutions do not change the behaviour of programs with respect
to '. As adequate syntactic observational equivalence to be achieved by the transformation we define lL

on lists of commands, such that the following holds.

Theorem 2.3.6 (Adequacy of lL). If V lL V
′ is derivable then V uL V

′ holds

We integrate this instance of our approach into an existing transforming type system [158] for the strong
security condition. That is we consider rules for type judgements of the form V ↪→ V ′ : S, where C is the
initial program, V ′ is the transformed program and S is a low-slice encoding the timing behaviour of V ′. In
the rule for branching commands this timing behaviour is used as input for a unification problem. We use

45

MOBIUS Deliverable D2.3. Report on Type Systems

preserving substitutions to solve this problem and then apply these substitutions to both branches.

Theorem 2.3.7. If V ↪→ V ′ : S can be derived then, firstly, V ′ has secure information flow, secondly,
V ' V ′ holds and thirdly, V ′ uL S holds.

In [104] we also show how to suitably insert meta-variables into given programs before applying the
transforming type system.

This instantiation of our approach results in a security type system that is capable of recognising some
secure programs and of correcting some insecure programs that are rejected by the original type system.
Moreover, the resulting programs are faster and often substantially smaller in size. Another advantage
over the cross-copying technique [4], which constituted the state of the art in this area so far, is that
security policies with more than two levels can be considered. Besides these technical advantages, the use
of unification yields a very natural perspective on the problem of making two programs observationally
equivalent. However, we do not claim that using unification will solve all problems with repairing insecure
programs or that unification would be the only way to achieve the above technical advantages.

Related Work Section 2.1.5 presents related work for security type systems in general and Section 2.2.7
presents related work on security type systems for concurrent programs. In [5, 86] enforcement of tim-
ing sensitive security conditions for Java bytecode is explored. The approach to characterise security for
multithreaded programs in Section 2.3.1 is based on the strong security condition [158]. We already men-
tioned some of the work building on the strong security condition that is not on the level of Java bytecode
[153, 154, 112, 113, 114, 103, 111, 104].

Conclusion The strong security condition is the basis for various concepts in area of language-based
information flow security, for example [153, 114, 103, 104, 111]. Our work is one step in making these results
applicable to bytecode. This especially includes the work on declassification [114, 111], on which we will
look at in MOBIUS Task 2.2. In another direction the combining calculus improves the precision of security
analysis techniques by combining the strengths of existing analysis techniques. In a further direction the
application of unification improves the abilities of security type systems not only the check programs, but
also to correct them.

2.3.2 Types for Distributed Bytecode

The approaches to sequential and concurrent secure information flow described in this chapter so far would
be correct assuming that computation proceeds without errors. Distributed systems (DS) are forms of
computation in the presence of partial failure [126]. Important examples of partial failure are message loss,
site failure, message corruption, and network partition. Typically, timing, error correction and redundancy
are used to deal with partial failure. Because of partial failure, the techniques discussed in previous sections
for guaranteeing secure information need to be augmented: timers for example, seemingly necessary for
detecting and recovering from message failure and site crash, can also be used to mount external timing
attacks [102], a potentially more powerful form of timing attack than the internal timing attack mentioned
in Section 4.3.

As most ubiquitous forms of computing, especially where they use the Internet, have distributed aspects,
an integration of type-based methods for secure information flow with DS is vital. We extend JVMs (see
Section 2.1 above) and CJVMs (concurrent JVMs, i.e. JVMs communicating locally with other JVMs via
shared memory, cf. Section 2.2) with primitives for distribution and typing systems that ensure secure
information flow even in the presence of partial failure. Our extensions for DS are mostly orthogonal to the

46

MOBIUS Deliverable D2.3. Report on Type Systems

techniques developed for JVMs and CJVMs discussed in the rest of this report. This decomposition allows
for modular reasoning about secure information flow in DS. Our work proceeds in the three steps:

• First we extend JVMs with primitives for distribution and remote communication.

• Then we propose a typing system for secure information flow for the distributed JVMs.

• Finally, we add the timers to the system to be able to express more realistic error recovery scenarios.
We adapt the typing system to deal with information leak enabled by timers.

Extending JVMs with Primitives for Distribution

The key mechanism JVMs provide for distributed computation is RMI (remote method invocation), which
organises the call/return sequences involved when invoking a method on an object stored on a remote site.
The objective of RMI is to make remote method invocations look like local invocations as much as possible.
JVMs have no primitives for RMI, instead external libraries are called directly to orchestrate remote method
invocation. This gives us much latitude for modelling RMI.

Our model considers CJVMs running in parallel, communicating by message passing:

[J1] | [J2] | ... | [Jn].

Each [Ji] is called a site, running the CJVM Ji.

There is no general agreement on what kind failure are vital for good models of DS. In addition, the
more complicated the failure model, the harder to reason about the ensuing system. Due to low-level error
correction mechanisms in the underlying message passing mechanisms, some types of failure (e.g. message
corruption) are orders of magnitude more infrequent than others (e.g. message loss). Hence it is not unrea-
sonable to ignore such rare forms of failure. We have chosen to model one important kind of failure, message
loss. Message within one site cannot be lost, only messages travelling between sites. The reason for this
choice is in that it is already rich enough to exhibit the key problems in DS, while still being tractable. In
addition it builds on previous work in this area [37, 36].

Since RMI is just a form of structured message passing, we incorporate it by simply adding channel-
based message passing primitives (sending, receiving and hiding). The possibility of message loss can be
represented straightforwardly in the semantics:

[J] | x〈v〉 | [J ′] → [J] | [J ′] [J] | x〈v〉 | [J ′] → [J] | [x〈v〉|J ′]

Here, x〈v〉 is a message carrying value v to port x. This message could for example travel from [J] to [J ′]
to invoke some object located at J ′. The reduction step on the left simply drops this output, while that on
the right lets the output reach its destination site. Within sites such message loss is not permitted. Hence
sites feature only as units of (lack of) message loss.

The details of the formulation of RMI can be found in [6, 66], but one noteworthy feature of the approach
in these works is that the detection of message loss is implicit, i.e. the invoker reaches an error-state without
possibility of recovery. We call the resulting model DJVMs (distributed JVMs).

Secure Information Flow for DJVMs

The definition of secure information flow (SIF) and the development of a typing system for guaranteeing
non-interference (NI) proceeds by technology transfer from the π-calculus: in [92] a comprehensive security

47

MOBIUS Deliverable D2.3. Report on Type Systems

annotated linear/affine typing structure was developed, together with notions of SIF and NI. This was
extended in [178] where typed bisimulation was studied, a powerful proof technique for obtaining NI-results.
We used these works for obtaining typing disciplines for JVMs and CJVMs. This is possible because low-
level languages with shared memory concurrency such as these two, and also others like the λµ-calculus
have direct and precise embeddings into (a minor variant of) the linear/affine π-calculus [93]. Moreover,
there is a precise correspondence between assembler languages and a sequential fragment of the linear/affine
π-calculus [38]. The only essential difference between our approach and that discussed in Section 2.2 is that
we do not currently consider thread-scheduling, relying on non-determinism instead. The reason for this
choice is to simplify the typing system. We believe that the technique detailed in Section 2.2 for scheduling
are applicable in our case as well, but leave this for future work.

In recent work [39] we extended the linear/affine typing discipline to a distributed π-calculus. The
extension centred on the idea that linear channels are used in local communication (because they are
guaranteed to be used exactly once). In remote communication one uses affine channels instead, with an
at-most-once semantics. Linear channels cannot be used remotely due to message loss which is incompatible
with the exactly-once semantics of linearity. This correspondence is precise and neither types needs to be
added, nor typing rules changed when moving to distribution. It also gives a typing discipline for DJVMs
that guarantees NI as a corresponding extension to the scheme described in Section 2.3.2.

This approach to SIF in DJVMs is also pleasing because it leads to a clean division of labour: to check
that [J1] | [J2] | ... | [Jn] is non-interfering, one checks that each CJVM Ji is locally non-interfering (under
the assumption that all remote communication is non-interfering). Orthogonally, one checks that all the
distributed communication is non-interfering, assuming that there is no local information leak. Under some
mild side-conditions, that means the overall system is non-interfering.

Secure Information Flow for DJWMs with Timing

In a last step we made DJVMs more realistic by adding an explicit recovery mechanism from message loss
[39]. Like in real systems this is achieved by way of timing: when we send a remote message, we start a
timer. If the reply does not arrive within some expected time-frame, we assume the invocation message or
the corresponding reply to have been lost. In that case a repeat invocation may be attempted, or some other
recovery mechanism thank, like informing a user that the requested remote resource is currently unavailable.
Adding timers causes two complications: (1) timers must be typed, and (2) timers allow powerful timing
attacks [102] which are not possible without timers. For typing, we consider timers as converters of affine
channels into linear channels. The idea is that a timer waits on some channel for a remote message that
may or may not arrive. If it arrives, the local computation receives a message on x exactly once, reconciling
local linearity with remote affine communication.

To achieve SIF in the presence of timers, the techniques of §2.2 are not applicable because timers allow
more powerful information leaks than those considered in the work just cited. In addition, DS lack an explicit
scheduler that can be asked or assumed to refrain certain threads from being activated at critical moments
which is how Section 2.2 prevents internal timing leaks. Instead we follow Agat [4] and pad conditionals
branching on high data.

Integration with and Extension from CJVM

Our work is intended to integrate with other Mobius projects, in particular that of Section 2.2, which
decomposes the SIF of a shared-memory multithreaded language like the CJVM into two parts: (1) the SIF
of the sequential part of a programming language, and (2) a security-preserving compilation for enforcing
multithreaded SIF. This is achieved by putting suitable constraints on schedulers to prevent internal timing

48

MOBIUS Deliverable D2.3. Report on Type Systems

leaks. Our proposals fit well into this scheme because our typing system provides a modular decomposition
into distributed and concurrent features using typed timers that guarantee local liveness in the presence of
potentially faulty remote communication.

An important area for improvement of our system is to consider more complicated failure models, such as
message duplication, site failure and message corruption. It is likely that our approach generalises naturally
to message duplication and site failure. However, message corruption undermines our type-based approach
and needs other tools. We believe that a cryptography based approach like that of [52, 2] is feasible, where all
remote communication is encrypted (formalised using Dolev-Yao style black-box cryptography [3]), and all
carries typing information, also encrypted. Upon decryption, typing is checked dynamically, to ensure local
type soundness. Finally, alternative techniques for preventing external timing attacks should be explored,
since Agat’s method leads to a marked reduction in program speed and is powerless against cache-based
timing attacks [140].

49

MOBIUS Deliverable D2.3. Report on Type Systems

Chapter 3

Types for Basic Resource Policies

This chapter presents different type systems and static analyses developed in the context of the MOBIUS
project for inferring resource consumption. In Section 3.1, a type system is presented that bounds the
amount of heap space consumed by bytecode programs. Similar to earlier work by Cachera et al. [53],
loops are required not to contain heap allocating code. The type system is formally related to the MOBIUS
base logic. Sections 3.2 and 3.3 present type systems for regulating access to external resources that are
available via API calls. Given that the external resources cannot directly be modeled by means of cost
models associating fixed costs to individual instructions, both type systems arise as static approximations
for policies that could also be dynamically enforced, by execution monitoring. Section 3.2 considers the
acquisition of access permissions and ensures that the program will never attempt to access a resource for
which it does not have the right permissions. Extending the current programming model for MIDP, the
system allows multiple permissions to be acquired in a single authorisation step. Section 3.3 proposes the
notion of a resource manager, a programming abstraction (compatible with MIDP 2.0) enforcing policy-
respecting usage of external resources at run-time. Again, the type system ensures that no dynamic checks
are required. Finally, Section 3.4 presents a generic framework for the automatic cost analysis of sequential
Java bytecode. The output of analysis is a set of cost relations which capture, at compile-time, the resource
consumption of bytecode programs as a function of their input data size. The framework is parametric and
can be used for different resource policies, including execution steps (complexity), memory consumption,
external resources, etc. The proposed analysis has been implemented and is herein applied to reason about
the complexity of several bytecode programs.

3.1 Heap consumption

In this section, we present a type system that ensures a constant bound on the heap consumption of bytecode
programs. The type system is formally justified by a soundness proof with respect to the MOBIUS base
logic, and may serve as the target formalism for type-transforming compilers.

The requirement imposed on programs is similar to that of the analysis presented by Cachera et. al. in
[53] in that recursive program structures are denied the facility to allocate memory. However, our analysis
is presented as a type system while the analysis presented in [53] is phrased as an abstract interpretation.
In addition, Cachera et. al.’s approach involves the formalisation of the calculation of the program repre-
sentation (control flow graph) and of the inference algorithm (fixed point iteration) in the theorem prover.
In contrast, our presentation separates the algorithmic issues (type inference and checking) from semantic
issues (the property expressed or guaranteed) as is typical for a type-based formulation. Depending on the
verification infrastructure available at the code consumer side, the PCC certificate may either consist of

50

MOBIUS Deliverable D2.3. Report on Type Systems

(a digest of) the typing derivation or an expansion of the interpretation of the typing judgments into the
MOBIUS logic. The latter approach was employed in our earlier work [41] and consists of understanding
typing judgments as derived proof rules in the program logic and using syntax-directed proof tactics to
apply the rules in an automatic fashion. In contrast to [41], however, the interpretation given in the present
section extends to non-terminating computations, albeit for a far simpler type system.

Having proved the typing rules sound w.r.t. a formal interpretation of the typing judgments in the base
logic, we outline a connection to a simple first-order functional intermediate language. As MOBIUS targets
compilation from Java, the use of a functional language may not immediately be required. However, it is well-
known that highly impoverished functional languages (eg. without higher-order functions or polymorphism)
are closely related to intermediate representations routinely employed in compilers for imperative and object-
oriented lanuages [18]. Thus the work presented may be seen as an initial study towards demonstrating that
the style of the bytecode-level type system is suited to serve as the target of a proof-transforming compiler,
in preparation of work carried out in WP4. We prove that code resulting from compiling programs written
in this language into bytecode satisfies the bound asserted by a high-level type system: derivability in
the intermediate-level type system guarantees derivability in the bytecode level type system. The whole
presentation is based on a formalization done in Coq , for the MOBIUS program logic. More precisely, we
consider the same JVM fragment as in the MOBIUS base logic, i.e. consider method invocations, object
creation and manipulation, handling and throwing exceptions etc.

Bytecode-level type system Following the notation used in the exposition of the MOBIUS logic, we
consider an arbitrary but fixed bytecode program P that assigns to each method identifier a method im-
plementation. Method identifiers m are pairs m = (C,M) consisting of a class name and a method name.
Program points pc = m, l consist of a method identifier m and an instruction label l. We use P (pc) to
denote the instruction at program point pc in P , and m ∈ domP to denote the fact that P provides an
implementation for m. The initial label of the implementation of m is denoted by initm, while sucm(l)
denotes the successor instruction of instruction l in m.

The type system consists of judgments of the form b `Σ,Λ pc : n, expressing that the segment of bytecode
whose initial instruction is located at pc is guaranteed not to allocate more than n memory cells. Here,
signatures Σ and Λ assign types (natural numbers n) to identifiers of methods and bytecode instructions(in
particular, when those are part of a loop), respectively. The boolean b which parametrises the rules is there
to control if the assertions attached to instruction by the specification table Λ can be used as assumptions
or not. This allows for properly using loop invariant information in unstructured code 1.

The rules are presented in Figure 3.1. The first rule, C-New, asserts that the memory consumption of
a code fragment whose first instruction is New C is the increment of the remaining code. All instruction
directed rules can be applied if the boolean parameter is ff. Rule C-Instr applies to all basic instructions
(in the case of Goto l′ we take sucm(l) to be l′), except for New C – the predicate basic(m, l) is defined as

basic(m, l) ≡ P (m, l) ∈
{

Iload x, Istore x, . . .Const t z, Ibinop o, . . . ,New C,
Getfield F,Putfield F,Getstatic F,Putstatic F, . . . ,Athrow

}
.

in [124]. The memory effect of these instructions is zero, as is the case for return instructions, conditionals,
and (static) method invocations in the case of normal termination. For exceptional termination, we require
that the memory consumed after the instruction has thrown an exception is smaller with one memory unit.
This is because when instructions which may throw runtime exceptions (such as Getfield, Putfield) throw
such exception cause the creation of the exception object that is thrown. The rule C-assum allows for using

1One could actually formulate the type system without the use of the boolean parameter but has to orient the type system
from current instructions to previous instructions. But in order to be in compliance with the format of the MOBIUS base logic,
we prefer such formulation

51

MOBIUS Deliverable D2.3. Report on Type Systems

C-New
n ≥ 1 P (m, l) = New C tt `Σ,Λ m, sucm(l) : n− 1

ff `Σ,Λ m, l : n

C-Instr

n ≥ 1 basic(m, l) ¬P (m, l) = New C
tt `Σ,Λ m, sucm(l) : n ∀l′, lookup handlers(l, l′)⇒ tt `Σ,Λ m, l′ : n− 1

ff `Σ,Λ m, l : n

C-Ret
P (m, l) = Return

ff `Σ,Λ m, l : 0
C-If

n ≥ 0 P (m, l) = If0 l′ tt `Σ,Λ m, l′ : n tt `Σ,Λ m, sucm(l) : n

ff `Σ,Λ m, l : n

C-Invs

n ≥ 0 k ≥ 0
P (m, l) = Invokestatic m′ Σ(m′) = k
m′ ∈ domP tt `Σ,Λ m, sucm(l) : n

∀l′, lookup handlers(l, l′)⇒ tt `Σ,Λ m, l′ : n− 1

ff `Σ,Λ m, l : n+ k
C-Invv

n ≥ 1 k ≥ 0
P (m, l) = Invokevirtual m′ Σ(m′) = k
m′ ∈ domP tt `Σ,Λ m, sucm(l) : n

∀l′, lookup handlers(l, l′)⇒ tt `Σ,Λ m, l′ : n− 1

ff `Σ,Λ m, l : n+ k

C-Sub
b `Σ,Λ pc : n n ≤ k

b `Σ,Λ pc : k
C-switch

ff `Σ,Λ pc : n

tt `Σ,Λ pc : n
C-assum

Λ(pc) = n

tt `Σ,Λ pc : n

Figure 3.1: Derived proof rules for heap logic

the annotation attached to the instruction if it matches the type of the instruction. Note that in order to
apply the rule the judgement to be proven must be parametrised with tt. Rule C-switch switches from
an assumption mode (that is necessary if we do not have an assumption attached to an instruction as we
would not be able to apply C-assum) to a mode where the instruction rules may be applied.

We call P well-typed for Σ, notation `Σ P , if for all m and n, Σ(m) = n and specification table Λ for
m implies ff `Σ,Λ m, initm : n and for all points pc in the bytecode representing the body of m such that
Λ(pc) = k we have a derivation ff `Σ,Λ pc : k.

Short summary of the MOBIUS logic Before outlining the interpretation of the type system, we briefly
recapitulate the specification and verification structure of the MOBIUS logic. A more detailed exposition
may be found in [124]. The global specification structure of a program P consists of a method specification
table M, that contains for each method identifier m in P

• a method specification S = (R, T,Φ), comprising a precondition R, a postcondition T , and a method
invariants Φ,

• a local specification table G, i.e. a context of local proof assumptions, and

• a local annotation table Q that collects the (optional) assertions associated with labels in m.

An entry M(m) = ((R, T,Φ),G,Q) is to be understood as follows. The tuple (R, T) represents a partial-
correctness specification, i.e. the postcondition T (s0, t) is expected to hold whenever an execution of m
with initial state s0 that satisfies R(s0) terminates, where t is the final state. The tuple (R,Φ) represents
a method invariant, i.e. the assertion Φ(s0, s) is expected to hold for any state s that arises during the
(terminating or non-terminating) execution of m with initial state s0 satisfying R(s0). The annotation table
Q is a finite partial map from labels occurring in m to assertions Q(s0, s). If label l is annotated by Q, then
Q(s0, s) will be expected to hold for any state s encountered at program point (m, l) during a terminating
or non-terminating execution of m with initial state s0 satisfying R(s0). Finally, the proof context G collects
proof assumptions that may be used during the verification of the method. It consists of a finite partial map

52

MOBIUS Deliverable D2.3. Report on Type Systems

from labels in m to the components (A,B, I) of local proof judgements G,Q, b ` {A} pc {B} (I) parametrised
with a boolean value b which indicates if the assertions in G can be used as assumptions in the proof in
the same way as in the type system. In the following, we shall omit the boolean parameter for the sake of
clarity.

The verification of bytecode phrases uses local judgements of the form G,Q ` {A} pc {B} (I). Here,

1. A is a (local) precondition, i.e. a predicate A(s0, s) that relates the state s at program point pc (i.e. the
state prior to executing the instruction at that program point) to the initial state s0 of the current
method invocation,

2. B is a (local) postcondition, i.e. a predicate B(s0, s, t) that relates the state s at pc to the initial state
s0 and the final state t of the current method invocation, provided the execution of the current method
invocation terminates,s

3. I is a (local) invariant, i.e. a predicate I(s0, s,H) that relates the state s at pc to the initial state s0

of the current method invocation and the heap component H of any future state encountered during
the continued execution of the current method, including those arising in sub-frames.

4. G is the proof context which may be used to store recursive proof assumptions, as needed e.g. for the
verification of loops.

Additionally, if pc = (m, l) and Q(l) = Q, then the judgement G,Q ` {A} pc {B} (I) implicitly also mandates
that Q(s0, s) holds for all states s encountered at l, where s0 is as before.

The verification task for full programs consists of showing that M is justified. For each entry M(m) =
(S,G,Q), we need to show that:

1. The body bm of m satisfies the method specification. This amounts to deriving the judgement G,Q `
{A0}m, initm {B0} (I0) where the assertion A0, B0, and I0 are obtained by converting the method
specification S into the format suitable for the local proof judgement.

2. All entries in the proof context G are justified.

3. The specification table M satisfies the behavioural subtyping condition, i.e. the specification of an
overriding method implies the specification of the overridden method.

Together, these conditions form the verified-program property, which we denote by M ` P .

Interpretation of the type system The interpretation for the above type system is now obtained by
defining for each number n a triple JnK = (A,B, I) consisting of a precondition A, a postcondition B, and
an invariant I, as follows.

JnK ≡

 λ (s0, s). True,
λ (s0, s, t). |heap(t)| ≤ |heap(s)|+ n,
λ (s0, s,H). |H| ≤ |heap(s)|+ n

Here, |H| denotes the size of heap H. We specialise the main judgement form of the bytecode logic to

G,Q ` pc {n} ≡ let (A,B, I) = JnK in G,Q ` {A} pc {B} (I).

53

MOBIUS Deliverable D2.3. Report on Type Systems

By the soundness of the MOBIUS logic, the derivability of a judgement G,Q ` pc {n} guarantees that
executing the code located at pc will not allocate more that n items, in terminating (postcondition B) and
non-terminating (invariant I) cases. For (A,B, I) = JnK we also define the method specification

Spec n ≡ (λ s0. True, λ (s0, t). B(s0, state(s0), t), λ (s0, H). I(s0, state(s0), H)).

Finally, we say that M satisfies Σ, notation M |= Σ, if for all methods m provided with a specification
table Λ and a natural number n, such that Σ(m) = n and for all instructions pc in m Λ(pc) = k holds
exactly if M(m) = (Spec n,Spec Λ, ∅). Thus, we require annotation tables Q to be empty.

We can now prove the soundness of the typing rules with respect to this interpretation. By induction
on the typing rules, we first show that the interpretation of a typing judgement is derivable in the logic.

Proposition 3.1.1. Let method m be such that M |= Σ, m ∈ domΣ and m is provided with specification
table Λ such that b `Σ,Λ m, l : n. Then ∅,Λ ` {m, l} n.

Based on this result, the fact that the behavioural subtyping condition trivial due to the absence of
virtual methods, and the fact that proof context are empty, it is easy to see that well-typed programs satisfy
the verified-program property:

Theorem 3.1.2. Let M |= Σ and `Σ P . Then M ` P .

Implementation in Coq We have implemented the type systems in terms of the Coq implementation of
the Mobius base logic. The implementation of the type system effort consists in around 1220 lines in Coq ,
it contains 11 lemmas which show that the rules of the type system are derivable in the MOBIUS base logic.

In particular, the implementation provides a rule for every group of instructions with similar behavior.
We illustrate this by two excerpts from the implementation - the rule for basic instructions and static
method calls. The following rule treats all the basic instructions (basic instructions in the sense of MOBIUS
formalization are defined as all instructions except method calls, return instruction and jump instructions)
except for instance creation. The rule imposes several structural restrictions on the format of the specification
and annotation. The first condition (isMethSpecTableDerivedAss ME) requires that all method specifications
must be of the interpretation of the type format of the type system as shown in the previous paragraph.
In order to fit the format of type system, the derived rule requires that there are no internal specifications
to be proven (LAT Assertion) = (PCM.empty Assertion). Finally, annotations (assertions for helping the
proof) must be also of the format used by the type system (isLSTDerivedAss LST). The next conditions
restrict the application of the rule only to basic instructions (isBasicInstr M I) different from instance
creation (not (isNewInstr M I)). The rest of the conditions coincide with the condition of the type system,
i.e. the executions starting from the next instruction uses as much memory as the executions starting from
the current instructions. Because of the semantics of throwing a runtime exception, the executions from
the exception handler instructions consume at most one object less than the executions from the current
instruction.

Lemma derivableBASIC : ∀ (P :Program) (I :PC) (n:Z) (M :Method) ME LST LAT,
(isMethSpecTableDerivedAss ME) →
(LAT Assertion) = (PCM.empty Assertion)→
isLSTDerivedAss LST →
isBasicInstr M I →
not (isNewInstr M I) →
1 ≤ n →
(∀ II, next M I = Some II →

54

MOBIUS Deliverable D2.3. Report on Type Systems

SP Judgement P ME M LST (LAT Assertion) true II (derivedLocalPre n) (derivedLocalPost n)
(derivedStrongInv n)) →

(∀ II e bm,
METHOD.body M = Some bm →
lookup handlers P (BYTECODEMETHOD.exceptionHandlers bm) I e II →
SP Judgement P ME M LST (LAT Assertion) true II
(derivedLocalPre (n-1)) (derivedLocalPost(n-1)) (derivedStrongInv (n - 1))) →

SP Judgement P ME M LST (LAT Assertion) false I (derivedLocalPre n)(derivedLocalPost n)
(derivedStrongInv n).
The rule for static methods also requires restrictions on the format of assertions as in the above case.

Moreover, it requires that the method specification of the invoked method is of the expected form (interpre-
tation of the type). The rule requires that the successor instruction consumes at most n memory cells. The
executions from instructions at which a possible exception handler for the method call starts must consume
at most n - 1 memory cells.

Lemma derivableINVS : ∀ (P :Program) (I :PC)(msig :MethodSignature)(k n:Z)(M MM :Method)
ME LST LAT (LS :Logic.LocalSpecTable) (LA:LocalAnnoTable) (Nargs :nat),

isMethSpecTableDerivedAss ME →
LAT = (PCM.empty Assertion) →
isLSTDerivedAss LST →
instructionAt M I = Some(Invokestatic msig) →
findMethod P msig = Some MM →
METHOD.isNative MM = false →
Nargs = length (METHODSIGNATURE.parameters (snd msig)) →
MSPEC LOOKUP ME msig =
Some (((((fun s0 : InitState ⇒ True),,

(fun s0 s ⇒ heapSize (getHeapR s)- heapSize (getHeapI s0) ≤ k)),,
(fun s0 s ⇒ heapSize (getHeapL s) - heapSize (getHeapI s0) ≤ k)),,LS),,LA) →

0 ≤ n →
0 ≤ k →
(∀ ll, next M I = Some ll →

SP Judgement P ME M LST LAT true ll
(derivedLocalPre n) (derivedLocalPost n) (derivedStrongInv n)) →

(∀ ll e bm,
METHOD.body M = Some bm →
lookup handlers P (BYTECODEMETHOD.exceptionHandlers bm) I e ll →
SP Judgement P ME M LST LAT true ll (derivedLocalPre n -1) (derivedLocalPost n -1)
(derivedStrongInv n - 1)) →

SP Judgement P ME M LST LAT false I (derivedLocalPre (n + k)) (derivedLocalPost (n + k))
(derivedStrongInv (n + k)) .

Example To illustrate how a derivation in the type system will work, we consider the following simple
Java program:

public class A {

int val;

A next;

55

MOBIUS Deliverable D2.3. Report on Type Systems

A containsVal(A list) {

while (list.next != null) {

if (list.val == val) {

return list;

}

list = list.next;

}

return new A();

}

}

The class A is an implementation of a list data structure, where the value of a single node is stored in
the field val and the pointer to the next element in the list is the field next. The class is provided with a
simple method m which iterates over the argument list object and if it contains an element with value val it
returns the rest of the argument list. If no element in the argument list is equal to the integer value val

the method returns a new list. Note that the loop statement in the method implementation dereferences
(e.g. list.next = val!) the argument fields which may potentially throw a runtime exception of type
NullPointerException if the dereferenced object reference is null. As we said previously, raising a runtime
exception by the Java Virtual Machine is related to a creation of a new instance object of the respective
exception type. The other source of memory consumption is the instance creation of a new list.

One could notice that method containsVal consumes at most one memory unit - if a null reference is
dereferenced this triggers an exception and thus, one memory unit is consumed and the method terminates
abruptly execution. If no exception is thrown (no memory used by the exception mechanism) during the
loop execution, then the rest of the program execution will consume one memory unit. In both of the cases
- normal or abrupt termination, the program will consume one memory unit. However, the type system can
infer successfully that the method containsVal consumes not more than two memory units during any
of its executions. This is an over-approximation, due to the fact that the type system is not “aware” if a
reference is null or not.

For verifying the example program with the Coq implementation of the derived logical rules for the
type system we used the Bico tool which allows for converting Java class files into the Mobius formalization
Bicolano of Java bytecode programs which is as follows:

Definition mInstructions : MapN.t (Instruction×option PC) :=
(bc cons 0%N (Vload Aval 1%N) 1%N
(bc cons 1%N (Getfield ASignature.nextFieldSignature) 4%N
(bc cons 4%N (Ifnull EqRef 28%Z) 7%N
(bc cons 7%N (Vload Aval 1%N) 8%N
(bc cons 8%N (Getfield ASignature.nextFieldSignature) 11%N
(bc cons 11%N (Vload Aval 0%N) 12%N
(bc cons 12%N (Getfield ASignature.valFieldSignature) 15%N
(bc cons 15%N (If icmp EqInt 20%N) 18%N
(bc cons 18%N (Vload Aval 1%N) 19%N
(bc cons 19%N (Vreturn Aval)
(bc cons 20%N (Vload Aval 1%N) 21%N
(bc cons 21%N (Getfield ASignature.nextFieldSignature) 24%N
(bc cons 24%N (Vstore Aval 1%N) 25%N
(bc cons 25%N (Goto (-25)%Z) 28%N
(bc cons 28%N (New AType.className) 31%N
(bc cons 31%N (Dup) 32%N
(bc cons 32%N (Invokevirtual ASignature. init Signature) 35%N
(bc single 35%N (Vreturn Aval))))))))))))))))))).

56

MOBIUS Deliverable D2.3. Report on Type Systems

The method containsVaInstructions is given the following specification. First the precondition of the
method is True:

Definition preconditionContainsVal := fun (s0 : InitState) ⇒ True.
The postcondition states that the method execution is not consuming more than two memory units:

Definition postconditionContainsVal :=
fun (s0 : InitState) (s :ReturnState) ⇒

heapSize (getHeapR s) - heapSize (getHeapI s0) ≤ 2.

The method strong invariants states at every reachable state of the method execution the memory
consumed so far is not greater than two memory units: Definition strongInvariantContainsVal :=

fun (s0 : InitState) (s :LocalState) ⇒
heapSize (getHeapL s) - heapSize (getHeapI s0) ≤ 2.

We thus construct an object of type MethSpec which represents the method contract of SpecContainsVal:
Definition methodSpecContainsVal : MethSpec :=

((preconditionContainsVal,,postconditionContainsVal),, strongInvariantContainsVal).

In order to conform to the format of the type assertions the localAnnotTableContainsVal should be
empty:

Definition localAnnotTableContainsVal := PCM.empty Assertion.

The specification table for the method contains information for the property that must hold every time
the loop entry instruction 0 is reached. The loop invariant states, that at this point the memory consumed
so far is 2. Note that a stronger invariant holds here, namely that the memory consumed so far is 0 but the
invariant that we chose is sufficient for the proof:

Definition locSpecM : LocalSpecTable :=
PCM.update

(PCM.empty)
0%N
((derivedLocalPre 2,,derivedLocalPost 2),, derivedStrongInv 2).

Finally, we construct the Coq specification object of the method as follows:

Definition specM : (MethSpec ** LocalSpecTable ** LocalAnnoTable) :=
((methodSpecM,, locSpecM),, localAnnotTableM).

Finally, the lemma that we want to proof about our program is the following:

Lemma :
SP Judgement program program spec A.mMethod

locSpecM localAnnotTableM false 0%N (derivedLocalPre 2) (derivedLocalPost 2) (derivedStrongInv 2).
The proof of this lemma contains around 600 Coq commands. The proof basically follows the type

derivation. The logical rules used are the derived type rules and the rest are applications of the Coq
reduction tactics compute and simpl and the resolution tactic auto. The proof is routine and one can
identify patterns for a single instructions which can allow for the automatic generation of a Coq proof from
a type derivation.

Discussion As the example illustrates, the type system makes an overestimation for the memory con-
sumption of a program. To deal with this a possibility is to combine the type system with a NullPointer
analysis for instance. For this, we should specialise the proof rules for instructions which might throw a
NullPointer exception. If we can assert that an instruction which dereferences a reference will always deal
with a non null reference we may use a weaker typing rule. For instance, there will be two rules for a getfield

57

MOBIUS Deliverable D2.3. Report on Type Systems

T-int
Σ � i : 0

TP-un
Σ � uop u x : 0

TP-bin
Σ � bop o x y : 0

TP-nil
Σ � Nil : 0

T-cons
Σ � Cons(x, y) : 1

T-call
Σ(m) = n

Σ �m(x) : n

T-prim
Σ � p : n

Σ � prim p : n
T-let

Σ � p : n Σ � e : k

Σ � let x = p in e : n+ k
T-sub

Σ � e : k k ≤ n
Σ � e : n

T-cond
Σ � e1 : n Σ � e2 : n

Σ � if x then e1 else e2 : n
T-case

Σ � e1 : n Σ � e2 : n

Σ � case x of Nil⇒ e1 | Cons(x, y) ⇒ e2 : n

Figure 3.2: High-level typing rules

instruction, one where we have that the NullPointer analysis refNotNull shows that the dereferenced object
is always different from null:

C-Getfld1
getField(m, l) refNotNull(m, l) tt `Σ,Λ m, sucm(l) : n

ff `Σ,Λ m, l : n

and the other one, when the NullPointerAnalysis cannot infer such information would resemble the
original rule that we saw before for basic instructions:

C-Getfld2
n ≥ 1 getField(m, l) tt `Σ,Λ m, sucm(l) : n ∀l′, lookup handlers(l, l′)⇒ tt `Σ,Λ m, l

′ : n− 1

ff `Σ,Λ m, l : n

We can also work out a special rule for basic instructions that can or not throw a Runtime exception. For
instance, if we specialise a rule for the instructions that do not throw runtime exceptions (such as load,
store, dup) would look as follows:

C-noRTE
tt `Σ,Λ m, sucm(l) : n noExceptionInstr(m, l)

ff `Σ,Λ m, l : n

This allows not to consider the exceptional case for instructions whose semantics makes them always
terminate normally.

Intermediate-level type system We consider a functional language that is suitably restricted to serve
as an intermediate code representation, similar to the one presented in [17]. The syntax is stratified into
primitive expressions and general expressions similar to the A-normal form discipline [80]. We include
primitives for constructing empty and non-empty lists and a case expression former for deconstructing lists
– other algebraic data types could be included in a similar way. In order to simplify the translation into
bytecode, we employ bytecode-level method identifiers m as function names. Functions are restricted to
have only a single formal parameter.

P 3 p ::= i | uop u x | bop o x y | Nil | Cons(x, y) | m(x)

E 3 e ::= prim p | let x = p in e | if x then e else e | (case x of Nil⇒ e | Cons(x, y) ⇒ e)

A program F consists of a collection of function declarations in the standard way, i.e. for function name m,
the declaration F (m) = (x, e) consists of an expression e with at most the free variable x.

Figure 3.2 presents the rules for a type system with judgements of the form Σ � p : n and Σ � e : n. As
before, signatures Σ map function identifiers to types n. Apart from the construction of a non-empty list
and function calls, all primitive expressions have the trivial type 0. This includes Nil which is compiled to
a null reference. Intuitively, the types play the same role as at the low level n, i.e. a typing Σ � e : n is
intended to represent the fact that the evaluation of e consumes no more than n allocations, provided any
function f evaluated en route conforms to its specification in Σ. In particular, recursive functions will only
be typeable for type 0.

58

MOBIUS Deliverable D2.3. Report on Type Systems

JiKCl = (C[l 7→ const i], l + 1)

Juop u xKCl = (C[l 7→ load x, l + 1 7→ unop u], l + 2)

Jbop o x yKCl = ([l 7→ load x, l + 1 7→ load y, l + 2 7→ binop o], l + 3)

JNilKCl = (C[l 7→ const Null], l + 1)

JCons(x, y)KCl = (C

l 7→ load y, l + 1 7→ load x, l + 2 7→ new LIST,
l + 3 7→ store t, l + 4 7→ load t,
l + 5 7→ putfield LIST HD, l + 6 7→ load t,
l + 7 7→ putfield LIST TL, l + 8 7→ load t

 , l + 9)

Jm(x)KCl = (C[l 7→ load x, l + 1 7→ Invokestatic m], l + 2)

Jprim pKCl = let (C1, l1) = JpKCl in (C1[l1 7→ Return], l1 + 1)

Jlet x = p in eKCl = let (C1, l1) = JpKCl , (C2, l2) = (C1[l1 7→ store x], l1 + 1)

in JeKC2

l2

Jif x then e1 else e2KCl = let (CE , l2) = Je2KCl+2, (CT , l1) = Je1KCE

l2
in (CT [l 7→ load x, l + 1 7→ If0 l2], l1)

u

v
case x of

Nil⇒ e1

| Cons(x, y) ⇒ e2

}

~

C

l

= let (CC , lN) = Je2KCl+9, (CN , l1) = Je1KCC

lN
in

(CN

l 7→ load x, l + 1 7→ unop (λ v. v = Nullref),
l + 2 7→ If0 lN , l + 3 7→ Load x,
l + 4 7→ Getfield LIST HD, l + 5 7→ Store h,
l + 6 7→ Load x, l + 7 7→ Getfield LIST TL,
l + 8 7→ Store t

 , l1)

Figure 3.3: Translation into bytecode

Definition 3.1.3. Program F is well-typed w.r.t. signature Σ, notation Σ � F , if domΣ = domF and for
all m, e and x, F (m) = (x, e) implies Σ � e : Σ(m).

Figure 3.3 defines a compilation JeKCl into the bytecode language. The translation is defined using an
auxiliary compilation function JpKCl for primitive expressions. In both cases, the result (C ′, l′) extends the
code fragment C by a code block starting at l such that l′ is the next free label. Primitive expressions leave
an item on the operand stack while proper expressions translate into method suffixes.

We write P = JF K if P contains precisely the translations of the function declarations in F , i.e. for all

m, x, and e we have F (m) = (x, e) precisely if m ∈ domP and the implementation P (m) is (JeK[]
l , initm).

Type soundness for primitive expressions justifies the high-level typing judgements by showing the deriv-
ability of suitable low-level judgements for the compiled code. It shows that an execution commencing at
l satisfies the bound that is obtained by adding the costs for the subject expression to the costs for the
program continuation.

Proposition 3.1.4. If Σ � p : n, JpKCl = (C1, l1), domΣ ⊆ domP , and b `Σ,Λ m, l1 : k, then b `Σ,Λ m, l :
n+ k.

For proper expressions, the soundness result does not mention program continuations, since expressions
compile to code blocks that terminate with a method return.

Proposition 3.1.5. If Σ � e : n, domΣ ⊆ domP , and JeKCl = (C1, l1), then b `Σ,Λ m, l : n.

Both results are easily proven by induction on the typing judgement. We thus have that well-typed
high-level programs yield well-typed bytecode programs.

Proposition 3.1.6. If Σ � F and P = JF K then `Σ P .

Combining this result with Theorem 3.1.2 yields the final soundness result.

Theorem 3.1.7. If Σ � F , P = JF K and M |= Σ, then M ` P .

59

MOBIUS Deliverable D2.3. Report on Type Systems

Discussion on the style of the soundness proof In this section, we presented a bytecode-level type
system with a formalised soundness proof with respect to the MOBIUS program logic, and a translation
from a high-level type system into the bytecode level formalism. Together, these results yield a soundness
proof for the high-level type system with respect to a particular compilation strategy.

Traditionally, soundness proofs of type systems have often been performed purely on the high language
level, i.e. w.r.t. an operational semantics for the functional language. Usually, the soundness proof is then
performed by induction on the syntax or the typing rules (subject-reduction), possibly aided by substitution
lemmas. In the context of MOBIUS however, such a syntactic proof is unsatisfactory, for two reasons:

1. it results in a way to certify the behaviour of transmitted bytecode only if the compilation from
the functional language into bytecode is trusted or certified. In the case of intensional properties
such as memory consumption, a soundness result for the compilation function would have to include
a (formalised/trusted) proof that the allocation annotations in the high-level type system correctly
describe the memory allocations performed by the JVM

2. depending on the style of operational semantics (big-step evaluation relation vs. small-step reductions),
high-level soundness results often do not apply to non-terminating executions, even if these are covered
by intermediate auxiliary lemmas or stronger proof invariants.

For these reasons, we argue that in the context of the MOBIUS project, purely syntactic soundness results are
insufficient. The proof as presented above avoids the definition of an operational semantics at the functional
language level, but contains a formalised translation. In previous work [41] we have explored a further
alternative which avoids the formalisation of the compilation function J.K. In this approach, interpretations
of high-level typing judgements are directly derived in the program logic for code segments that correspond
to the high-level expression formers. This derived-proof-rules-approach is closely related to the approach
presented in the present document: it replaces the formulation of the low-level type system as a set of
inductive proof rules by a set of derived lemmas whose justifications are identical to the soundness proofs
of the low-level typing rules. Thus, no formal relationship between the two language levels needs to be
established – in fact, no type judgements need to be represented explicitly in the theorem prover, as the
specialised proof rules only operate on their interpretations. As was demonstrated in [41], this alternative
approach may be applied for more complex type systems that involve sharing constraints and memory reuse,
provided that the interpretations are sufficiently strong. The omission of the high-level operational model
and the language translation from the trusted code base represents an improvement w.r.t. formalisation
effort and manageability of the TCB. Compared to the abstract interpretation approach presented in [53],
our approach avoids the calculation of the control flow graph, the (admittedly reusable) representation of
the abstract-interpretation framework, and the inference mechanism from the TCB.

3.2 Permission analysis

Beyond the computational resources of memory space and CPU time, MOBIUS Deliverable 1.1 [123] identifies
a number of other resources worth statically bounding on connected mobile devices, e.g., mobile phones.
Among these resources are “billable events” such as initiating a phone call or sending a text message.
That is, unlike for the computational resources the cost of these external resources is not defined via a
computational cost model where each instruction costs, and where the total cost of a program execution
does not depend much on the cost of a single instruction execution. Rather, the cost of external resources is
defined by external, non-computational entities, e.g., the business model of the phone operator, and the cost
of a program execution may well strongly depend on the cost of few or even a single instruction execution.

In order to access external resources, a MIDlet has to call the respective MIDP API methods. The
current MIDP security model protects each resource access by user interaction as all API methods accessing
a resource must pop up a confirmation screen, which makes midlets soft targets for social engineering attacks
(see [123] paragraph 3.3.1). Reducing the number of user interactions (as advocated in the resource scenarios

60

MOBIUS Deliverable D2.3. Report on Type Systems

in subsection 5.2 of [123]) would reduce the social engineering threat but does not comply with the current
MIDP security architecture.

INRIA develops an enhanced security model which improves on the current MIDP architecture. (A
paper based on this work was published at the ESORICS’06 conference [44].) The important features of
this enhanced security model are:

• the possibility for applications to request multiple permissions in advance;

• a static enforcement of the security model.

Because the proposed model does not require security screens to pop-up before each resource access, it
reduces the need for user-interactions: it is more flexible and user-friendly. However, ensuring that programs
do not abuse resources is not as straightforward as it is for MIDP where a permission request immediately
matches a resource access. In our novel setting, this property is established by static analysis. Precisely,
it enforces that a program will never attempt to access a resource for which it does not have permission.
Hence, our enhanced model comes without extra runtime checks. This is a crucial advantage for devices
with reduced computing capabilities.

In Section 3.3, UEDIN develops a different approach for tackling the same problem of certifying that
programs do not abuse external resources.

3.2.1 The Java MIDP security model

The Java MIDP programming model for mobile telephones [169] proposes a thoroughly developed security
architecture which is the starting point of our work. In the MIDP security model, applications (called
midlets in the MIDP jargon) are downloaded and executed by a Java virtual machine. Midlets are made of
a single archive (a jar file) containing complete programs. At load time, the midlet is assigned a protection
domain which determines how the midlet can access resources. It can be seen as a labelling function which
classifies a resource access as either allowed or user.

• allowed means that the midlet is granted unrestricted access to the resource;

• user means that, prior to an access, an interaction with the user is initiated in order to ask for
permission to perform the access and to determine how often this permission can be exercised. Within
this protection domain, the MIDP model operates with three possibilities:

– blanket: the permission is granted for as long as the midlet remains installed;

– session: the permission is granted for as long as the midlet is running;

– oneshot: the permission is granted for a single use.

The oneshot permissions correspond to dynamic security checks in which each access is protected by a user
interaction. This clearly provides a secure access to resources but the potentially numerous user interactions
are at the detriment of the usability and make user interactions are at the detriment of the usability and
make social engineering attacks easier. At the other end of the spectrum, the allowed mode which gets
granted through signing provides a maximum of usability but leaves the user with absolutely no assurance
on how resources are used, as a signature is only a certificate of integrity and origin.

In the following we will propose a security model which extends the MIDP model by introducing per-
missions with multiplicities and by adding flexibility to the way in which permissions are granted by the
user and used by applications. In this model, we can express:

• the allowed mode and blanket permissions as initial permissions with multiplicity ∞;

• the session permissions by prompting the user at application start-up whether he grants the permis-
sion for the session and by assigning an infinite number of the given permission;

61

MOBIUS Deliverable D2.3. Report on Type Systems

• the oneshot permissions by prompting the user for a permission with a grant just before consuming
it with a consume.

The added flexibility is obtained by allowing the programmer to insert user interactions for obtaining
permissions at any point in the program (rather than only at the beginning and just before an access)
and to ask for a batch of permissions in one interaction. The added flexibility can be used to improve the
usability of access control in a midlet but will require formal methods to ensure that the midlet will not abuse
permissions (security concern) and will be granted by the programmer sufficient permissions for a correct
execution (usability concern). The analysis presented in section 3.2.5 is addressing these two concerns.

3.2.2 The structure of permissions

In classical access control models, permissions held by a subject (user, program, . . .) authorise certain ac-
tions to be performed on certain resources. Such permissions can be represented as a relation between actions
and resources. To obtain a better fit with access control architectures such as that of Java MIDP we combine
this permission model with multiplicities and resource types, in a way inspired by the resource allocation
matrices used by Millen in his resource allocation model [121]. However, we add more structure to the set of
resources. Concrete MIDP permissions are strings whose prefixes encode package names and whose suffixes
encode a specific permission. For instance, one finds permissions javax.microedition.io.Connector.http
and javax.microedition.io.Connector.sms.send which enable applets to make connections using the
http protocol or to send a SMS, respectively. Thus, permissions are structured entities that for a given
resource type define which actions can be applied to which resources of that type and how many times.

To model this formally, we assume given a set ResType of resource types. For each resource type rt
there is a set of resources Resrt of that type and a set of actions Actrt applicable to resources of that type.
We incorporate the notion of multiplicities by attaching to a set of actions a and a set of resources r a
multiplicity m indicating how many times actions a can be performed on resources from r. Multiplicities
are taken from the ordered set:

Mul
4
= (N ∪ {⊥Mul ,∞},≤).

The 0 multiplicity represents absence of a given permission and the∞multiplicity means that the permission
is permanently granted. The ⊥Mul multiplicity represents an error arising from trying to decrement the 0
multiplicity. We define the operation of decrementing a multiplicity as follows:

m− 1 =

∞ if m =∞
m− 1 if m ∈ N,m 6= 0
⊥Mul if m = 0 or m = ⊥Mul

Several implementations of permissions include an implication ordering on permissions. One permission
implies another if the former allows to apply a particular action to more resources than the latter. However,
the underlying object-oriented nature of permissions imposes that only permissions of the same resource
type can be compared. We capture this in our model by organising permissions as a dependent product of
permission sets for a given resource type.

Definition 3.2.1 (Permissions). Given a set ResType of resource types and ResType-indexed families of
resources Resrt and actions Actrt, the set of atomic permissions Permrt is defined as:

Permrt
4
= (P(Resrt)× P(Actrt)) ∪ {⊥}

relating a type of resources with the actions that can be performed on it. The element ⊥ represents an invalid
permission. By extension, we define the set of permissions Perm as the dependent product:

Perm
4
=

∏
rt∈ResType

Permrt ×Mul

62

javax.microedition.io.Connector.http
javax.microedition.io.Connector.sms.send

MOBIUS Deliverable D2.3. Report on Type Systems

relating for all resource types an atomic permission and a multiplicity stating how many times it can be used.
For ρ ∈ Perm and rt ∈ ResType, we use the notations ρ(rt) to denote the pair of atomic permissions and
multiplicities associated with rt in ρ. Similarly, 7→ is used to update the permission associated to a resource
type, i.e., (ρ[rt 7→ (p,m)])(rt) = (p,m).

Example 3. Given a resource type SMS ∈ ResType, the permission ρ ∈ Perm satisfying ρ(SMS) =
((+1800∗, {send}), 2) grants two accesses to a send action of the resource +1800∗ (phone number starting
with +1800) with the type SMS.

Definition 3.2.2. The ordering vp ⊆ Perm × Perm on permissions is given by

ρ1 vp ρ2
4
= ∀rt ∈ ResType ρ1(rt) v ρ2(rt)

where v is the product of the subset ordering vrt on Permrt and the ≤ ordering on multiplicities.

Intuitively, being higher up in the ordering means having more permissions to access a larger set of
resources. The ordering induces a greatest lower bound operator u : Perm×Perm → Perm on permissions.
For example, for ρ ∈ Perm

ρ[File 7→ ((/tmp/∗, {read ,write}), 1)] u ρ[File 7→ ((∗/dupont/∗, {read}),∞)] =
ρ[File 7→ ((/tmp/ ∗ /dupont/∗, {read}), 1)]

There are two operations on permissions that will be of essential use:

• consumption (removal) of a specific permission from a collection of permissions;

• update of a collection of permissions with a newly granted permission.

Definition 3.2.3. Let ρ ∈ Perm, rt ∈ ResType, p, p′ ∈ Permrt , m ∈ Mul and assume that ρ(rt) = (p,m).
The operation consume : Permrt → Perm → Perm is defined by

consume(p′)(ρ) =

{
ρ[rt 7→ (p,m− 1)] if p′ vrt p
ρ[rt 7→ (⊥,m− 1)] otherwise

There are two possible error situations when trying to consume a permission. Attempting to consume a
resource for which there is no permission (p′ 6vrt p) is an error. Similarly, consuming a resource for which
the multiplicity is zero will result in setting the multiplicity to ⊥Mul .

Definition 3.2.4. A permission ρ ∈ Perm is an error, written Error(ρ), if:

∃rt ∈ ResType,∃(p,m) ∈ Permrt ×Mul , ρ(rt) = (p,m) ∧ (p = ⊥ ∨m = ⊥Mul).

Granting a number of accesses to a resource of a particular resource type is modeled by updating the
component corresponding to that resource type.

Definition 3.2.5. Let ρ ∈ Perm, rt ∈ ResType, the operation grant : Permrt ×Mul → Perm → Perm for
granting a number of permissions to access a resource of a given type is defined by

grant(p,m)(ρ) = ρ[rt 7→ (p,m)]

Notice that granting such a permission erases all previously held permissions for that resource type, i.e.,
permissions do not accumulate. This is a design choice: the model forbids that permissions be granted for
performing one task and then used later on to accomplish another. The grant operation could also add
the granted permission to the existing ones rather than replace the corresponding one. Besides cumulating
the number of permissions for permissions sharing the same type and resource, this would allow different
resources for the same resource type. However, the consume operation becomes much more complex, as
a choice between the overlapping permissions may occur. Analysis would require handling multisets of
permissions or backtracking.

Another consequence of the fact that permissions do not accumulate is that our model can impose scopes
to permissions. This common programming pattern is naturally captured by inserting a grant instruction
with null multiplicity at the end of the permission scope.

63

MOBIUS Deliverable D2.3. Report on Type Systems

3.2.3 Program model

We model a program by a control-flow graph (CFG) that captures the manipulations of permissions (grant
and consume), the handling of program loops, method calls and returns, and models the way that exceptions
are thrown and handled in a language like Java. These operations are respectively represented by the
instructions grant(p,m), consume(p), calli, return, throw(ex), with i ∈ N, ex ∈ EX , rt ∈ ResType, p ∈
Permrt and m ∈ Mul . This is an enriched version of the models used in previous work on modelling access
control for Java [98, 43, 33]. The instruction calli combines method calls and iteration. Its semantics is
that it will call a particular method i times at a given point in the execution, unless an exception is raised.
Ordinary method calls correspond to calli with i = 1. The throw(ex) instruction will throw the exception
ex. This exception can be caught inside the method currently executing in which case an edge indicates
the way to the relevant handler. Otherwise, it escapes the method and will be handled in the enclosing
methods.

Definition 3.2.6. A control-flow graph is a 7-tuple

G = (NO ,EX ,KD ,TG ,CG ,EG , n0)

where:

• NO is the set of nodes of the graph;

• EX is the set of exceptions;

• KD : NO → {grant(p,m), consume(p), calli, return, throw(ex)}, associates a kind to each node,
indicating which instruction the node represents;

• TG ⊆ NO ×NO is the set of intra-procedural edges;

• CG ⊆ NO ×NO is the set of inter-procedural edges, which can capture dynamic method calls;

• EG ⊆ EX ×NO×NO is the set of intra-procedural exception edges that will be followed if an exception
is raised at that node;

• n0 is the entry point of the graph.

To rule out certain graphs that do not model Java programs, control-flow graphs are subject to the
following additional structural constraints: 1) a return node has no successor in the graph; 2) all nodes
(except return nodes) have a successor by the TG relation; 3) a call node has (at least) one successor by
the CG relation; 4) a method has a unique entry point.

In the following, given n, n′ ∈ NO and ex ∈ EX , we will use the notations n
TG→ n′ for (n, n′) ∈ TG ,

n
CG→ n′ for (n, n′) ∈ CG and n

ex→ n′ for (ex, n, n′) ∈ EG .
Figure 3.4 contains an example of the control flow graph of grant and consume operations from a

fictitious flight-booking transaction. For simplicity, actions related to permissions, such as {connect} or
{read}, are omitted. In this transaction, the user first transmits his request to a travel agency, site. He
can then modify his request or get additional information. Once satisfied with information provided, he can
either book the flight or pay the desired flight. In both cases, the identity of a credit card is required, hence
the corresponding permission is asked form the outset.

In the case of payment, the application asks for permission to access information concerning banking
detail such as the credit card number etc. This could also have been asked from the start as part of pinit,
but is instead obtained via a dynamic request that is being executed only if the payment branch of the
application is actually chosen. In the example, the developer has chosen to delay asking for the permission
of accessing credit card information until it is certain that this permission is indeed needed. Another design
choice would be to grant this permission from the outset. This would minimise user interaction because it
allows to remove the querying grant operation. However, the initial permission pinit would then contain
file 7→ (/wallet/∗, 2) instead of file 7→ (/wallet/id, 1) which goes against the Principle of Least Privilege.

64

MOBIUS Deliverable D2.3. Report on Type Systems

pinit[http !→ (∗,∞);https !→ (site, 1); file !→ (/wallet/id, 1)]

consume(http(site))

consume(http(∗))

consume(file(/wallet/id))

consume(http(site)) grant(file(/wallet/visa#), 1)

consume(file(/wallet/visa#))

consume(https(site))

2.

3.
3.

4. 5.

1. 1.

1. Modify request
2. Get info
3. Choose flight
4. Book only
5. Book and pay

Figure 2: Example of grant/consume permissions patterns

if the payment branch of the application is actually chosen. In the example, the developer
has chosen to delay asking for the permission of accessing credit card information until it
is certain that this permission is indeed needed. Another design choice would be to grant
this permission from the outset. This would minimise user interaction because it allows to
remove the querying grant operation. However, the initial permission pinit would then contain
file !→ (/wallet/∗, 2) instead of file !→ (/wallet/id, 1) which goes against the Principle of
Least Privilege.

Operational semantics

We define the small-step operational semantics of CFGs in Figure 3. The semantics is stack-
based and follows the behaviour of a standard programming language with exceptions, e.g.,
as Java or C!. Instantiating this model to such languages consists of identifying in the code
the desired grant and consume operations, building the control-flow graph and describing the
action of the other instructions on the stack.

The operational semantics operates on a state consisting of a standard control-flow stack
of nodes, enriched with the permissions held at that point in the execution. Thus, the small-
step semantics is given by a relation ! between elements of (NO∗ × (EX ∪ {ε}) × Perm),
where NO∗ is a sequence of nodes. For example, for the instruction calli of Figure 3, if
the current node n leads through an inter-procedural step to a node m, then the node m is
added to the top of the stack n:s, with s ∈ NO∗. In order to take into account the repetitive
aspects of the calli instruction, we add a formal exponent i on the n component of the
stack. This exponent is used to remember how many times the method should be called and
is updated in the rules for the method return instruction return as follows. If the exponent
i is positive, then the method has to be executed again, in a context where the exponent
now is decremented by one. Otherwise, if the exponent is zero, the iteration is finished and
execution proceeds at the node following the call node n.

Instructions may change the value of the permission along with the current state. E.g.,
for the instruction grant of Figure 3, the current permission ρ of the state will be updated

8

Figure 3.4: Example of grant/consume permissions patterns

3.2.4 Operational semantics

We define the small-step operational semantics of CFGs in Figure 3.5. The semantics is stack-based and
follows the behaviour of a standard programming language with exceptions, e.g., as Java or C]. Instantiating
this model to such languages consists of identifying in the code the desired grant and consume operations,
building the control-flow graph and describing the action of the other instructions on the stack.

The operational semantics operates on a state consisting of a standard control-flow stack of nodes,
enriched with the permissions held at that point in the execution. Thus, the small-step semantics is given
by a relation � between elements of D = (NO × (NO × N)∗ × (EX ∪ {ε})× Perm). Given (n, s, e, ρ) ∈ D,
n is the current control point, s is a call stack of nodes labelled by counters that model iteration loops, e
is an exception (if any) and ρ is the current set of permissions. For example, for the instruction calli of
Figure 3.5, if the current node n leads through an inter-procedural step to a node m, then the node m is
added to the top of the stack ni:s, with s ∈ (NO ×N)∗. In order to take into account the repetitive aspects
of the calli instruction, we add a formal exponent i on the n component of the stack. This exponent is
used to remember how many times the method should be called and is updated in the rules for the method
return instruction return as follows. If the exponent i is positive, then the method has to be executed
again, in a context where the exponent now is decremented by one. Otherwise, if the exponent is zero, the
iteration is finished and execution proceeds at the node following the call node n.

Instructions may change the value of the permission along with the current state. E.g., for the instruction
grant of Figure 3.5, the current permission ρ of the state will be updated with the new granted permissions.
The current node of the stack n will also be updated, at least to change the program counter, depending on
the desired implementation of grant. Note that the instrumentation is non-intrusive, i.e. a transition will
not be blocked due to the absence of a permission. Thus, for (n, s, e, ρ) ∈ D if there exists (n′, s′, e′, ρ′) ∈ D
such that n, s, e, ρ� n′, s′, e′, ρ′, then for all ρ there is a ρ′ such that the same transition holds.

This operational semantics will be the basis for the notion of program execution traces, on which global
results on the execution of a program will be expressed.

Definition 3.2.7 (Trace of a CFG). A partial trace tr ∈ NO∗ of a CFG is a sequence of nodes n0 :: n1 ::
. . . :: nj that is produced by semantics steps of the form n0, ε, ε, pinit � n1, s1, e1, ρ1 . . . � nj , sj , ej , ρj. For
a program P represented by its control-flow graph G, we will denote by JP K the set of all partial traces of G.

To state and verify the safety of a program that acquires and consumes permissions, we first define what
it means for an execution trace to be safe. We define the permission set available at the end of a trace by

65

MOBIUS Deliverable D2.3. Report on Type Systems

KD(n) = grant(p,m) n
TG→ n′

n, s, ε, ρ� n′, s, ε, grant(p,m)(ρ)

KD(n) = consume(p) n
TG→ n′

n, s, ε, ρ� n′, s, ε, consume(p)(ρ)

KD(n) = calli n
CG→ m

n, s, ε, ρ� m,ni:s, ε, ρ

KD(r) = return n
CG→ m m

TG→
∗
r i ≥ 1

r, ni:s, ε, ρ� m,ni−1:s, ε, ρ

KD(r) = return n
TG→ n′ i = 1

r, n1:s, ε, ρ� n′, s, ε, ρ

KD(n) = throw(ex) n
ex→ h

n, s, ε, ρ� h, s, ε, ρ

KD(n) = throw(ex) ∀h, n ex9 h

n, s, ε, ρ� n, s, ex, ρ

∀h, n ex9 h

t, n:s, ex, ρ� n, s, ex, ρ

n
ex→ h

t, n:s, ex, ρ� h, s, ε, ρ

Figure 3.5: Small-step operational semantics

induction over its length.

PermsOf (nil)
4
= pinit

PermsOf (tr :: n)
4
= consume(p,PermsOf (tr)) if KD(n) = consume(p)

PermsOf (tr :: n)
4
= grant((p,m),PermsOf (tr)) if KD(n) = grant(p)

PermsOf (tr :: n)
4
= PermsOf (tr) otherwise

pinit is the initial permission of the program, for the state n0. By default, if no permission is granted at
the beginning of the execution, it will contain ((∅, ∅), 0) for each resource type. The allowed mode and
blanket permissions for a resource r of a given resource type can be modeled by associating the permission
(({r},Act),∞) with that resource type.

A trace is safe if none of its prefixes end in an error situation due to the access of resources for which
the necessary permissions have not been obtained.

Definition 3.2.8 (Safe trace). A partial trace tr ∈ NO∗ is safe, written Safe(tr), if for all prefixes tr′ ∈
prefix (tr), ¬Error(PermsOf (tr′)).

3.2.5 Static analysis of permission usage

We now define a constraint-based static flow analysis for computing a safe approximation, denoted Pn, of the
permissions that are guaranteed to be available at each program point n in a CFG when execution reaches
that point. Thus, safe means that Pn underestimates the set of permissions that will be held at n during
the execution. The approximation will be defined as a solution to a system of constraints over Pn, derived
from the CFG following the rules in Figure 3.6. The rules for Pn are straightforward data flow rules: e.g.,
for grant and consume we use the corresponding semantic operations grant and consume applied to the
start state Pn to get an upper bound on the permissions that can be held at end state Pn′ . Notice that the
set Pn′ can be further constrained if there is another flow into n′. The effect of a method call on the set of
permissions will be modeled by a transfer function R defined below. These transfer functions describe the
effect of one execution of a method so to take into account the iteration in a calli, we apply the R function
i times to the set of permissions available at point of the method call.

Finally, throwing an exception at node n that will be caught at node m means that the set of permissions
at n will be transferred to m and hence form an upper bound on the set of available permissions at this
point.

66

MOBIUS Deliverable D2.3. Report on Type Systems

KD(n) = grant(p,m) n
TG→ n′

Pn′ vp grant(p,m)(Pn)

KD(n) = consume(p) n
TG→ n′

Pn′ vp consume(p)(Pn)

KD(n) = calli n
CG→ m n

TG→ n′

Pn′ vp Rim(Pn)

KD(n) = calli n
CG→ m

Pm vp Pn

KD(n) = calli n
CG→ m n

ex→ h

Ph vp (Ri−1
m ;Rexm)(Pn)

KD(n) = throw(ex) n
ex→ m

Pm vp Pn

Figure 3.6: Constraints on minimal permissions

Our CFG program model includes procedure calls which means that the analysis must be inter-procedural.
We deal with procedures by computing summary functions for each procedure. These functions summarise
how a given procedure consumes resources from the entry of the procedure to the exit, which can happen
either normally by reaching a return node, or by raising an exception which is not handled in the procedure.
More precisely, for a given CFG we compute the quantity R : (EX ∪ {ε}) → NO → (Perm → Perm) with
the following meaning:

• the partial application of R to ε is the effect on a given initial permission of the execution from a node
until return;

• the partial application of R to ex ∈ EX is the effect on a given initial permission of the execution from
a node until reaching a node which throws an exception ex that is not caught in the same method.

Given nodes n, n′ ∈ NO , we will use the notation Rn and Rexn for the partial applications of R ε n and R ex n.
The rules are written using diagrammatic function composition ; such that F ;F ′(ρ) = F ′(F (ρ)). We define
an order v on functions F, F ′ : Perm → Perm by extensionality such that F v F ′ if ∀ρ ∈ Perm, F (ρ) vp
F ′(ρ).

As for the entities Pn, the function R is defined as solutions to a system of constraints. The rules for
generating these constraints are given in Figure 3.7 (with e ∈ EX ∪ {ε}). The rules all have the same
structure: compose the effect of the current node n on the permission set with the function describing the
effect of the computation starting at n’s successors in the control flow. This provides an upper bound on
the effect on permissions when starting from n. As with the constraints for P , we use the functions grant
and consume to model the effect of grant and consume nodes, respectively. A method call calli at node n
that does not cause an exception is modeled by i compositions of the Rm function of the start node of the
called method m followed by the effect of the computation starting at the successor node n′ of call node n.

The correctness of our analysis is stated on execution traces. For a given program, if a solution of the
constraints computed during the analysis does not contain errors in permissions (cf. Definition 3.2.4), then
the program will behave safely. Formally,

Theorem 3.2.9 (Basic Security Property). Given a program P , let Pn and Rn be a solution to the con-
straints generated by Pg. If Rn are monotone functions, then

∀n, (∀p,KD(n) = consume(p)⇒ ¬Error(Pn))⇒ ∀tr ∈ JP K,Safe(tr).

3.2.6 Constraint solving

Computing a solution to the constraints generated by the analysis in Section 3.2.5 is complicated by the
fact that solutions to the R-constraints (see Figure 3.7) are functions from Perm to Perm that have infinite
domains and hence cannot be represented by a naive tabulation. To solve this problem, we identify a
class of functions that are sufficient to encode solutions to the constraints while restricted enough to allow

67

MOBIUS Deliverable D2.3. Report on Type Systems

KD(n) = grant(p,m) n
TG→ n′

Ren v grant(p,m);Ren′

KD(n) = consume(p) n
TG→ n′

Ren v consume(p);Ren′

KD(n) = return

Rn v λρ.ρ
KD(n) = calli n

CG→ m n
TG→ n′

Ren v Rim;Ren′

KD(n) = calli n
CG→ m ∀n′, n ex9 n′

Rexn v Rexm
KD(n) = calli n

CG→ m n
ex→ h

Rn v Ri−1
m ;Rexm ;Rh

KD(n) = throw(ex) n
ex→ h

Rexn v Rexh
KD(n) = throw(ex) ∀n′, n ex9 n′

Rexn v λρ.ρ

Figure 3.7: Summary functions of the effect of the execution on initial permission

effective computations. Given a solution to the R-constraints, the P -constraints (see Figure 3.6) are solved
by standard fixpoint iteration.

The rest of this section is devoted to the resolution of the R-constraints. The resolution technique
consists in applying solution-preserving transformations to the constraints until they can be solved either
symbolically or iteratively.

On simplifying R-constraints

In our model, resources are partitioned depending on their resource type. At the semantic level, grant and
consume operations ensure that permissions of different types do not interfere i.e., that it is impossible to
use a resource of a given type with a permission of a different type. We exploit this property to derive from
the original system of constraints a family of independent ResType-indexed constraint systems. A system
modelling a given resource type, say rt, is a copy of the original system except that grant and consume are
indexed by rt and are specialized accordingly:

grantrt(p
′
rt′ ,m

′) =

{
λ(p,m).(p′,m′) if rt = rt′

λ(p,m).(p,m) otherwise

consumert(p
′
rt′) =

{
λ(p,m).(if p′ vrt′ p then p else ⊥,m− 1) if rt = rt′

λ(p,m).(p,m) otherwise

Further inspection of these operators shows that multiplicities and atomic permissions also behave in an
independent manner. As a result, each ResType indexed system can be split into a pair of systems: one
modelling the evolution of atomic permissions; the other modelling the evolution of multiplicities. Hence,
solving the R-constraints amounts to computing for each exception e, node n and resource type rt a pair of
mappings:

• an atomic permission transformer (Permrt → Permrt) and

• a multiplicity transformer (Mul → Mul).

In the next sections, we define syntactic representations of these multiplicity transformers that are amenable
to symbolic computations.

Constraints on multiplicity transformers

Before presenting our encoding of multiplicity transformers, we identify the structure of the constraints we
have to solve. Multiplicity constraints are terms of the form x≤̇e where x : Mul → Mul is a variable over

68

MOBIUS Deliverable D2.3. Report on Type Systems

multiplicity transformers, ≤̇ is the point-wise ordering of multiplicity transformers induced by ≤ and e is
an expression built over the terms

e ::= v | grantMul (m) | consumeMul (m) | id | e; e

where

• v is a variable;

• grantMul (m) is the constant function λx.m;

• consumeMul (m) is the decrementing function λx.x−m;

• id is the identity function λx.x;

• and f ; g is function composition (f ; g = g ◦ f).

We define MulF = {λx.min(c, x−d)|(c, d) ∈ Mul×Mul} as a restricted class of multiplicity transformers
that is sufficiently expressive to represent the solution to the constraints. Elements of MulF encode constant
functions, decrementing functions and are closed under function composition as shown by the following
equalities:

grantMul (m) = λx.min(m,x−⊥Mul)
consumeMul (m) = λx.min(∞, x−m)
λx.min(c, x− d′);λx.min(c′, x− d′) = λx.min(min(c− d′, c′), x− (d′ + d))

We represent a function λx.min(c, x−d) ∈ MulF by the pair (c, d) of multiplicities. Constraint solving over
MulF can therefore be recast into constraint solving over the domain MulF] = Mul×Mul equipped with the

interpretation J(c, d)K 4= λx.min(c, x− d) and the ordering v] defined as (c, d) v] (c′, d′)
4
= c ≤ c′ ∧ d′ ≤ d.

Solving multiplicity constraints

The domain MulF] does not satisfy the descending chain condition. This means that iterative solving of
the constraints might not terminate. Instead, we use an elimination-based algorithm. First, we split our
constraint system over MulF] = Mul ×Mul into two constraint systems over Mul . Example 4 shows this
transformation for a representative set of constraints.

Example 4. C = {Y v] (c, d), Y ′ v] X,X v] Y ;] Y ′} is transformed into C ′ = C1 ∪ C2 with C1 = {Y1 ≤
c, Y ′1 ≤ X1, X1 ≤ min(Y1 − Y ′2 , Y ′1)} and C2 = {Y2 ≥ d, Y ′2 ≥ X2, X2 ≥ Y ′2 + Y2}.

Notice that C1 depends on C2 but C2 is independent from C1. This result holds generally and, as a
consequence, these sets of constraints can be solved in sequence: C2 first, then C1.

To be solved, C2 is converted into an equivalent system of fixpoint equations defined over the complete
lattice (Mul ,≤,max,⊥Mul). The equations have the general form x = e where e ::= var | max(e, e) | e+ e.
The elimination-based algorithm unfolds equations until a direct recursion is found. After a normalisation
step, recursions are eliminated using a generalisation of Proposition 3.2.10 for an arbitrary number of
occurrences of the x variable.

Proposition 3.2.10. x = max(x+ e1, e2) is equivalent to x = max(e2 +∞× e1, e2).

Given a solution for C2, the solution of C1 can be computed by standard fixpoint iteration as the domain
(Mul ,≤,min,∞) does not have infinite descending chains. This provides multiplicity transformer solutions
of the R-constraints.

69

MOBIUS Deliverable D2.3. Report on Type Systems

3.2.7 Towards relational permission analysis

We have proposed an access control model for programs which dynamically acquire permissions to access
resources. The model extends the current access control model of the Java MIDP profile for mobile telephones
by introducing multiplicities of permissions together with explicit instructions for granting and consuming
permissions. These instructions allow to improve the usability of an application by fine-tuning the number
and placement of user interactions that ask for permissions. In addition, programs written in our access
control model can be formally and statically verified to satisfy the fundamental property that a program does
not attempt to access a resource for which it does not have the appropriate permission. The formalisation is
based on a model of permissions which extends the standard object × action model with multiplicities. We
have given a formal semantics for the access control model, defined a constraint-based analysis for computing
the permissions available at each point of a program, and shown how the resulting constraint systems can
be solved. To the best of our knowledge, it is the first time that a formal treatment of the Java MIDP model
has been proposed.

The present model and analysis has been developed in terms of control-flow graphs and has ignored
the treatment of data such as integers etc. By combining our analysis with standard data flow analysis we
can obtain a better approximation of integer variables and hence, e.g., the number of times a permission-
consuming loop is executed. Allowing a grant to take a variable as multiplicity parameter combined with
a relational analysis based on polyhedra would allow to verify a program as the following.

1 grant(sendSMS(∗),addr book.length) ;
2 // 0 ≤ addr book.length = #SMSpermissions
3 for (i = 0 , i < addr book.length , i++)
4 // 0 < addr book.length − i ≤ #SMSpermissions
5 if (∗) consume(SMS(addr book[i].no),send);
6 // 0 ≤ #SMSpermissions

Here, the number of requested permissions depends on the size of the address book data structure, and
where the verification needs to establish a relation between several program entities in order to prove that
the number of permissions is always non-negative.

The permission analysis presented here is not complete in the sense that there are certain graphs whose
traces are all safe but that are not deemed secure by the analysis. This happens when there are inaccessible
sub-graphs in the CFG. These may be flagged by the analysis as responsible for security violations despite the
fact that they will never be executed. Hence, the analysis can be strengthened by first computing reachable
nodes and only launching the permission analysis on these. We conjecture that this lack of reachability
sensitivity is the only origin of incompleteness. As reachability can be computed exactly for our model
of programs, the permission analysis would then be complete. This property is useful to understand and
eliminate certain potential sources of false alarms when our analysis is combined with other analyses.

3.3 Explicit Accounting of External Resources

As explained in the previous section, abuse of external resources (like sending text messages) is a major
concern on mobile devices. UEDIN has developed a Java library for trapping abuse of external resources
by monitoring their use at run-time. Complementary to the run-time library is a type system for statically
certifying applications as resource safe, i.e., never being trapped due to abuse of resources. Both approaches
share a common API, based on resource managers, for explicitly accounting at run-time which external
resources an application is granted to use and how often. If the type system certifies an application as
resource safe then the run-time accounting is unnecessary and can be erased without changing the observable
behaviour of the application.

The work described in this section tackles the same problem as Section 3.2, but with a different approach.
Both approaches extend the current MIDP security model to authorise a number of resources (or permissions)
before use; Section 3.2 introduces special grant and consume instructions for this purpose whereas we provide

70

MOBIUS Deliverable D2.3. Report on Type Systems

java.lang.Error

ResManagerError

+ enable(Policy, ResMultiset)

+ join(ResManager)

+ assertEmpty()
+ assertAtLeast(ResMultiset)

+ clear()

+ split(ResMultiset) : ResManager

ResManager
ResMultiset

~ decide(ResMultiset) : ResMultiset

Policy

Resource

<<throw>>

1 0..1**

<<call>>

Figure 3.8: UML class diagram of the resource management API.

a general Java API for tracking and monitoring resources at run-time. Both approaches also aim at static
guarantees of resource safety, rendering run-time checks unnecessary; Section 3.2 achieves this goal by static
analysis whereas we accomplish it by a type system.

3.3.1 Monitoring External Resources in MIDP

This section presents a Java library for monitoring the use of external resources at run-time. The API
introduces special objects, called resource managers, which encapsulate multisets of resources that a MIDlet
may legally use (according to the user or a policy) and which are passed as arguments into instrumented
MIDP methods that actually use the resources. These methods, e.g., the method for sending text messages,
check the resource manager before consuming the resources. If the required resources are not present, the
instrumented methods abort the MIDlet with a run-time error. A paper [21] on this work has been accepted
for publication.

Resource Management API

The core of the Java package for resource management consists of five classes, see the class diagram in
Figure 3.8. The abstract class Resource serves as an abstract type for resources; actual resources (e.g.,
the permission to send one text message to a given phone number) are instances of subclasses. The class
ResMultiset provides modifiable multisets of resources (internally represented by hash tables), with the usual
operations on multisets. The class ResManager implements resource managers, see below for details. The
abstract class Policy serves as an abstract type for policies deciding which resources a MIDlet is granted;
actual policies (e.g., a dialogue letting the user choose which resources to grant) are coded as subclasses.
The class ResManagerError serves to signal resource-related run-time errors.

The class ResManager encapsulates a multiset of resources via a private field rs of type ResMultiset. Its
public methods are synchronised to avoid races in case different threads access the same resource manager.
The table below lists the method signatures with a JML-style2 semantics, where the symbols ⊆,] and ∩
stand for multiset inclusion, sum and intersection, respectively.

requires ensures modifies
ResManager() true this.rs = ∅ this.rs
void enable(Policy p, ResMultiset req) true this.rs] req = \old(this.rs)] \old(req) ∧ this.rs, req

req ⊆ \old(req)
void clear() true this.rs = ∅ this.rs
void join(ResManager mgr) true this.rs = \old(this.rs)] \old(mgr.rs) ∧ this.rs, mgr.rs

mgr.rs = ∅
ResManager split(ResMultiset bound) true \fresh(\result) ∧ this.rs

\result.rs = \old(this.rs) ∩ bound ∧
\result.rs] this.rs = \old(this.rs)

void assertEmpty() this.rs = ∅ true \nothing
void assertAtLeast(ResMultiset bound) bound ⊆ this.rs true \nothing

2Here, unlike in JML, \old(e) refers to the pre-state of expression e in the pre-state of the heap.

71

MOBIUS Deliverable D2.3. Report on Type Systems

1 void sendBulk(MessageConnection conn,
2 Message msg,
3 PhonebookEntry[] grp)
4 {
5 ResMultiset rs = new ResMultiset();
6 for (int i=0; i < grp.length ; i++) {
7 String num = grp[i].getMobileNum();
8 rs . insert (new MsgResource(num), 1);
9 }

10

11 ResManager mgr = new ResManager();
12 mgr.enable(MsgUserPolicy.getPolicy(this) , rs) ;
13

14 if (rs . isEmpty()) {
15 for (int i=0; i < grp.length ; i++) {
16 String num = grp[i].getMobileNum();
17 msg.setAddress(num);
18 conn.send(mgr, msg);
19 }
20 }
21

22 mgr.assertEmpty();
23 }

1 public void send(ResManager mgr, Message msg)
2 throws IOException, InterruptedIOException
3 {
4 synchronized (msg) {
5 String num = msg.getAddress();
6 ResMultiset rs = new ResMultiset();
7 rs . insert (new MsgResource(num), 1);
8

9 ResManager local mgr = mgr.split(rs) ;
10 local mgr . assertAtLeast (rs) ;
11

12 try {
13 send(msg);
14 local mgr . clear () ; local mgr = null ;
15 } catch (InterruptedIOException e) {
16 local mgr . clear () ; local mgr = null ;
17 throw e;
18 } catch (IOException e) {
19 mgr.join(local mgr) ; local mgr = null ;
20 throw e;
21 }
22 }
23 }

Figure 3.9: Bulk messaging example, left: MIDlet code, right: instrumented MIDP method.

The semantics of enable is non-deterministic because it is not statically known how many resources will be
added to the manager’s multiset rs and how many will be left in the argument req. At run-time, the actual
decision is taken by the policy p, which decides which resources to add to the manager’s multiset rs and
which resources to deny. Upon return of enable, the MIDlet should check the argument req to learn which
of the requested resources it is being denied; in particular, if req is empty then all of the requested resources
have been granted.

The methods clear , split and join provide some control over the contents of a resource manager, by
consuming all its resources, transferring some resources to a new manager, or joining the resources in two
managers, respectively. Thanks to split and join , resource managers can be kept thread local, avoiding
unnecessary synchronisation on shared managers.

The assertion methods check whether their preconditions hold. If so they behave like no-ops, otherwise
they throw an instance of ResManagerError. The latter case must be seen as a violation of the MIDlet’s
own logic (much like failing an assertion), and the MIDlet should not be allowed attempts at repairing
the situation (by catching the error), which is why ResManagerError extends java . lang . Error rather than
java . lang .Exception.

Example: Bulk Messaging MIDlet

We illustrate the use of resource managers by an example application built on top of the Wireless Messaging
API (WMA, current version 2.0 [99]), a bulk messaging MIDlet, which lets the user send a text message to
group of recipients from his phone book; a similar scenario was described in Deliverable 1.1 [123]. Figure 3.9
(left-hand side) shows the MIDlet’s method that actually sends the message. The method takes an (already
open) message connection, a message and a group of recipients (represented as array of phone book entries).
First, the MIDlet builds up a multiset of resources rs by iterating over the group of recipients and for
each one, extracting the mobile phone number, converting it into a resource by constructing an instance of
MsgResource (which is a subclass of Resource), and adding one occurrence of that instance to the multiset.
Next, the MIDlet creates an empty resource manager mgr and enables it to use the resources in the multiset
rs . Enabling requires a policy deciding which resources to grant. In this case, the policy is an instance of
MsgUserPolicy (which is a subclass of Policy), the decide method of which pops up a dialogue box for the
user to approve or deny the planned resource usage. Only if the user approves of all messages to be sent,
i.e., if enable leaves rs empty, does the code proceed to the actual send loop. The send loop again iterates
over the group of recipients, extracting for each one the mobile phone number, setting the address field

72

MOBIUS Deliverable D2.3. Report on Type Systems

of the message and sending the message using the instrumented send method, see below. After the loop,
assertEmpty checks that the resource manager mgr is really empty, i.e., all enabled resources have been used.

To monitor whether a MIDlet uses only granted resources, we have to wrap methods that consume
resources with instrumentation code checking whether a given resource manager holds the required resources.
In the case of text messaging, this requires wrapping the WMA method send(Message) as shown in Figure 3.9
(right-hand side). The wrapper method send(ResManager, Message) extracts the phone number num from
the message and constructs a multiset rs containing a single occurrence of the resource corresponding to
num. Then it splits the resources in rs off from the resource manager mgr and stores them in the new local
resource manager local mgr, which is checked for containing at least the resources in rs . If this check fails a
ResManagerError will be thrown, aborting the calling MIDlet; if the check succeeds we know that local mgr
holds exactly the resources in rs . Finally, the message is actually sent by calling the uninstrumented send
method. Clearing local mgr and nulling the reference afterwards is not strictly necessary but considered
good practise; it signals that the resources in the local manager are now used up and that the manager itself
is ready to be reclaimed by garbage collection.

In case of a send failure, the event that actually spends the resources (i.e., delivering the text message
to the operator’s network) may or may not have happened yet. We assume that an IOException is thrown
before actually sending the message (e.g., because the connection to the operator’s network is down), so the
resources are not yet consumed, and the handler can return them to the caller (by joining the local manager
to mgr) before propagating the exception. However, if an InterruptedIOException is raised, we do not know
whether the send event has already happened, so we assume that the resources are already spent. In this
case, the handler consumes the resources (by clearing the local manager) before propagating the exception.

Note that the instrumented send method method must synchronise on msg, which is accessed twice, but
there is no need to synchronise on mgr (for there are no data dependencies between the first and second
access) or on this (for it is accessed only once).

Secure Deployment of the Resource Management Library

The resource management library provides a pure Java solution to the problem of monitoring external re-
sources; in particular, it does not require any changes to the JVM or to MIDP classes, so it can be deployed,
as a trusted library, to any platform conforming to MIDP2. Unfortunately, MIDP does not let the user
install additional libraries, which is why the resource management library (including subclasses represent-
ing concrete resources (e.g., MsgResource) and policies (e.g., MsgUserPolicy), and including instrumented
methods (e.g., send(ResManager, Message))) has to be shipped as part of the MIDlet using it.

Trust in the library is established by having the MIDlet signed by the network operator. Of course, the
network operator will not sign the MIDlet unless it meets the following requirements:

• The binaries comprising the resource management library are identical to network operator’s own
trusted implementation.

• The MIDlet uses the resource management API correctly (for instance, does not bypass the instru-
mentation, or subvert the hash-based implementation of multisets).

Thanks to the limitations of MIDP (in particular, no reflection, no custom class loading), both properties
can be checked statically by inspecting the MIDlet’s JAR.

Properties of the Resource Management Library

By design, the resource management library is extensible to accommodate new policies and resources. New
policies (e.g., for automatically granting text messages to national numbers) are added as new subclasses of
Policy . Adding new resources (e.g., the space available in the persistent record store) amounts to adding
new resource types (by subclassing Resource) plus adding the appropriate instrumentation. Besides being
extensible, the library also has the following security properties.

73

MOBIUS Deliverable D2.3. Report on Type Systems

1. MIDlets using the resource management API cannot consume more resources than granted; any attempt
to do so will result in the MIDlet being aborted before the abuse happens.

On the one hand, this property is ensured by the instrumentation, which checks a resource manager
for sufficient resources before calling the method that really spends the resources. On the other hand,
this property relies on the fact that policies can’t be bypassed. That is, there is no way to sneak new
resources into the managers other than by calling enable, in which case a policy gets to decide which
resources to grant and which to deny.

2. If a MIDlet is resource safe then erasing the resource managers does not change its observable be-
haviour.

We call a MIDlet is resource safe if it does not fail resource assertions, i.e., if it cannot ever throw a
ResManagerError. Later, we will present a type system for statically certifying resource safety (albeit
not of Java MIDlets).

Erasing resource managers is possible, for by the resource management API, the value of a resource
manager can only affect the values of other resource managers; it cannot affect the values of other
types.

Technically, erasure can be achieved by retaining the public interface of class ResManager but replacing
its implementation with a stateless dummy implementation. More precisely, erasure removes the
private field rs (storing the manager’s multiset), which turns all public methods into no-ops, except
for split and enable. The latter still calls the policy and reports the denied resources back to the
MIDlet, whereas the former creates a fresh (erased) manager. Thus, erasure removes most of the
run-time overhead induced by resource managers, which is an advantage particularly on small devices.

3. If a MIDlet is resource safe then its resource managers do not leak information.

This information-flow safety property is a corollary of erasure. If a MIDlet is resource safe, the resource
managers can be erased without changing the MIDlet’s observable behaviour. Yet, erased resource
managers are stateless, so they cannot leak information. Hence, no leakage is observable.

3.3.2 A Type System for Resource Safety

This section presents a type system for statically certifying resource safety, i.e., the absence of run-time
errors triggered by the abuse of resources. The initial version of the type system presented here does not
cover the full Java language but is targeted at a simpler procedural programming language. Yet, language
and type system are expressive enough to type non-trivial programs, like the bulk messaging example shown
in the previous section. More details on this work can be found in a technical report [110].

Syntax and Semantics of a Language for Resource Managers

This subsection introduces a simple procedural programming language. with built-in constructs for handling
resource managers. The operations on resource managers are essentially the same as the methods of the Java
class ResManager. Note that the language can be translated to a fragment of Java (using static methods
only) in a straightforward way.

Syntax. A program is a collection of procedures, where each procedure consists of a name, declaration of
input and output parameters, declaration of local variables and a statement.

Statements are composed by conditionals and sequencing from primitive statements like assignments
y := e of expression e to variable y, or procedure calls p(x1, . . . , xm | y1, . . . , yn), where the variables xi and
yj are the actual input and output parameters, respectively, of procedure p. The language does not provide
loop constructs, iteration is done by recursion like in GRAIL [19]. By def (s), we denote the set of variables
defined in a statement s, i.e., the variables occurring on the left-hand side of an assignment or among the
output parameters of a procedure call.

74

MOBIUS Deliverable D2.3. Report on Type Systems

Expressions are built from constants, variables and operators according to their data types. Besides the
unit type and the types of Booleans, integers and strings (with the usual operators), the language features

• extensible array types (with the usual query and update operators),

• a type res of resources (which can be constructed from strings and compared for equality),

• a type mres of multisets of resources (with the usual operators), and

• a type mgr of resource managers (with no operators at all).

Since there are no operators on resource managers, the language provides built-in procedures to access them,
inspired by the methods of the Java class ResManager.

• enable(m, r |m′, r′) tries to top up the manager m with a multiset of requested resources r. It returns
the new manager m′ holding the granted multiset of resources and the multiset r′ of resources that
have been denied, i.e., the multisets in m′ and r′ sum up to m and r.

• clear(|m′) creates an empty manager m′.

• join(m1,m2 |m′) adds the multisets held by the managers m1 and m2 and stores their sum in manager
m′.

• split(m, r |m′1,m′2) splits the multiset held by manager m and distributes it to the managers m′1 and
m′2 such that m′2 gets the largest possible submultiset of r.

• assertEmpty(m |m′) checks whether the manager m is empty. If not aborts with a run-time error,
otherwise copies the manager m to the manager m′.

• assertAtLeast(m, r | m′) checks whether the multiset r is contained in the multiset held by the
manager m. If not aborts with a run-time error, otherwise copies the manager m to the manager m′.

The language imposes three syntactic restrictions on programs.

• Expression evaluation occurs only in assignments. I. e., conditions in if-statements and input param-
eters in procedure calls must be variables. This restriction simplifies the operational semantics since
expression evaluation can fail only in assignments.

• All statements are in SSA form, i.e., each variable is defined only once. Note that this implies the
absence of input or output aliasing in procedure calls p(x1, . . . , xm|y1, . . . , yn), i.e., the variables xi and
yj are all different. This restriction simplifies the effect type system presented later, for assignments
behave like let bindings in a functional language (e.g., GRAIL [19]).

• All resource managers are linear, i.e., used at most once. This restriction is motivated by the nature
of resource managers, which are stateful objects. As the language does not feature objects, each state
of a resource manager has to be realised by its own variable. The linearity restriction enforces that
a we cannot re-use a previously used state, e.g., we cannot double our resources by joining the same
managers twice as in join(m1,m2 |m′) and join(m1,m2 |m′′).

Operational semantics. We present the operational semantics of our programming language as a big-
step state transformer. A state β is either the error state (denoted by ⊥) or a value environment mapping
variables x to their values β(x). Since variables are typed by a type environment Γ mapping variables x to
their types Γ(x), states have to respect typing, i.e., the value β(x) must be of type Γ(x) for all variables x.
Given a non-error state β, a variable x and a value v′, we write β[x 7→ v′] to denote the non-error state β′

which assigns v′ to x and β(y) to all variables y 6= x. In the following, we will use the implicit convention
that β refers to states whereas α refers to non-error states.

75

MOBIUS Deliverable D2.3. Report on Type Systems

Big-step semantics of statements Π,Γ ` s . β; β′

(OS-⊥)
Π,Γ ` s .⊥;⊥

(OS-skip)
Π,Γ ` skip . α; α

(OS-if-then)
α(z) = true Π,Γ ` s1 . α; β′

Π,Γ ` if z then s1 else s2 . α; β′
(OS-if-else)

α(z) = false Π,Γ ` s2 . α; β′

Π,Γ ` if z then s1 else s2 . α; β′

(OS-seq)
Π,Γ ` s1 . α; β′ Π,Γ ` s2 . β

′; β′′

Π,Γ ` s1 ; s2 . α; β′′
(OS-assign)

Γ, α ` e ↓ v α′ = α[y 7→ v]

Π,Γ ` y := e . α; α′

(OS-call-⊥)

Π(p) = p(x1 :τ1, . . . , xm :τm | y1 :σ1, . . . , yn :σn){z1 :κ1, . . . , zl :κl; sp}
αp is a p-state with αp(x1) = α(u1), . . . , αp(xm) = α(um)

Π,Γp ` sp . αp ;⊥
Π,Γ ` p(u1, . . . , um | v1, . . . , vn) . α;⊥

(OS-call)

Π(p) = p(x1 :τ1, . . . , xm :τm | y1 :σ1, . . . , yn :σn){z1 :κ1, . . . , zl :κl; sp}
αp is a p-state with αp(x1) = α(u1), . . . , αp(xm) = α(um)

Π,Γp ` sp . αp ; α′p α′ = α[v1 7→ α′p(y1)] . . . [vn 7→ α′p(yn)]

Π,Γ ` p(u1, . . . , um | v1, . . . , vn) . α; α′

(OS-q-⊥)

Π(q) = q(x1 :τ1, . . . , xm :τm | y1 :σ1, . . . , yn :σn)
αq is a q-state with αq(x1) = α(u1), . . . , αq(xm) = α(um) αq 6|= Φq

Π,Γ ` q(u1, . . . , um | v1, . . . , vn) . α;⊥

(OS-q)

Π(q) = q(x1 :τ1, . . . , xm :τm | y1 :σ1, . . . , yn :σn)
αq is a q-state with αq(x1) = α(u1), . . . , αq(xm) = α(um) αq |= Φq

αq |= Ψq α′ = α[v1 7→ αq(y1)] . . . [vn 7→ αq(yn)]

Π,Γ ` q(u1, . . . , um | v1, . . . , vn) . α; α′

Preconditions Φq and effects Ψq of built-ins Π(q)

Π(q) Φq Ψq

enable(m:mgr, r:mres | m′ :mgr, r′ :mres) true m′] r′ = m] r ∧ r′ ⊆ r

clear(| m′ :mgr) true m′ = ∅
join(m1 :mgr, m2 :mgr | m′ :mgr) true m′ = m1]m2

split(m:mgr, r:mres | m1
′ :mgr, m2

′ :mgr) true m1
′]m2

′ = m ∧m2
′ = m ∩ r

assertEmpty(m:mgr | m′ :mgr) m = ∅ m′ = m

assertAtLeast(m:mgr, r:mres | m′ :mgr) r⊆m m′ = m

Figure 3.10: Operational semantics.

76

MOBIUS Deliverable D2.3. Report on Type Systems

The big-step state transformer semantics of a statement s is denoted by the judgement Π,Γ ` s.β;β′,
where Π is a program, Γ a type environment (for s) and β and β′ are the pre- resp. post-states of the
execution of s. Figure 3.10 displays the rules defining the semantics.

The rule (OS-⊥) propagates the error state. (OS-skip), (OS-if-then), (OS-if-else) and (OS-seq) are the
standard rules for the no-op, conditional and sequencing constructs of the language. Note that the condition
z is a Boolean variable rather than an arbitrary Boolean expression. (OS-assign) evaluates the expression
e to a value v in the pre-state (denoted by the judgement Γ, α ` e ↓ v, which is defined by the usual rules
for strict evaluation) and updates the variable y to v in the post-state. Note that the semantics gets stuck
if an expression cannot be evaluated (e.g., if evaluation would raise an exception like division by zero, or
array index out of bounds). (OS-call) and (OS-call-⊥) call a procedure p with actual input and output
parameters ui and vj (all of which are variables). Execution of the procedure body s starts in a p-state αp
(i.e., a state storing the values of the parameters and local variables of procedure p and complying with the
type environment Γp) with the caller’s input parameters ui copied to the callee’s input parameters xi. In the
case of (OS-call-⊥), execution of the callee aborts with an error, which is propagated to the caller. In the case
of (OS-call), execution of the callee terminates normally in a p-state α′p, and the callee’s output parameters
yj are copied back to the caller’s output parameters vj . The rule schemas (OS-q) and (OS-q-⊥) are dealing
with the built-ins q = enable, clear, join, split,assertEmpty,assertAtLeast. Rule (OS-q) executes a
call to q by creating a q-state αq (i.e., a state storing the values of the parameters of q), copying the values
of the caller’s input parameters to the callee’s input parameters, checking the precondition Φq, checking the
effect Ψq, and copying the values of the callee’s output parameters back to the caller’s output parameters.
In other words, calling a built-in q(u1, . . . , um | v1, . . . , vn) means choosing values for its output parameters
such that the effect is satisfied; this choice may be non-deterministic (and in fact, it is for q = enable). Rule
(OS-q-⊥) (which is deterministic) covers the case when the precondition of the built-in q fails to hold, which
can only happen for q = assertEmpty,assertAtLeast. The built-ins mimic the methods of the Java class
ResManager, with the exception that policies are abstracted away. Instead, enable nondeterministically
chooses which resources to grant and which to deny.

Monotonicity of resource usage. To justify our modelling of resource managers (which in Java are
represented as stateful objects) as stateless variables subject to linearity restrictions, we show Theorem 3.3.1
stating that the sum of resources held in all resource managers in the system is going to decrease in any
execution which does not call enable. To formally express this statement, we define the sum of resources in
the system before and after the execution of a statement s. Let Γ be a type environment for s and let β and
β′ be the pre- resp. post-states of an execution of s. By presΓ(β), we denote the multiset sum of resources
over all resource managers in β except those that will be defined in s (since these may have bogus values
in the pre-state β). By postsΓ(β′), we denote the sum of resources over all resource managers in β′ except
those that have been used in s (since their values are inaccessible in the post-state β′).

Theorem 3.3.1. Let Π be a program, let Γ a type environment for a statement s, and let β and β′ be states.
If ∆OS is a derivation of Π,Γ ` s . β; β′ which does not call enable (i.e., the rule (OS-enable) does not
occur in ∆OS) then presΓ(β) ⊇ postsΓ(β′).

Informally, this theorem assures us that resource managers can only hold resources that have previously been
approved by enable, i.e., the policy behind enable cannot be bypassed. However, it does not guarantee
that the resources held in managers will be sufficient so that no run-time errors can occur when calling
assertAtLeast.

Effect Types

Run-time errors occur because the preconditions of the built-in procedures assertEmpty and assertAtLeast
fail to hold. Certifying the absence of run-time errors thus calls for a program logic (e.g., a Hoare logic) or
a type system that can track preconditions. In this subsection, we present such a type system for inferring
preconditions and effects of statements.

77

MOBIUS Deliverable D2.3. Report on Type Systems

Typing of statement effects Π,Θ,Γ ` s : Φ→Ψ

(T-weak)
Π,Θ,Γ ` s : Φ→Ψ

Π,Θ,Γ ` s : Φ̂→ Ψ̂
if

{
Φ̂ |= Φ ∧
(Φ̂ ∧ Ψ) |= Ψ̂

(T-skip)
Π,Θ,Γ ` skip : true→ true

(T-assign)
Π,Θ,Γ ` y := e : true→ y = e

(T-call)
Π,Θ,Γ ` p(x′1, . . . , x′m | y′1, . . . , y′n) : Φ′→Ψ′

if (∗)

where (∗)
{

Π(q) = p(x1 :τ1, . . . , xm :τm | y1 :σ1, . . . , yn :σn)[{ . . . }] ∧
Θ(p) = Φ→Ψ

(T-seq)
Π,Θ,Γ ` s1 : Φ→Ψ1 Π,Θ,Γ ` s2 : Φ ∧ Ψ1→Ψ2

Π,Θ,Γ ` s1 ; s2 : Φ→Ψ1 ∧ Ψ2

(T-if)
Π,Θ,Γ ` s1 : z ∧ Φ→Ψ Π,Θ,Γ ` s2 : ¬z ∧ Φ→Ψ

Π,Θ,Γ ` if z then s1 else s2 : Φ→Ψ

Typing of procedures effects Π,Θ ` p

(T-proc)
Π,Θ,Γp ` s : Φ→Ψ

Π,Θ ` p
if

{
Π(p) = p(x1 :τ1, . . . , xm :τm | y1 :σ1, . . . , yn :σn){z1 :κ1, . . . , zl :κl; s} ∧
Θ(p) = Φ→Ψ

Figure 3.11: Typing rules for effect types.

Types and typing judgement. Effect types are built from constraints, where the constraint language
is a typed first-order logic. More specifically, the constraint language is the expressions of the programming
language augmented with the standard quantifiers of first-order logic. Moreover, the constraint language
identifies the programming language types mres and mgr, thus giving up the distinction between a resource
manager and the multiset of resources held by that manager.

Given two constraints Φ and Ψ, we call Φ→Ψ an effect type; we call the constraints Φ and Ψ precondition
and effect, respectively. Φ→Ψ is an effect type for a statement s if free(Φ)∩def (s) = ∅, i.e., if the precondition
does not constrain any variables that are to be defined during the execution of s. Φ→ Ψ is an effect type
for a procedure p if free(Φ) ⊆ {x1, . . . , xm} and free(Ψ) ⊆ {x1, . . . , xm, y1, . . . , yn}, where x1, . . . , xm and
y1, . . . , yn are the procedure’s input and output parameters, respectively. Thus, the precondition may only
constrain the input parameters, whereas the effect may constrain all parameters but no local variables.

Let Π be a program and Θ an effect environment (i.e., Θ maps procedures p to effect types Θ(p) such
that Θ(p) is an effect type for p). Π,Θ,Γ ` s : Φ→Ψ is an effect typing judgement (for statements) if s a
statement, Γ a type environment for s and Φ→ Ψ an effect type for s. Π,Θ ` p is an effect type checking
judgement (for procedures) if p is a procedure in Π.

Typing rules. Figure 3.11 displays the typing rules for effect types. The typing rules for statement effects
fall into three groups, namely a weakening rule, five rules for the five statement constructors, and a rule for
procedures.

The weakening rule (T-weak) admits to weaken an effect type by strengthening the precondition and
weakening the effect; note that due to the new type Φ̂→ Ψ̂ being effect type for the statement s there is an
implicit extra side condition free(Φ̂) ∩ def (s) = ∅.

According to the rules for the statement constructors, the effect type for a skip is trivial. The effect of
an assignment y := e is the equation y= e; note that y cannot occur in e thanks to the SSA restriction. For
a call p(x′1, . . . , x

′
m | y′1, . . . , y′n), the effect type Φ′→Ψ′ is derived from the type Θ(p) = Φ→Ψ of the callee

p (which could be a procedure or a built-in) by substituting the actual input and output parameters x′i and

78

MOBIUS Deliverable D2.3. Report on Type Systems

y′j for the formal parameters xi and yj in Φ and Ψ. The rule (T-seq) requires that the precondition of the
second statement entails the effect of the first, and if so the precondition of the composition s1 ; s2 is the
precondition of s1 whereas its effect is the conjunction of the effects of s1 and s2; note that the soundness
of (T-seq) relies on the SSA restriction. Reading the rule (T-if) backwards, it requires that both branches
of a conditional type with essentially the same effect type, except that the then-branch gets to assume the
branching condition z positively (in its precondition), the else-branch negatively.

Finally, the rule (T-proc) checks that the body of a procedure p types with respect to the effect type
Φ→ Ψ assigned by the environment Θ; note that due to Φ→ Ψ being an effect type for the procedure p
there are two implicit extra side conditions freeΦ ⊆ {x1, . . . , xm} and freeΨ ⊆ {x1, . . . , xm, y1, . . . , yn}.

Type soundness. We call an effect environment Θ admissible for a program Π, denoted by Π ` Θ, if

• for all procedures p ∈ Π, we have Π,Θ ` p, and

• for all built-ins q ∈ Π, we have Θ(q) = Φq→Ψq, where preconditions Φq and effects Ψq are taken form
the table in figure 3.10.

Theorem 3.3.2 below states that for a statement s of effect type Φ→ Ψ, if a terminating execution of s
is starting in a non-error state β satisfying the precondition Φ then (1) the final state β′ is not the error
state, and (2) the final state satisfies the effect Ψ (and the precondition Φ thanks to the SSA restriction).
Mostly, (1) is important to us as it means that typable statements are resource safe, i.e., safe from run-time
errors (as long as the initial state satisfies the precondition) caused by the built-ins assertEmpty and
assertAtLeast. (2) associates the effect Ψ with a Hoare-style postcondition, however, note that Ψ may
mention variables that were used (and not defined, thanks to the SSA restriction) in s, so Ψ really may
specify an input-output relation (or effect). Here, SSA form simplifies the handling of effects, as it saves the
introduction of ghost variables for storing input values.

Theorem 3.3.2. Let Π be a program, let Θ be an effect environment, let Γ a type environment for a
statement s, let Φ→Ψ be an effect type for s, and let β and β′ be states. If Π ` Θ and Π,Θ,Γ ` s : Φ→Ψ
and Π,Γ ` s . β; β′ and β 6= ⊥ and β |= Φ then (1) β′ 6= ⊥ and (2) β′ |= Φ ∧ Ψ.

The type soundness theorem attributes the quality of being safe from run-time errors only to terminating
executions. This is due to the big-step operational semantics, which ignores non-terminating executions.
However, it is not difficult to define a compatible small-step semantics and prove that non-terminating
executions cannot raise run-time errors (as raising an error would quickly terminate the execution).

Erasing Resource Managers

Recall that the operations on resource managers do not admit to observe the contents of a resource manager
other than by calling assertEmpty or assertAtLeast, which may or may not abort the program with a
run-time error. Consequently, the resource managers of a resource safe program cannot be observed. In
fact, resource safe programs do not change their behaviour if resource managers are erased.

Technically, erasure is achieved by mapping the manager type to the unit type, i.e., τ◦, the erasure of a
type τ , is defined as follows.

τ◦ =

{
unit if τ = mgr
τ otherwise

Erasure on types determines Π◦, the erasure on a program Π, which is defined by applying the type erasure
to all variable declarations of procedures and built-ins. Similarly, erasure on types determines β◦, the erasure
on a state β, which preserves the error state (i.e., ⊥◦ = ⊥) but transforms non-error states α by mapping
the values of mgr-variables (i.e., variables of type mgr in the type environment Γ) to ?, the value of the
unit type.

α◦(x) =

{
? if Γ(x) = mgr
α(x) otherwise

79

MOBIUS Deliverable D2.3. Report on Type Systems

Recall the state-transformer semantics for the built-in procedures q from Figure 3.10, logically expressed
as a precondition Φq and an effect Ψq. Applying erasure to pre- and post-states determines a new state-
transformer semantics. Logically, this is equivalent to existentially quantifying the mgr-variables in precon-
dition and effect. As a result, the new semantics trivialises all built-in procedures q 6= enable, i.e., both
precondition Φq and effect Ψq are just true. For q = enable, we get precondition Φq = true and effect
Ψq = r′ ⊆ r, i.e., enable still gets to decide which of the requested resources to grant and which to deny,
yet it does not record its decision in a resource manager.

As a consequence of erasure, the preconditions of all built-ins are true, hence they can no longer cause
any run-time errors. Moreover, for resource safe programs, the executions of the original program are the
same as the executions of the erased one, up to erasure on states.

Theorem 3.3.3. Let Π be a program, let Γ a type environment for a statement s, and let β and β′ be states.
If s is resource safe then Π,Γ ` s . β; β′ iff Π◦,Γ◦ ` s . β◦; β′◦.

Since type soundness (Theorem 3.3.2) guarantees resource safety, resource managers can be erased from
typable programs. As a corollary, no information can leak from resource managers, for if that could happen
then erasing the resource managers should really change the executions. In other words, as a consequence
of erasure, resource managers are information flow safe.

3.3.3 Related Work

Several frameworks have been proposed for enhancing Java with run-time monitoring of resource consump-
tion, for example JRes [62], J-Seal [46] and J-RAF [96]. These frameworks monitor specific resources (CPU,
memory, network bandwidth, threads), relying on instrumentation of either the JVM (for CPU time), low
level system classes (for memory and network bandwidth) and the bytecode itself (for memory and instruc-
tion counting). Where our resource management library is designed to enforce security, these frameworks
were developed to support resource aware applications, which can adapt their behaviour in response to
resource fluctuation, for example by trading precision for time (by returning an imprecise result to meet a
deadline), or time for memory (by caching less to reduce memory consumption).

Nanevski et al. [134] describe a type theory which contains a type for Hoare triples and typing rules for
reasoning with Hoare triples. However, they do not consider resources but instead focus on reasoning about
heap-manipulating programs and higher-order functions.

Similar to our approach, Chander et al. [55] uses a regime of reserving resources before their actual use.
They require the programmer (or program optimiser) to annotate the program with primitives acquire

and consume, loop invariants and function pre- and postconditions. To statically check that the program
does not consume more resources than acquired, they generate verification conditions and feed them to a
theorem prover. Their approach also admits a policy deciding at run-time whether a request to acquire
resources should succeed. However, programs cannot recover from failure to acquire resources. In contrast,
our system admits a program to determine to which extent a request for resources has been successful, and
to react accordingly. Also, our system can track an unbounded and input-dependent number of different
resources, whereas [55] only deals with one fixed resource.

3.3.4 Future Work

Integration of our type system with the MOBIUS logic [124] will be done in the style of the MRG project.
This requires translating our effect type judgements Π,Θ,Γ ` s : Φ→Ψ into MOBIUS logic judgements of
the form G,Q ` {A}pc{B}(I). Thereby, the translation will map effect environment Θ to proof context
G, precondition Φ to precondition A and effect Ψ to postcondition B. The MOBIUS logic assumes that a
byte code program is implicitly given (as a mapping from labels to instructions), so we will also require a
translation of the program Π into byte code. Note that our type system does not deal with local assertions,
so the local annotation table Q will be empty. Also, our system provides no guarantees for non-terminating
computations, so the invariant I will be true. Using the translation, we will map effect type derivations

80

MOBIUS Deliverable D2.3. Report on Type Systems

into derivations of the MOBIUS logic, where the effect type rules will be mimicked by corresponding derived
rules in the logic.

Work on this type system will be continued in Task 2.4. Besides extending the system to cover a larger
fragment of Java we will work on the automation of type checking and type inference. Since type checking
and inference involve proving validity of first-order formulae (in the side condition of the weakening rule),
the focus will be on the application of state-of-the-art theorem proving technology, as is also used to check
verification conditions Workpackage 4. Note that the type system has been developed with theorem proving
support in mind; the theories involved (integers, multisets, arrays) are supported (more or less) by most
modern automated SMT provers.

Our type system presupposes type annotations for all procedures. To relieve the annotation burden on
the programmer, we will investigate (necessarily incomplete) approaches to type inference. Here, INRIA’s
static analysis (see Section 3.2) will help to gather enough information for synthesising effect types.

3.4 Cost Analysis of Java Bytecode

Cost analysis has been intensively studied in the context of declarative (see, e.g., [148, 144, 161, 82, 35]
for functional programming and [?, 64] for logic programming) and high-level imperative programming
languages (mainly focused on the estimation of worst case execution times and the design of cost models
[176]). Traditionally, cost analysis has been formulated at the source level. However, there are situations
where we do not have access to the source code, but only to compiled code. An example of this is mobile
code, where the code consumer receives code to be executed. In this context, Java bytecode is widely
used, mainly due to its security features and the fact that it is platform-independent. Automatic cost
analysis has interesting applications in this context. For instance, the receiver of the code may want to
infer cost information in order to decide whether to reject code which has too large cost requirements
in terms of computing resources (in time and/or space), and to accept code which meets the established
requirements [59, 88]. In fact, this is the main motivation for the Mobile Resource Guarantees (MRG)
research project [20], which establishes a Proof-Carrying Code [138] framework for guaranteeing resource
consumption. Also, in parallel systems, knowledge about the cost of different procedures can be used in
order to guide the partitioning, allocation and scheduling of parallel processes.

The aim of this part is to develop an automatic approach to the cost analysis of Java bytecode [8, 11, 9, 10]
which statically generates cost relations. These relations define the cost of a program as a function of its
input data size. This approach was proposed by Debray and Lin [?] for logic programs, and by Rabhi
and Manson [144] for functional programs. In these approaches, cost functions are expressed by means of
recurrence equations generated by abstracting the recursive structure of the program and by inferring size
relations between arguments. A low-level object-oriented language such as Java bytecode introduces novel
challenges, mainly due to: 1) its unstructured control flow, e.g., the use of goto statements rather than
recursive structures; 2) its object-oriented features, like virtual method invocation, which may influence the
cost; and 3) its stack-based model, in which stack cells store intermediate values. This paper addresses these
difficulties and develops a generic framework for the automatic cost analysis of Java bytecode programs. The
process takes as input the bytecode corresponding to a method and yields a cost relation after performing
these steps:

1. The input bytecode is first transformed into a control flow graph (CFG). This allows making the un-
structured control flow of the bytecode explicit (challenge 1 above). Advanced features like virtual
invocation and exceptions are simply dealt as additional nodes in the graph (challenge 2).

2. The CFG is then represented as a set of rules by using an intermediate recursive representation in which
we flatten the local stack by converting its contents into a series of additional local variables (challenge
3).3

3 Note that this is possible since in every valid bytecode program the height of the local stack at each program point is fixed
and therefore can be computed statically.

81

MOBIUS Deliverable D2.3. Report on Type Systems

3. In the third step, we infer size relations among the input variables for all calls in the rules by means of
static analysis. These size relations are constraints on the possible values of variables (for integers)
and constraints on the length of the longest reachable path (for references).

4. The fourth phase provides, for each rule of the recursive representation, a safe approximation of the set
of input arguments which are “relevant” to the cost. This is performed using a simple static analysis.

5. From the recursive representation, its relevant arguments, and the size relations, the fifth step automat-
ically yields as output the cost relation which expresses the cost of the method as a function of its
input arguments.

We point out that computed cost relations, in many cases, can be simplified to the point of deriving statically
an upper and lower threshold cost for the input size arguments and/or obtaining a closed form solution.
Such simplifications have been well-studied in the field of algorithmic complexity (see e.g. [175]).

3.4.1 The Java Bytecode Language

Java bytecode is a low-level object-oriented programming language with unstructured control and an operand
stack to hold intermediate computational results. Moreover, objects are stored in dynamic memory (the
heap). A Java bytecode program consists of a set of class files, one for each class or interface. A class file
contains information about its name c ∈ Class Name, the class it extends, the interfaces it implements, and
the fields and methods it defines. In particular, for each method, the class file contains: a method signature
m ∈ Meth Sig which consists of its name name(m) ∈ Meth Name and its type type(m) = τ1, . . . , τn →
τ ∈ Meth Type where τ, τi ∈ Type; its bytecode bcm = 〈pc0:b0, . . . , pcnm

:bnm〉, where each bi is a bytecode
instruction and pci is its address; and the method’s exceptions table. When it is clear from the context, we
omit bytecode addresses and refer to a method signature as method.

In this part we consider a subset of the JVM language which is able to handle operations on integers,
object creation and manipulation (by accessing fields and calling methods) and exceptions (either generated
by abnormal execution or explicitly thrown by the program). We omit interfaces, static fields and methods
and primitive types different from integers. Methods are assumed to return an integer value. Thus, our
bytecode instruction set (bcInst) is:

bcInst ::= push x | istore v | astore v | iload v | aload v | iconst a | iadd | isub | imul
| idiv | if� pc | goto pc | newClass Name | invokevirtual Class NameMeth Sig
| invokespecial Class NameMeth Sig | athrow | ireturn
| getfield Class NameField Sig | putfield Class NameField Sig

where � is a comparison operator (ne,le, icmpgt, etc.), v a local variable, a an integer, pc an instruction
address, and x an integer or the special value NULL.

3.4.2 From Bytecode to Control Flow Graphs

This section describes the generation of a control flow graph (CFG) from the bytecode of a method. This
will allow transforming the unstructured control flow of bytecode into recursion. The technique we use
follows well-established ideas in compilers [?], already applied in Java bytecode analysis [166].

Given a method m, we denote by Gm its CFG, which is a directed graph whose nodes are referred to as
blocks. Each block Blockid is a tuple of the form 〈Id , G,B,D〉 where: Id is the block’s unique identifier; G
is the guard of the block which indicates under which conditions the block is executed; B is a sequence of
contiguous bytecode instructions which are guaranteed to be executed unconditionally (i.e., if G succeeds
then all instructions in B are executed before control moves to another block); and D is the adjacency list
for BlockId , i.e., D contains the identifiers of all blocks which are possible successors of BlockId , i.e., Id ′ ∈ D
iff there is an arc from BlockId to BlockId ′ . Guards originate from bytecodes where the execution might
take different paths depending on the runtime values. This is the case of bytecodes for conditional jumps,
method invocation, and exceptions manipulation. In the CFG this will be expressed by branching from the
corresponding block. The successive blocks will have mutually exclusive guards since only one of them will

82

MOBIUS Deliverable D2.3. Report on Type Systems

be executed. Guards take the form guard(cond), where cond is a Boolean condition on the local variables
and stack elements of the method. It is important to point out that guards in the successive blocks will
not be taken into account when computing the cost of a program.

A large part of the bytecode instruction set has only one successor. However, there are three types of
branching statements:

Conditional jumps: of the form “pci : if� pcj”. Depending on the truth value of the condition, the
execution can jump to pcj or continue, as usual, with pci+1. The graph describes this behavior by means of
two arcs from the block containing the instruction of pci to those starting respectively with instructions of
pcj and pci+1. Each one of these new blocks begins by a guard expressing the condition under which such
block is to be executed.

Dynamic dispatch: of the form “pci : invokevirtual cm”. The type of the object o whose method is
being invoked is not known statically (it could be c or any subclass of c); therefore, we cannot determine
statically which method is going to be invoked. Hence, we need to make all possible choices explicit in the
graph. We deal with dynamic dispatching by using the function resolve virtual(c,m), which returns the
set ResolvedMethods of pairs 〈d, {c1, . . . , ck}〉, where d is a class that defines a method with signature m and
each ci is either c or a subclass of c which inherits that specific method from d. For each 〈d, {c1, . . . , ck}〉 ∈
ResolvedMethods, a new block Block

pci
d is generated with a unique instruction invoke(d:m) which stands

for the non-virtual invocation of the method m that is defined in the class d. In addition, the block has a
guard of the form instanceof(o, {c1, . . . , ck}) (o is a stack element) to indicate that the block is applicable
only when o is an instance of one of the classes c1, . . . , ck. An arc from the block containing pci to Block

pci
d

is added, together with an arc from Block
pci
d to the block containing the next instruction at pci+1 (which

describes the rest of the execution after invoking m). Note that the invokevirtual is no longer needed in
the CFG since it was split into several invoke instructions which cover all the possible runtime scenarios.
Yet, in order to take into account the cost of dynamic dispatching, we replace the invokevirtual by a
corresponding call to resolve virtual. Fields are treated in a similar way.

Exceptions: As regards the structure of the CFG, exceptions are not dealt with in a special way. Instead,
the possibility of an exception being raised while executing a bytecode statement b is simply treated as
an additional branching after b. Let Blockb be the block ending with b; arcs exiting from Blockb are those
originated by its normal behavior control flow, together with those reaching the sub-graphs which correspond
to exception handlers.

Describing dynamic dispatching and exceptions as additional blocks simplifies program analysis. After
building the CFG, we do not need to distinguish how and why blocks were generated. Instead, all blocks
can be dealt with uniformly.

Example 5 (running example). The execution of the method add(n, o) shown in Fig. 3.12 computes: Σn
i=0i

if o is an instance of A; Σ
bn/2c
i=0 2i if o is an instance of B; and Σ

bn/3c
i=0 3i if o is an instance of C. The CFG of

the method add is depicted at the bottom of the figure. The fact that the successor of 6: if icmpgt 16 can
be either the instruction at address 7 or 16 is expressed by means of two arcs from Block1, one to Block2

and another one to Block3, and by adding the guards icmpgt and icmple to Block2 and Block3, respectively.
The invocation 13: invokevirtual A.incr : (I)I is split into 3 possible runtime scenarios described in blocks
Block4, Block5 and Block6. Depending on the type of the object o (the second stack element from top, denoted
s(top(1)) in the guards), only one of these blocks will be executed and hence one of the definitions for incr

will be invoked. Note that the invokevirtual bytecode is replaced by resolve virtual. The exception
behavior when o is a NULL object is described in blocks Block7 and Blockexc. 2

83

MOBIUS Deliverable D2.3. Report on Type Systems

class A{
int incr(int i){
return i+1;}};

class B extends A{
int incr(int i){
return i+2; }};

class C extends B{
int incr(int i){
return i+3; }};

class Main {
int add(int n,A o){
int res=0;
int i=0;
while (i<=n){

res=res+i;
i=o.incr(i);}

return res;}};

bcAincr =

0: iload 1
1: iconst 1
2: iadd
3: ireturn

bcBincr =

{
0: iload 1
1: iconst 2
2: iadd
3: ireturn

bcCincr =

{
0: iload 1
1: iconst 3
2: iadd
3: ireturn

bcadd =

0: iconst 0
1: istore 3
2: iconst 0
3: istore 4
4: iload 4
5: iload 1
6: if_icmpgt 16
7: iload 3
8: iload 4
9: iadd

10: istore 3
11: aload 2
12: iload 4
13: invokevirtual

A.incr:(I)I
14: istore 4
15: goto 4
16: iload 3
17: ireturn

ret

0: iconst 0
1: istore 3
2: iconst 0
3: istore 4

Block 0

int i=0;
int res=0;

Block 3

8: iload 4
9: iadd
10: istore 3

12: iload 4
11: aload 2

7: iload 3

o.incr(i);

o.incr(i);

o.incr(i);

i=o.incr(i);

Block 4 Block 6

Block 7

EXCEPTION

guard(icmple)

res=res+i;

resolve_virtual(A,incr)

guard(instanceof(s(top(1)),NULL))

throw NullPointerException

13: invoke(B:incr) 13: invoke(C:incr) 13: invoke(A:incr)

guard(icmpgt)

RETURN

17: ireturn
16: iload 3 5: iload 1

4: iload 4

Block 2 Block 1

i > n

return res;

guard(instanceof(s(top(1)),{B})) guard(instanceof(s(top(1)),{C})) guard(instanceof(s(top(1)),{A}))

Block exc

Block 5

6: if_icmpgt 16

i <= n

Block 8

14: istore 4
15: goto 4

Figure 3.12: The running example in source code, bytecode, and control flow graph

3.4.3 Recursive Representation with Flattened Stack

In this section, we present a method for obtaining a representation of the code of a method where 1)
iteration is transformed into recursion and 2) the operand stack is flattened in the sense that its contents
are represented as a series of local variables. The latter is possible because in valid bytecode the maximum
stack height t can always be statically decided. For the sake of simplicity, exceptions possibly occurring in a
method will be ignored. Handling them introduces more branching in the CFG and also requires additional
arguments in the recursive representation. This could influence the performance of the cost analysis.

Let m be a method defined in class c, with local variables lk = l0, . . . , lk; of them, l0 contains a reference
to the this object, l1, . . . , ln are the n input arguments to the method, and ln+1, . . . , lk correspond to the

84

MOBIUS Deliverable D2.3. Report on Type Systems

translate(m, pc, iadd, lk, st) :=
let j = top stack index(pc, m) in

s′t = st[j−1 7→ s′j−1]
ret〈iadd(sj−1, sj, s

′
j−1), lk, s′t〉

translate(m, pc, iload(v), lk, st) :=
let j = top stack index(pc, m) in

s′t = st[j+1 7→ s′j+1]
ret 〈iload(lv, s

′
j+1), lk, s′t〉

translate(m, pc, guard(icmpgt), lk, st) :=
let j = top stack index(pc, m) in

ret 〈guard(icmpgt(sj−1, sj)), lk, st〉
translate(m, pc, ireturn(v), lk, st) :=
ret〈ireturn(s0, ret), lk, st〉

translate(m, pc, invoke(b:m′), lk, st) :=
let j = top stack index(pc, m),

n = number of arguments(b, m′) in

s′t = st[j−n 7→ s′j−n]
ret 〈b : m′(sj−n, . . . , sj, s

′
j−n), lk, s′t〉

Figure 3.13: Translation of selected bytecode instructions

k − n local variables declared in m. In addition to these arguments, we add the variables st = s0, . . . , st−1,
which correspond to the stack elements, with s0 and st−1 being the bottom-most and top-most positions
respectively. Moreover, let hid be the height of the stack at the entry of Blockid, and st|hid be the restriction
of st to the corresponding stack variables. The recursive representation of m is defined as a set of rules
head ← body obtained from its control flow graph Gm as follows:

(1) the method entry rule is c:m(ln, ret) ← c:m0(lk, ret), where ret is a variable for storing the return
value,

(2) for each Blockid = 〈id,G,Bp, {id1, . . . , idj}〉 ∈ Gm, there is a rule:

c:mid (lk, st|hid , ret)← G′, B
′
p(callid1 ; . . . ; callidj)

where {G′} ∪ B′p is obtained from {G} ∪ Bp, and callid1 ; . . . ; callidj are possible calls to blocks (“;”
means disjunction), as explained below.

Each bi ∈ {G} ∪ Bp is translated into b′i by explicitly adding the variables (local variables or stack variables)
used by bi as arguments. For example, iadd is translated to iadd(sj−1, sj , s

′
j−1), where j is the index of the

top of the stack just before executing iadd. Here, we refer to the j−1th stack variable twice by different
names: sj−1 refers to the input value and s′j−1 refers to the output value. The use of new names for output
variables, in the spirit of Static Single Assignment (SSA) (see [61] and its references), is crucial in order to
obtain simple, yet efficient, denotational program analyses. In Fig. 3.13 we give the translation function for
selected bytecodes; among them, the one for iadd works as follows. Function translate takes as input the
name of the current method m, the program counter pc of the bytecode, the bytecode (in this case iadd), the
current local variable names lk, and the current stack variable names st. In line 1, we retrieve the index
of the top stack element before executing the current bytecode. In line 2, we generate new stack variable
names s′t by renaming the output variable of iadd in st. As notation, given a sequence an of elements,
an[i 7→ b] denotes the replacement in an of the element ai by b. In line 3, we return (ret〈 〉) the translated
bytecode together with the new stack variable names. Assume that G=pc0:b0 and Bp=〈pc1:b1, . . . , pcp:bp〉.
The translation of all bytecodes is done iteratively as follows:

for i = 0 to p {〈b′i, l
i+1
k , si+1

t 〉 = translate(m, pci, bi, l
i
k, s

i
t)}

We start from an initial set of local and stack variables, l
0
k=lk and s0t=st; in each step, translate takes

as input the local and stack variable names which were generated by translating the previous bytecode. At
the end of this loop, we can define each callidi , 1 ≤ i ≤ j, as c:midi(l

p+1
k , s

p+1
t |hidi , ret), meaning that we

call the next block with the last local and (restricted) stack variable names.

Example 6. Consider the CFG in Fig. 3.12. The translation of Block3 and Block4 works as shown below.
For clarity, in the block identifiers we have not included the class name for the add method. Also, we ignore
the exception branch from Block3 to Block7.

85

MOBIUS Deliverable D2.3. Report on Type Systems

add3(l4, s0, s1, ret)←
guard(icmple(s0, s1)),
iload(l3, s

′
0), iload(l4, s

′
1), iadd(s′0, s

′
1, s
′′
0),

istore(s′′0 , l
′
3), aload(l2, s

′′′
0), iload(l4, s

′′
1),

resolve virtual(A, incr),
(add4(l0, l1, l2, l

′
3, l4, s

′′′
0 , s

′′
1 , ret) ;

add5(l0, l1, l2, l
′
3, l4, s

′′′
0 , s

′′
1 , ret) ;

add6(l0, l1, l2, l
′
3, l4, s

′′′
0 , s

′′
1 , ret))

add4(l4, s0, s1, ret)←
guard(instanceof(s0, {B})),
B:incr(s0, s1, s

′
0),

add8(l4, s
′
0, ret).

In the add3 rule, dynamic dispatch is represented as a disjunction of calls to add4, add5 or add6. Thus, in
the rule for add4, we find a call to (the translation of) incr from class B which corresponds to the translation
of invoke(B:incr); arguments passed to incr are the two top-most stack elements; the return value (the last
argument) goes also to the stack. Note the change in the superscript when a variable is updated. 2

Several optimizations are applied to the above translation. An important one is to replace (redundant)
stack variables corresponding to intermediate states by local variables whenever possible. This can be done
by tracking dependencies between variables, which stem from instructions like iload and istore. The fact
that the program is in SSA form makes this transformation relatively straightforward. However, note that,
in order to eliminate stack variables from the head of a block, we need to consider all calling patterns to the
block.

Example 7. After eliminating redundant variables, the optimized version of rules 3 and 4 from Ex. 6 is as
follows:

add3(l4, ret)←
guard(icmple(l4, l1)),
iload(l3, s

′
0), iload(l4, s

′
1), iadd(l3, l4, l

′
3),

istore(s′′0 , l
′
3), aload(l2, s

′′′
0), iload(l4, s

′′
1),

resolve virtual(A, incr),
(add4(l0, l1, l2, l

′
3, l4, ret) ;

add5(l0, l1, l2, l
′
3, l4, ret) ;

add6(l0, l1, l2, l
′
3, l4, ret))

add4(l4, ret)←
guard(instanceof(l2, {B})),
B:incr(l2, l4, s

′
0),

add8(l4, s
′
0, ret).

The underlined instructions have been used to discover equivalences among stack elements and local variables.
For example, all the arguments of iadd have been replaced by local variables. However, eliminating stack
variables is not always possible. This is the case of s′0 in the rule add4, as it corresponds to the return value
of B:incr. After these optimizations, the underlined instructions become redundant and could be removed.
However, we do not remove them in order to take their cost into account in the next sections. 2

3.4.4 Size Relations for Cost Analysis

Obtaining size-relations between the states at different program points is indispensable for setting up cost
relations. In particular, they are essential for defining the cost of one block in terms of the cost of its
successors. In general, various measures can be used to determine the size of an input. For instance, in
symbolic languages (see, e.g., [?]), term-depth, list-length, etc. are used as term sizes. In Java bytecode, we
consider two cases: for integer variables, size-relations are constraints on the possible values of variables;
for reference variables, they are constraints on the length of the longest reachable paths.

Example 8. Consider the two loops below, written in Java for simplicity:

while(i>0) { i--; } while(l != null) { l = l.next; }

A useful size-relation for cost analysis is that the value of i is always greater than 0 and decreases by 1 in
each iteration, and that the longest path reachable from l is decreasing by 1 in each iteration. 2

86

MOBIUS Deliverable D2.3. Report on Type Systems

Inferring size-relations is not straightforward: such relations might be the result of executing several state-
ments, calling methods or loops. For instance, in our running example, the size relation for variable i is the
result of executing the method incr and is propagated through the loop in the procedure add. Fixpoint
computation is often required. Fortunately, there are several abstract interpretation based approaches for
inferring size-relations between integer variables [?], as well as between reference variables (in terms of
longest path length) [167].

The notion of Size Relation

In order to set up cost relations, we need, for each rule in the recursive representation, the calls-to size-
relations between the variables in the head of the rule and the variables used in the calls (to rules) which
occur in the body. Note that, given a rule p(x̄)← G, Bk, (q1; . . . ; qn), each bi ∈ Bk is either a bytecode or a
call to another rule (which stems from the translation of a method invocation). We denote by calls(Bk) the
set of all bi corresponding to a method call, and by bytecode(Bk) the set of all bi corresponding to other
bytecodes.

Definition 3.4.1 (calls-to size-relations). Let Rm be the recursive representation of a method m, where
each rule takes the form p(x̄)← G, Bk, (q1(ȳ); · · · ; qn(ȳ)). The calls-to size-relations of Rm are triples of the
form

〈p(x̄), p′(z̄), ϕ〉 where p′(z̄) ∈ calls(Bk) ∪ {p cont(ȳ)}
describing, for all rules, the size-relation between x̄ and z̄ when p′(z̄) is called, where p cont(ȳ) refers to
the program point immediately after Bk. The size-relation ϕ is given as a conjunction of linear constraints
a0+a1v1+ · · ·+anvn op 0, where op ∈ {=,≤, <}, each ai is a constant and vk ∈ x̄ ∪ z̄ for each k.

Note that in the definition above there is no need to have separate relations for each qi(ȳ) as, in the absence
of exceptions, size relations are exactly the same for all of them, since they correspond to the same program
point.

Inferring Size Relations

A simple, yet quite precise and efficient, size-relation analysis for the recursive representation of methods
can be done in two steps: 1) compiling the bytecodes into the linear constraints they impose on variables;
and 2) computing a bottom-up fixpoint on the compiled rules using standard bottom-up fixpoint algorithms.
Compilation into linear constraints is done by an abstraction function αsize which basically replaces guards
and bytecodes by the constraints they impose on the corresponding variables. In general, each bytecode
performing (linear) arithmetic operations is replaced by a corresponding linear constraint, and each bytecode
which manipulates objects is compiled to linear constraints on the length of the longest reachable path from
the corresponding variable [167]. Here are some examples of abstracting guards and bytecodes into linear
constraints:

αsize(iload(l1, s0)):=(l1=s0)
αsize(iadd(s1, s0, s

′
0)):=(s′0=s0 + s1)

αsize(guard(icmpgt(s1, s0))):=(s1>s0)
αsize(getfield(s1, f, s

′
1)):=(s′1<s1)

It is important to note that αsize uses the same name for the original variables in order to refer to their
sizes. Compiling the rules of Ex. 7 results in:

add3(l4, ret)←l4 ≤ l1, l
′
3 = l3 + l4,

resolve virtual(A, incr),
(add4(l2, l

′
3, l4, ret); add5(l2, l

′
3, l4, ret); add6(l2, l

′
3, l4, ret))

add4(l4, ret)←
B:incr(l2, l4, s

′
0),

add8(l4, s
′
0, ret).

Example 9. Compiling all the rules corresponding to the program in Fig. 3.12 and computing a bottom-up
fixpoint over an appropriate abstract domain [?] would result in the following calls-to size-relations for rules
from Ex. 6:

〈add3(l0, l1, l2, l3, l4, ret), add3 cont(l0, l1, l2, l
′
3, l4, ret), {l4≤l1, l′3=l3+l4}〉

〈add4(l0, l1, l2, l3, l4, ret), B:incr(l2, l4, ret), {}〉
〈add4(l0, l1, l2, l3, l4, ret), add4 cont(l0, l1, l2, l3, l4, s

′
0, ret), {s′0=l4+2}〉

2

87

MOBIUS Deliverable D2.3. Report on Type Systems

3.4.5 Cost Relations for Java Bytecode

We now present our approach to the automatic generation of cost relations which define the computational
cost of the execution of a bytecode method. They are generated from the recursive representation of the
method (Sec. 3.4.3) and by using the information inferred by the size analysis (Sec. 3.4.4). An important
issue in order to obtain optimal cost relations is to find out the arguments which can be safely ignored in
cost relations.

Restricting Cost Relations to (Subsets of) Input Arguments

Let us consider Blockid in a CFG, represented by the rule c:mid (lk, ret)← G, Bh, (callid1 ; . . . ; callidj)
in which local and stack variables are no longer distinguishable. The cost function for Blockid takes the form
Cid : (Z)n → N∞, with n ≤ k argument positions, and where Z is the set of integers and N∞ is the set of
natural numbers augmented with a special symbol ∞, denoting unbounded.

Our aim here is to minimize the number n of arguments which need to be taken into account in cost
functions. As usual in cost analysis, we consider that the output argument ret cannot influence the cost of
any block, so that it can be ignored in cost functions. Furthermore, it is sometimes possible to disregard
some input arguments. For instance, in our running example, l3 is an accumulating parameter whose value
does not affect the control flow nor the cost of the program: it merely keeps the value of the temporary
result.

Given a rule, the arguments which can have an impact on the cost of the program are those which
may affect directly or indirectly the program guards (i.e., they can affect the control flow of the program),
or are used as input arguments to external methods whose cost, in turn, may depend on the input size.
Computing a safe approximation of the set of variables affecting a series of statements is a well studied
problem in static analysis. To do this, we need to follow data dependencies against the control flow, and
this involves computing a fixpoint. Our problem is slightly simpler than program slicing [170], since we
do not need to delete redundant program statements; instead, we only need to detect relevant arguments.
Given a rule p(x)← body (p for short), l̂p ⊆ x is the sub-sequence of relevant variables for p. The sequence
l̂P , obtained by union of sequences {l̂p}p∈P for a set P of rules, keeps the ordering on variables.

Example 10. Given pi, corresponding to Blocki in the graph of the running example, we are interested in
computing which variables in this rule are relevant to program guards or external methods. For example, 1)
when the execution flow reaches p2, we execute the unconditional bytecode instructions in p2 and move to
the final block. As a result, there are no relevant variables for p2, since none can have any impact on its
cost, and p2 does not reach any guards nor methods. 2) On the other hand, p3 can reach the guards in p4,
p5 and p6, which take the form instanceof() and involve l2. Also, the guard in p3 itself, involving l1 and
l4, can be recursively reached via the loop. Moreover, the call to the external method incr involves l2 and
l4. After computing a fixpoint, we conclude that l̂p3 = {l1, l2, l4}. 3) We have l̂p8 = {l1, l2, s0}; here, s0
is also relevant since it affects l4 (which in turn is involved in the guard of p3, reachable from p8). 2

The Cost Relation

Herein, we define the cost function Cid : (Z)n → N∞ for a Blockid by means of a cost relation which consists
of a set of cost equations. It will allow us to reason about the computational cost of the execution of the
block id. The intuitive idea is that, given the rule p(x̄)← G, B, (q1; . . . ; qn) associated to Blockid, we generate:

• one cost equation which defines the cost of p as the cost of the statements in B, plus the cost of its
continuation, denoted p cont;

• another cost equation which defines the cost of p cont as either the cost of q1 (if its guard is satisfied),
. . . , or the cost of qn (if its guard is satisfied).

We specify the cost of the continuation in a separate equation because the conditions for determining the
alternative path qi that the execution will take (with i = 1, . . . , n) are only known at the end of the

88

MOBIUS Deliverable D2.3. Report on Type Systems

execution of B; thus, they cannot be evaluated before B is executed. In the definition below, we use the
function αguard to replace those guards which indicate the type of an object by the appropriate test (e.g.,
αguard(guard(instanceof(s0, {B}))) := s0 ∈ B). For guards on size relations, it is equivalent to αsize.

Definition 3.4.2 (cost relation). Let Rm be the recursive representation of a method m where each block
takes the form p(x̄)← Gp, B, (q1(ȳ); · · · ; qn(ȳ)) and l̂p be its sequence of relevant variables. Let ϕ be the calls-

to size relation for Rm where each size relation is of the form 〈p(x̄), p′(z̄), ϕ
p(x)
p′(z)〉 for all p′(z̄) ∈ calls(B)

∪{q(ȳ)} such that q(ȳ) refers to the program point immediately after B. Then, we generate the cost equations
for each block of the above form in Rm as follows:

Cp(l̂p) =
∑

b∈bytecode(B)

Tb +
∑

r(z̄)∈calls(B)

Cr(l̂r) + Cp cont(∪ni=1l̂qi)
∧

r(z̄)∈calls(B)

(ϕ
p(x)
r(z̄)) ∧ ϕp(x)

q(ȳ)

Cp cont(∪ni=1l̂qi) =

Cq1(l̂q1) αguard(Gq1)
. . .

Cqn(l̂qn) αguard(Gqn)

where Tb is the cost unit associated to the bytecode b. The cost relation associated to Rm and ϕ is defined
as the set of cost equations of its blocks.

Let us notice four points about the above definition. 1) The size relationships between the input variables
provided by the size analysis are attached to the cost equation for p. 2) Guards do not affect the cost: they
are simply used to define the applicability conditions of the equations. 3) Arguments of the cost equations
are only the relevant arguments to the block. In the equation for the continuation, we need to include the
union of all relevant arguments to each of the subsequent blocks qi.

The cost Tb of an instruction b depends on the chosen cost model. If our interest is merely on finding
out the complexity or on approximating the number of bytecode statements which will be executed, then
Tb can be the same for all instructions. On the other hand, we may use more refined cost models in order
to estimate the execution time of methods. Such models may assign different costs to different instructions.
One approach might be based on the use of a profiling tool which estimates the value of each Tb on a
particular platform. (see, e.g., an application [120] for Prolog). It should be noted that, since we are not
dealing with the problem of choosing a realistic cost model, a direct comparison between the result of our
analysis and the actual measured run time (e.g., in milliseconds) cannot be done; instead, in this paper we
focus only on the number of instructions to be executed.

Example 11. Consider the recursive representation in Ex. 6 (without irrelevant variables, as explained in
Ex. 10). Consider the size relations derived in Ex. 9; by applying Def. 3.4.2, we obtain the following cost
relations:

Cadd(l1, l2) = Cadd0(l1, l2)
Cadd0(l1, l2) = T0 + Cadd1(l1, l2, l

′
4) l′4 = 0

Cadd1(l1, l2, l4) = T1 + Cadd1 cont(l1, l2, l4)

Cadd1 cont(l1, l2, l4) =

{
Cadd2()
Cadd3(l1, l2, l4)

l4 > l1
l4 ≤ l1

Cadd2() = T2
Cadd3(l1, l2, l4) = T3 + Cadd3 cont(l1, l2, l4)

Cadd3 cont(l1, l2, l4) =

 Cadd4(l1, l2, l4)
Cadd5(l1, l2, l4)
Cadd6(l1, l2, l4)

l2 ∈ B

l2 ∈ C

l2 ∈ A

Cadd4(l1, l2, l4) = T4 + CB:incr(l2, l4) + Cadd8(l1, l2, s0) s0 = l4 + 2

Cadd5(l1, l2, l4) = T5 + CC:incr(l2, l4) + Cadd8(l1, l2, s0) s0 = l4 + 3

Cadd6(l1, l2, l4) = T6 + CA:incr(l2, l4) + Cadd8(l1, l2, s0) s0 = l4 + 1

Cadd8(l1, l2, s0) = T8 + Cadd1(l1, l2, s0)

TBi denotes the sum of the costs of all bytecode instructions contained in Blocki . For brevity, as the blocks
0, 2, 4, 5, 6, and 8 have a single-branched continuation, we merge their two equations. Note that the cost
relation for the external method incr does not include the third argument since it is an output argument.2

89

MOBIUS Deliverable D2.3. Report on Type Systems

Demonstrating the correctness of our approach to cost analysis requires: (1) Defining the meaning of
cost in terms of the Java bytecode operational semantics; (2) Inheriting that definition to a correspond-
ing (equivalent) operational a semantics of the recursive representation. (3) Demonstrating that the cost
relations describe the cost as defined in step 2. The first two steps are straightforward as the CFG and
the recursive representation describe the behavior of the original program, in particular at each branching
point we have several possibilities from which only one will be executed. The correctness of the third step
stems from the facts that the cost relations are obtained from the recursive representation by replacing each
bytecode by its cost, and that the size analysis provides us with information that can be used to compute
(or approximate) the number of times we visit in each program point during the execution.

3.4.6 Experiments in Cost Analysis of Java Bytecode

The purpose of this section is to assess the practicality of such cost analysis by experimentally evaluating a
prototype analyzer implemented in Ciao. With this aim, we approximate the computational complexity of a
set of selected benchmarks, including both well-known algorithms which have been used to evaluate existing
cost analyzers in other programming paradigms, and other benchmarks which illustrate object-oriented
features. In our evaluation, we first study whether the generated cost relations can be automatically solved.
Our experiments show that in some cases the inferred cost relations can be automatically solved by using
the Mathematica system, whereas, in other cases, some prior manipulation is required for the equations to
be solvable. Moreover, we experimentally evaluated the running time of the different phases of the analysis
process. Overall, we believe our experiments show that the efficiency of our cost analysis is acceptable, and
that the obtained cost relations are useful in practice since, at least in our experiments, it is possible to get
a closed form solution.

Cost Analysis for Recursive procedures

In this section, we infer the cost of two classical recursive procedures. In both cases, and in general for
recursive procedures whose base case depends on constant values, the cost relations obtained by our analysis
are directly solvable by Mathematica. For simplicity, in the following the cost of all bytecode instructions is
assumed to be 1; using a more refined cost model which assigns different costs to different bytecodes would
not introduce further complications. For readability, we present only the original Java code, instead of the
bytecode.

The Classical Hanoi Towers The first example corresponds to the classical algorithm of the Hanoi
Towers, which is depicted in the table below; the call hanoi(7, 1, 2, 3) moves 7 disks from tower 1 to tower
3 using the auxiliary tower 2. The recurrence equations obtained by the analyzer are depicted in the same
table. The equation hanoi[n] corresponds to the total cost of a call to hanoi, where n is the first argument
of the method. The other equations correspond to the cost of the different blocks in the control flow graph;
they are obtained directly from the corresponding recursive representation. For example, the equation
m0[n] corresponds to verifying the condition n>0; here, 2 is the cost of the corresponding bytecodes used
in the comparison. The equation m3[0] corresponds to the base-case (when n≤0), and m3[n] corresponds
to executing the then branch; the constant 15 is the cost of the corresponding bytecodes, and the two
occurrences of hanoi[n−1] are the cost of the recursive calls. The fact that n decreases by 1 in the recursive
calls was detected by size analysis of the bytecode program. Note that the local variables, and stack elements,
which do not appear in the equations were removed by the slicing algorithm, since they do not affect the
base-case condition; therefore, they are not relevant for the cost.

Once the equations have been generated, we solve them in Mathematica by calling its recurrence equation
solver RSolve. The query RSolve[{eqns}, {a[n], . . . , z[y]}, {n, . . . , y}] solves a set of recurrence equations {eqns}
for a[n], . . . , z[y], where n, . . . , y are the only variables, by giving solutions for a, . . . , z as pure functions.
The full Mathematica query is shown in the table. We are able to solve the above equations without any
preprocessing, and, as expected, the obtained answer predicts an exponential complexity for hanoi[n].

90

MOBIUS Deliverable D2.3. Report on Type Systems

Cost relations and Mathematica solution for Hanoi

static void hanoi(int n,int s,int a,int t) {
if (n > 0) {

hanoi(n-1, s, t, a);
System.out.println(n+”:”+s+”→”+t);
hanoi(n-1, a, t, s); } }

Ehanoi =

hanoi[n] == m0[n],
m0[n] == 2 + m3[n],
m3[0] == 1,
m3[n] == m4[n],
m4[n] == 15 + hanoi[n-1]+ hanoi[n-1]

Mathematica query: RSolve[{Ehanoi}, {hanoi[n],m0[n],m3[n],m4[n]},n]
Mathematica answer (complexity): hanoi[n] → (-17) + 5 22+n

Figure 3.14: The Hanoi Problem

Cost relations and Mathematica solution for Fibonacci

static int fib(int n){
if ((n==0) || (n==1)) return 1;
else return (fib(n-1)+fib(n-2));

}

Efib =

fib[n] == m0[n],
m0[n] == 2 + m4[n],
m4[0] == 2,
m4[n] == m5[n],
m5[n] == 3 + m6[n],
m6[1] == 2,
m6[n] == m7[n],
m7[n] == 10 + fib[n-1] + fib[n-2]

Mathematica query: RSolve[{Efib}, {fib[n],m0[n],m4[n],m6[n],m7[n]},n]

Mathematica answer (complexity): fib[n] →-(23−n (15 21+n - 19 (1 -
√

5)n + 5√
5 (1 -

√
5)n - 19 (1 +

√
5)n - 5

√
5 (1 +

√
5)n)) / ((-1 +

√
5)2 (1 +

√
5)2)

Figure 3.15: The Fibonacci Problem

Recursive Fibonacci The next example (Fig. 3.15) is a recursive implementation of the Fibonacci number
series. The recurrence equations obtained by the analyzer are depicted in the same table. The equation
fib[n] corresponds to the total cost of a call fib(n). The other equations correspond to the different blocks in
the control flow graph. For example, m4[0] and m4[n] correspond to the success and failure of the condition
n == 0, respectively. Similarly, m6[1] and m6[n] corresponds to n == 1. The equation m7[n] corresponds
to the cost of the recursive calls and their corresponding bytecodes; the decreasing by 1 and 2 in the calls
was detected by size analysis on the bytecode. Moreover, irrelevant stack elements were removed from the
equations by means of slicing. Solving the above equations in Mathematica gives the expected exponential
complexity.

Analyzing Programs with Arrays and (Nested) Loops

In this section, we assess the practicality of the cost analysis for several procedures dealing with arrays and
loops. We start by an example for array reversal, whose cost relations are solvable in Mathematica. Then,
we study array concatenation, which requires some transformations over the cost relation in order to make
it solvable. Finally, we analyze a method for matrix multiplication with several nested loops, which can be
solved by means of a different query for each loop.

Reverse of an Array We want to infer the cost of a simple reverse method which reverses the elements
of an array. The recursive representation of reverse in our system takes the form reverse(a, i, r), where a
represents the input array, i is the local variable and r is the resulting array. Basically, the execution time
depends on the number of loop iterations; therefore, relevant variables are those appearing in the guard of
the recurrence relation for m2 (which denotes the termination condition of the loop). Only a and i appear
in the cost relation yielded by our system, while r is removed. The size analysis abstracts the array a to its
length and infers that the variable i decreases by one unit in each iteration.

In order to solve the recurrence equations in Mathematica, we need to use the same variable name in all

91

MOBIUS Deliverable D2.3. Report on Type Systems

Cost relations and Mathematica solution for Array Reversal

static int[] reverse(int[] a){
int la = a.length;
int[] r = new int[la];
for (int i=la ; i > 0 ; i--) r[la-i]=a[i-1];
return r;
}

reverse[a] == m0[a],
m0[a] == 8 + m1[a],
m1[i] == 2 + m2[i],
m2[0] == 2,
m2[i] == m4[i],
m4[i] == 12 + m1[i-1]

Mathematica Query: RSolve[{ rev[a] == m0[a], m0[a] == 8 + m1[a-1],
m1[a] == 2 + m2[a], m2[0] == 2, m2[a] == m4[a], m4[a] == 12 + m1[a-1]},

{rev[a],m0[a],m1[a],m2[a],m4[a]}]
Mathematica Answer: reverse[a] − > 12 (1 + 2 a)

Figure 3.16: Array Reversal

Cost relations and Mathematica solution for Array Concatenation

static int[] concat(int a[], int b[]) {
int l1 = a.length;
int l2 = b.length;
int[] r = new int[l1+l2];
int i = 0;
for (i=0;i<l1;i++) r[i]=a[i];
for (i=l1;i<l1+l2;i++) r[i]=b[i];
return r;
}

concat[a,b] == m0[a,b],
m0[a,b] == 15 + m1[a,b,0],
m1[a,b,i] == 3 + m2[a,b,i],
m2[a,b,i] == m3[a,b,i], i ≥ a
m2[a,b,i] == m4[a,b,i], i < a
m3[a,b,i] == 2 + m5[a,b,b],
m4[a,b,i] == 8 + m1[a,b,i+1],
m5[a,b,i] == 5 + m7[a,b,i],
m7[a,b,i] == 2, i ≥ a+b
m7[a,b,i] == m8[a,b,i], i < a+b
m8[a,b,i] == 8 + m5[a,b,i+1],

Mathematica queries:

RSolve[{ m1[i] == 3 + m2[i], m2[a] == 2 + k, m2[i] == m4[i],

m4[i] == 8 + m1[i+1] }, {m1[i],m2[i],m4[i]},i]
RSolve[{ m5[i] == 5 + m7[i], m7[a+b] == 2, m7[i] == m8[i],

m8[i] == 8 + m5[i+1]}, {m5[i],m7[i],m8[i]},i]
Mathematica answers: m1[i] -> 5 + 11 a - 11 i + k (k ->m5[b]) m5[i] -> 7 + 13 a + 13 b - 13 i

Solution (composition of the answers):
concat[a,b] -> 15 + m1[0] ≡ 15 + 5 + 11 a + m5[b] ≡ 27 + 24 a

Figure 3.17: Array Concatenation

equations, i.e., we cannot have both a and i. This is because, otherwise, Mathematica requires all variables
to be passed from the initial equation on (see also Sec. 3.4.6). Note that this renaming can be easily done
in an automatic way (the result can be seen in the RSolve query).

Concatenation of Two Arrays Consider the method concat in Fig. 3.17: it concatenates two input
arrays a and b and returns the result in c. The equation concat[a, b] corresponds to the cost of calling concat
with two arrays with length a and b, and m0[a, b] corresponds to the initialization of the local variables. The
loops correspond respectively to the equations: (1) m1[a, b, i], m2[a, b, i] and m4[a, b, i]; and (2) m3[a, b, i]
m5[a, b, i], m7[a, b, i] and m8[a, b, i].

The size analysis was able to infer the increase in the loops’ counters and their corresponding initial
values; slicing removed the variable r, which is irrelevant to the cost. The major limitations we found in
Mathematica are:

1) it is impossible to include guards in the recurrence equations;

2) variables cannot be repeated in the equation head;

3) all equations must have at least one variable argument;

92

MOBIUS Deliverable D2.3. Report on Type Systems

Cost relations and Mathematica solution for Matrix Multiplication

static int[][] mult(int[][] a,int[][] b,
int r, int c) {

int[][] c1 = new int[r][c];
for(int i=0; i < r;i++)

for(int j =0; j < c; j++)
for (int k=0; k < c; k++)

c1[i][j] = c1[i][j] + (a[i][k] *a[k][j]);
return c1;
}

mult[r,c] == 16 + m0[r,c,0],
m0[r,c,i] == 3 + m1[r,c,i],
m1[r,c,i] == 0 i ≥ r
m1[r,c,i] == m2[r,c,i] i < r
m2[r,c,i] == 4 + m3[r,c,0] + m0[r,c,i+1]
m3[r,c,j] == 3 + m4[r,c,j],
m4[r,c,j] == 0, j ≥ c
m4[r,c,j] == m5[r,c,j], j < c
m5[r,c,j] == 4 + m6[r,c,0] + m3[r,c,j+1]
m6[r,c,k] == 3 + m7[r,c,k],
m7[r,c,k] == 0, k ≥ c
m7[r,c,k] == m8[r,c,k], k < c
m8[r,c,k] == 24 + m6[r,c,k+1]

Mathematica queries:

RSolve[{m0[i] == 3 + m1[i], m1[r] == 0, m1[i] == m2[i],
m2[i] == 4 + k + m0[i+1]}, {m0[i],m1[i],m2[i]},i]

RSolve[{m3[j] == 3 + m4[j], m4[c] == 0, m4[j] == m5[j],
m5[j] == 4 + z + m3[j+1]},{m3[j],m4[j],m5[j]},j]

RSolve[{m6[k] == 3 + m7[k], m7[c] == 0, m7[k] == m8[k],
m8[k] == 24 + m6[k+1]}{m6[k],m7[k],m8[k]},k]

Mathematica answers:

 m1[i] -> 3 - 7 i - i k + 7 r + k r (k = m3[0])
m3[j] -> 3 + 7 c - 7 j + c z - j z (z = m6[0])
m6[k] -> 3 (1 + 9 c - 9 k)

Solution: mul-> 16+m1[0]≡19+7r+rm3[0] ≡19+7r+r(3+7c+cm6[0]) ≡ 19+10r+10rc+27c2r

Figure 3.18: Matrix multiplication

4) variables in the equation head must appear in the body.

Regarding limitation 1), we can notice in the equations for m2 that recursion ends when i = a. Therefore,
we could write the two equations for m2 as follows: m2[a, b, a] == m3[a, b, a],m2[a, b, i] == m3[a, b, i]. The
same process can be applied to the equations for m7, which can be transformed to m7[a, b, a + b] ==
2,m7[a, b, i] == m8[a, b, i]. This reformulation is still not acceptable by Mathematica, because there are
repeated variables in the head of the rules (point 2). Yet, we observe that the first two arguments of the
relation, a and b (i.e., the array lengths), remain constant through the relation. Therefore, we can safely
(and automatically) remove them from all the equations. However, this transformation incurs problems 3)
and 4). Problem 3 appears because the first two equations do not have variables anymore; this prevents
us from including them in the Mathematica query (rather, we can use them only at the end, to compose
the final solution). Furthermore, when i is initialized to the length of the array b in the equation m3, i.e.,
we have m3[i] == m5[b], problem 4) occurs. In order to overcome problem 4) (which will indeed appear
frequently), we treat m5[b] as a constant (k is used in the table) and replace it in all the equations. This
involves the execution of two different queries in Mathematica, as it can be seen above: one for m1[i], and one
for m5[i]. The final complexity is obtained by composing the results (taking into account that k = m5[b])
with the initial equations, which have no variables.

We want to point out that, although the above transformations could be done automatically (and we
could produce recurrence relations which are directly solvable in Mathematica), we have not implemented
them in our system because we are still studying which solver is more appropriate for our needs. Indeed,
Mathematica is a rather complex software which offers much more than is needed in order to solve recurrence
equations; therefore, we might want to process the output of our system with a simpler software, like PURRS
[?], which is indeed dedicated to solve recurrence equations.

93

MOBIUS Deliverable D2.3. Report on Type Systems

Matrix Multiplication Consider the method mult in Fig. 3.18, which implements the multiplication of
(a subset of) two matrices. The first two arguments are the matrices to be multiplied, and r and c are the
number of rows and columns to be taken into account. As a novel feature, mult presents nested loops. This
requires a special processing of the CFG which detects and extracts loops.

The equations m0[r, c, i], m1[r, c, i] and m2[r, c, i] correspond to the outermost loop; m3[r, c, j], m4[r, c, j]
and m5[r, c, j] corresponds to the middle loop; and m6[r, c, k], m7[r, c, k] and m8[r, c, k] correspond to the
innermost loop. Note that size analysis was able to infer the increase of the loops’ counters, and that slicing
was able to remove variables which are irrelevant to the cost.

The inferred recurrence equations are not solvable by Mathematica. We basically need to apply the
same transformations explained in Sect. 3.4.6 to make the equations solvable (and overcome the previously
mentioned limitations). Very briefly, we first simplify all guards by applying them to the equation heads.
Then, we remove parameters f and c from the equations, since they are constant in all of them. Finally, we
input three separate queries to Mathematica, one for each loop. In the end, the results obtained for the three
loops are composed in the initial equation (we could not include it in the query as it has no arguments).

Dealing with Object-Oriented Features

In this section, we study several object-oriented features. First, we see how we deal with dynamic dispatching
in the context of cost analysis. Then, we analyze the cost of reversing a list implemented as a class with field
attributes. Finally, we infer the cost of a linear search algorithm over the list. To the best of our knowledge,
these examples illustrate novel object-oriented features which are not studied in existing cost analyses for
other languages and paradigms.

Dynamic dispatching The Incr example in Fig. 3.19 above presents interesting object-oriented features,
such as the use of objects and the invocation of methods with dynamic dispatching. In particular, as it is
not known at compile time which of the three methods (A.inc, B.inc or C.inc) will be executed, we need to
consider the different costs obtained for each case. Therefore, the object o which determines which method
will be executed becomes part of the guards in the cost relation. It can be seen in the equation for m4 that,
depending on whether the object o belongs to class A, B, or C, we have a different cost. We can apply all
the transformations discussed in Sect. 3.4.6 in order to make the equations solvable in Mathematica (i.e.,
apply the guards for i, eliminate variable n from all equations, etc). However, we cannot apply the guards
which distinguish the type of the object to the equation head. Our proposal consists of generating three
different sets of recurrence equations (one corresponding to each method invocation). We can now get rid
of variable o in all sets of equations. This leads to the three Mathematica queries written in the table. We
named the result for each one as addX, where X is the type of object for which the cost was computed. As
the Mathematica answer is rather large for addB and addC, we did not written the constant parts in the
table. Then, depending on whether one is interested in upper or lower bounds of the computational cost,
we compute the maximum or the minimum of the three solutions: clearly, addA provides an upper bound
and addC a lower bound of the computational cost.

List Processing Algorithms The class List (Fig. 3.20) contains a procedure which computes the reverse
of a list implemented as a class with two fields: next, which points to the next element in the list, and data,
which contains the information stored in the list. The equations inferred by the analyzer are depicted in the
table. Recall that, in the recurrence equations, x stands for the length of paths reachable from x. The size
analysis was able to infer that the path length of x is decreasing by one in every two consecutive visits of
the loop, and that slicing was able to remove all variables that do not affect the loop condition. The output
recurrence equations can be directly solved in Mathematica. We obtained linear complexity as it is shown
in the table.

Finally, the last example Search (Fig. 3.21) implements the linear search of an element e in an input
list x. It uses the List class, and returns the element of x whose data field is equal to e. The novel feature
of this example is that we have two conditions on the loop, and the second one depends on the content of

94

MOBIUS Deliverable D2.3. Report on Type Systems

Cost relations and Mathematica solution for Dynamic Dispatching

class A {
int incr(int i) {return i+1; }};

class B extends A {
int incr(int i) {return i+2; }};

class C extends B {
int incr(int i) {return i+3; }};

class Incr {
int add(int n, A o) {

int res=0;
int i=0;
while (i <=n) {
res = res + i;
i = o.incr(i);}

return res; }};

add[n,o] == m0[n,o],
m0[n,o] == 4 + m1[n,o,0],
m1[n,o,i] == 3 + m2[n,o,i],
m2[n,o,i] == 2, i > n
m2[n,o,i] == m3[n,o,i], i ≤ n
m3[n,o,i] == 7 + m4[n,o,i],
m4[n,o,i] == A:incr[i] + m5[n,o,i+1], o ∈ A
m4[n,o,i] == B:incr[i] + m5[n,o,i+2], o ∈ B
m4[n,o,i] == C:incr[i] + m5[n,o,i+3], o ∈ C
m5[n,o,i] == 2 + m1[n,o,i],
A:incr[i] == 3,
B:incr[i] == 3,
C:incr[i] == 3,

Mathematica query:

RSolve[{m1[i] == 3 + m2[i], m2[n] == 2, m2[i] == m3[i], m3[i] == 7 + m4[i],
m4[i] == A + m5[i+1], m5[i] == 2 + m1[i], A[i] == 3 },
{m1[i],m2[i],m3[i],m4[i],m5[i],A[i]},i]

RSolve[{m1[i] == 3 + m2[i], m2[n] == 2, m2[i] == m3[i], m3[i] == 7 + m4[i],
m4[i] == B[i] + m5[i+2], m5[i] == 2 + m1[i], B[i] == 3},
{m1[i],m2[i],m3[i],m4[i],m5[i],B[i]},i]

RSolve[{ m1[i] == 3 + m2[i], m2[n] == 2, m2[i] == m3[i], m3[i] == 7 + m4[i],
m4[i] == C[i] + m5[i+3], m5[i] == 2 + m1[i], C[i] == 3},
{m1[i],m2[i],m3[i],m4[i],m5[i],C[i]},i]

Appr. of Mathematica answers: addA ≈ 15n + K addB ≈ 7.5n + K addC ≈ 5n + K

Figure 3.19: The Incr program

Cost relations and Mathematica solution for List Reversal

class List {
List next; int data;
public List reverse(List x) {
List result = null; List tmp = null;
while (x != null) {
tmp = x.next; x.next = result;
result = x; x = tmp;

}
return result; }}

reverse[x] == m0[x],
m0[x] == 4 + m1[x],
m1[x] == 2 + m2[x],
m2[0] == 2,
m2[x] == m4[x],
m4[x] == 11 + m1[x-1],

Mathematica query:

 RSolve[{rev[x] == m0[x], m0[x] == 4 + m1[x], m1[x] == 2 + m2[x],
m2[0] == 2, m2[x] == m4[x], m4[x] == 11 + m1[x-1]},
{rev[x],m0[x],m1[x],m2[x],m4[x]},x]

Mathematica answer (complexity): rev[x] -> 8 + 19 x

Figure 3.20: List reversal

the list. From the recurrence equations, we observe that the equations m8 correspond to the first guard in
the loop condition. In particular, the first one is the exit condition of the loop when the list is null, i.e.,
x = 0. The second one, x 6= 0, leads to the equations n1, where the second condition is evaluated. Variable
d in this guard represents x.data. Exiting form the loop depends on whether d is equal to e. Mathematica
cannot handle these recurrence equations, due to the fact that they involve two guards (and one should
consider the best and the worst case). Besides, it is not possible to express the second guard in a way
which is understandable to the solver. The approach we propose consists of approximating the solution by
disregarding the second guard of the loop. This implies that we delete the first equation for n1 from the set
of equations, and the remaining guard d 6= e. As a consequence, variables e and d become now irrelevant

95

MOBIUS Deliverable D2.3. Report on Type Systems

Cost relations and Mathematica solution for List Manipulation

class Search {
public List search(List x, int e) {
int index=1;
while (x != null && x.data != e) {

index++;
x = x.next;

}
return x;

}

search[x,e] == m5[x,e],
m5[x,e] == 7 + m6[x,e] + m7[c], c ≤ x
m6[x,e] == 2 + m8[x,e],
m8[0,e] == 0,
m8[x,e] == m9[x,e],
m9[x,e] == 4 + n1[x,e,d],
n1[x,e,d] == 0, d = e
n1[x,e,d] == n0[x,e,d], d 6= e
n0[x,e,d] == 5 + m6[x-1,e],
m7[c] == 2

Mathematica query:
RSolve[{ search[x] == m5[x], m5[x] == 9 + m6[x], m6[x] == 2 + m8[x], m8[0] == 0,

m8[x] == m9[x], m9[x] == 4 + n1[x], n1[x] == n0[x], n0[x] == 5 + m6[x-1]},
{search[x],m5[x],m6[x],m8[x],m9[x],n0[x],n1[x]},{x}]

Mathematica answer (upper bound complexity): search[x] -> 11 (1+x)

Figure 3.21: List Manipulation

Benchmark BC CFG RR Size An. Slicing Cost Total

Hanoi 289 15 5 150 15 3 187
Fibonacci 298 19 6 265 39 2 331

Reverse 296 21 5 207 21 2 256
Concat 351 64 7 648 43 4 766
MatMult 388 182 12 2152 115 5 2465

Incr 320 38 13 956 371 7 1383
List 355 27 4 123 58 3 216
Search 351 51 12 462 220 4 750

Diff 377 167 14 3804 595 10 4590
Intersec 390 181 18 4575 869 15 5657
Sum 295 62 8 1415 287 5 1776

Table 3.1: Measured time (in ms) of the different phases of cost analysis

and are sliced away. Note that we will obtain an upper bound solution for the computational cost, rather
than the exact solution. This reasoning is not easy to automate, and our system still cannot deal with it
automatically. Besides, it should be noted that, in order to solve the equations in Mathematica, we need to
unfold m7 in order to eliminate the guard of m5. After all these (non trivial) simplifications, Mathematica
provides a linear complexity as the upper bound.

Experiments and Discussion

In order to assess the practicality of our cost analysis framework, we have implemented a prototype analyzer
in Ciao [89]. The experiments have been performed on an Intel P4 Xeon 2 GHz with 4 GB of RAM, running
GNU Linux FC-2, 2.6.9.

Table 1 shows the run-times of the different phases of the cost analysis process. The first column,
Benchmark, indicates the name of the class and method of the benchmark to be analyzed. The second
column, BC, contains the size in bytes of the corresponding .class. All other columns show execution times
in milliseconds and have been obtained using the statistics/2 procedure of Ciao with the parameter runtime.
They are computed as the arithmetic mean of five runs. For each benchmark, CFG represents the time
taken to build the control flow graph of the corresponding method; RR is the time taken for obtaining the
recursive representation from the CFG (this includes translating bytecode operations for converting stack
positions into local variables and removing irrelevant variables by means of slicing); Size An. is the time

96

MOBIUS Deliverable D2.3. Report on Type Systems

taken by the abstract-interpretation based size analysis for computing size relations; Slicing shows the time
required for detecting the set of variables which are relevant in each block of the CFG; finally, Cost stands
for the time taken to build the cost relations for the different blocks.

The benchmarks are divided into four categories, as it can be seen from the structure of the table: (i)
recursive procedures (Sec. 3.4.6) solving Hanoi and Fibonacci problems; (ii) methods involving (possibly
nested) loops, as array reverse and concatenation, and matrix multiplication (Sec. 3.4.6); (iii) procedures
manipulating objects and fields (Sec. 3.4.6), as the add method involving dynamic dispatching, and list
reversal and search; (iv) further examples: computing the difference (diff) and the intersection (intersec) of
two arrays, and the function sum computing Σn

i=1 Σi
j=1 i+ j.

As the figure shows, the total times obtained using our prototype implementation range from 187 ms in
the case of Hanoi, to 5657 ms in the case of Intersec. As it can be seen, computing size relations is the most
expensive step. This comes from the fact that this step requires a global analysis of the program, whereas
CFG, RR, and Cost basically involve a single pass on the code. Slicing also requires a global, though
much simpler, analysis. Thus, the time it requires is the biggest after the size analysis.

Our experimental results are very preliminary, and there is still plenty of room for optimization (mainly
in the size analysis phase). The main planned optimization is the use of abstract compilation techniques in
order to avoid re-computation of abstract operations which are related to the bytecodes. This can be done
since the analysis is denotational, so that those bytecodes will always have the same abstract approximations.

As regards the accuracy of the analysis, our approach was able to obtain accurate cost relations for all
the considered benchmarks. Note that this is an important observation, since we are confident that, by
further transformations on the cost relations, or by using a more powerful system for solving recurrence
equations, we will be able to obtain closed form solutions for a broader class of programs.

3.4.7 Conclusions and Future Work

We have presented an automatic approach to the cost analysis of Java bytecode, based on generating at
compile-time cost relations for an input bytecode program. Such relations are functions of input data which
are informative by themselves about the computational cost, provided an accurate size analysis is used to
establish relationships between the input arguments. Essentially, the sources of inaccuracy in size analysis
are: 1) guards depending (directly of indirectly) on values which are not handled in the abstraction, e.g.,
non-integer values, numeric fields or multidimensional arrays, cyclic data-structures; 2) loss of precision due
to the abstraction of (non-linear) arithmetic instructions and domain operations like widening. In such
cases, we can still set up cost relations; however, they might not be useful if the size relationships are not
precise enough.

To the best of our knowledge, our work presents the first approach to the automatic cost analysis of Java
bytecode. Related work in the context of Java bytecode includes the work in the MRG project [20], which
can be considered complementary to ours. MRG focuses on building a proof-carrying code [138] architecture
for ensuring that bytecode programs are free from run-time violations of resource bounds. Also, the resource
which has been studied in more depth is heap consumption, since applications to be deployed on devices
with a limited amount of memory, such as smartcards, must be rejected if they require more memory than
that available. Another related work is [53], where a resource usage analysis is presented. Again, this work
focuses on memory consumption and it aims at verifying that the program executes in bounded memory by
making sure that the program does not create new objects inside loops. The analysis has been certified by
proving its correctness using the Coq proof assistant.

As future work, we plan to apply this analysis to estimate heap consumption in programs which make
intensive use of OO features. Also, as seen in Section, existing computer algebra systems are, in many cases,
not directly applicable to obtain upper bounds of cost relations and a high-degree of human intervention is
required. Therefore, we plan to work on fully automating the process of obtaining upper bounds for cost
relations.

97

MOBIUS Deliverable D2.3. Report on Type Systems

Chapter 4

Alias Control Types

This chapter presents the work done in the development and formalisation of alias control type systems
for object-oriented programming languages. These type systems serve to characterize which reference types
may be aliases of other reference types, and thus help to characterize the effects of expression evaluation,
and to restrict the spaces necessary for program verification. Universes are being used, e.g., in ESC/Java2
and JML2. In Task 2.5 we developed powerful but lightweight alias type systems for the source and byte
code language, tailored for local reasoning, for use in WP3.

Section 4.1 builds on previous work done in [127, 71] and formalises UJ, an adaptation of the Universe
type system for a Java-like language. In particular this work separates the topological aspect of Universes
from the encapsulation aspect into two distinct type systems. The encapsulation aspect is crucial in PCC
certification; for midlet certification it is important to be able to guarantee that no references to internal
data structures are exposed.

Section 4.2 outlines an extension of the type system of UJ, which can be used to certify the absence of
race conditions in a program. The approach is similar to that from [79, 50] with two significant advantages:
the type system is based on universes, and thus simpler; the use of anyin some cases allows fewer locks to
need to be taken, and more operations to be atomic. The work has been published at [60].

Section 4.3 extends UJ to generic class definitions; the resulting type system is called GUT. GUT is an
essential development, given that generics are an integral part of Java, or indeed any mainstream strongly-
typed language. The resulting system is lightweight, and supports parameterization both with respect to
the classes of the entities in the container, and also with respect to the topology of these entities. Thus,
GUT can express finer grained topological properties than UJ could. The work has been published at [68].

Finally, Section 4.4 explores a novel extension to ownership type systems (which generally organise heaps
as trees), to allow for multiple owners (thus organising heaps as directed acyclic graphs), and which extends
the domain where such type systems can be applied to sensibly describe the effects of computations. This
work will appear at [54].

4.1 UJ: Type Soundness for Universe Types

Aliasing is an integral part of imperative object-oriented programming, as e.g. in Smalltalk, Java and C++.
It allows a natural presentation of real situations such as the sharing of state. However, it makes several
other programming aspects more difficult, such as reasoning about programs, garbage collection and memory
management, code migration, parallelism, and the analysis of atomicity.

To address these issues, type systems such as Universes [127, 71], ownership types [58, 57, 51] and
similar others [79, 16] have been introduced. They come in various flavours, but all have in common that
they organize the heap topology as a tree (or forest) where each object is owned by at most a single object
and the ownership relationship is acyclic. It is common practice to depict ownership through a box in the
object graph. For example, in Figure 4.1 the dotted box around object 1 of class Bag indicates that it owns
object 2, while the object 2 of class Stack owns objects 3, 4 and 5. Objects that are not owned by any

98

MOBIUS Deliverable D2.3. Report on Type Systems

value3:Node

4:Node

5:Node

2:Stack

9:Object

8:Object

7:Object

6:Object

10:Bag
statestate

top

next

next

value

value

value

top

11:Stack

12:Node

root

1:Bag

Figure 4.1: Depicting object ownership and references in a heap

1 class Bag {
2 rep Stack state ;
3 public impure void add(any Object o) { this . state .push(o); }
4 public pure Bool isEmpty() { return (this . state .top == null); }
5 }
6

7 class Stack {
8 rep Node top;
9 public impure void push(any Object o) { this .top := new rep Node(o, this.top); }

10 public impure any Object pop() {
11 any Object o := null ;
12 if (this .top != null) { o := this .top. value ; this .top := this .top.next; }
13 return o;
14 }
15 }
16

17 class Node{
18 any Object value ;
19 peer Node Next;
20 }

Figure 4.2: Code augmented with universe annotations

other object, such as 1, 6 and 9 are contained within the dotted box labeled root, which gives us a tree (as
opposed to a forest).

This hierarchic heap topology can be exploited in several ways: Vitek et al. [16] speed up garbage
collection, because as soon as an owner is unreachable, all owned objects are unreachable too. Flanagan et
al. [79], Boyapati et al. [50], Cunningham et al. [60] can guarantee that a program will not have races, because
locking an object implicitly locks all owned objects. Clarke et al. [57] use ownership types to calculate the
effects of computation, and thus determine when they do not affect each other. Clarke et al. [58] introduce
deep ownership, whereby any path to an object from the root must go through its owner; thus the owned
objects are its representation, and are encapsulated within the object. Leavens et al. [130] use the hierarchic
topology for defining modular verification techniques of object invariants.

Universe types were developed by Müller and Poetzsch-Heffter [129, 127] to support modular reasoning.
The type system is one of the simplest possible in the family of ownership related systems. There are three
universe annotations: rep, peer and any, which denote the relative placement of objects in the ownership
hierarchy.

An example appears in Figure 4.2. The annotation rep (short for representation) expresses that the

99

MOBIUS Deliverable D2.3. Report on Type Systems

object is owned by the currently active object, while peer expresses that the object has the same owner as
the currently active object. In terms of our example code, the Stack object state in class Bag is declared
as rep and indeed, we see that in Figure 4.1 the Stack objects 2 and 11 are owned by Bag objects 1 and 10
respectively; similarly, in class Node the field next is declared as peer, and indeed the Node objects 3, 4 and
5 have the same owner. The annotation any abstracts over the object’s position in the hierarchy: the field
value in class Node is declared as any and can therefore refer to any object in the hierarchy. The code in
Figure 4.2 also augments methods with the keywords pure and impure, qualifying read-only methods from
methods that affect the state of the receiver; though not integral to Universes, these purity annotations are
used to guarantee encapsulation, as we discuss later.

Thus, Universe types offer a very simple system which describes the topology of the heap. In contrast
with several other systems [58], Universe types do not restrict access into the boxes, as long as they are
carried out through any references. Thus, a reference from 3 to 12 would be legal through the field value,
because this field has the type any Object.

Nevertheless, Universe types impose encapsulation, in the sense that they guarantee that the state of
an object can only be modified when one of the object’s owners is the currently active object. This is the
owners-as-modifiers property [127], and it is guaranteed by the type system by requiring that only pure
methods can be called when the receiver has the universe annotation any. Note however, that Universe
types can be used to guarantee race free programs, without requiring the owners-as-modifiers discipline [60].

Thus, the owners-as-modifiers discipline supports modular reasoning, because it guarantees that the
invariant of an object is preserved by an execution, whose receiver’s owner is not an transitive owner of the
former object. Modular reasoning using Universes has been adopted in Spec# [23, 24]. However, there they
also consider a setting where the owners may change dynamically. The use of Universe types in modular
reasoning is described in various literature, amongst which [106, 71, 130].

We give a formal, type theoretical description of Universe types. We distinguish the topological type
system from the encapsulation type system, and describe the latter on top of the topological system. The
reasons for this distinction are:

• we believe the distinction clarifies the rationale for the type systems,

• some systems, such as those required for races detection, atomicity and deadlock detection, only require
the topological properties,

• it is conceivable that one might want to add an encapsulation part onto a different topological type
system.

Universe types were already introduced and proven sound in [127], but the description was in terms of
proof theory, rather than the type theoretic machinery we adopt in this report; they were further described
in [71]. Extensions to Universe types, such as those described in [68] (adding generics to Universe types),
already use the type theoretic approach.

This section thus aims to fill a gap in the Universe types literature, by giving a full type theoretical
account of the basic type system, proofs, sufficient examples, explanations, and elucidate the distinction
between the topological and the encapsulation system. We describe Universe types for UJ (Universe Java),
a Java-like language, which contains classes, inheritance, fields, methods, dynamic method binding, and
casts.

Outline Sec. 4.1 is organized as follows: we introduce our base language in Section 4.1.1, followed by a
discussion on Universes and owners in Section 4.1.2. In Section 4.1.3 we give the operational semantics for
our language. Section 4.1.4 presents the topological type system and states subject reduction. Section 4.1.5
covers the encapsulation type system and its relation to modular verification. Section 4.1.6 concludes.

4.1.1 UJ Source Language

UJ models a subset of Java supporting class definitions, inheritance, field lookup and update, method
invocations and down-casting. On top of this core subset, we augment types with universe annotations and

100

MOBIUS Deliverable D2.3. Report on Type Systems

method signatures with purity annotations.

Source Program

The syntax of our source language is given in Figure 4.3. We assume three infinite but distinct sets of names:
one for classes, c ∈ Idc, one for fields, f ∈ Idf , and another for methods, m ∈ Idm. A program is defined
in terms of three partial functions, F , M and MBody , and a transitive closure relation over class names ≤c;
these functions and relations are global. F associates field names in a class to types, M associates method
names in a class to method signatures and MBody associates method names in a class to method bodies.
The reflexive transitive closure relation ≤c denotes class inheritance.

Source expressions, denoted by e, are a standard subset of Java. They consist of the basic value, null,
the self reference this, parameter identifier, x, new object creation, new t, down-casting , (t) e, field access,
e.f , field update, e.f := e, and method invocation, e.m(e). Types, denoted by t, constitute a departure
from standard Java. They consist of a pair, w c, where class names c are preceded by universe annotations,
denoted as w. Method signatures also deviate slightly from standard Java. They consist of a triple, denoted
as p : t1 (t2) where t2 is the type of the method parameter, t1 is the return type of a method, and p is a
purity tag, ranging over the set {pure, impure}.

Universes, as defined in [127], are denoted by w and range over the set {rep, peer, any}. They provide
relative information with respect to the current object. More specifically,

• rep states that a reference constitutes part of the current object’s direct representation. Stated other-
wise, the current object owns the object pointed to by the reference.

• peer states that the reference constitutes part of the representation the current object belongs to.
Stated otherwise, the current object and the object pointed to by the reference are owned by the same
object (owner).

• any is a form of existential quantification over such information.

For our formalisation we need to extend Universes by another value, self, and refer to the extended set as
Extended Universes, denoted by u.

• self is a specialisation of peer, referring to the object itself and not any other peer object in the direct
representation the current object belongs to.

We find it convenient to identify a universe subset called Concrete Universes, z, ranging over {self, rep, peer}
but not any, which give us concrete representation information about references with respect to the current
object. When writing source programs, we only make use of universes w; extended universes u are used
extensively in the topological type system (Section 4.1.4); concrete universes are used extensively in the
encapsulation type system (Section 4.1.5).

4.1.2 Universes and Owners

Universes characterise object aliasing in a heap because they structure the heap as an acyclic ownership
tree. Every object a in a heap is owned by a single owner, o, which is either another object in the heap or
the root of the ownership tree, root. The representation of an object in a heap h is defined as all the objects
it transitively owns (all the objects below it). Ownership is acyclic, that is any two distinct objects in h
cannot belong to one another’s representation (they cannot transitively own one another). When we do not
want to refer to a particular heap, we find it convenient to refer to objects as pairs with their owners a, o.
(e.g. 1,root and 2,1, meaning 1 owned by root and 2 owned by 1 respectively).

We recall that (concrete) universes are relative with respect to a viewpoint and do not mean anything
without such a viewpoint. In class definitions, this viewpoint of universe annotations is implicitly assumed
to be the current this object (see the code in Figure 4.2). An object a,o can be assigned to a universe with
respect to another object a’,o’ using the judgement

a′, o′ ` a, o : u (4.1)

101

MOBIUS Deliverable D2.3. Report on Type Systems

F : Idc × Idf ⇀ Type
M : Idc × Idm ⇀ TypeSig

MBody : Idc × Idm ⇀ SrcExpr
≤c : Idc × Idc → Bool

e ∈ SrcExpr ::= this | x | null | new t | (t) e
| e.f | e.f := e | e.m(e)

t ∈ Type ::= u c
w ∈ Universe ::= rep | peer | any

u ∈ Extended Universes ::= rep | peer | any | self
z ∈ Concrete Universes ::= rep | peer | self

TypeSig ::= p : t (t)
p ∈ Purity Tag ::= pure | impure

Figure 4.3: Source program definition

a, o ` a, o : self
(Self)

, o ` , o : peer
(Peer)

a, ` , a : rep
(Rep)

, ` , : any
(Any)

Figure 4.4: Assigning universes to objects

which is defined as the least relation satisfying the rules in Figure 4.41. It states that, from the point of
view of a’ (owned by o’), a (owned by o) has universe u.

Example 4.1.2.1 (Universes and addresses). In the heap depicted in Figure 4.1, from the point of view of
2 (owned by 1) object 3 (owned by 2) has universe rep that is

2, 1 ` 3, 2 : rep (4.2)

Similarly, we can derive

3, 2 ` 4, 2 : peer (4.3)

Also, we can assign any to any address from any viewpoint using rule (ANY). Thus,

3, 2 ` 6, root : any 2, 1 ` 3, 2 : any 3, 2 ` 4, 2 : any (4.4)

Universe Ordering

We define the following ordering for universes u ≤u u′:

self ≤u peer ≤u any rep ≤u any

It states that both peer and rep are sub-universes of any, but they are not directly related, and also that self is
a sub-universe of peer. In Lemma 4.1.2.2 we state that the universe ordering relation (≤u) is consistent with
judgement (4.1). Thus any address that is assigned rep, peer and self can also be assigned universe any and
any address that is assigned self can be assigned universe peer, as we have already seen in Example 4.1.2.1.

1The notation indicates any value

102

MOBIUS Deliverable D2.3. Report on Type Systems

w
u⊕ w peer rep any

u

self peer rep any
peer peer any any
rep rep any any
any any any any

w
u	 w peer rep any

u

self peer rep any
peer peer any any
rep any peer any
any any any any

Figure 4.5: Universe composition and decomposition

Lemma 4.1.2.2 (Universe Address Judgements respect Universe Ordering).

a, o ` a′, o′ : u
u ≤u u′

}
=⇒ a, o ` a′, o′ : u′

Example 4.1.2.3 (Subtyping and Universes). We can see how the field universe annotations in the classes
of Figure 4.2 restrict the field references in Figure 4.1. For instance, 2 has the rep top field correctly assigned
to 3, since from (4.2) above we know that 3 has universe rep with respect to 2. In fact this reference can
only point to objects 3, 4 and 5 since these are the only objects owned by object 2. Similarly, 3 has the peer
next field correctly assigned to 4 which is owned by the same owner of 3; from (4.3) above. Trivially, the any
value field of 3 assigned to 6 also respects the universe annotation because of (4.4) above. It can however
point to any object in the heap since any type t is a subtype of any Object.

Universe Composition and Decomposition

The universe information given by Universe types is relative with respect to a particular viewpoint. To
translate Universe types from one viewpoint to another we define composition and decomposition operators
over extended universes, u, and universes, w. These operators are denoted as u⊕w and u	w respectively
and are described in Figure 4.5.

• Universe composition is used to determine the universe of a reference that is twice removed from our
current viewpoint. If the second reference is outside the current viewpoint’s range, then we cannot
express it in terms of the concrete universes rep and peer; in such cases u⊕ w is assigned to any. For
instance rep⊕ rep = any.

• Universe decomposition is the complement of the former operation: u	w returns a universe annotation
w′ such that u⊕w′ = w if it exists and is unique. For instance rep	rep = peer because rep⊕peer = rep
and there is no other universe w such that rep ⊕ w = rep. When the w′ in u ⊕ w′ = w is not unique
or does not exist, then u	 w = any. Thus, rep	 self = any.

In Lemma 4.1.2.4 we show that the intuitions of (⊕) and () are sound with respect to the interpretation
of universes as object ownership in a heap, that is judgement (4.1).

Lemma 4.1.2.4 (Sound Universe Composition and Decomposition).

a, o ` a′, o′ : u
a′, o′ ` a′′, o′′ : u′

}
=⇒ a, o ` a′′, o′′ : u⊕ u′

a, o ` a′, o′ : u
a, o ` a′′, o′′ : u′

}
=⇒ a′, o′ ` a′′, o′′ : u	 u′

Example 4.1.2.5 (Composing and Decomposing Universes). From judgements (4.2), (4.3) from Exam-
ple 4.1.2.1, using Lemma 4.1.2.4, we derive

2, 1 ` 4, 2 : rep (4.5)

103

MOBIUS Deliverable D2.3. Report on Type Systems

a, b ∈ Addr : N
o ∈ Own : a | root
v ∈ V al : a | null

flds ∈ Flds : Idf ⇀ V al

h ∈ Heap : Addr ⇀ (Own× Idc × Flds)
σ ∈ Stack ::= (Addr × V al)

e ∈ RunExpr ::= v | this | x | frame σ e | e.f | e.f := e | e.m(e) | new t | (t) e
E[·] ::= [·] | E[·].f | E[·].f := e | a.f := E[·] | E[·].m(e) | a.m(E[·]) | (t) E[·]

Figure 4.6: Runtime Syntax

because rep⊕ peer = rep. Conversely, from (4.2) and (4.5), using Lemma 4.1.2.4 and rep	 rep = peer, we
recover (4.3)

3, 2 ` 4, 2 : peer

4.1.3 Operational Semantics

We give the semantics of UJ in terms of a small-step operational semantics. We assume an infinite set of
addresses, denoted by a, b. At runtime, a value, denoted by v, may be either an address or null. Owners,
denoted by o, can either be any address or the special owner root.

Runtime expressions are described in Figure 4.6. During execution, expressions may contain addresses
as values; they may also contain the keyword this and parameter identifiers x. Thus, a runtime expression is
interpreted with respect to a heap, h, which gives meaning to addresses, and a stack, σ, which gives meaning
to the keyword this and parameter identifier x.

A heap is defined in Figure 4.6 as a partial function from addresses to objects.2 An object is denoted
by the triple (o, c,flds). Every object has an immutable owner o, belongs to a fixed class c, and has a state,
flds, which is a mutable field map (a partial function from fields names to values). In the remaining text we
use the following heap operations 3:

owner(h, a)
def
= h(a)↓1 class(h, a)

def
= h(a)↓2 fields(h, a)

def
= h(a)↓3

h(a.f)
def
= fields(h, a)(f)

h[(a, f) 7→ v]
def
= h

[
a 7→

(
owner(h, a), class(h, a), fields(h, a)[f 7→ v]

)]
h] {a 7→ (o, c, flds)} def

= h[a 7→ (o, c, flds)] if a 6∈ dom(h)

The first three operations extract the components making up an object. The fourth operation is merely a
shorthand notation for field access in a heap. The fifth operation is heap update, updating the field f of
an object mapped to by the address a in the heap h to the value v. The final operation on heaps is heap
extension with a new mapping from a fresh address a.

A stack σ consists of an address and a value (a, v). The address a denotes the current active object
referred to by this whereas v denotes the value of the parameter x. We find it convenient to define the
following operations on stacks

σ(this)
def
= σ↓1 σ(x)

def
= σ↓2

For evaluating method calls, we require to push and pop new address and value pairs on the stack. To
model this, runtime expressions also include the expression frame σ e which denotes that the sub-expression
e is evaluated with respect to the inner stack σ.

2The arrow ⇀ indicates partial mappings.
3SDAs usual, ↓k indicates the k-th projection from a tuple.

104

MOBIUS Deliverable D2.3. Report on Type Systems

σ ` x, h σ(x), h
(rVar)

σ ` this, h σ(this), h
(rThis)

h′ = h] {a 7→ initO(t, h, σ)}
σ ` new t, h a, h′

(rNew)
h, σ ` a : t

σ ` (t) a, h a, h
(rCast)

σ ` a.f, h fields(h, a)(f), h
(rField)

h′ = h[(a, f) 7→ v]

σ ` a.f := v, h v, h′
(rAssign)

e = MBody(class(h, a),m)

σ ` a.m(v), h frame (a, v) e, h
(rCall)

σ ` e, h e′, h′

σ ` E[e], h E[e′], h′
(rEvalCtx)

σ′ ` e, h e′, h′

σ ` frame σ′ e, h frame σ′ e′, h′
(rFrame1)

σ ` frame σ′ v, h v, h
(rFrame2)

Figure 4.7: Small step operational semantics

Expressions e are evaluated in the context of a heap h and a stack σ. We define the small-step semantics

σ ` e, h e′, h′ (4.6)

in terms of the reduction rules in Figure 4.7. When creating a new object in a heap h, its owner is initialised
relative to the universe specified in its declared type t and the current stack σ, whereas all its field values
are initialised to null; this initialisation operation is handled by the following function:

initO(u c, h, σ)
def
= (uh,σ, c, {f 7→ null | F (c, f) = t})

where

uh,σ
def
=

{
σ(this) u = rep
owner(h, σ(this)) u = peer

The above function is partial: it is only defined for universes rep and peer since the owner of a new object
cannot be determined if the universe is any. Most of the rules in Figure 4.7 are more or less straightforward.
In (rCall) a method call launches a sub-frame with sub-stack σ′ to evaluate the body of the method, where
σ′(this) is the receiver object a and σ′(x) is the value passed by the call, v. Once a frame evaluates to a
value v, we discard the sub-frame and return to the outer frame, as shown in (rFrame2). We also note
that the rule (rEvalCtx) dictates the evaluation order of an expression, based on the evaluation contexts
E[·] defined in Figure 4.6.

Example 4.1.3.1 (Runtime Execution). Let h denote the heap depicted in Figure 4.1 and the current stack
be σ = (2, 9). Then, if we execute the expression this .push(7) with respect to σ and h we get the following
reductions4 where the rule names on the side indicate the main reduction rule applied to derive the reduction,
not mentioning the use of context rules (rEvalCtxt) and (rFrame1).

4In order to follow the Java code of Figure 4.2, the reductions use an object constructor that immediately initialises values
to the parameters passed. This is more advanced than the simpler new construct considered in our language, which initialises
all the fields of a fresh object to null. These details are however orthogonal to the determination of the owner of the object
upon creation addressed here, derived from the type of the new object and the current active object.

105

MOBIUS Deliverable D2.3. Report on Type Systems

σ `this .push(7), h ; 2.push(7) , h (rThis)
; frame σ′ this .top:= new rep Node(x, this.top) , h (rCall)
; frame σ′ 2.top:= new rep Node(x, this.top) , h (rThis)
; frame σ′ 2.top:= new rep Node(7, this.top) , h (rVar)
; frame σ′ 2.top:= new rep Node(7, 2.top) , h (rThis)
; frame σ′ 2.top:= new rep Node(7, 3) , h (rField)
; frame σ′ 2.top:= 13 , h′ (rNew)
; frame σ′ 13 , h′[(2, top) 7→ 13] (rAssign)
; 13 , h′[(2, top) 7→ 13] (rFrame2)

where σ′ = (2, 7), h′ = h] {13 7→ (2,Node, {value 7→ 7, next 7→ 3})} and 13 is a fresh address in the heap h.

4.1.4 Topological Types

In this section we define the topological type system for UJ. The formalism is based on earlier work [127, 71]
but has some differences: as we said in the introduction, we here focus on the hierarchical topology imposed
by Universes but do not enforce the owner-as-modifier property at this stage5 — this is dealt with later
in Section 4.1.5. The main result of this section is Subject Reduction, stating that a type assigned to an
expression and the ownership hierarchical heap structure is preserved during execution.

Subtyping and Type Composition/Decomposition

As was already stated in Section 4.1.1, types, t, are made up of two components: a universe u and a class
name c. For every program we already assume a class inheritance reflexive transitive closure on class names,
≤c. Using the ordering universe relation ≤u of Section 4.1.2 and ≤c we define the subtype relation as:

u c ≤ u′ c′ def
= u ≤u u′ and c ≤c c′ (4.7)

We extend (⊕) and (), defined earlier in Section 4.1.2 for universes, to types as u⊕ t and u	 t using
the straightforward definitions

u⊕ (u′ c)
def
= (u⊕ u′) c

u	 (u′ c)
def
= (u	 u′) c

We use these two auxiliary operators whenever we need to change the viewpoint of the types. We can prove
that our universe composition and decomposition operations on types respect the subtype relation (4.7).

Lemma 4.1.4.1 (Universe Composition and Decomposition preserves Subtyping).

t′ ≤ t =⇒
{
u⊕ t′ ≤ u⊕ t
u	 t′ ≤ u	 t

UJ Source Language Types

We typecheck UJ source expressions with respect to a typing environment Γ, which keeps typing information
for this and the method parameter x. The Universe type derived from this judgement is interpreted with
respect to the current this in Γ.

Definition 4.1.4.2 (Type Environment). A type environment Γ consists of a pair of types, (t, t′), assigning
types to the current active object this and the parameter x respectively. We define the following operations
on Γ:

Γ(this)
def
= Γ↓1 Γ(x)

def
= Γ↓2

5We therefore allow assignments and impure method calls on any objects in the heap.

106

MOBIUS Deliverable D2.3. Report on Type Systems

Γ ` null : t
(Null)

Γ ` x : Γ(x)
(Var)

Γ ` this : Γ(this)
(This)

Γ ` e : t′

Γ ` (t) e : t
(Cast)

Γ ` e : t′

t′ < t

Γ ` e : t

(Sub)
w 6= any

Γ ` new w c : w c
(New)

Γ ` e : u c
F (c, f) = t

Γ ` e.f : u⊕ t
(Field)

Γ ` e : u c
Γ ` e′ : t
F (c, f) = u	 t
Γ ` e.f := e′ : t

(Assign)

Γ ` e : u c
Γ ` e′ : t
M (c,m) = p : tr (u	 t)
Γ ` e.m(e′) : u⊕ tr

(Call)

Figure 4.8: Source type system

The source expression type-judgement takes the form

Γ ` e : t

denoting that expression e has Universe type t with respect to the typing environment Γ. It is defined as the
least relation satisfying the rules given in Figure 4.8. We sometimes find it convenient to use the shorthand
judgement notation

Γ ` e : u Γ ` e : c

whenever components of the type judgement are not important, that is Γ ` e : u and Γ ` e : c
respectively. Most of the rules are standard, with the exception of the type judgements (Field), (Assign)
and (Call) which use the auxiliary operations u ⊕ t and u 	 t defined in Section 4.1.2 to translate types
from one viewpoint to another.

Example 4.1.4.3 (Type Viewpoint Translation). If Γ ` this.top : rep Node and field next in class Node
has type peer Node, then using (Field), from the viewpoint Γ, the dereference this.top.next has type rep ⊕
(peer Node) = rep Node, that is

Γ ` this.top.next : rep Node

Conversely, we use (Assign) to check that when

Γ ` this.top : rep Node and Γ ` new rep Node : rep Node

then the assignment this.top.next := new rep Node respects the field type assigned to next in class Node. For
this calculation we use

F (Node, next) = peer Node = rep 	 (rep Node)

The source expression type judgement allows us to formally define well-formed classes by requiring
consistency between subclasses, that is field types of the class concord with the field types of any superclass
of the class and method signatures are specialisations of the signatures of overridden methods, and that
method bodies are consistent with the signature of that method.

The types in a method signature are meant to be interpreted with respect to this, the current active
object. Thus when typing a method body, the observer is implicitly assumed to be this, even though there
are no actual objects at compile-time. We assign the self (Extended) universe to Γ(this) when type-checking
method bodies because we want the universes of the method calls and field accesses in the method bodies
to be exactly the annotation w given in the class. We note that ∀w. self⊕ w = w.6

6The inquisitive reader may wonder whether peer could have been used instead of self to type Γ(this). We note that peer
would cause us to loose information when the universe w is rep, since peer ⊕ rep = any, thereby making the type system
unnecessarily restrictive.

107

MOBIUS Deliverable D2.3. Report on Type Systems

h, σ ` null : t
(tNull)

h, σ ` σ(x) : t

h, σ ` x : t
(tVar)

h, σ ` σ(this) : t

h, σ ` this : t
(tThis)

h, σ ` e : t′

h, σ ` (t) e : t
(tCast)

h, σ ` e : t′

t′ < t

h, σ ` e : t

(tSub)
h, σ ` new t : t

(tNew)

class(h, a) = c
σ(this),owner(h, σ(this)) ` a,owner(h, a) : u

h, σ ` a : u c

(tAddr)

h, σ ` e : u c
F (c, f) = t

h, σ ` e.f : u⊕ t
(tField)

h, σ ` e : u c
h, σ ` e′ : t
F (c, f) = u	 t
h, σ ` e.f := e′ : t

(tAssign)

h, σ ` e : u c
h, σ ` e′ : t
M (c,m) = p : tr (u	 t)
h, σ ` e.m(e′) : u⊕ tr

(tCall)

h, σ′ ` e : t
h, σ ` σ′(this) : u

h, σ ` frame σ′ e : u⊕ t
(tFrame)

Figure 4.9: Runtime type system

Definition 4.1.4.4 (Well-Formed Class).
∀c′ ≥c c . F (c′, f) = t =⇒ F (c, f) = t

∀c′ ≥c c . M (c′,m) = p : t′r (t′x) =⇒
{

M (c,m) = p : tr (tx)
where tr ≤ t′r and tx ≥ t′x

∀M (c,m) = p : tr (tx) . (self c, tx) ` MBody(c,m) : tr
` c

(WFClass)

The program is said to be well-formed if all the defined classes are well-formed.

Runtime Types

We define a type system for runtime expressions. These are type checked with respect to the base stack
frame σ, which contains actual values for the current receiver this and the parameter x. Since runtime
expressions also contain addresses, we also need to typecheck them with respect to the current heap, so as
to retrieve the class membership and owner information for addresses.

The runtime Universe type system allows us to assign Universe types to runtime expressions with respect
to a particular heap h and stack σ, through a judgement of the form

h, σ ` e : t

It is defined as the least relation satisfying the rules in Figure 4.9. Once again, we use the shorthand notation
h, σ ` e : u and h, σ ` e : c whenever the other components of t in the judgement are not important. In
the rule (tAddr), the type of an address in a heap is derived from the class of the object and the universe
obtained using judgement (4.1) of Section 4.1.2. The three rules (tField), (tAssign) and (tCall) use the
universe composition and decomposition operators in the same way as their static-expression counterparts
in Figure 4.8. The new rule (tFrame) also uses the composition universe operation to translate the type of
the sub-expression, obtained with respect to the sub-stack of the frame, to the current frame’s viewpoint.

Lemma 4.1.4.5 states the composition and decomposition operations correctly characterise the translation
of value that types from one viewpoint, denoted by σ in the runtime type system, to another. The viewpoint
translations of Lemma 4.1.4.5 trivially apply to null values since we assign arbitrary types to such values
using rule (tNull).

108

MOBIUS Deliverable D2.3. Report on Type Systems

Lemma 4.1.4.5 (Determining the relative Universe Types of Values).

(i) If h, σ ` a : u and h, (a,) ` v : t then h, σ ` v : u⊕ t

(ii) If h, σ ` a : u and h, σ ` v : t then h, (a,) ` v : u	 t

Example 4.1.4.6 (Relative Viewpoints in a Heap). In Figure 4.1, using (4.2) and (4.3) from Exam-
ple 4.1.2.1 and rule (tAddr) we derive

h, (2,) ` 3 : rep Node and h, (3,) ` 4 : peer Node

From Lemma 4.1.4.5(i) we immediately derive

h, (2,) ` 4 : rep Node

Conversely, using h, (2,) ` 3 : rep Node, h, (2,) ` 4 : rep Node and Lemma 4.1.4.5(ii) we can recover
h, (3,) ` 4 : peer Node.

At this point, we have enough machinery to define well-formed addresses and heaps. An address is
well-formed in a heap whenever its owner is valid (that is it is another address in the heap or root) and the
type of its fields respect the type of the fields defined in F . As described in Definition 4.1.4.8, a heap is
well-formed, denoted as ` h, if transitive ownership, denoted by owner∗(h, o), is acyclic and all its addresses
are well-formed.

Definition 4.1.4.7 (Transitive Ownership).

owner∗(h, o)
def
=

{
{o} ∪ owner∗(h,owner(h, o)) o 6= root
{root} o = root

owner+(h, o)
def
= owner∗(h, o)\{o}

Definition 4.1.4.8 (Well-Formed Addresses and Heaps).

owner(h, a) ∈ (dom(h) ∪ {root})
class(h, a) = c
F (c, f) = t =⇒ h, (a,) ` h(a.f) : t

h ` a

(WFAddr)

(a, b ∈ dom(h) ∧ a ∈ owner∗(h, b) ∧ b ∈ owner∗(h, a)) =⇒ a = b
a ∈ dom(h) =⇒ h ` a
` h

(WFHeap)

We conclude the section by showing the correspondence between the source-expression type system and
runtime-expression type system. The Substitution Lemma 4.1.4.9 states that, with respect to a suitable
stack σ, where σ(this) and σ(x) match the respective type assignments in Γ, a well-formed source expression
is also a well-formed runtime expression. Despite the name used, we note that no ”substitution” occurs in
the expression itself, which is the same in both type judgements of the Lemma.

Lemma 4.1.4.9 (Substitution).

Γ ` e : t
h, σ ` x : Γ(x)
h, σ ` this : Γ(this)

 =⇒ h, σ ` e : t

109

MOBIUS Deliverable D2.3. Report on Type Systems

Subject Reduction

The first main result of this section states that if a well-formed runtime expression e reduces with respect
to a stack, σ, and a well-formed heap, h, then the resulting expression preserves its type, and the resulting
heap preserves its well-formedness.

Theorem 4.1.4.10 (Subject Reduction). If a program is well-formed then

` h
h, σ ` e : t
σ ` e, h e′, h′

 =⇒ ` h′
h′, σ ` e′ : t

4.1.5 Encapsulation

In Section 4.1.4 we showed how the topological type system guarantees that the topology of the objects on
the heap agrees with the one described by the Universe types. In this section we enhance the topological type
system and obtain the encapsulation type system. We show that the latter system guarantees the owner-as-
modifier property [127], which localises the effects of execution in a heap with respect to the current active
object. We then show how this result can be used to deduce preservation of object invariants.

Notation: For the subsequent discussion we find it convenient to define the following notation and pred-
icates. The expression C[e] denotes that it contains sub-expression e in some expression context C[·]. The
notation h(a.f1 . . . fn) is used as a shorthand when we want to refer to multiple dereferencing in a heap.
The predicate rFlds(c, f1 . . . fn) holds if a list of field accesses yield an object within the representation of
an object of class c, where the first field access f1 is defined in class c (not inherited from superclasses of
c); this is denoted as DF (c, f1). The predicate rFlds(c, f1 . . . fn) thus holds if the first field f1 is a rep field
defined in c, and the remaining field accesses are either rep or peer. The predicate pure(c, m) holds if m is
pure in c.

Modular Verification and Universe Types

Object invariants are often used in object-oriented program specification and verification. Modularity aims to
allow subsets of the code (e.g. classes, modules, functions) to be checked in isolation, without consideration of
the whole program. There have been various approaches to achieve modularity in verification [147, 94, 127].

For the case of object-oriented programs, [130] suggest:

Restrictions on Invariants: They can only be defined in terms of a restricted form of field accesses.

Restrictions on Effects: Methods can only affect the invariants of a restricted subset of objects during
their execution.

These restrictions are expressed in terms of the hierarchic heap topology introduced through Universes.
Ownership Admissible Invariants [130] for an object of class c may only be defined in terms of fields

that fall under the object’s representation (i.e. itself and the objects it transitively owns). Such invariants
also have the additional restriction that the first field access this . f needs to be defined in class c directly,
that is DF (c, f); this allows for subclass separation [130] whereby we can verify the methods of class c with
respect to the invariant of class c without having to reevaluate methods inherited from superclasses of c.
More formally, an invariant in class c may only contain:

1. this .g where DF (c, g).

2. this .\ textsf {f} 1\ ldots \ textsf {f} n.\ textsf {g} where rFlds(c, f1 . . . fn) and g is a field defined in
the class of type F (. . .F (c, f1), fn).

110

MOBIUS Deliverable D2.3. Report on Type Systems

With respect to the effect restrictions, an object x in a heap h is allowed to affect

1. invariants of objects its owner transitively owns, inv(y) where owner(h, x) ∈ owner∗(h, y); note that
this includes inv(x)

2. invariants of objects which transitively own it, inv(y) where y ∈ owner+(h, x).

In its current state, the Universe type system can only describe direct ownership. Hence the above effect
restrictions translate to the owner-as-modifier property [71] whereby an object is only allowed to

1. directly assign to its own fields, the fields of rep objects (which it owns) and the fields of peer objects
(which its owner owns).

2. call impure methods on itself, on objects it owns and on peer objects.

Example 4.1.5.1 (Universe, Invariants and Effects).

1 class A {
2 rep A fra ;
3 ...
4 } class B extends A {
5 rep B frb ; peer B fp; any B fa;
6 ...
7 }

As an example, consider the class definitions A and B above. In terms of the restriction of invariants,
the invariant of class B may mention the following fields

• this . frb , this . fp and this . fa - its fields

• this . frb ... fr . fp , this . frb . fp ... fp . fr and this . frb . fp ... fr . fp . fa - fields of objects in its representa-
tion where the first field access this . frb is defined in B and not inherited from A.

The invariant of class B may not mention this . fp . fr and this . fr . fa . fr because they constitute fields of
objects that do not belong to its representation. It may not mention this . fra ... fr . fp either because the first
field access fra is defined in the superclass A.

In terms of the restriction on effects, let us consider the heap depicted in Figure 4.10. If 5 is the active
object (i.e. the current this), then it may affect:

• inv(5) - itself

• inv(6) and inv(8) - objects in its owner’s representation

• inv(3), inv(2) and inv(1) - objects which transitively own it

It however cannot affect the invariants of the objects 4 and 7.

Encapsulation Types

Encapsulation types impose extra restrictions so as to support the owner-as-modifier approach and guarantee
the restriction on effects. We define an encapsulation judgement for expressions, Γ `enc e, reflecting the
expression restrictions imposed in [130] to control the effects of method executions on the invariants of other
objects, as discussed above. These restrictions state that for an expression e to respect encapsulation, it
can only assign to and call impure methods on itself, on rep receivers or peer receivers. Recall that z is
a Universe metavariable that ranges over self, rep and peer only. To separate between pure and impure
methods we require a purity judgement for expressions Γ `pure e. An expression e is pure if it never assigns
to fields and only calls pure methods.

111

MOBIUS Deliverable D2.3. Report on Type Systems

frb

2:B

3:B 4:B

5:B 6:A 7:A

fp

fa

8:B

fa

fa

fa

1:B

fra

frb

fra

Figure 4.10: A heap

Definition 4.1.5.2 (Encapsulation and Purity for Source Expressions).

Γ ` e : t
e = C[e1.f := e2] =⇒ Γ ` e1 : z
e = C[e1.m(e2)] =⇒ Γ ` e1 : z ∨ (pure(c, m) where Γ ` e1 : c)

Γ `enc e

(Enc)

Γ ` e : t
e 6= C[e1.f := e2]
e = C[e1.m(e2)] =⇒ (pure(c, m) where Γ ` e1 : c)

Γ `pure e

(Pure)

A class is well-formed with respect to encapsulation, denoted as `enc c, if and only if all pure methods
have bodies that neither assign to fields nor call impure methods and impure methods have bodies that
only assign to fields and call impure methods on rep or peer receivers. We recall that according to Defi-
nition 4.1.4.4, pure methods are only overridden by pure methods, and similarly for impure methods. A
Program P is well-formed with respect to encapsulation if all its classes are encapsulated.

Definition 4.1.5.3 (Encapsulated Well-Formed Class).

` c

∀m. pure(c, m) =⇒ (self c,) `pure MBody(c,m)
¬pure(c, m) =⇒ (self c,) `enc MBody(c,m)

`enc c

(WFEncClass)

`enc P =⇒ ∀c ∈ Idc `enc c

We also define encapsulation and purity judgements for runtime expressions subject to a heap h and
a stack σ; these judgements are denoted as h, σ `enc e and h, σ `pure e respectively. Encapsulation and
purity for runtime expressions impose similar requirements to those for source expressions but add an extra
clause for frame expressions. In particular, encapsulation for frames, h, σ `enc frame σ′ e′, requires that the
receiver in σ′, that is σ′(this), is a rep, peer or self of that in σ. This condition is expressed through the
predicate h ` σ′ �enc σ, defined below.

Definition 4.1.5.4 (Frame Encapsulation).

h ` σ′ �enc σ
def
= h, σ ` σ′(this) : z

112

MOBIUS Deliverable D2.3. Report on Type Systems

Definition 4.1.5.5 (Purity and Encapsulation for Runtime Expressions).

h, σ ` e : t
e = C[frame σ1 e1] =⇒ h, σ1 `pure e1

e 6= C[e1.f := e2]
e = C[e1.m(e2)] =⇒ (pure(c, m) where h, σ ` e1 : c)

h, σ `pure e

(rPure)

h, σ ` e : t
e = C[frame σ1 e1] =⇒ (h ` σ1 �enc σ ∧ h, σ1 `enc e1) ∨ (h, σ1 `pure e1)
e = C[e1.f := e2] =⇒ h, σ ` e1 : z
e = C[e1.m(e2)] =⇒ h, σ ` e1 : z ∨ (pure(c, m) where h, σ ` e1 : c)

h, σ `enc e

(rEnc)

Our proof for encapsulation starts by showing a correspondence between source expression encapsulation
and purity and runtime expression encapsulation and purity (with respect to a suitable stack) and that purity
implies encapsulation. We also need to prove two core (but fairly standard) intermediary results. Subject
reduction for purity and encapsulation states that if a runtime expression respects purity (or encapsulation)
the resulting expression after reduction will still respect purity (or encapsulation). Safety for purity and
encapsulationstates that a pure expression never changes the state of existing objects and that an expression
that respects encapsulation only changes objects that are transitively owned by the owner of the current
active object.

We can now prove the Encapsulation Theorem, the main result of this section. It states that if an
expression respects encapsulation (with respect to some h, σ), then during its execution it will only update
objects that form part of the representation of the owner of the current active object.

Theorem 4.1.5.6 (Encapsulation).

h, σ `enc e
σ ` e, h ∗ e′, h′
a ∈ dom(h)
owner(h, σ(this)) 6∈ owner∗(h, a)

 =⇒ h(a.f) = h′(a.f)

Modular Invariant Preservation

We conclude by relating the Encapsulation Theorem 4.1.5.6 to modular verification. We (abstractly) define
legal invariants as those satisfying the constraints outlined earlier in Section 4.1.5.

Definition 4.1.5.7 (Predicate Satisfaction). We assume a mapping from pairs of addresses and classes to
predicates

inv ∈ INV : Addr× Idc ⇀ Pred

We also assume a predicate satisfaction relation

|=⊆ Heap× Pred

In particular, h |= inv(a, c) represents the satisfaction of the invariant of the object at address a with class
c in heap h.

Definition 4.1.5.8 (Legal Invariants). An invariant inv(a, c) is legal if it satisfies the property:

∀h, h′
h |= inv(a, c)
h(a.f) = h′(a.f)
h(a.f1 . . . fn.g) = h′(a.f1 . . . fn.g)

where rFlds(c, f1 . . . fn)

 =⇒ h′ |= inv(a, c)

113

MOBIUS Deliverable D2.3. Report on Type Systems

We finally can prove the Modular Invariant Preservation Theorem stating that execution preserves
invariants of unrelated objects, that is objects that neither belong to the representation of the active object’s
owner nor transitively own the active object.

Theorem 4.1.5.9 (Modular Invariant Preservation).

h |= inv(a, c)
inv(a, c) legal
h, σ `enc e
a 6∈ owner∗(h, σ(this))
owner(h, σ(this)) 6∈ owner∗(h, a)
σ ` e, h ∗ e′, h′

=⇒ h′ |= inv(a, c)

Proof. Use Theorem 4.1.5.6 and the conditions defining h |= inv(a) in Definition 4.1.5.8.

Example 4.1.5.10 (Modular Invariant Preservation). Recall the heap depicted in the beginning in Fig-
ure 4.1. If we take σ such that the active object σ(this) = 2, then we can show that h, σ `enc 2.push(7).
We can also show that all the classes in Figure 4.2 are well formed with respect to encapsulation. Thus
if we consider the case where a = 10, Theorem 4.1.5.9 guarantees that if h |= inv(10,Bag) and we execute
expression σ `2.push(7), h ∗ e′, h′, then h′ |= inv(10,Bag) for the resultant heap h′. The same argument
can be applied for a ∈ {6, 7, 8, 9, 11, 12}.

However, we cannot derive the same conclusion for a ∈ {3, 4, 5} because these object are in the repre-
sentation of the active object 2. We also cannot apply Theorem 4.1.5.9 for a = 1 since inv(1,Bag) may
mention the fields this . state , this . state .next and this . state .next.next which are objects whose states may
have been affected by the execution of expression 2.push(7).

4.1.6 Conclusion

We given an alternative formalisation of the Universe type system in two steps, by first presenting a topolog-
ical type system which preserves the ownership topology and then augmenting it to the encapsulation type
system, which can lead to modular reasoning about programs. This two-step formalisation primarily allows
for separation of concerns when extending this work; some extensions and applications of Universes do not
require encapsulation properties such as owner-as-modifier, introduced in the latter step. Also, the two-step
formalisation permits a gentler presentation of the mathematical machinery we develop. Both these factors
facilitate the adoption of the work as a starting point for further work.

Our formalisation also presented some novel techniques. We introduced a distinction between the original
Universes as defined in [127] and an extended version which includes the specialisation of the peer universe
called self; extended universes lead to more succinct definitions such as that for well-formed classes. We also
introduced the notion of universe composition and decomposition, which was then used extensively for type
manipulation in the typing rules. Both these aspects were already present in earlier work on Universes; we
merely made them more explicit thereby facilitating their understanding. We have proven subject reduction
(for both topological and encapsulation type systems) for a small-step semantics of a strict subset of Java.
We have also shown how our formalisation can be used for modular verification of object invariants.

The formalisation of the Universe type system is used as a basis for various extensions. Section 4.2
extends UJ to avoid races, and 4.3 extends UJ to handle Generics in Java [97]. We plan to adapt the type
system to the bytecode translation of the Java code directly. This will permit the use of Universes for the
verification of mobile bytecode in a Proof-Carrying-Code architecture such as the one proposed by MOBIUS
[124].

4.2 Universe Types for Race-free programs

A race condition is an error that can occur in concurrent programs, if two threads are not properly synchro-
nised, and they simultaneously access the same object. This can then lead to corruption of data structures,

114

MOBIUS Deliverable D2.3. Report on Type Systems

1 class Student { int mark ; bool clean_room }

2 class Dept { // Closed list

3 rep DeptStudentNode first;

4 void releaseMarks () { ... }

5 }

6 class DeptStudentNode {

7 peer Student s;

8 peer DeptStudentNode next;

9 }

10 class Hall { // Open list

11 rep HallStudentNode first;

12 void cleanRooms () { ... }

13 }

14 class HallStudentNode {

15 any Student s;

16 peer HallStudentNode next;

17 }

Figure 4.11: Example program showing heap hierarchy structure

and eventual software failure. To date, many well-known pieces of software have fallen foul of race con-
ditions, often long after their initial development, sometimes leading to denial-of-service attacks or other
security problems7.

Therefore, we developed a type system for race safety using universes to partition the heap. As in earlier
work by Boyapati, Flanaggan and others[50, 78], we treat objects in the same ownership domain (i.e. all
objects sharing the same owner) as guarded by the same lock. At run-time we associate this lock with the
objects’ owner. All objects have an implicit reference to their owner.

The use of anyallows the expression of data structures containing objects from various ownership domains.
Use of such data structures does not require us to compromise the design of other data structures in our
system. In the case where the type does not indicate the owner of an object, we use paths as an alternative
mechanism to guarantee correct synchronisation. We use an effect system that ensures correctness even if
these paths are not final as would be required in [50, 78].

We summarise the advantages of our system below:

1. The annotations are succinct.

2. Sync blocks need not be split when data structures share elements.

3. Paths do not have to be final.

4. Single objects can be locked.

The full paper has appeared in [60], and here we explain the use of the system through an example:
We use the tree-hierarchy imposed by the Universe types to avoid races as follows: We require that the

run-time system records the owner of an object. We associate a lock with each object, with objects guarded
by their owner’s lock rather than their own. Any accesses to a field of an object, e.g., e′.f or e′.f := ...,
must be within a sync e block where e resolves to an object that is part of the same ownership domain as
e′. In other words, sync e locks the object owning e. This is statically verifiable when the universe qualifier
of e′ is not any.

Consider the code of releaseMarks from Fig. 4.12. Adhering to the rule set out above, the field access
to this.first (line 20) is enclosed within sync(this) (line 19). More interesting is the body of the while

loop, where a statically unknown number of field accesses through i.next (line 24) is correctly synchronised
by acquiring a single lock, sync(i), before the loop (line 21). Even though i will point to different objects
at each iteration, the synchronisation is correct, because the field next is peerand thus all these objects will
have the same owner. The same is true when we access the student (line 23). We call the list inside Dept a
closed list as the students are enclosed in the ownership domain of the list. In contrast the list inside Hall

is open because its students can be anywhere.
A challenge we needed to tackle is, how to avoid races when we do not know which ownership domain

the accessed object will belong to, i.e., when it has type anyC for some class C. In such a case, any accesses

7Querying the SecurityFocus website [?] for “race condition” reveals hundreds of problems.

115

MOBIUS Deliverable D2.3. Report on Type Systems

18 void releaseMarks () {

19 sync (this) { // so we can access fields of this

20 rep DeptStudentNode i = this.first;

21 sync (i) { // so we can access the nodes

22 while (i) {

23 i.s.mark = ...;

24 i = i.next;

25 } } } }

26 void cleanRooms () {

27 sync (this) { // so we can access fields of this

28 rep HallStudentNode i = this.first;

29 sync (i) { // so we can access the nodes

30 while (i) {

31 sync (i.s) { i.s.room_clean = true; }

32 i = i.next;

33 } } } }

Figure 4.12: Method bodies for Fig. 4.11

of the form p.f or p.f = ..., where p is a path8 must be within a sync p block provided that the block does
not assign to any of the fields appearing in p.

Consider the body of cleanRooms in figure 4.12. The difference between this and releaseMarks is that
the latter uses HallStudentNode which has an anypointer to Student. Thus the student is not necessarily
a peer of the node and when we access i.s (line 31) the sync(i) (line 29) is no longer sufficient. We must
lock the owner of the student i.s and this is possible through the “fresh” sync(i.s) (line 31) even though
i.s is any. We must be sure however that the body of the sync block does not write to the field s, otherwise
the type system would reject our program.

Note that through releaseMarks, students will receive their marks atomically, i.e. there is never a state
visible where a subset of students have their marks, but this is not the case for the cleaning of rooms. A
student may notice their room has been cleaned whereas another student’s room has not.

The above example demonstrates the power given by the modifier any. We can design a closed list
which contains only objects of a specific ownership domain, and an open list which contains objects of any
ownership domain. We want the open and closed lists to contain some objects in common. In [78], an open
list of students can be written if we design the student so that it has a final field that stores the owner. In
other words, we create a special class that can be referenced by a variable whose type does not specify an
owner. However, this change is global to the program so every other reference must use the same type that
does not specify an owner. This means we cannot make a closed list of students, because the owner of the
student is no-longer indicated by its type. The only solution is to use open lists everywhere, which have the
undesirable property that we cannot lock all the elements of the list at once, we have to acquire the same
lock m times where m is the number of students in the list. Another implication is that iterating through
the list cannot be atomic (as in releaseMarks).

The type system to avoid races is an extension of that of UJ, and is given in [60].

4.3 Generic Universe Types

Although ownership type systems have covered all features of Java-like languages (including for example
exceptions, inner classes, and static class members) there are only three proposals of ownership type systems
that support generic types. SafeJava [49] supports type parameters and ownership parameters independently,
but does not integrate both forms of parametricity. This leads to significant annotation overhead. Ownership
Domains [12] combine type parameters and domain parameters into a single parameter space and thereby

8A path is a sequence of field accesses starting from a parameter or this.

116

MOBIUS Deliverable D2.3. Report on Type Systems

2: Data 1: Clientvalue

3: Map

5: Node

4: ID6: IterImpl

mapiter

firstcurrent

keyvalue

Figure 4.13: Object structure of a map from ID to Data objects. The map is represented by Node objects.
The iterator has a direct reference to a node. Objects, references, and contexts are depicted by rectangles,
arrows, and ellipses, respectively. Owner objects sit atop the context of objects they own. Arrows are
labelled with the name of the variable that stores the reference. Dashed arrows depict references that cross
context boundaries without going through the owner. Such references must not be used to modify the state
of the referenced objects.

reduce the annotation overhead. However, their formalization does not cover type parameters. Ownership
Generic Java (OGJ) [142] allows programmers to attach ownership information through type parameters.
For instance, a collection of Book objects can be typed as “my collection of library books”, expressing that
the collection object belongs to the current this object, whereas the Book objects in the collection belong to
an object “library”. OGJ enforces the owner-as-dominator discipline. It piggybacks ownership information
on type parameters. In particular, each class C has a type parameter to encode the owner of a C object.
This encoding allows OGJ to use a slight adaptation of the normal Java type rules to also check ownership,
which makes the formalization very elegant.

However, OGJ cannot be easily adapted to enforce the owner-as-modifier discipline. For example, OGJ
would forbid a reference from the iterator (object 6) in Fig. 4.13 to a node (object 5) of the map (object 3),
because the reference bypasses the node’s owner. However, such references are necessary, and are legal in
the owner-as-modifier discipline. A type system can permit such references in two ways.

First, if the iterator contained a field theMap that references the associated map object, then path-
dependent types [12, 49] can express that the current field of the iterator points to a Node object that is
owned by theMap. Unfortunately, path-dependent types require the fields on the path (here, theMap) to be
final, which is too restrictive for many applications.

Second, one can loosen up the static ownership information by allowing certain references to point to
objects in any context [71]. Subtyping allows values with specific ownership information to be assigned to
“any” variables, and downcasts with runtime checks can be used to recover specific ownership information
from such variables. In OGJ, this subtype relation between any-types and other types would require covariant
subtyping, for instance, that Node<This> is a subtype of Node<Any>, which is not supported in Java (or
C#). Therefore, piggybacking ownership on the standard Java type system is not possible in the presence
of “any”.

We developed Generic Universe Types (GUT), an ownership type system for a programming language
with generic types similar to Java 5 and C# 2.0. GUT enforces the owner-as-modifier discipline using the
anymodifier. Our type system supports type parameters for classes and methods. The annotation overhead
for programmers is as low as in OGJ, although the presence of any makes the type rules more involved. A
particularly interesting aspect of our work is how generics and ownership can be combined in the presence
of an any modifier, in particular, how a restricted form of ownership covariance can be permitted without
runtime checks.

Outline. Sec. 4.3.1 illustrates the main concepts of GUT by an example. Secs. 4.3.2 and 4.3.3 present
the type rules and the runtime model of GUT, respectively. Sec. 4.3.4 presents the type safety and the
owner-as-modifier property theorems. Details and proofs can be found in the accompanying technical report
[68].

117

MOBIUS Deliverable D2.3. Report on Type Systems

4.3.1 Main Concepts

In this section, we explain the main concepts of GUT informally by an example. Class Map (Fig. 4.14)
implements a generic map from keys to values. Key-value pairs are stored in singly-linked Node objects.
Class Node extends the superclass MapNode (both Fig. 4.15), which is used by the iterator (classes Iter and
IterImpl in Fig. 4.16). The main method of class Client (Fig. 4.17) builds up the map structure shown in
Fig. 4.13. For simplicity, we omit access modifiers from all examples.

Ownership Modifiers. A type in GUT is either a type variable or consists of an ownership modifier, a
class name, and possibly type arguments. The ownership modifier expresses object ownership relative to
the current receiver object this9. Programs may contain the ownership modifiers peer, rep, and any. peer
expresses that an object has the same owner as the this object, rep expresses that an object is owned by
this, and any expresses that an object may have any owner. any types are supertypes of the rep and peer

types with the same class and type arguments because they convey less specific ownership information.
The use of ownership modifiers is illustrated by class Map (Fig. 4.14). A Map object owns its Node objects

since they form the internal representation of the map and should, therefore, be protected from unwanted
modifications. This ownership relation is expressed by the rep modifier of Map’s field first, which points
to the first node of the map.

1 class Map<K, V> {
2 rep Node<K, V> first;
3

4 void put(K key, V value) {
5 rep Node<K, V> newfirst = new rep Node<K, V>();
6 newfirst . init (key, value , first) ;
7 first = newfirst ;
8 }
9

10 pure V get(K key) {
11 peer Iter<K, V> i = iterator() ;
12 while (i .hasNext()) {
13 if (i .getKey().equals(key)) return i .getValue() ;
14 i .next() ;
15 }
16 return null ;
17 }
18

19 pure peer Iter<K, V> iterator() {
20 peer IterImpl<K, V, rep Node<K, V> > res;
21 res = new peer IterImpl<K, V, rep Node<K, V> >();
22 res . setCurrent(first) ;
23 return res ;
24 }
25

26 pure peer IterImpl<K, V, rep Node<K, V> > altIterator() {
27 /∗ same implementation as method iterator () above ∗/
28 }
29 }

Figure 4.14: An implementation of a generic map. Map objects own their Node objects, as indicated by the
rep modifier in all occurrences of class Node. Method altIterator is for illustration purposes only.

The owner-as-modifier discipline is enforced by disallowing modifications of objects through any refer-
ences. That is, an expression of an any type may be used as receiver of field reads and calls to side-effect free

9We ignore static methods in this section, but an extension is possible [127].

118

MOBIUS Deliverable D2.3. Report on Type Systems

(pure) methods, but not of field updates or calls to non-pure methods. To check this property, we require
side-effect free methods to be annotated with the keyword pure.

Viewpoint Adaptation. As discussed in section 4.1, ownership modifiers express ownership relative to
this, and have to be adapted when this “viewpoint” changes. Consider Node’s inherited method init

(Fig. 4.15). After substituting the type variable X, the third parameter has type peer Node<K,V>. The
peer modifier expresses that the parameter object must have the same owner as the receiver of the method.
On the other hand, Map’s method put calls init on a rep Node receiver, that is, an object that is owned
by this. Therefore, the third parameter of the call to init also has to be owned by this. This means
that from this particular call’s viewpoint, the third parameter needs a rep modifier, although it is declared
with a peer modifier. In the type system, this viewpoint adaptation is done by combining the type of the
receiver of a call (here, rep Node<K,V>) with the type of the formal parameter (here, peer Node<K,V>).
This combination yields the argument type from the caller’s point of view (here, rep Node<K,V>).

1 class MapNode<K, V, X extends peer MapNode<K, V, X> > {
2 K key; V value; X next;
3

4 void init (K k, V v, X n) { key = k; value = v; next = n; }
5 }
6

7 class Node<K, V> extends MapNode<K, V, peer Node<K, V> > {}

Figure 4.15: Nodes form the internal representation of maps. Class MapNode implements nodes for singly-
linked lists. Using a type variable for the type of next is useful to implement iterators. The subclass Node

instantiates MapNode’s type parameter X to implement a list of nodes with the same owner.

Viewpoint adaptation and the owner-as-modifier discipline provide encapsulation of internal represen-
tation objects. Assume that class Map by mistake leaked a reference to an internal node, for instance, by
making first public or by providing a method that returns the node. By viewpoint adaptation of the
node type, rep Node<K,V>, clients of the map can only obtain an any reference to the node and, thus, the
owner-as-modifier discipline guarantees that clients cannot directly modify the node structure. This allows
the map to maintain invariants over the node, for instance, that the node structure is acyclic.

Type Parameters. Ownership modifiers are also used in actual type arguments. For instance, Map’s
method iterator instantiates IterImpl with the type arguments K, V, and rep Node<K,V>. Thus, local
variable res has type peer IterImpl<K,V,rep Node<K,V>>, which has two ownership modifiers. The main
modifier peer expresses that the IterImpl object has the same owner as this, whereas the argument
modifier rep expresses that the Node objects used by the iterator are owned by this. It is important to
understand that this argument modifier again expresses ownership relative to the current this object (here,
the Map object), and not relative to the instance of the generic class that contains the argument modifier
(here, the IterImpl object res).

Type variables have upper bounds, which default to any Object. In a class C, the ownership modifiers
of an upper bound express ownership relative to the C instance this. However, when C’s type variables are
instantiated, the modifiers of the actual type arguments are relative to the receiver of the method that con-
tains the instantiation. Therefore, checking the conformance of a type argument to its upper bound requires
a viewpoint adaptation. For instance, to check the instantiation peer IterImpl<K,V,rep Node<K,V>> in
class Map, we adapt the upper bound of IterImpl’s type variable X (any MapNode<K,V,X>) from view-
point peer IterImpl<K,V,rep Node<K,V>> to the viewpoint this. With the appropriate substitutions,
this adaptation yields any MapNode<K,V,rep Node<K,V>>. The actual type argument rep Node<K,V> is a
subtype of the adapted upper bound. Therefore, the instantiation is correct. The rep modifier in the type
argument and the adapted upper bound reflects correctly that the current node of this particular iterator
is owned by this.

Type variables are not subject to the viewpoint adaptation that is performed for non-variable types.

119

MOBIUS Deliverable D2.3. Report on Type Systems

1 interface Iter<K, V> {
2 pure K getKey();
3 pure V getValue();
4 pure boolean hasNext();
5 void next() ;
6 }

1 class IterImpl<K, V, X extends any MapNode<K, V, X>> implements Iter<K, V> {
2 X current ;
3

4 void setCurrent(X c) { current = c; }
5 pure K getKey() { return current .key; }
6 pure V getValue() { return current . value ; }
7 pure boolean hasNext() { return current != null ; }
8 void next() { current = current.next; }
9 }

Figure 4.16: Class IterImpl implements iterators over MapNode structures. The precise node type is
passed as type parameter. The upper bound allows methods to access a node’s fields. Interface Iter

hides IterImpl’s third type parameter from clients.

1 class ID { /∗ ... ∗/ }
2 class Data { /∗ ... ∗/ }
3

4 class Client {
5 void main(any Data value) {
6 rep Map<rep ID, any Data> map = new rep Map<rep ID, any Data>();
7 map.put(new rep ID(), value) ;
8

9 rep Iter<rep ID, any Data> iter = map.iterator() ;
10 rep ID id = iter .getKey();
11 }
12 }

Figure 4.17: Main program for our example. The execution of method main creates the object structure in
Fig. 4.13.

When type variables are used, for instance, in field declarations, the ownership information they carry stays
implicit and does, therefore, not have to be adapted. The substitution of type variables by their actual type
arguments happens in the scope in which the type variables were instantiated. Therefore, the viewpoint is
the same as for the instantiation, and no viewpoint adaptation is required. For instance, the call expression
iter.getKey() in method main (Fig. 4.17) has type rep ID, because the result type of getKey() is the
type variable K, which gets substituted by the first type argument of iter’s type, rep ID.

Thus, even though an IterImpl object does not know the owner of the keys and values (due to the
implicit any upper bound for K and V), clients of the iterator can recover the exact ownership information
from the type arguments. This illustrates that Generic Universe Types provide strong static guarantees
similar to those of owner-parametric systems [58], even in the presence of any types. The corresponding
implementation in non-generic Universe types requires a downcast from the any type to a rep type and the
corresponding runtime check [71].

Limited Covariance and Viewpoint Adaptation of Type Arguments. Subtyping with covariant
type arguments is in general not statically type safe. For instance, if List<String> were a subtype of
List<Object>, then clients that view a string list through type List<Object> could store Object in-
stances in the string list, which breaks type safety. The same problem occurs for the ownership information
encoded in types. If peer IterImpl<K,V,rep Node<K,V>> were a subtype of peer IterImpl<K,V,any

120

MOBIUS Deliverable D2.3. Report on Type Systems

Node<K,V>>, then clients that view the iterator through the latter type could use method setCurrent

(Fig. 4.16) to set the iterator to a Node object with an arbitrary owner, even though the iterator requires a
specific owner. The covariance problem can be prevented by disallowing covariant type arguments (like in
Java and C#), by runtime checks, or by elaborate syntactic support [75].

However, the owner-as-modifier discipline supports a limited form of covariance without any addi-
tional checks. Covariance is permitted if the main modifier of the supertype is any. For example, peer
IterImpl<K,V,rep Node<K,V>> is an admissible subtype of any IterImpl<K,V,any Node<K,V>>. This
is safe because the owner-as-modifier discipline prevents mutations of objects referenced through any ref-
erences. In particular, it is not possible to set the iterator to an any Node object, which prevents the
unsoundness illustrated above.

Besides subtyping, GUT provides another way to view objects through different types, namely viewpoint
adaptation. If the adaptation of a type argument yields an any type, the same unsoundness as through
covariance could occur. Therefore, when a viewpoint adaptation changes an ownership modifier of a type
argument to any, it also changes the main modifier to any.

This behavior is illustrated by method main of class Client in Fig. 4.17. Assume that main calls
altIterator() instead of iterator(). As illustrated by Fig. 4.13, the most precise type for the call expres-
sion map.altIterator() would be rep IterImpl<rep ID, any Data, any Node<rep ID, any Data>>

because the IterImpl object is owned by the Client object this (hence, the main modifier rep), but
the nodes referenced by the iterator are neither owned by this nor peers of this (hence, any Node). How-
ever, this viewpoint adaptation would change an argument modifier of altIterator’s result type from rep

to any. This would allow method main to use method setCurrent to set the iterator to an any Node object
and is, thus, not type safe. The correct viewpoint adaptation yields any IterImpl<rep ID, any Data,

any Node<rep ID, any Data>>. This type is safe, because it prevents the main method from mutating the
iterator, in particular, from calling the non-pure method setCurrent.

Since next is also non-pure, main must not call iter.next() either, which renders IterImpl objects
useless outside the associated Map object. To solve this issue, we provide interface Iter, which does not
expose the type of internal nodes to clients. The call map.iterator() has type rep Iter<rep ID, any

Data>, which does allow main to call iter.next(). Nevertheless, the type variable X for the type of current
in class IterImpl is useful to improve static type safety. Since the current node is neither a rep nor a peer

of the iterator, the only alternative to a type variable is an any type. However, an any type would not
capture the relationship between an iterator and the associated list. In particular, it would allow clients to
use setCurrent to set the iterator to a node of an arbitrary map. For a discussion of alternative designs
see [68].

4.3.2 Static Checking

In this section, we formalize the compile time aspects of GUT. We define the syntax of the programming
language, formalize viewpoint adaptation, define subtyping and well-formedness conditions, and present the
type rules.

Programming Language

We formalize Generic Universe Types for a sequential subset of Java 5 and C# 2.0 including classes and
inheritance, instance fields, dynamically-bound methods, and the usual operations on objects (allocation,
field read, field update, casts). For simplicity, we omit several features of Java and C# such as interfaces,
exceptions, constructors, static fields and methods, inner classes, primitive types and the corresponding
expressions, and all statements for control flow. We do not expect that any of these features is difficult to
handle (see for instance [49, 70, 127]). The language we use is similar to Featherweight Generic Java [97].
We added field updates because the treatment of side effects is essential for ownership type systems and
especially the owner-as-modifier discipline.

Fig. 4.18 summarizes the syntax of our language and our naming conventions for variables. We assume
that all identifiers of a program are globally unique except for this as well as method and parameter names

121

MOBIUS Deliverable D2.3. Report on Type Systems

of overridden methods. This can be achieved easily by preceding each identifier with the class or method
name of its declaration (but we omit this prefix in our examples).

The superscript s distinguishes the sorts for static checking from corresponding sorts used to describe
the runtime behavior, but is omitted whenever the context determines whether we refer to static or dynamic
entities.

T denotes a sequence of Ts. In such a sequence, we denote the i-th element by Ti. We sometimes use
sequences of tuples S = X T as maps and use a function-like notation to access an element S(Xi) = Ti. A
sequence T can be empty. The empty sequence is denoted by ε.

A program (P ∈ Program) consists of a sequence of classes, the identifier of a main class (C ∈ ClassId),
and a main expression (e ∈ Expr). A program is executed by creating an instance o of C and then evaluating
e with o as this object. We assume that we always have access to the current program P, and keep P

implicit in the notations. Each class (Cls ∈ Class) has a class identifier, type variables with upper bounds,
a superclass with type arguments, a list of field declarations, and a list of method declarations. FieldId is
the sort of field identifiers f. Like in Java, each class directly or transitively extends the predefined class
Object.

A type (sT ∈ sType) is either a non-variable type or a type variable identifier (X ∈ TVarId). A non-
variable type (sN ∈ sNType) consists of an ownership modifier, a class identifier, and a sequence of type
arguments.

An ownership modifier (u ∈ OM) can be peeru, repu, or anyu, as well as the modifier thisu, which is
used solely as main modifier for the type of this. The modifier thisu may not appear in programs, but is
used by the type system to distinguish accesses through this from other accesses. We omit the subscript u
if it is clear from context that we mean an ownership modifier.

A method (mt ∈ Meth) consists of the method type variables with their upper bounds, the purity
annotation, the return type, the method identifier (m ∈ MethId), the formal method parameters (x ∈ ParId)
with their types, and an expression as body. The result of evaluating the expression is returned by the
method. ParId includes the implicit method parameter this.

To be able to enforce the owner-as-modifier discipline, we have to distinguish statically between side-
effect free (pure) methods and methods that potentially have side effects. Pure methods are marked by the
keyword pure. In our syntax, we mark all other methods by nonpure, although we omit this keyword in
our examples. To focus on the essentials of the type system, we do not include purity checks, but they can
be added easily [127].

An expression (e ∈ Expr) can be the null literal, method parameter access, field read, field update,
method call, object creation, and cast.

Type checking is performed in a type environment (sΓ ∈ sEnv), which maps the type variables of the
enclosing class and method to their upper bounds and method parameters to their types. Since the domains
of these mappings are disjoint, we overload the notation, where sΓ(X) refers to the upper bound of type
variable X, and sΓ(x) refers to the type of method parameter x.

P ∈ Program ::= Cls C e

Cls ∈ Class ::= class C<X sN> extends C<sT> { f sT; mt }
sT ∈ sType ::= sN | X
sN ∈ sNType ::= u C<sT>

u ∈ OM ::= peeru | repu | anyu | thisu
mt ∈ Meth ::= <X sN> w sT m(x sT) { return e }

w ∈ Purity ::= pure | nonpure
e ∈ Expr ::= null | x | e.f | e.f=e | e.m<sT>(e) | new sN | (sT) e

sΓ ∈ sEnv ::= X sN; x sT

Figure 4.18: Syntax and type environments

Viewpoint Adaptation

As we already discussed earlier, ownership modifiers express ownership relative to an object, and have

122

MOBIUS Deliverable D2.3. Report on Type Systems

to be adapted whenever the viewpoint changes. As for UJ, we need to adapt a type T from a viewpoint
that is described by another type T′ to the viewpoint this. In the following, we omit the phrase “to the
viewpoint this”. To perform the viewpoint adaptation, we define an overloaded operator� to: (1) Adapt
an ownership modifier from a viewpoint that is described by another ownership modifier; (2) Adapt a type
from a viewpoint that is described by an ownership modifier; (3) Adapt a type from a viewpoint that is
described by another type.Note, that� is therefore analogous to / from 4.1.

Adapting an Ownership Modifier w.r.t. an Ownership Modifier. We explain viewpoint adaptation
using a field access e1.f. Analogous adaptations occur for method parameters and results as well as upper
bounds of type parameters. Let u be the main modifier of e1’s type, which expresses ownership relative to
this. Let u′ be the main modifier of f’s type, which expresses ownership relative to the object that contains
f. Then relative to this, the type of the field access e1.f has main modifier u�u′.

� :: OM× OM → OM

this�u′ = u′ u�this = u

peer�peer = peer rep�peer = rep

u�u′ = any otherwise

The field access e1.f illustrates the motivation for this definition: (1) Accesses through this (that is, e1 is
the variable this) do not require a viewpoint adaptation since the ownership modifier of the field is already
relative to this. (2) In the formalization of subtyping (see ST-1) we combine an ownership modifier u with
thisu. Again, this does not require a viewpoint adaptation.

(3) If the main modifiers of both e1 and f are peer, then the object referenced by e1 has the same owner
as this and the object referenced by e1.f has the same owner as e1 and, thus, the same owner as this.
Consequently, the main modifier of e1.f is also peer. (4) If the main modifier of e1 is rep and the main
modifier of f is peer, then the main modifier of e1.f is rep, because the object referenced by e1 is owned
by this and the object referenced by e1.f has the same owner as e1, that is, this. (5) In all other cases,
we cannot determine statically that the object referenced by e1.f has the same owner as this or is owned
by this. Therefore, in these cases the main modifier of e1.f is any.

Adapting a Type w.r.t. an Ownership Modifier. As explained in Sec. 4.3.1, type variables are not
subject to viewpoint adaptation. For non-variable types, we determine the adapted main modifier using the
auxiliary function�m below and adapt the type arguments recursively:

� :: OM× sType → sType

u�X = X

u�N = (u�mN) C<u�T> where N = u′ C<T>

The adapted main modifier is determined by u�u′, except for unsafe (covariance-like) viewpoint adaptations,
as described in Sec. 4.3.1, in which case it is any. Unsafe adaptations occur if at least one of N’s type
arguments contains the modifier rep, u′ is peer, and u is rep or peer. This leads to the following definition:

�m :: OM× sNType → OM

u�mu
′ C<T> =

{
any if (u = rep ∨ u = peer) ∧ u′ = peer ∧ rep ∈ T

u�u′ otherwise

The notation u ∈ T expresses that at least one type Ti or its (transitive) type arguments contain ownership
modifier u.

Adapting a Type w.r.t. a Type. We adapt a type T from the viewpoint described by another type,
u C<T>:

� :: sNType× sType → sType

u C<T>�T = (u�T)[T/X] where X = dom(C)

The operator� adapts the ownership modifiers of T and then substitutes the type arguments T for the type
variables X of C. This substitution is denoted by [T/X]. Since the type arguments already are relative to

123

MOBIUS Deliverable D2.3. Report on Type Systems

SC-1
class C<X > extends C′<T′>

C<X> v C′<T′>
SC-2

C<T> v C<T>

SC-3

C<T> v C′′<T′′>
C′′<T′′> v C′<T′>

C<T> v C′<T′>
SC-4

C<T> v C′<T′>

C<T[T′′/X′′]> v C′<T′[T′′/X′′]>

Figure 4.19: Rules for subclassing

this, they are not subject to viewpoint adaptation. Therefore, the substitution of type variables happens
after the viewpoint adaptation of T’s ownership modifiers. For a declaration class C<X > . . ., dom(C)
denotes C’s type variables X.

Note that the first parameter is a non-variable type, because concrete ownership information u is needed
to adapt the viewpoint and the actual type arguments T are needed to substitute the type variables X. In
the type rules, subsumption will be used to replace type variables by their upper bounds and thereby obtain
a concrete type as first argument of�.

Example. The hypothetical call map.altIterator() in main (Fig. 4.17) illustrates the most interesting
viewpoint adaptation, which we discussed in Sec. 4.3.1. The type of this call is the adaptation of peer

IterImpl<K,V,rep Node<K,V>> (the return type of altIterator) from rep Map<rep ID,any Data> (the
type of the receiver expression). According to the above definition, we first adapt the return type from the
viewpoint of the receiver type, rep, and then substitute type variables.

The type arguments of the adapted type are obtained by applying viewpoint adaptation recursively to
the type arguments. The type variables K and V are not affected by the adaptation. For the third type
argument, rep � rep Node<K,V> yields any Node<K,V> because rep � rep=any, and again because the
type variables K and V are not subject to viewpoint adaptation. Note that here, an ownership modifier of
a type argument is promoted from rep to any. Therefore, to avoid unsafe covariance-like adaptations, the
main modifier of the adapted type must be any. This is, indeed, the case, as the main modifier is determined
by rep�m peer IterImpl<K,V,rep Node<K,V>>, which yields any.

So far, the adaptation yields any IterImpl<K,V,any Node<K,V>>. Now we substitute the type variables
K and V by the instantiations given in the receiver type, rep ID and any Data, and obtain the type of the
call:

any IterImpl<rep ID, any Data, any Node<rep ID,any Data>>

Subclassing and Subtyping

We use the term subclassing to refer to the relation on classes as declared in a program by the extends

keyword, irrespective of main modifiers. Subtyping takes main modifiers into account.

Subclassing. The subclass relation v is defined on instantiated classes, which are denoted by C<T>. The
subclass relation is the smallest relation satisfying the rules in Fig. 4.19. Each uninstantiated class is a
subclass of the class it extends (SC-1). The form class C<X N> extends C′<T′> { f T; m }, or a prefix
thereof, expresses that the program contains such a class declaration. Subclassing is reflexive (SC-2) and
transitive (SC-3). Subclassing is preserved by substitution of type arguments for type variables (SC-4). Note
that such substitutions may lead to ill-formed types, for instance, when the upper bound of a substituted
type variable is not respected. We prevent such types by well-formedness rules, presented in Fig. 4.21.

Subtyping. The subtype relation <: is defined on types. The judgment Γ ` T <: T′ expresses that type
T is a subtype of type T′ in type environment Γ. The environment is needed since types may contain type
variables. The rules for this subtyping judgment are presented in Fig. 4.20. Two types with the same main
modifier are subtypes if the corresponding classes are subclasses. Ownership modifiers in the extends clause
(T′) are relative to the instance of class C, whereas the modifiers in a type are relative to this. Therefore,

124

MOBIUS Deliverable D2.3. Report on Type Systems

ST-1
C<T> v C′<T′>

Γ ` u C<T> <: u�(thisu C′<T′>)
ST-2

Γ ` thisu C<T> <: peer C<T>

ST-3

Γ ` T <: T′′

Γ ` T′′ <: T′

Γ ` T <: T′
ST-4

Γ ` X <: Γ(X)
ST-5

T <:a T′

Γ ` T <: T′

TA-1
T <:a T

TA-2
T <:a T′

u C<T> <:a any C<T′>

Figure 4.20: Rules for subtyping and limited covariance

T′ has to be adapted from the viewpoint of the C instance to this (ST-1). Since both thisu and peer

express that an object has the same owner as this, a type with main modifier thisu is a subtype of the
corresponding type with main modifier peer (ST-2). This rule allows us to treat this as an object of a
peer type. Subtyping is transitive (ST-3). A type variable is a subtype of its upper bound in the type
environment (ST-4). Two types are subtypes, if they obey the limited covariance described in Sec. 4.3.1
(ST-5). Covariant subtyping is expressed by the relation <:a . Covariant subtyping is reflexive (TA-1). A
supertype may have more general type arguments than the subtype if the main modifier of the supertype
is any (TA-2). Note that the sequences T and T′ in rule TA-2 can be empty, which allows one to derive, for
instance, peer Object <:a any Object. Reflexivity of <: follows from TA-1 and ST-5.

In our example, using rule TA-1 for K and V, and rule TA-2 we obtain rep Node<K,V><:a any Node<K,V>.
Rules TA-2 and ST-5 allow us to derive

peer IterImpl<K,V,rep Node<K,V>> <: any IterImpl<K,V,any Node<K,V>>,

which is an example for limited covariance. Note that it is not possible to derive
peer IterImpl<K,V,rep Node<K,V>> <: peer IterImpl<K,V,any Node<K,V>>;

that would be unsafe covariant subtyping as discussed in Sec. 4.3.1.

Lookup Functions

In this subsection, we define the functions to look up the type of a field or the signature of a method.

Field Lookup. The function sfType(C, f) yields the type of field f as declared in class C. The result is
undefined if f is not declared in C. Since identifiers are assumed to be globally unique, there is only one
declaration for each field identifier.

SFT
class C< > extends < > { . . . T f . . . ; }

sfType(C, f) = T

Method Lookup. The function mType(C, m) yields the signature of method m as declared in class C. The
result is undefined if m is not declared in C. We do not allow overloading of methods; therefore, the method
identifier is sufficient to uniquely identify a method.

SMT
class C< > extends < > { ; . . . <Xm Nb> w Tr m(x Tp) . . .}

mType(C, m) = <Xm Nb> w Tr m(x Tp)

Well-Formedness

In this subsection, we define well-formedness of types, methods, classes, programs, and type environments.
The well-formedness rules are summarized in Fig. 4.21 and explained in the following.

Well-Formed Types. The judgment Γ ` T ok expresses that type T is well-formed in type environment Γ.
Type variables are well-formed, if they are contained in the type environment (WFT-1). A non-variable type
u C<T> is well-formed if its type arguments T are well-formed and for each type parameter the actual type

125

MOBIUS Deliverable D2.3. Report on Type Systems

WFT-1
X ∈ dom(Γ)

Γ ` X ok
WFT-2

class C< N> . . .
Γ ` T ok Γ ` T <: ((u C<T>)�N)

Γ ` u C<T> ok

WFM-1

Γ = Xm Nb, X N; this (thisu C<X>), x Tp
Γ ` Tr, Nb, Tp ok Γ ` e : Tr override(C, m)
w = pure ⇒ (Tp = any�Tp ∧ Nb = any�Nb)

<Xm Nb> w Tr m(x Tp) { return e } ok in C<X N>

WFM-2

∀ class C′<X′ N′> : C<X> v C′<T′> ∧ dom(C) = X⇒
mType(C′, m) is undefined ∨mType(C, m) = mType(C′, m)[T′/X′]

override(C, m)

WFC

X N; ` N, T, (thisu C′<T′>) ok
mt ok in C<X N> rep /∈ N

class C<X N> extends C′<T′> { f T; mt } ok

WFP

Cls ok

class C<> . . . ∈ Cls

ε; this (thisu C<>) ` e : N

Cls, C, e ok
SWFE

Γ = X N, X′ N′ ;
this (thisu C<X>), x T

class C<X N> . . .
Γ ` N, N′, T ok

Γ ok

Figure 4.21: Well-formedness rules

argument is a subtype of the upper bound, adapted from the viewpoint u C<T> (WFT-2). The viewpoint
adaptation is necessary because the type arguments describe ownership relative to the this object where
u C<T> is used, whereas the upper bounds are relative to the object of type u C<T>. Note that rule WFT-2
permits type variables of a class C to be used in upper bounds of C. For instance in class IterImpl (Fig. 4.16),
type variable X is used in its own upper bound, any MapNode<K, V, X>.

Well-Formed Methods. The judgment mt ok in C<X N> expresses that method mt is well-formed in a
class C with type parameters X N. According to rule WFM-1, mt is well-formed if: (1) the return type, the
upper bounds of mt’s type variables, and mt’s parameter types are well-formed in the type environment that
maps mt’s and C’s type variables to their upper bounds as well as this and the explicit method parameters
to their types. The type of this is the enclosing class, C<X>, with main modifier thisu; (2) the method
body, expression e, is well-typed with mt’s return type; (3) mt respects the rules for overriding, see below;
(4) if mt is pure then the only ownership modifier that occurs in a parameter type or the upper bound of
a method type variable is any. We will motivate the fourth requirement when we explain the type rule for
method calls.

Method m respects the rules for overriding if it does not override a method or if all overridden methods
have the identical signatures after substituting type variables of the superclasses by the instantiations given
in the subclass (WFM-2). For simplicity, we require that overrides do not change the purity of a method,
although overriding non-pure methods by pure methods would be safe.

Well-Formed Classes. The judgment Cls ok expresses that class declaration Cls is well-formed. Ac-
cording to rule WFC, this is the case if: (1) the upper bounds of Cls’s type variables, the types of Cls’s
fields, and the instantiation of the superclass are well-formed in the type environment that maps Cls’s type
variables to their upper bounds; (2) Cls’s methods are well-formed; (3) Cls’s upper bounds do not contain
the rep modifier.

Note that Cls’s upper bounds express ownership relative to the current Cls instance. If such an upper
bound contains a rep modifier, clients of Cls cannot instantiate Cls. The ownership modifiers of an actual
type argument are relative to the client’s viewpoint. From this viewpoint, none of the modifiers peer, rep,
or any expresses that an object is owned by the Cls instance. Therefore, we forbid upper bounds with rep

modifiers by Requirement (3).

126

MOBIUS Deliverable D2.3. Report on Type Systems

Well-Formed Programs. The judgment P ok expresses that program P is well-formed. According to
rule WFP, this holds if all classes in P are well-formed, the main class C is a non-generic class in P, and the
main expression e is well-typed in an environment with this as an instance of C. We omit checks for valid
appearances of the ownership modifier thisu. As explained earlier, thisu must not occur in the program.

Well-Formed Type Environments. The judgment Γ ok expresses that type environment Γ is well-
formed. According to rule SWFE, this is the case if all upper bounds of type variables and the types of
method parameters are well-formed. Moreover, this must be mapped to a non-variable type with main
modifier thisu and an uninstantiated class.

Type Rules

We are now ready to present the type rules (Fig. 4.22). The judgment Γ ` e : T expresses that expression e

is well-typed with type T in environment Γ. Our type rules implicitly require types to be well-formed, that is,
a type rule is applicable only if all types involved in the rule are well-formed in the respective environment.

GT-Subs

Γ ` e : T
Γ ` T <: T′

Γ ` e : T′
GT-Var

x ∈ dom(Γ)

Γ ` x : Γ(x)
GT-Null

T 6= thisu < >

Γ ` null : T

GT-New
N 6= anyu < >

Γ ` new N : N
GT-Cast

Γ ` e0 : T0

Γ ` (T) e0 : T

GT-Read

Γ ` e0 : N0

N0 = C0< >

T1 = fType(C0, f)

Γ ` e0.f : N0�T1
GT-Upd

Γ ` e0 : N0 N0 = u0 C0< >

T1 = fType(C0, f)
Γ ` e2 : N0�T1

u0 6= any rp(u0, T1)

Γ ` e0.f=e2 : N0�T1

GT-Invk

Γ ` e0 : N0 N0 = u0 C0< >

mType(C0, m) = <Xm Nb> w Tr m(x Tp)

Γ ` T <: (N0�Nb)[T/Xm] Γ ` e2 : (N0�Tp)[T/Xm]
(u0 =any⇒ w=pure) rp(u0, Tp ◦ Nb)

Γ ` e0.m<T>(e2) : (N0�Tr)[T/Xm]

Figure 4.22: Type rules

An expression of type T can also be typed with T’s supertypes (GT-Subs). The type of method parameters
(including this) is determined by a lookup in the type environment (GT-Var). The null-reference can have
any type other than a thisu type (GT-Null). Objects must be created in a specific context. Therefore only
non-variable types with an ownership modifier other than anyu are allowed for object creations (GT-New).
The rule for casts (GT-Cast) is straightforward; it could be strengthened to prevent more cast errors
statically, but we omit this check since it is not strictly needed.

As explained in detail in Sec. 4.3.2, the type of a field access is determined by adapting the declared type
of the field from the viewpoint described by the type of the receiver (GT-Read). If this type is a type variable,
subsumption is used to go to its upper bound because fType is defined on class identifiers. Subsumption is
also used for inherited fields to ensure that f is actually declared in C0. (Recall that fType(C0, f) is undefined
otherwise.)

For a field update, the right-hand side expression must be typable as the viewpoint-adapted field type,
which is also the type of the whole field update expression (GT-Upd). The rule is analogous to field read,
but has two additional requirements. First, the main modifier u0 of the type of the receiver expression must
not be any. With the owner-as-modifier discipline, a method must not update fields of objects in arbitrary
contexts. Second, the requirement rp(u0, T1) enforces that f is updated through receiver this if its declared
type T1 contains a rep modifier. For all other receivers, the viewpoint adaptation N0�T1 yields an any type,
but it is obviously unsafe to update f with an object with an arbitrary owner. It is convenient to define rp

127

MOBIUS Deliverable D2.3. Report on Type Systems

for sequences of types. The definition uses the fact that the ownership modifier thisu is only used for the
type of this:

rp :: OM× sType → bool
rp(u, T) = u = thisu ∨ (∀i : rep /∈ Ti)

The rule for method calls (GT-Invk) is in many ways similar to field reads (for result passing) and updates
(for argument passing). The method signature is determined using the receiver type N0 and subsumption.
The type of the invocation expression is determined by viewpoint adaptation of the return type Tr from
the receiver type N0. Modulo subsumption, the actual method arguments must have the formal parameter
types, adapted from N0 and with actual type arguments T substituted for the method’s type variables Xm.
For instance, in the call first.init(key, value, first) in method put (Fig. 4.14), the adapted third
formal parameter type is rep Node<K,V>� peer Node<K,V> (note that Node substitutes the type variable
X by peer Node<K,V>). This adaptation yields rep Node<K,V>, which is also the type of the third actual
method argument.

To enforce the owner-as-modifier discipline, only pure methods may be called on receivers with main
modifier any. For a call on a receiver with main modifier any, the viewpoint-adapted formal parameter type
contains only the modifier any. Consequently, arguments with arbitrary owners can be passed. For this
to be type safe, pure methods must not expect arguments with specific owners. This is enforced by rule
WFM-1 (Fig. 4.21). Finally, if the receiver is different from this, then neither the formal parameter types
nor the upper bounds of the method’s type variables must contain rep.

4.3.3 Runtime Model

In this section, we explain the runtime model of Generic Universe Types. We present the heap model, the
runtime type information, well-formedness conditions, and an operational semantics.

Heap Model

Fig. 4.23 defines our model of the heap. The prefix r distinguishes sorts of the runtime model from their
static counterparts.

h ∈ Heap = Addr→ Obj

ι ∈ Addr = Address | nulla
o ∈ Obj = rT, Fs

rT ∈ rType = ιo C<rT>
Fs ∈ Fields = FieldId→ Addr

ιo ∈ OwnerAddr = ι | anya
rΓ ∈ rEnv = X rT; x ι

Figure 4.23: Definitions for the heap model

A heap (h ∈ Heap) maps addresses to objects. An address (ι ∈ Addr) can be the special null-reference
nulla. An object (o ∈ Obj) consist of its runtime type and a mapping from field identifiers to the addresses
stored in the fields.

The runtime type (rT ∈ rType) of an object o consists of the address of o’s owner object, of o’s class, and
of runtime types for the type arguments of this class. We store the runtime type arguments including the
associated ownership information explicitly in the heap because this information is needed in the runtime
checks for casts. In that respect, our runtime model is similar to that of the .NET CLR [100]. The owner
address of objects in the root context is nulla. The special owner address anya is used when the corre-
sponding static type has the anyu modifier. Consider for instance an execution of method main (Fig. 4.17),
where the address of this is 1. The runtime type of the object stored in map is 1 Map<1 ID, anya Data>. For
simplicity we drop the subscript o from ιo whenever it is clear from context whether we refer to an Addr or
an OwnerAddr.

128

MOBIUS Deliverable D2.3. Report on Type Systems

The first component of a runtime environment (rΓ ∈ rEnv) maps method type variables to their runtime
types. The second component is the stack, which maps method parameters to the addresses they store.

Subtyping on Runtime Types. Judgment h, ι ` rT <: rT′ expresses that the runtime type rT is a sub-
type of rT′ from the viewpoint of address ι. The viewpoint, ι, is required in order to give meaning to the
ownership modifier rep. Subtyping for runtime types is defined in Fig. 4.24. Subtyping is transitive (RT-3),
and allows owner-invariant (RT-1) and covariant subtyping (RT-2).

Rule RTL introduces owner-invariant subtyping <:l and defines how subtyping follows subclassing if
(1) the runtime types have the same owner address ι′, (2) in the type arguments, the ownership modifiers
thisu and peer are substituted by the owner address ι′ of the runtime types (we use the same owner
address for both modifiers since they both express ownership by the owner of this), (3) rep is substituted
by the viewpoint address ι, (4) anyu is substituted by anya, (5) the type variables X of the subclass C are
substituted consistently by rT, and (6) either the owner of ι is ι′ or rep does not appear in the instantiation
of the superclass. This ensures that the substitution of ι for rep-modifiers is meaningful. Note that in a
well-formed program, thisu never occurs in a type argument; nevertheless we include the substitution for
consistency. Rule RTL gives the most concrete runtime type deducible from static subclassing.

RT-1
h, ι ` rT <:l

rT′

h, ι ` rT <: rT′
RT-2

rT <:a
rT′

h, ι ` rT <: rT′
RT-3

h, ι ` rT <: rT′′

h, ι ` rT′′ <: rT′

h, ι ` rT <: rT′

RTL
C<X> v C′<sT> dom(C) = X owner(h, ι) = ι′ ∨ rep /∈ sT

h, ι ` ι′ C<rT> <:l ι
′ C′<sT[ι′/thisu, ι

′/peer, ι/rep, anya/anyu,
rT/X]>

RTA-1 rT <:a
rT

RTA-2
rT <:a rT′

ι′ C<rT> <:a anya C<rT′>
RTH-1

h(ι) = rT,
h, ι ` rT <: rT′

h ` ι : rT′

RTH-2
h ` nulla : rT′

RTS

h ` ι : dyn(sT, h, rΓ)
sT = thisu < >⇒ ι = rΓ(this)

h, rΓ ` ι : sT

Figure 4.24: Rules for subtyping on runtime types

As for subtyping for static types, we have limited covariance for runtime types. Covariant subtyping is
expressed by the relation <:a . The rules for limited covariance, RTA-1 and RTA-2, are analogous to the
rules TA-1 and TA-2 for static types (Fig. 4.20). Reflexivity of <: follows from RTA-1 and RT-2.

The judgment h ` ι : rT′ expresses that in heap h, the address ι has type rT′. The type of ι is determined
by the type of the object at ι and the subtype relation (RTH-1). The null reference can have any type
(RTH-2).

Finally, the judgment h, rΓ ` ι : sT expresses that in heap h and runtime environment rΓ, the address ι
has a runtime type that corresponds to the static type sT (see below for the definition of dyn) and that the
main modifier thisu is used solely for the type of this (RTS).

From Static Types to Runtime Types. Static types and runtime types are related by the following
dynamization function, which is defined by rule DYN:

dyn :: sType× Heap× rEnv→ rType

DYN

rΓ = X′ rT′; this ι, h, ι ` h(ι)↓1 <:l ι
′ C<rT>

dom(C) = X free(sT) ⊆ X ◦ X′

dyn(sT, h, rΓ) = sT[ι′/this, ι′/peer, ι/rep, anya/anyu,
rT/X, rT′/X′]

This function maps a static type sT to the corresponding runtime type. The viewpoint is described by
a heap h and a runtime environment rΓ. In sT, dyn substitutes rep by the address of the this object
(ι), peer and thisu by the owner of ι (ι′), and anyu by anya. It also substitutes all type variables in sT

129

MOBIUS Deliverable D2.3. Report on Type Systems

by the instantiations given in ι′ C<rT>, a supertype of ι’s runtime type, or in the runtime environment.
The substitutions performed by dyn are analogous to the ones in rule RTL (Fig. 4.24), which also involves
mapping static types to runtime types. We do not use dyn in RTL to avoid that the definitions of <: and
dyn are mutually recursive. We use projection ↓i to select the i-th component of a tuple, for instance, the
runtime type and field mapping of an object.

Note that the outcome of dyn depends on finding ι′ C<rT>, an appropriate supertype of the runtime type
of the this object ι, which contains substitutions for all type variables not mapped by the environment
(free(sT) yields the free type variables in sT). Thus, one may wonder whether there is more than one such
appropriate superclass. However, because type variables are globally unique, if the free variables of sT are
in the domain of a class then they are not in the domain of any other class. To obtain the most precise
ownership information we use the owner-invariant runtime subtype relation <:l defined in rule RTL.

To illustrate dynamization, consider an execution of put (Fig. 4.14), in an environment rΓ whose this

object has address 3 and a heap h where address 3 has runtime type 1 Map<1 ID, anya Data> (see Fig. 4.13).
We determine the runtime type of the object created by new rep Node<K,V>. The dynamization of the
type of the new object w.r.t. h and rΓ is dyn(rep Node<K,V>, h, rΓ), which yields 3 Node<1 ID, anya Data>.
This runtime type correctly reflects that the new object is owned by this (owner address 3) and has the
same type arguments as the runtime type of this.

It is convenient to define the following overloaded version of dyn:

dyn(sT, h, ι) = dyn(sT, h, (ε; this ι))

Lookup Functions

In this subsection, we define the functions to look up the runtime type of a field or the body of a method.

Field Lookup. The runtime type of a field f is essentially the dynamization of its static type. The
function rfType(h, ι, f) yields the runtime type of f in an object at address ι in heap h. In its definition
(RFT, in Fig. 4.25), C is the runtime class of ι, and C ′ is the superclass of C which contains the definition
of f.

Method Lookup. The function mBody(C, m) yields a tuple consisting of m’s body expression as well as
the identifiers of its formal parameters and type variables. This is trivial if m is declared in C (RMT-1,
Fig. 4.25). Otherwise, m is looked up in C’s superclass C′ (RMT-2).

Well-Formedness

In this subsection, we define well-formedness of runtime types, heaps, and runtime environments. The rules
are presented in Fig. 4.25.

Well-Formed Runtime Types. The judgment h, ι ` ι′ C<rT> ok expresses that runtime type ι′ C<rT> is
well-formed for viewpoint address ι in heap h. According to rule WFRT, the owner address ι′ must be the
address of an object in the heap h or one of the special owners nulla and anya. All type arguments must
also be well-formed types. A runtime type must have a type argument for each type variable of its class.
Each runtime type argument must be a subtype of the dynamization of the type variable’s upper bound.
We use h, rΓ ` rT ok as shorthand for h, rΓ(this) ` rT ok.

Well-Formed Heaps. A heap h is well-formed, denoted by h ok, if and only if the nulla address is not
mapped to an object, the runtime types of all objects are well-formed, the root owner nulla is in the set of
owners of all objects, and all addresses stored in fields are well-typed (WFH). By mandating that all objects
are (transitively) owned by nulla and because each runtime type has one unique owner address, we ensure
that ownership is a tree structure.

130

MOBIUS Deliverable D2.3. Report on Type Systems

RFT
h(ι)↓1= C< > C< > v C′< >

rfType(h, ι, f) = dyn(sfType(C′, f), h, ι)

RMT-1
class C< > extends < > { ; . . . <X > m(x) { return e } . . . }

mBody(C, m) = (e, x, X)

RMT-2
class C< > extends C′< > { no method m }

mBody(C, m) = mBody(C′, m)

WFRT

ι′ ∈ dom(h) ∪ {nulla, anya} h, ι ` rT ok

class C< sN> . . . h, ι ` rT <: dyn(sN, h, ι)

h, ι ` ι′ C<rT> ok

WFH

nulla /∈ dom(h) ∀ι : h, ι ` h(ι)↓1 ok ∧ nulla ∈ owners(h, ι)
∀ι, f : h(ι)↓2= Fs ∧ rfType(h, ι, f) = rT =⇒ h ` Fs(f) : rT

h ok

WFRE

rΓ = X rT ; this ι, x ι′ sΓ = X sN, X′ ; this (thisu C<X′>), x sT′

h ok sΓ ok ι 6= nulla h, rΓ ` rT ok h, rΓ ` rT <: dyn(sN, h, rΓ)
h, rΓ ` ι : thisu C<X′> h, rΓ ` ι′ : sT′

h ` rΓ : sΓ

Figure 4.25: Rules for field and method lookup, and well-formedness

Well-Formed Runtime Environments. The judgment h ` rΓ : sΓ expresses that runtime environment
rΓ is well-formed w.r.t. a well-formed heap h and a well-formed static type environment sΓ. According to
rule WFRE, this is the case if and only if: (1) rΓ maps all method type variables X that are contained in
sΓ to well-formed runtime types rT, which are subtypes of the dynamizations of the corresponding upper
bounds sN; (2) rΓ maps this to an address ι. The object at address ι is well-typed with the static type
of this, thisu C<X′>. (3) rΓ maps the formal parameters x that are contained in sΓ to addresses ι′. The
objects at addresses ι′ are well-typed with the static types of x, sT′.

Operational Semantics

We describe program execution by a big-step operational semantics. The transition h, rΓ, e ; h′, ι expresses
that the evaluation of an expression e in heap h and runtime environment rΓ results in address ι and
successor heap h′. A program with main class C is executed by evaluating the main expression in a heap h0

that contains exactly one C instance in the root context where all fields f are initialized to nulla (h0 = {ι 7→
(nulla C<>, f nulla)}) and a runtime environment rΓ0 that maps this to this C instance (rΓ0 = ε;thisι).
The rules for evaluating expressions are presented in Fig. 4.26 and explained in the following.

Parameters, including this, are evaluated by looking up the stored address in the stack, which is part
of the runtime environment rΓ (OS-Var). The null expression always evaluates to the nulla address (OS-
Null). For cast expressions, we evaluate the expression e0 and check that the resulting address is well-typed
with the static type given in the cast expression w.r.t. the current environment (OS-Cast). Object creation
picks a fresh address, allocates an object of the appropriate type, and initializes its fields to nulla (OS-New).
fields(C) yields all fields declared in or inherited by C.

For field reads (OS-Read) we evaluate the receiver expression and then look up the field in the heap,
provided that the receiver is non-null. For the update of a field f, we evaluate the receiver expression to
address ι0 and the right-hand side expression to address ι, and update the heap h2, which is denoted by
h2[ι0.f := ι] (OS-Upd). Note that the limited covariance of Generic Universe Types does not require a
runtime ownership check for field updates.

For method calls (OS-Invk) we evaluate the receiver expression and actual method arguments in the
usual order. The class of the receiver object is used to look up the method body. Its expression is then
evaluated in the runtime environment that maps m’s type variables to actual type arguments as well as
m’s formal method parameters (including this) to the actual method arguments. The resulting heap and
address are the result of the call. Note that method invocations do not need any runtime type checks or

131

MOBIUS Deliverable D2.3. Report on Type Systems

OS-Var
h, rΓ, x ; h, rΓ(x)

OS-Null
h, rΓ, null ; h, nulla

OS-Cast

h, rΓ, e0 ; h′, ι
h′, rΓ ` ι : sT

h, rΓ, (sT) e0 ; h′, ι
OS-New

ι /∈ dom(h) ι 6= nulla
rT = dyn(sN, h, rΓ) = C< >

Fs(fields(C)) = nulla
h′ = h[ι 7→ (rT, Fs)]

h, rΓ, new sN ; h′, ι

OS-Read

h, rΓ, e0 ; h′, ι0
ι0 6= nulla

ι = h′(ι0)↓2 (f)

h, rΓ, e0.f ; h′, ι
OS-Upd

h, rΓ, e0 ; h0, ι0
ι0 6= nulla

h0,
rΓ, e2 ; h2, ι

h′ = h2[ι0.f := ι]

h, rΓ, e0.f=e2 ; h′, ι

OS-Invk

h, rΓ, e0 ; h0, ι0 ι0 6= nulla h0,
rΓ, e2 ; h2, ι2

h0(ι0)↓1= C0< > mBody(C0, m) = (e1, x, X)
rT = dyn(sT, h, rΓ) rΓ′ = X rT ; this ι0, x ι2 h2,

rΓ′, e1 ; h′, ι

h, rΓ, e0.m<sT>(e2) ; h′, ι

Figure 4.26: Operational semantics

purity checks.

4.3.4 Properties

In this section, we present the theorems and proof sketches for type safety and the owner-as-modifier property
as well as two important auxiliary lemmas.

Lemmas. The following lemma expresses that viewpoint adaptation from a viewpoint to this is correct.
Consider the this object of a runtime environment rΓ and two objects o1 and o2. If from the viewpoint
this, o1 has the static type sN, and from viewpoint o1, o2 has the static type sT, then from the viewpoint
this, o2 has the static type sT adapted from sN, sN�sT. The following lemma expresses this property using
the addresses ι1 and ι2 of the objects o1 and o2, respectively.

Lemma 4.3.4.1 (Adaptation from a Viewpoint).

h, rΓ ` ι1 : sN, ι1 6= nulla
h, rΓ′ ` ι2 : sT

free(sT) ⊆ dom(sN) ◦ X
rΓ′ = X dyn(sT, h, rΓ); this ι1,

 =⇒ h, rΓ ` ι2 : (sN�sT)[sT/X]

This lemma justifies the type rule GT-Read. The proof runs by induction on the shape of static type sT.
The base case deals with type variables and non-generic types. The induction step considers generic types,
assuming that the lemma holds for the actual type arguments. Each of the cases is done by a case distinction
on the main modifiers of sN and sT.

The following lemma is the converse of Lemma 4.3.4.1. It expresses that viewpoint adaptation from
this to an object o1 is correct. If from the viewpoint this, o1 has the static type sN and o2 has the static
type sN�sT, then from viewpoint o1, o2 has the static type sT. The lemma requires that the adaptation of
sT does not change ownership modifiers in sT from non-any to any, because the lost ownership information
cannot be recovered. Such a change occurs if sN’s main modifier is any or if sT contains rep and is not
accessed through this (see definition of rp, Sec. 4.3.2).

Lemma 4.3.4.2 (Adaptation to a Viewpoint).

h, rΓ ` ι1 : sN, ι1 6= nulla
h, rΓ ` ι2 : (sN�sT)[sT/X]
sN = u < >, u 6= any, rp(u, sT)
free(sT) ⊆ dom(sN) ◦ X, sT 6= thisu < >
rΓ′ = X dyn(sT, h, rΓ); this ι1,

 =⇒ h, rΓ′ ` ι2 : sT

132

MOBIUS Deliverable D2.3. Report on Type Systems

This lemma justifies the type rule GT-Upd and the requirements for the types of the parameters in GT-Invk.
The proof is analogous to the proof for Lemma 4.3.4.1.

Type Safety for Generic Universe Types is expressed by the following theorem. If a well-typed expression
e is evaluated in a well-formed environment (including a well-formed heap), then the resulting environment
is well-formed and the result of e’s evaluation has the type that is the dynamization of e’s static type.

Theorem 4.3.4.3 (Type Safety).

h ` rΓ : sΓ
sΓ ` e : sT

h, rΓ, e ; h′, ι

 =⇒
{

h′ ` rΓ : sΓ

h′, rΓ ` ι : sT

The proof of Theorem 4.3.4.3 runs by rule induction on the operational semantics. Lemma 4.3.4.1 is used
to prove field read and method results, whereas Lemma 4.3.4.2 is used to prove field updates and method
parameter passing.

We omit a proof of progress since this property is not affected by adding ownership to a Java-like
language. The basic proof can be adapted from FGJ [97] and extensions for field updates and casts. The
new runtime ownership check in casts can be treated analogously to standard Java casts.

Owner-as-Modifier discipline enforcement is expressed by the following theorem. The evaluation of a
well-typed expression e in a well-formed environment modifies only those objects that are (transitively)
owned by the owner of this.

Theorem 4.3.4.4 (Owner-as-Modifier).

h ` rΓ : sΓ
sΓ ` e : sT

h, rΓ, e ; h′,

 =⇒

 ∀ι ∈ dom(h), f :
h(ι)↓2(f) = h′(ι)↓2(f) ∨
owner(h, rΓ(this)) ∈ owners(h, ι)

where owner(h, ι) denotes the direct owner of the object at address ι in heap h, and owners(h, ι) denotes the
set of all (transitive) owners of this object.

The proof of Theorem 4.3.4.4 runs by rule induction on the operational semantics. The interesting cases
are field update and calls of non-pure methods. In both cases, the type rules (Fig. 4.22) enforce that the
receiver expression does not have the main modifier any. That is, the receiver object is owned by this or
the owner of this. For the proof we assume that pure methods do not modify objects that exist in the
pre-state of the call. In this section we do not describe how this is enforced in the program. A simple but
conservative approach forbids all object creations, field updates, and calls of non-pure methods [127]. The
above definition also allows weaker forms of purity that permit object creations [71] and also approaches
that allow the modification of newly created objects [160].

4.3.5 Conclusions

We presented Generic Universe Types, an ownership type system for Java-like languages with generic types.
Our type system permits arbitrary references through any types, but controls modifications of objects, that
is, enforces the owner-as-modifier discipline. This allows us to handle interesting implementations beyond
simple aggregate objects, for instance, shared buffers [71]. We show how any types and generics can be
combined in a type safe way using limited covariance and viewpoint adaptation.

Generic Universe Types require little annotation overhead for programmers. As we have shown for
non-generic Universe Types [71], this overhead can be further reduced by appropriate defaults. The default
ownership modifier is generally peer, but the modifier of upper bounds, exceptions, and immutable types
(such as String) defaults to any. These defaults make the conversion from Java 5 to Generic Universe
Types simple.

133

MOBIUS Deliverable D2.3. Report on Type Systems

Project 4

Task1

Task2

Task3

Project 3

4Task

Task5

Project 5

Task6

Task7

Worker 2 3WorkerWorker 1

Project 1 Project 2

Company

Figure 4.27: A Single Ownership Structure. Three Workers belong to the Company, each Worker is working
on several Projects, and each Project has Tasks the Worker must complete.

The type checker and runtime support for Generic Universe Types are implemented in the JML tool
suite [130].

As future work, we plan to use Generic Universe Types for program verification, extending our earlier
work [127, 130]. We are also working on path-dependent Universe Types to support more fine-grained
information about object ownership, and to extend our inference tools for non-generic Universe Types to
Generic Universe Types.

4.4 Multiple Ownership

In ownership systems, each object has one owner and the ownership relation forms a tree. While different
versions of ownership have proved effective for a variety of tasks [12, 172, 50, 58, 68], empirical studies have
shown that this ownership structure does not suit all programs [34, 122, 143]. In this section we present an
ownership type system that removes this restriction, so that an object may have multiple owners, and the
ownership relation forms a DAG. We make the following contributions:

• the objects in boxes model, a simple, straightforward model of object ownership based on sets of
objects, which describes the fundamental features of single ownership, and generalises smoothly to
multiple ownership.

• a language design incorporating Multiple Ownership into a Java-like language with Objects (MOJO).
MOJO’s novel constructs include multiple ownership types, constraint declarations to indicate that
two boxes either intersect or are disjoint, and a restricted form of existential ownership. Thus, existing
ownership type systems can support multiple ownership via relatively small extensions.

• a formal definition for MOJO, including a type system which we have proved sound.

• an effects system for MOJO that works with multiple ownership, that again, we have proved sound.

We have developed MOJO as an extension of traditional ownership types systems instead of an extension
of Universe types, because MOJO requires explicit ownership parameters, and at that time GUJ was not
that well understood. We now plan to extend GUJ accordingly.

Outline The next section informally introduces our conceptual model of ownership, the language MOJO,
and the effects system. We then give a formal presentation of the syntax, operational semantics, type and
effects system of MOJO, and its soundness. The section concludes with a discussion of MOJO idioms and
extensions and a brief survey of related work.

134

MOBIUS Deliverable D2.3. Report on Type Systems

4.4.1 The Benefits of Putting Objects into Boxes

In this section we present our conceptual model — the “objects in boxes” model — of multiple ownership
and effects in object-oriented systems. We begin by modelling single ownership, then show how the objects
in boxes model generalises to multiple owners. Interleaved with the conceptual presentation, we show how
these models can be described using ownership types in programming languages. Our examples are expressed
in our core language MOJO but would apply in most languages with ownership types.

Upon reflection, given that ownership has been studied for at least ten years [139], and alias control for
fifteen [90], it seems odd that only now we are presenting something as näıve as a model based purely on sets.
Compared with previous work, the objects in boxes model focuses on ownership sets (boxes), the objects in
the boxes, and the effects of computation, and abstracts away from language constructs, types, messages,
capabilities, and especially the pointer structures that feature prominently in most other treatments of
object ownership [12, 56, 58, 127]. While some of these concerns must be reintroduced as we move from a
conceptual model to a programming language, we have found the abstraction offered by the objects in boxes
model to be very useful in designing and reasoning about ownership, and multiple ownership in particular.

Single Ownership

The object structure from Figure 4.27 shows a company that carries out a range of different Projects. Each
Project has one or more Workers allocated to it, and each Worker has one or more Tasks they need to
complete.

The key relationship this diagram brings out is object ownership: each Task is owned by a Project, and
each Project in turn is owned by the Worker responsible for it. Ownership models abstraction, encapsulation
and aggregation: Tasks are part of their Projects; Workers are part of the Company they work for. A
change to one of the parts — say a Project being cancelled — necessarily affects the whole abstraction in
which that part is contained. Similarly, a change to a whole – say a Worker going on leave — may change
any of its subparts — perhaps delaying all of the Tasks comprising its Project.

Partitioning objects is key to ownership systems, whether they use types [58] or specifications [128].
Different systems have chosen different names for these partitions: islands [90], balloons [13], domains [12],
contexts [56], regions [83] — with each name being associated with a particular detailed proposal.

We propose the neutral term boxes to describe these partitions: in a sense, every ownership system
“puts objects into boxes” and differs in the details of those boxes. Figure 4.27 also gives a hint to the most
fundamental semantics of these boxes: a box is a set of objects. So, for example, we could write [[Worker2]]
to mean all the objects contained within Worker2’s box. Here we have:

[[Project2]] = {Task3}
[[Project3]] = {Task4, Task5}

The first consequence of this model is that diagrams such as Figure 4.27 (which have adorned almost
every ownership paper ever published) can now be ascribed clear semantics: they are just the diagrams of
sets we are familiar with from primary school.

The second consequence of this model is that semantics of object composition — box nesting — follows
naturally. So, for example, reading from the diagram:

[[Worker1]] = {Project1, Project2, Task1,
Task2, Task3}

[[Worker3]] = {Project5, Task6, Task7}

Given that an object o is given a box [[o]] upon its creation, we can establish the invariant that if x is
inside its owner o, written x� o, then its box must be inside its owner’s box. More generally:

x� o⇔ x ∈ [[o]] Objects in Boxes

135

MOBIUS Deliverable D2.3. Report on Type Systems

An object’s box must be a subset of its owner’s box:

x� o⇒ [[x]] ⊆ [[o]] Box Nesting

And, in single ownership, the inside relation is a tree:

[[o1]] ∩ [[o2]] 6= ∅
⇒

[[o1]] ⊆ [[o2]] ∨ [[o2]] ⊆ [[o1]]
Single owners

These invariants should hold however we model heaps, and also independently of whether objects are per-
mitted to change owner — type systems generally do not support ownership change; specification languages
do.

Single Ownership Languages In an ownership-aware programming or specification language we could
define these classes as follows. First, the Task class contains two fields — straightforward value types giving
the tasks’s name and duration: the single method delays a task by increasing its duration.

1 class Task<o> {
2 String name;
3 int time;
4 void delay () { time++; }
5 }

The Task class also has the ownership parameter o that is a special form of type parameter (a phantom
type) that records ownership information. The Task class needs to be ownership parametric, because
different tasks will have different owners (e.g. in Figure 4.27, Task1 is owned by Project1 while Task4 is
owned by Project3). Ownership parameters connect compile-time static types to run-time dynamic boxes.
An object’s owner parameter in its type represents the box it is inside:

x : C<o> ⇒ x ∈ [[o]] Owners as Boxes

In ownership type languages, actual ownership parameters may be the formal parameters of the enclosing
class (including the distinguished first parameter representing an instance’s owner); “this” establishing
that the current “this” instance is the owner of the new type; or final fields, establishing that the object
contained in the field is the owner.

The Project class is also ownership parametric. Projects delay themselves by delaying every constituent
task.

1 class Project<o> {
2 TaskList<this,this> tasks;
3 void delay () {
4 for(var t : tasks) { t . delay () ; }
5 }
6 }

The field tasks stores a list of the project’s tasks, and is declared as TaskList<this,this>. That means
that the list of tasks pointed to by this field, and each Task stored in the List, will be owned by this particular
project instance, and therefore will be inside the box belonging to this Project instance, a member of the
set [[this]], which will be different for each different project. The box nesting invariant ensures that an
object’s box is inside its owner. That is, this� o, and thus [[this]] ⊆ [[o]].

The Worker class is quite straightforward, keeping a list of Projects owned by this Project (i.e. inside
its box) and delaying itself by delaying those projects.

136

MOBIUS Deliverable D2.3. Report on Type Systems

1 class Worker<o> {
2 ProjectList<this,this> projects ;
3 void delay () {
4 for(var p : projects) { p. delay () ; }
5 }
6 }

Consider now the TaskList class (the ProjectList class is similar) whose instances we omitted in
Figure 4.27 for space reasons. Its implementation is rudimentary, as we’re mainly concerned with ownership
types involved:

1 class TaskList<o, tO> {
2 Task<tO> t;
3 TaskList<o,tO> next;
4 TaskList<o,tO> prev;
5

6 void add(Task<tO> tt) {
7 if (next==nil) {
8 next = new TaskList<o, tO>();
9 next. t = tt;

10 next.prev = this;
11 }
12 else {
13 next.add(i) ;
14 }
15 }
16 Task<tO> get(int i) {
17 return (i==0) ? item : next.get(i−1);
18 }
19 }

TaskList has two ownership parameters. The first, o, is the “primary” owner parameter, just as in the
other classes we’ve seen. The second, tO, is the ownership of the Task stored in each list node. In this way
the ownership of the node and its contents do not have to be the same. The fields next and prev have type
TaskList<o, tO> saying that the adjacent list entries have the same item ownership as this list entry, and
the same owner as this object: all entries in a single list will be members of the same enclosing box; as
will all the tasks — although they may be in different boxes. This differs from the fields in classes Project
and Worker, which have this ownership, meaning that they belong to the box owned by the current object
itself.

Effects within Single Ownership Ownership can help determine the effects of a computation in terms
of the objects read or written. Two computations do not interfere (they do not write the same objects,
or do not read objects the other writes) if the intersection of the boxes involved is empty.

Effects systems [57, 83] annotate methods with effects specifications, describing the boxes read or written.
In Task, the fields name and time hold simple types, are local to the object, and can only be changed by
the object itself. The delay method makes just such an assignment to time. The effects of, say, reading
the name field would be this / empty meaning reading the “this” object and not writing anything. The
effects of the delay method would be this / this — reading and writing the object to which the method
is sent.

1 class Task<o> { ...
2 void delay () // effect : this / this
3 ...
4 }

On the other hand, the Project’s delay method.

1 class Project<o> {

137

MOBIUS Deliverable D2.3. Report on Type Systems

3WorkerWorker 21Worker

Task3 Task6

Task2

Task1 Task4 Task5 Task7

Task8

Task9

Project 1

2Project

Project 3

Company

Figure 4.28: A Multiple Ownership Structure. The Company now requires its Workers to work on many
different Projects— and different Tasks in a project can be carried out by different Workers.

2 TaskList<this,this> tasks;
3 void delay () // effect : this / this
4 { for(var t : tasks) { t . delay () ; } }
5 }

reads the tasks variable, the fields of those subordinate Task objects, and calls delay on them. From the
effects of delay(), (reads this, writes this) we know that it will write whatever object it is called upon.
The question is: which Task objects will be written?

Effects systems without ownership [83, 107] cannot easily distinguish which Task may be affected; effects
like “all.Task / all.Task” say that delay on any project may read and write any Task. The upshot of
this is that delaying any project must be assumed to delay every other project in the system.

This is precisely where boxes come to the rescue. Looking again at Figure 4.27, only the Tasks in the
Project’s box are written. The type of these tasks, i.e. Task <this> gives that information. We interpret
effects so that they apply to boxes, rather than objects: effects such as .../this means that a computation
may write the “this” object itself, or any other object in its box [[this]]. The effects for Project’s delay

method are this / this, so the method may read or write the object itself or any other object that it
owns, but may not read or write any object outside its own box. The Worker’s delay method also has
effects this / this.

Multiple Ownership

Single ownership requires every object to have a single direct owner, thus the ownership structure is a tree.
While easy to understand, easy to model, and (relatively) easy to formalise and enforce, single ownership is
too restrictive for many kinds of programs. Empirical studies have shown that relationships between objects
and between the classes that define them are scale free networks — tangled graphs where every object is
only a few hops from every other object [122, 143]. Non-hierarchical relationships cannot be modelled by
trees.

For example, imagine the following change to the Projects, Workers, and Tasks model, given in Fig-
ure 4.28. Here, the company has been restructured from a hierarchical style, where every project is carried
out by just one worker, into a “matrix” management style where every task is assigned to both a project and
a worker. As a result, tasks now somehow have to belong to both projects and workers; delaying a project
must delay all employees who must work on tasks on that project, and similarly delaying an employee will
delay all projects with which they are involved.

The topology in Figure 4.28 cannot be described with existing ownership type systems. Classical own-

138

MOBIUS Deliverable D2.3. Report on Type Systems

ership enforces a very strong owners-as-dominators policy over pointers — all paths to an object must be
via its owner — so if programmers attempt to write programs describing this interconnected ownership
structure, their programs will be rejected as type-incorrect. Other systems support owners-as-modifiers or
effective ownership, rather than pointer control [127]; so they would at least be able to pick one of either
Projects or Workers as a primary axis of organisation — say Projects— and grant permission to Workers
to have pointers into tasks even though they belonged to projects. Unfortunately, when a Worker is delayed
in such a system, it would not have permission to modify its Project objects because it does not own them.

In single ownership systems, programmers get around these restrictions by “flattening” or “lifting” the
ownership hierarchy: rather than nesting boxes, every task, worker, and project can exist in one very large
company box, and use “peer” ownership — types like Task<o> that refer to other objects in the same box
as this, rather than this’s box — to access every required object directly. In both owners-as-dominators
and owners-as-modifiers systems, this would typecheck and allow e.g. projects and workers to update their
tasks: there is no longer one primary “dominant” decomposition. The problem with this design is that it
loses any benefit of ownership types: with everything in one large box, we cannot distinguish between tasks
belonging to one project, or another project, or a worker. Once again, a change to one task will be taken as
a change to all tasks.

This is where the interpretation of Figure 4.28, modelling boxes as sets, shows us the way out. Just as an
element can be a member of more than one set, an object can be inside more than one box, that is, be owned
by more than one object. Where two boxes overlap, objects in their intersection are within both boxes, and
so have multiple owners. So all the Tasks belonging to Project1, say, will still be inside Project1’s box
— [[Project1]]. Similarly, Tasks belonging to Worker2 will be inside [[Worker2]]. And, crucially, Tasks (or
any other object) belonging to both Project1 and Worker2 (for example, Task2 in Figure 4.28) will reside
in both boxes, that is, in the intersection of the two sets: [[Project1]] ∩ [[Worker2]]. This semantics follows
directly from interpreting Figure 4.28 as a set diagram.

The set interpretation generalises equally well to effects in a multiple ownership setting. Read or write
effects upon an object with multiple owners must be taken to be effects within the intersection of the boxes
to which that object belongs — and if this intersection itself intersects the effects of another computation,
then those two computations potentially interfere.

MOJO: Language Support for Multiple Ownership We generalise a single-owner language to sup-
port multiple owners. Our core language, MOJO, is a relatively simple extension to existing single-ownership
languages such as JOE and OGJ [12, 57, 142]. In the rest of this section we present the various new features
of MOJO based on the multiple-ownership version of task management.

First, we reconsider the Task class. Surprisingly, this is exactly the same as the single owner version.
In particular, Task retains just one ownership parameter even though in the design — Figure 4.28 — every
Task has multiple owners. In MOJO, multiple owners are supplied upon class instantiation, rather than
upon declaration; therefore classes can be parametric in the number of owners they will have10.

To instantiate objects with multiple owners, MOJO supports a special ownership combinator that pro-
vides multiple (intersection) ownership. The actual ownership argument a & b describes multiple owners a

and b: a single formal argument is bound by multiple actual arguments (just as in a type-generic system,
List<T> instantiated by Pair<A,B> gives List<Pair<A,B>>, the formal argument T is instantiated with the
pair type Pair<A,B>). For example, we can declare a Task object that will be owned by a Worker and a
Project object, both previously created:

1 final Project<this> prj = new Project<this>();
2 final Worker<this> wrk = new Worker<this>();
3

4 Task<prj & wrk> tsk = new Task<prj & wrk>();

The interpretation of a & b follows clearly from the Objects in Boxes constraint. If an object x’s owner

10This is an innovation of the current work; in our earlier work multiple class owners were provided upon class declaration.

139

MOBIUS Deliverable D2.3. Report on Type Systems

is a & b then we can assume that there will exist a and b, and x be inside both of them:

x� a ∧ x� b⇒ x ∈ [[a]] ∩ [[b]]

or via the Owners as Boxes constraint:

x : C<a & b>⇒ x ∈ [[a]] ∩ [[b]]

The only single ownership constraint that does not hold for multiple ownership is the Single Ownership
constraint itself: multiple ownership is a non-empty intersection of two (or more) boxes. Thus

[[o1]] ∩ [[o2]] 6= ∅
6⇒

[[o1]] ⊆ [[o2]] ∨ [[o2]] ⊆ [[o1]]
Multiple owners

Returning to the example, the TaskList is also the same as the single owner version. Then, the code for
the Project class is mostly unchanged,

1 class Project<o> {
2 TaskList<this, this & ?> tasks;
3 void delay () {
4 for(var t : tasks) { t . delay () ; }
5 }
6 void add(Task<this & ?> t) {
7 tasks .add(t) ;
8 }
9 }

except for the ownership type used to declare tasks. In particular, the second ownership argument of
TaskList (the one representing the owners of the tasks) is now this & ?, which says three things: First, that
the Tasks are inside more than one box — they have multiple ownership. Second, that one of those owners
is this: the current Project object. And finally, that — at this point in the program — we do now know
what the other owner(s) of each Task are. Again, this is true of the structure in Figure 4.28: each task in
a project can have a different worker assigned to it, and vice versa — every worker can work on different
projects.

The ? wildcard (similar to Java’s “?” wildcard for generics) can be thought of as an existential owner,
and is very similar to the anyowner from Universe types. Such wildcards also appear in [108, 177], or i
Wildcard owners are crucial in a multiple ownership system because one owner often does not, or cannot,
know the other potential owners. A this owner is a prime example, since it is only (directly) accessible via
the “this” object. Here, the Project class knows that it is one of the owners of the Task but not what the
other owners are — furthermore, each Task in the list may have a different Worker as its other owner. This
is precisely the interpretation of this & ?.

The Worker class is now symmetrical to the Project class: again it has a list of Tasks, which are owned
by this worker and by something else.

1 class Worker<o> {
2 TaskList<this, this & ?> tasks;
3 void delay () {
4 for(var t : tasks) { t . delay () ; }
5 }
6 void add(Task<this & ?> t) {
7 tasks .add(t) ;
8 }
9 }

Task<p1 & w1> is a subtype of Task<p1 & ?> and of Task<w1 & ?>. This allows to add tasks owned by, say,
project p1 and worker w1 to both p1 and w1 as in the following code (we discuss the meaning of intersects
in the following section):

140

MOBIUS Deliverable D2.3. Report on Type Systems

P ::= class∗ program
class ::= class c < p > pCnstr � c′ < Q >

{ finfld fCnstr fld mth } class definition
C ::= ◦◦ | ◦◦ interesects or disjoints
pCnstr ::= p C p parameter constraints
finfld ::= final t ff final field definition
fCnstr ::= ff Cff | ff Cp field constraints
fld ::= t f field definition
mth ::= t m (t x) { e } method body
t ::= c < Q > static type
Q ::= q | q∩Q actual own. param. (poss. multiple)
q ::= p | this | ff | x | ? | ι one actual ownership parameter

R ::= r | r∩R runtime actual ownership parameters

r ::= ι | ? one runtime ownership parameter

e ::= x | this | e.f | e.f =e
| new t | e.m(e) | ι expressions

c, p ::= id class identif., form. ownership param.
f , m ::= id field identif., method identif.

Figure 4.29: Syntax, runtime entitites in grey

1 final Project<this> p1 = new Project<this>();
2 final Worker<this> w1 = new Worker<this>();
3 // w1 intersects p1
4

5 Task<p1 & w1> t1 = new Task<p1 & w1>();
6 p1.add(t1); w1.add(t1);

Effects within Multiple Ownership Given the straightforward extension from single to multiple owner-
ship promised by the objects in boxes model, it is tempting to expect that effects would generalise similarly:
unfortunately, that is not the case.

In the following example we create two tasks, one shared between project p1 and worker w1, the other
shared between p2 and worker w1:

1 class Test {
2 final Project<this> p1 = new Project<this>();
3 final Project<this> p2 = new Project<this>();
4 final Worker<this> w1 = new Worker<this>();
5 // w1 intersects p2; w1 intersects p1
6

7 Task<p1 & w1> t1 = new Task<p1 & w1>();
8 p1.add(t1); w1.add(t1);
9

10 Task<p2 & w1> t2 = new Task<p2 & w1>();
11 p2.add(t2); w1.add(t2);
12 }

In this program p1.delay() and w1.delay() potentially interfere. Given our intuition from Figure 4.28,
we expect p1.delay() and p2.delay() not to interfere. However, the expressions have effects:

p1.delay() : p1 & ? / p1 & ?

p2.delay() : p2 & ? / p2 & ?

w1.delay() : w1 & ? / w1 & ?
and we have insufficient information to distinguish the relationship between p1 and p2 from that between
p1 and w1.

141

MOBIUS Deliverable D2.3. Report on Type Systems

Intersection and Disjointness To solve this problem we have to provide more information about which
boxes intersect, and which boxes are disjoint. Instantiating types with multiple owners like p1 & w1 creates
objects in the set intersection [[p1]] ∩ [[w1]], which means that the p1 box and the w1 box must intersect.
Conversely, for disjoint boxes p1 and p2 (like in the figure) the multiple owner p1 & p2 is illegal.

We introduce two declarations that make box topologies explicit. In the example, we’d need to declare
w1 intersects p1 and w1 intersects p2 if we want to have workers whose tasks are in both p1 and p2.
Similarly, we need to declare p1 disjoint p2 to ensure the p1 and p2 boxes are independent. Only one
relationship (intersects or disjoint) may be declared between any two boxes: if no relationship is declared,
then we don’t know what the topology is and we make conservative assumptions.

Then, multiple ownership like a & b is legal only if it can be shown that a and b are legal, and that a

intersects b. In our example, p1 & w1 and w1 & p1 and p2 & w1 are all legal (“&”, intersects and disjoint

are symmetric; intersects and “&” are reflexive; disjoint is irreflexive) while p1 & p2 is not legal because
p1 and p2 are not declared as intersecting.

Effects are independent when we can show that their boxes will be disjoint. For effects involving multiple
owners (like p2 & w1) it is enough to consider owners pairwise, and to find one pair that is definitely disjoint:
in the example, p1 and p2 are declared to be disjoint, so their intersection is empty, i.e. [[p1]]∩ [[p2]] = ∅ =
[[p1 & w1]]∩[[p2 & w1]] = [[p1 & ?]]∩[[p2 & ?]]. Therefore p1.delay() and p2.delay() cannot interfere. On the
other hand, because p1 intersects with w1, we are able to create types like w1 & p1 (while we cannot create
p1 & p2) — but the effects [[w1 & ?]] and [[p1 & ?]] are not independent; thus computations like w1.delay()

and p1.delay() may interfere.

Ownership Type Constraints To make MOJO modular, we provide where clauses to constrain owner
parameters. Inside a class C with three owner parameters, a, b, and o, we can create objects with ownership
a & o only if we are sure that a intersects with o. We give this guarantee through a where clause:

1 class C<o, a, b>
2 where a intersects o {
3

4 Object<a & o> f1; // legal
5 Object<a & b> f2; // illegal
6 }

but then we can only instantiate C with ownership parameters that are definitively known to intersect. In
the example in the previous section, C<w1,p1,p2> is legal (because w1 intersects p2) while C<p1,p2,w1>

is illegal because p1 does not intersect p2.
Where clauses can also be used to express disjointness constraints — a declaration such as:

1 class D<o, e>
2 where e disjoint o {
3 // ...
4 }

requires that the actual ownership parameters be disjoint. In the above example, D<p1,p2> is a legal own-
ership type because p1 disjoint p2, but D<w1,p1> is not, because those boxes are not disjoint. Note that
a disjointness constraint also prevents both parameters being instantiated with the same actual ownership
type, because disjoint is irreflexive, so D<p1,p1> and D<this,this> are also illegal.

In practice, we expect that many ownership parameters will use neither intersection or disjointness
constraints. This gives maximal polymorphism: unconstrained parameters can be instantiated with either
intersecting or disjoint boxes. A class which does not create objects with multiple owners will not need
intersection constraints, and a class which is not susceptible to interference between parameters will not
need disjointness constraints. Most collection classes, for example, will fall into this category, as will pairs,
tuples, and many other generic classes.

142

MOBIUS Deliverable D2.3. Report on Type Systems

Objects allowed to intersect, or guaranteed to be disjoint

Γ = ...q C q ′....

Γ ` q C q ′ Γ ` q ◦◦q
Γ ` q ′ C q

Γ ` q C q ′ Γ ` q◦◦?

Γ ` q � q ′

Γ ` q ◦◦q ′
Γ ` q ′ � q ′′ Γ ` q ′′ ◦◦ q

Γ ` q ◦◦ q ′

Q = Q1 ∩ q Q ′ = Q2 ∩ q ′ Γ ` q ◦◦ q′
Γ ` Q ◦◦Q ′

Q = Q1 ∩ q , Q ′ = Q2 ∩ q ′ =⇒ Γ ` q ◦◦q ′
Γ ` Q ◦◦Q ′

Well-formed types

q ∈ Dm(Γ)

Γ ` q Γ ` ?

Γ ` Q Γ ` q Q = Q ′ ∩ q ′ =⇒ Γ ` q ◦◦q ′
Γ ` Q ∩ q

class c < p > ... � ... |Q | = |p| Γ ` Q
Q i C Q j ∈ pCnstrs(c <Q>) =⇒ Γ ` Q i C Q j

Γ ` c < Q >

‘Inside’ relation for owner parameters

Γ ` q � q Γ ` q � q ′′ Γ ` q ′′ � q ′

Γ ` q � q ′
Γ(q) = c < q′ ∩Q ,Q ′ >

Γ ` q � q ′

Figure 4.30: Well-formed types and the ‘inside’, intersects and disjoint relations for owner parameters

4.4.2 MOJO

In this section we present the MOJO language, a minimal object-oriented imperative language, in the
Featherweight Java (FJ) [97] style with extensions for (multiple) ownership. It is closely related to JOE [57]
and ODE [165].

The major change from FJ is that MOJO types and classes are parameterised by a sequence of owner
parameters, the first of which is the owner of objects of that type. Actual ownership parameters may consist
of multiple owners which may include the wildcard owner, “?”. To support the topology of boxes described
in Section 4.4.1, constraints on ownership parameters and final fields may be specified.

MOJO supports imperative features, including a heap and field assignment, and final fields that may be
used as ownership parameters (non-final fields would be unsafe as ownership parameters as they may change
during execution).

In comparison to the concrete, surface syntax described in Section 4.4.1, the formalism adopts a more
succinct abstract syntax: class declarations use � instead of extends. Constraints on fields or ownership
parameters, use ◦◦ for intersects and ◦◦ for disjoint. To emphasize the connection with set theory,
multiple owners use ∩ rather than &. Actual ownership parameters consist of a set of formal parameters,
this, final fields, method parameters, the ? wildcard or, at runtime, addresses. The syntax is given in
Figure 4.29.

Runtime model

Heaps (h) map addresses to objects. Objects are triples of a runtime type, a mapping from final field
identifiers (Idfld) to addresses, and a mapping from non-final field identifiers (Idfld) to addresses. Runtime
types consist of class identifiers and sequences of nonempty sets of addresses, representing actual owners,

143

MOBIUS Deliverable D2.3. Report on Type Systems

including (?)11

h ∈ Heap = N−→ Object address to object

Object = c < R > × runtime type
(Idffld −→ N) × final field values
(Idfld −→ N) non-final field values

ι ∈ N object addresses

Execution

Execution is defined in terms of a large steps operational semantics, with format e, h ; v , h ′, which maps
an expression and a heap to a result and a new heap.

The operational semantics for field assignment and field access is the obvious one and appears in appendix
A. The semantics of object creation and method call is more intricate, and we discuss it here in more detail.

To create an object of type c <R>, we first create a new object at a fresh address ι with temporary type
Object12. We then initialize the final fields of c13, and obtain objects ι′, and a heap h′n. We then initialize
the non-final fields14, and obtain objects ι′′, and a heap h′′′m. Finally, in h′′′m we update the class of the new
object, and “connect” the final field identifiers to ι′, and the nonfinal field identifiers to ι′′.

ι fresh in h h1 = h[ι 7→ (Object , ∅)]
fF ields(c <R>) = t ff |ff | = n

new t [ι/this], h ; ι′, h ′ hi+1 = h′i
fields(c <R>) = t ′ f

|f | = m h′′1 = h′n

new t ′[ι′/ff , ι/this], h ′′ ; ι′′, h ′′′ h′′i+1 = h′′′i
new c <R>, h ; ι, h′′′m[ι 7→ (c <R>,ff 7→ ι′, f 7→ ι′′)]

Method calls evaluate the receiver and the argument, and look up the method body in the class as usual.
More interestingly, in e3, the method body, we replace the formal receiver by the actual one (ι/this), the
formal parameter by the actual one (ι′/x), and any appearance of the final fields in the types by the actual
values of the final fields as found in the heap (ι/ff). The class’s ownership parameters will have already been
replaced by the corresponding sets of owners in the object’s runtime type (R/p) by the mBody function.

e1 , h ; ι, h ′′ e2 , h
′′ ; ι′′, h ′′′

h ′′′(ι) = (c <R>,ff 7→ ι, f 7→ ...)
mBody(m, c<R>) = (x, e3)

e3 [ι/this, ι′′/x, ι/ff], h ′′′ ; ι′, h ′

e1 .m(e2), h ; ι′, h ′

Well-formed types

In Figure 4.30 we define the following five judgments:
Γ ` q � q′ q guaranteed to be inside q′

Γ ` q ◦◦q ′ q allowed to intersect q′

Γ ` q ◦◦ q ′ q guaranteed disjoint with q′

Γ ` Q Q consists of qs allowed to intersect
Γ ` c <Q> c <Q> well-formed type

11Allowing ? gives meaning to the expression new Task<?,p>. In MOJO we may want objects with unknown owners, in
contrast to Java, where no object is instantiated with wildcard type.

12We do not give the newly created object the class c<R>, in order to avoid objects with uninitialized final fields. We give ι
the type c<R> only after the values for all new fields are available.

13We replace any occurrence of this in any type t j by ι, the new object, and any occurrence of the source formal parameter
pi by the corresponding (set of) runtime actual parameters Ri .

14We replace any source actual ownership parameter ff i by ι′i. the corresponding value of that field.

144

MOBIUS Deliverable D2.3. Report on Type Systems

Q i = Q i
′ ∩ ? =⇒ pi does not appear in t

t ` Q /p

Γ ` q : Γ(q)

Γ ` t

Γ ` new t : t

Γ ` e : t ′ t ′ <: t

Γ ` e : t
Γ ` e : c < Q >

allF ields(c < Q >) = t f

Γ ` e.f i : t i
Γ·e

Γ ` e : c < Q >

fields(c < p >) = t f
t i ` Q /p

Γ ` e ′ : [Q/p]t i

Γ ` e.f i = e ′ : [Q/p]t i
Γ·e

Γ ` e : c < Q >
mType(m, c < p >) = t ′ → t

t ′ ` Q /p

Γ ` e ′ : [Q/p]t ′

Γ ` e.m(e ′) : [Q/p]tΓ·e

q v q q v ?

∀q ′ ∈ Q ′ : ∃q ∈ Q st q v q ′

Q v Q ′

class c < p > ...� c′ < Q ′ > ...

c < Q ><: c′ < [Q/p]Q ′ >

Q v Q ′

c < Q ><: c < Q ′ >

t <: t ′′ t ′′ <: t ′

t <: t ′

Figure 4.31: Typing and subtyping rules

An environment, Γ, maps this, x and ι to types, and contains a set of formal ownership parameters (p)
and intersects and disjoints relationships declared in the class of the receiver.

The operator ∩ is associative and commutative, and the empty sequence ε is neutral, i.e. ε ∩Q = Q .
An object is inside another, if its box (that is, the set of objects it owns) is a subset of the box of the

other.
The relations ◦◦ and ◦◦ extend the declared intersections and disjointness of owner parameters and fields.

The disjoint relation makes use of the inside (�) relation for owner parameters.
A type c < Q > is well-formed in the context of an environment Γ, iff: a) there is a Q for each formal

parameter p; b) each Q is well-formed (i.e. consists of ownership parameters which are allowed to intersect);
and c) if two parameters are declared to intersect or be disjoint in the class declaration, then the environment
Γ will allow the parameters to intersect or guarantee them to be disjoint, respectively.

Subtypes

In Figure 4.31 we define the subtyping relation t ′ <: t . The auxiliary judgment Q v Q ′ guarantees that Q ′

is the same as Q except that some of the contents of Q may be replaced by ?. Note that v is reflexive
and transitive, but not symmetric.

For types c <Q> and c <Q ′>, if no ? appears in Q or Q ′, subtyping is invariant with respect to
the ownership parameters. For example, C <o1 ∩ o2> is not a subtype of C <o1> — to allow such a

145

MOBIUS Deliverable D2.3. Report on Type Systems

relation would be unsound. The ? owner introduces variance, not only with respect to the owners, but also
to the number of owners. For example, as well as the obvious relationship C <o><: C <?>, we also have
C <o1 ∩ o2><: C <?>. This gives the equivalence ? ∩Q ≡ ? ∩ ? ∩Q .

Types of expressions

The type of an expression e depends on an environment Γ and is given by the judgment Γ ` e : t defined in
Figure 4.31. The rules are as expected for an ownership type system, with some special care taken for field
assignment and parameter passing when the types involve ?, where we require substitutions to be good, i.e.
to introduce no more ?s than in the original field or method return type. Consider the following classes:

1 class B<b1>{ ... }
2 class C<c1>{ B<c1> f1; B<?> f2; }

in the example:

1 class Test<t1,t2>{
2 void m1(C<t1> x, C<?> y){
3 x. f2 = new B<t2>; // type correct
4 x. f2 = new B<?>; // type correct
5 y. f1 = new B<t2>; // type error
6 y. f1 = new B<?>; // type error
7 y. f2 = new B<?>; // type correct
8 }
9 }

the assignments to x.f2 are type correct because from the point of view of x its field f2 may contain a
D<Q>, for any actual owners Q . On the other hand, any assignment to y.f1 is type-incorrect, because
from the point of view of y its field f1 must contain a D<Q>, for some fixed actual owners Q , which are
unknown in the current context. In terms of our formal description, the first two and the last assignment are
type correct, because for all Q , it holds that B<any> ` Q /c1; the next two assignments are type incorrect,
because B<c1> 6` any /c1.

Furthermore, the types of fields and methods needs to treat the actual ownership parameter this spe-
cially; ie it replaces this by the expression whose field or method is being selected, provided that e denotes
a constant value. This is described through tΓ·e , defined as follows, where x ∈ t means that x appears in t :

tΓ·e =

t , if this /∈ t , or e = this;
[e/this]t if this∈ t , e∈{ι, x , p};
[ff /this]t , if this∈ t , e = this.ff ;
[ι′/this]t , if this∈ t , e = ι.ff ,Γ(ι.ff) = ι′;
⊥, otherwise.

Well-formed class and program

A class is well-formed, if it has same owner as the superclass, the superclass type is well-formed, types
mentioned in fields and methods are well-formed, and method bodies are well typed. For checking well-
formedness of the superclass, constraints between ownership parameters are taken into account. For checking
types of final fields, this is allowed to appear in t. For checking types of fields and method bodies, constraints
between final fields are also taken into account. Fields must not overlap with those from the superclass.
Finally, the constraints on ownership parameters and final fields must be well-formed.

146

MOBIUS Deliverable D2.3. Report on Type Systems

class c <p> pCnstr � c′<Q>

{ fin t ff fCnstr t ′ f mth }
first(p) = first(Q)

Γ = p, pCnstrs(c <p>) Γ ` c′ < Q >
Γ′ = Γ, this Γ′ ` t

Γ′′ = Γ′, fCnstrs(c <p>) Γ′ ` t ′

Γ′′′ = Γ′′, c <p> this Γ′′′ ` mth

fF ields(c′<Q>) = t ′′ ff ′ ff ′ ∩ ff = ∅
fields(c′<Q>) = t ′′′ f ′ f ′ ∩ f = ∅

` Γ′′′�
c <p> well formed

The constraints on owner parameters and fields are well-formed if they contain no contradictions:

Γ ` p ◦◦p′ ⇒ Γ 6` p ◦◦ p′

Γ ` p ◦◦ p′ ⇒ Γ 6` p ◦◦p′
` Γ�

A method body is well typed if it contains an expression of the same type as the return type of the
method, and if overriding is legal.

Γ(this) = c <p>
class c <p> pCnstr � c′ < Q > ...

Γ ` t Γ ` t ′ Γ, t ′ x ` e : t
override(m, c′ < Q >, t ′ → t)

Γ ` t m(t ′ x){e}

Runtime types

The function env maps heaps to typing environments, enriching these with information about the values of
final fields:

Definition 4.4.1. We define env as follows:
env(ι 7→ obj) = env(ι 7→ obj)
env(ι 7→ obj) = { ι : c <R> } ∪ { (ιi C ιj) |

ff i C ff j ∈ fCnstrs(c <R>)}
∪ { ι.ff 7→ ι }

where obj = (c <R>,ff 7→ ι, ...)

Wherever an environment gives a judgment, a corresponding heap gives the same judgment:

env(h) = Γ Γ ` jud x =⇒ h ` judg x

Thus we obtain judgements for typing expressions, well-formed types, the inside relation, etc:
h ` ι� ι′ h ` Q ◦◦ Q ′ h ` Q ◦◦ Q ′ ` h�
h ` Q h ` c <Q> h ` e : t

Well-formed heap

In Figure 4.32 we define well-formed objects and heaps. An object ι in the heap is well-formed, expressed
by h ` ι, if its type is well-formed, and all its fields have types according to their static types where the
ownership parameters have been substituted according to the runtime class of ι, and its static fields. The
heap is well-formed if all objects in the heap are well-formed; where the boxes of objects intersect in the
heap, the heap can show that these objects are in a ◦◦ relationship; if the heap can show that two objects
are in a ◦◦ relationship then, their boxes do not overlap; finally, the heap must contain no contradictions,
i.e. there exist no objects ι, ι′ such that h ` ι ◦◦ι′ and h ` ι ◦◦ ι′.

147

MOBIUS Deliverable D2.3. Report on Type Systems

[[ι]]h = {ι′ | h ` ι′ � ι }

h(ι) = (c < R >,ff 7→ ι, f 7→ ι′) h ` c < R >

fFields(c < R >) = t ff h ` ι : [ι/this]t

fields(c < R >) = t ′ f h ` ι′ : [ι/this, ι/ff]t ′

h ` ι

∀ι ∈ Dm(h) : h ` ι
[[ι]]h ∩ [[ι′]]h 6= ∅ =⇒ h ` ι ◦◦ι′

h ` ι ◦◦ ι′ =⇒ [[ι]]h ∩ [[ι′]]h = ∅
` h �
` h

Figure 4.32: Well-formed objects and heaps

Soundness of the type system

We first prove that runtime types, and the inside relation are invariant, while disjointness and possible
intersection of objects are monotonic with execution:

Lemma 4.4.2. In a well-formed program, if ι, ι′ ∈ Dm(h), and e, h; ι′′, h′, and h ` e : t′, then

1. h ` ι : t if and only if h′ ` ι : t

2. h ` ι � ι′ if and only if h′ ` ι � ι′

3. h ` ι C ι′ implies h′ ` ι C ι′

As usual in soundness proofs, we need a substitution lemma; in our particular setting, the substitution
needs to be aware of ownership and allowed/forbidden intersections.

For a substitution σ which maps q to q , we define its expansion, σh, so that it also maps final fields (ff),
or formal ownership parameters. We then define the concept of an appropriate substitution Γ, h ` σ, as one
which preserves all constraints implied in Γ:

Definition 4.4.3. Given a σ : { this, x} −→ N, we define:

• σh : Q −→ Pwr(N) as follows:

1. σh(this) = σ(this), σh(x) = σ(x).

2. σh(p) = Ri if h(σ(this)) = (c < R>, ..., ...) and Dm(c) = p and p = pi ; undefined otherwise.

3. σh(ff) = ιi if h(σ(this)) = (...,ff 7→ ι, ...) and ff = ff i ; undefined otherwise.

• σh ◦ t indicates the application of σh on the type t.

• σh ◦ e indicates the application of σh on the expression e.

• Γ, h ` σ iff for any constraint C:

1. q C q ′ ∈ Γ =⇒ h ` σh(q) C σh(q ′),

2. h ` ι : σh ◦ Γ(this),

3. h ` σ(x) : σh ◦ Γ(x),

4. p ∈ Dm(Γ) =⇒ σh(p) ⊆ Dm(h),

5. p ∈ Dm(Γ), ι, ι′ ∈ σh(p) =⇒ h ` ι ◦◦ι′.

We can now prove the substitution lemma:

Lemma 4.4.4. If Γ, h ` σ then:

1. Γ ` t implies h ` σh ◦ t.

148

MOBIUS Deliverable D2.3. Report on Type Systems

2. Γ ` t′ <: t implies h ` σh ◦ t ′ <: σh ◦ t.

3. Γ ` e : t implies h ` σh ◦ e : σh ◦ t.

We define t[c�c
′] the “projection” of a type t as seen from a class c to the way it is seen from a subclass

c′, and similarly, of an environment or an expression:

Definition 4.4.5. For environment Γ, classes c, c′, type t, expression e, p = Dm(c), p′ = Dm(c′), we
define:

e[c�c′] = [Q/p]e, if c′ <p′> <: c <Q>
undefined, otherwise.

t[c�c
′] = [Q/p]t, if c′ <p′> <: c <Q>

undefined, otherwise.

Γ[c�c′] = [Q/p]t ′ x, c′<p′> this, p′, fConstr, pConstr′

if c′ <p′> <: c <Q> for some Q, and

Γ = t ′ x, c <p> this, p, fConstr, pConstr,

and pConstr′ = [Q/p]pConstr.
undefined, otherwise.

We then prove that projection to subclasses preserves typing. In other words, if a type t is well formed in
an environment from class c, then the projection of t onto the subclass c′ is well-formed in the environment
as defined in the subclass c′.

Lemma 4.4.6. For classes c, and c′, environments Γ so that Γ[c�c′] is defined:

• Γ ` t implies Γ[c�c′] ` t [c�c′].

• Γ ` t <: t ′ implies Γ[c�c′] ` t [c�c′] <: t ′
[c�c′]

.

• Γ ` e : t implies Γ[c�c′] ` e[c�c′] : t [c�c′].

Theorem 4.4.7. For a well formed program, if h ` e : t and ` h and e, h ; ι, h ′, then h ′ ` ι : t, and ` h ′.

Proof. By structural induction, and using Lemmas 4.4.2, and 4.4.4 and 4.4.6.

4.4.3 Effects

Effects are used to give a conservative estimate of the area of the heap read or written by an expression. We
describe these areas through one or more boxes, where the “∪” operator describes the union of such boxes.
The first part of an effect is the area being read; the second is the area being written:

φ ::= ε | Q ∪ φ boxes
ψ ∈ Effect ::= φ/φ effect

We expect programs to come equipped with a function to give us the effects of a method15:
Meff (,) : Idclass × Idmth −→ Effect

The example with effects

We now revisit the example from Section 4.4.1, and give the values for the function Meff (,) through
comments in the code.

1 class Duration<d1> {
2 Date<this> start; Date<this> end;
3 void delay () {...} // EFF: this / this
4 }

15Through the lookup function we skip the requirement for the definition of syntax.

149

MOBIUS Deliverable D2.3. Report on Type Systems

1 class Task<t1> {
2 Duration<this> duration;
3 void delay () {...} // EFF: this / this
4 }

1 class Worker<w1>{
2 TaskList<this, this & ?> tasks;
3 void insert (Task<this & ?> t) {...}
4 // EFF: this / this
5 void delay () {...} // EFF: this & ? / this & ?
6 }

1 class TaskList<l1,l2>{
2 TaskList<l1,l2> next;
3 Task<l2> task;
4 void insert (Task<l2> t) // EFF: l1 / l1
5 void delay () {...} // EFF: l2 / l2
6 }

1 class Project<p>{ //
2 TaskList<this, this & ?> tasks;
3 void insert (Task<this & ?> t){...} //
4 // EFF: this / this
5 void delay () {...} // EFF: this & ? / this & ?
6 }

Effects of Expressions

In this and the following sections we introduce effects for expressions, and the disjointness and inside relations
for effects. We go on to prove soundness of the effect system (Theorem 4.4.15): that is, if the effects of two
expressions are disjoint, then the order of their execution is unimportant.

The effects of expressions are defined through the judgment Γ `e e : φ / φ′, given in Figure 4.33.
The rules are fairly straightforward, with effects of sub-expressions propagated to the enclosing expression;
reading or writing a field causing a read or write effect. Method invocation is more interesting: care must be
taken to substitute the owners of the receiver into the effects of the method body correctly. In our example:

1 final Worker<this> w1 = new Worker<this>;
2 final Worker<this> w2 = new Worker<this>;
3 w1 disjoint w2;
4

5 w1.delay() ; // EFF: w1 & ? / w1 & ?
6 w2.delay() ; // EFF: w2 & ? / w2 & ?
7

8 final Project<this> p1=new Project<this>;
9 p1.delay () ; // EFF: p1 & ? / p1 & ?

The inside relation for effects (effll) is given in Figure 4.33. Intuitively, an effect is inside another if it
covers a smaller part of the heap than the other. We can prove that the write effect is always inside the
read effect for any expression:

Lemma 4.4.8. If Γ è e : φ / φ′, then Γ ` φ′ �e φ.

Proof. Straightforward induction on Γ è e : φ / φ′.

Projecting effects onto the heap

Based on the � relation for objects (from Figure 4.30), we define the projection of an effect φ to a heap
through [[φ]]h :

150

MOBIUS Deliverable D2.3. Report on Type Systems

q ∈ {this, x}
Γ è q : ε / ε

Γ ` t

Γ è new t : ε / ε

Γ è e : φ1 / φ2 Γ ` φ1 �e φ3

Γ ` φ2 �e φ4 Γ ` φ3 �e φ4

Γ è e : φ3 / φ4

Γ è e : φ / φ′ Γ ` e : c <Q ,Q>

Γ è e.f : φ∪Q / φ′
Γ è e : φ1 / φ2 Γ è e ′ : φ3 / φ4

Γ ` e : c <Q ,Q>

Γ è e.f = e ′ : φ1∪φ3∪Q / φ2∪φ4∪Q

Γ ` e : c < Q > φ/φ′ =Meff (c < p >,m) Γ è e : φ1 / φ2

Γ è e ′ : φ3 / φ4 Γ ` e ′ : [Q/p]t ′

Γ è e.m(e ′) : φ1∪φ3∪[Q/p]φ / φ2∪φ4∪[Q/p]φ′

Γ ` ε�e φ

Γ ` q � q ′

Γ ` q �e q ′
Γ ` φ1 �e φ2 Γ ` φ2 �e φ3

Γ ` φ1 �e φ3

Γ ` φ1 �e φ3 Γ ` φ2 �e φ4

Γ ` φ1 ∪ φ2 �e φ3 ∪ φ4 ∪ φ5

Γ ` φ1 ∩ φ2 �e φ3 ∩ φ4

Γ ` ε#φ

Γ ` φ#φ′

Γ ` φ′#φ

Γ ` φ#φ′

Γ ` φ#φ′′

Γ ` φ#φ′ ∪ φ′′
Γ ` q ◦◦ q ′

Γ ` q ∩Q # q ′ ∩Q ′

Figure 4.33: Effect rules and ‘inside’ and disjointness relations for expressions.

Definition 4.4.9.
[[r]]h = { ι | h ` ι� r}
[[r ∩ R]]h = [[r]]h ∩ [[R]]h
[[φ ∪ φ′]]h = [[φ]]h ∪ [[φ′]]h

We can prove that the type of an expression describes the boxes to which its evaluation will belong:

Lemma 4.4.10. If h ` e : c <R,R> and e, h ; ι, h ′, then ι ∈ [[R]]h ′.

Proof. Straightforward application of the definitions (Definitions 4.4.9, and � from Figure 4.30), and The-
orem 4.4.7.

We give rules for judging the disjointness relation (Γ ` φ#φ′) in Figure 4.33. The rules state that the
empty effect is disjoint from all effects; that the disjoint relation is symmetric and distributive with respect
to the union of effects; and that if any pair of owners in a pair of sets of multiple owners are disjoint (by
the ◦◦ relation), then the effects denoted by this pair of sets is disjoint (by the # relation).

In the following lemma, the first two assertion guarantee soundness of the inside and disjointness judg-
ments are sound wrt. the projection of effects. The last assertion is the counterpart to Lemma 4.4.4.

Lemma 4.4.11. For any effects φ, φ’, environment Γ, substitution σ with Γ, h ` σ, and ` h, we have

• If Γ ` φ�e φ
′, then [[σh ◦ φ]]h ⊆ [[σh ◦ φ′]]h.

• If Γ ` φ#φ′, then [[σ ◦ φ]]h ∩ [[σ ◦ φ′]]h = ∅.

• If Γ è e : φ / φ′ and Γ, h ` σ, then
h è σh ◦ e : σh ◦ φ / σh ◦ φ′.

Proof. by induction on the derivation of Γ ` φ �e φ
′, respectively of Γ ` φ#φ′, respectively of Γ è e :

φ / φ′, and using Definition 4.4.3.

151

MOBIUS Deliverable D2.3. Report on Type Systems

Well-formed Programs with effects

A program is well formed if, in addition to the requirements from Section 4.4.2, a) each method body has
read/write effect inside its declared effect, and b) the effect of an overriding method is inside the effect of any
overridden method. Formally, we require that a) t m(t ′ x){e} in c < p > implies that Γ `eff e :Meff (c,m),
and b)Meff (c,m) = φ1/φ2 andMeff (c′,m) = φ3/φ4 and c<p ><: c′ < Q > implies that Γ ` φ1 �e [Q/p]φ3

and Γ ` φ2 �e [Q/p]φ4, where Γ = p, c < p > this.
The counterpart to Lemma 4.4.6, guarantees that the effect of an expression is preserved in a subclass

modulo the necessary renamings for ownership parameters:

Definition 4.4.12. For environment Γ, classes c and c′, where p = Dm(c), p′ = Dm(c′), and effect φ, we
define:

φ[c�c′] = [Q/p]φ, if c′ <p′> <: c <Q>
undefined, otherwise.

Lemma 4.4.13. For classes c, and c′, and environments Γ so that Γ[c�c′] is defined:

• Γ ` φ�e φ
′ implies Γ[c�c′] ` φ[c�c′] �e φ

′[c�c′].

• Γ è e : φ / φ′ implies Γ[c�c′]
è e

[c�c′] : φ[c�c′] / φ′[c�c
′].

Soundness of the Effects System

Soundness of the effects system guarantees that the read and write effects completely describe the areas
of the heap read and written during some execution. In the following, we use the * operator, inspired by
separation logic notation for “concatenation” of functions with disjoint domains. Thus, the construction
h ∗ h′ implicitly guarantees disjointness of h and h′.

Theorem 4.4.14. In a well formed program, if Γ è e : φ / φ′, and Γ, h ` σ and σ ◦ e, h ; ι, h ′, then there
exist heaps h1 , h2 , h3 , h4 and h′2 so that:

• h=h1∗ h2∗ h3, and [[σ ◦ φ]]h =dom(h1∗ h2), and [[σ ◦ φ′]]h =dom(h2),

• e, h1 ∗ h2 ; ι, h1 ∗ h′2 ∗ h4,

• h′=h1∗ h′2∗ h3∗ h4, and [[σ ◦ φ]]h ′=dom(h1∗ h′2), and [[σ ◦ φ′]]h ′=dom(h′2).

Proof. By induction on the derivation of e, h ; ι, h′. We use a “generation lemma for effects”, e.g. that
Γ è e.f : φ1 / φ3 implies that for some φ3 and φ4, we have that Γ è e : φ3 / φ4, Γ ` e : c <Q ,Q >, and
Γ ` φ3,Q �e φ1, and Γ ` φ2,Q �e φ4, and Γ ` φ3,Q �e φ4. We also use the fact that e, h; ι, h′ implies
that if h′ and h′′ are disjoint, then e, h ∗ h′′ ; ι, h′ ∗ h′′

We now prove that execution of two expressions with disjoint effects is independent, in the sense that
the order of their execution is immaterial:

Theorem 4.4.15. In a well formed program, if Γ, h ` σ, and ` h and Γ è e1 : φ1 / φ2, and Γ è e2 :
φ3 / φ4, and Γ ` φ1 #φ4 and Γ ` φ2 #φ3, then

σ ◦ e1, h; ι′, h′′, σ ◦ e2, h
′′ ; ι, h′,

implies
σ ◦ e2, h; ι, h′′′, σ ◦ e1, h

′′′ ; ι′, h′

152

MOBIUS Deliverable D2.3. Report on Type Systems

Proof. The proof is based on Matthew Smith’s thesis [165], which develops an abstract model of indepen-
dence of expressions based on disjointness of effects for any languages satisfying a set of basic requirements.
Theorem 3.5.2 from [165] guarantees the assertion of our theorem provided that the heap satisfies basic
composition and decomposition properties (SH1-SH6 in [165]), that execution also satisfies basic decom-
position properties (LL2,L1-L5 in [165]), and that effects also satisfy decomposition properties (LS1-LS5).
Property LS4 corresponds to Theorem 4.4.14. All the other properties can be easily proven for MOJO.

In terms of our example

1 w1 disjoint w2;
2 w1.delay() ; // EFF: w1 & ? / w1 & ?
3 w2.delay() ; // EFF: w2 & ? / w2 & ?
4 p1.delay () ; // EFF: p1 & ? / p1 & ?

From e1#e2 we obtain that e1 & ?#e2 & ? and therefore e1.delay() and e2.delay() are independent
of each other in the sense of the above theorem. On the other hand, e1.delay() and p1.delay() are not
necessarily independent as we have no information regarding the disjointness of w1 and p1.

4.4.4 Conclusion

Multiple ownership does not impose an ownership tree onto the objects in a program: rather, it allows
DAGs, and places objects into boxes — sets — that may intersect or remain disjoint as best serves the
program’s design. This allows more flexibility in expressing the architecture of a program, and fits well with
recent trends in aspect oriented programming.

As we said earlier, we developed MOJO as an extension of traditional ownership types, because of the
availability of explicit ownership parameters, and the possibility to name the owners. We now plan to extend
GUJ with multiple owners; this will require the use of a simple form of path dependent types, e.g. x.rep &
y.rep A a to express that a has class A and is owned by x and y.

We have shown how multiple ownership can be used to demonstrate independence of expressions from
each other, and in future work we plan to adapt these ideas for modular verification (Task 3.4).

153

MOBIUS Deliverable D2.3. Report on Type Systems

Chapter 5

Conclusions

We developed new type systems that guarantee adherence to security-related properties of mobile code.
Hereby, we addressed the enhanced security requirements of global computing as identified in MOBIUS
Deliverable D1.1 [123]. We successfully lifted the scope of type-based, static analysis techniques for bytecode
from basic soundness properties to the semantic properties of information flow (Sections 2.1.4, 2.2.5, 2.3.1),
resource consumption (Sections 3.1, 3.2.2,3.3.2,3.4.5), and aliasing (Sections 4.1.5, 4.3.4, 4.4.3).

We achieved the objectives of Tasks 2.1 (see Chapter 2), 2.3 (see Chapter 3) and 2.5 (see Chapter 4) within
MOBIUS. For information flow security, we defined noninterference-like security properties, and showed that
these properties are enforced by the type systems we developed. The type system for information flow control
is the first that can be applied to a realistic, low-level language such as Java bytecode that includes features
such as objects, exceptions, methods and concurrency (Chapter 2). For resource control, we managed to
statically enforce bounds on the amount of heap space allocated by bytecode programs, to statically enforce
access policies for external resources, and to statically determine the overall costs of executing bytecode
programs (Chapter 3). We related a resource type system to the MOBIUS-logic, we showed how to handle
external policies on MIDP-API-calls and how to analyse costs generically. For alias control, we managed
to extend the support of modular reasoning by applying Universe types systems to languages with generics
and by permitting multiple owners (Chapter 4).

In summary the contributions of this deliverable improve property coverage, language coverage and
flexibility as well as scalability of type systems with respect to Java bytecode.

This deliverable shall serve as a basis for further tasks within MOBIUS. Task 2.2 will build on the typing
rules for information flow security by enhancing them to permit declassification. Task 2.4 will build on
the typing rules for resources by scaling them up to larger programs and implementing more advanced
resource policies. All typing rules will serve as the basis for prototype implementation in Task 2.6 which
in turn will be evaluated on the case studies in WP5. Moreover, the typing rules for information flow will
be integrated with the logical analysis in Task 3.5, and the alias analysis will be exploited in Task 3.4 for
modular verification.

154

MOBIUS Deliverable D2.3. Report on Type Systems

Bibliography

[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency. In Principles of
Programming Languages, pages 147–160. ACM Press, 1999.

[2] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Principles of
Programming Languages, pages 104–115. ACM Press, 2001.

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In ACM
Conference on Computer and Communications Security, pages 36–47. ACM Press, 1997.

[4] J. Agat. Transforming out timing leaks. In Principles of Programming Languages, pages 40–53,
January 2000.

[5] J. Agat. Type Based Techniques for Covert Channel Elimination and Register Allocation. PhD thesis,
Chalmers University of Technology and Gothenburg University, December 2000.

[6] A. Ahern and N. Yoshida. Formalising Java RMI with explicit code mobility. In R. Johnson and
R. P. Gabriel, editors, ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 403–422. ACM Press, 2005. A full version will appear in Theoretical Computer
Science, special issue of Global Computing.

[7] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination analysis of
Java bytecode. In Workshop on Termination, June 2007.

[8] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of Java bytecode. In
ESOP 2007 [76], pages 157–172.

[9] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Experiments in cost analysis of Java
bytecode. In Bytecode Semantics, Verification, Analysis and Transformation, Electronic Notes in
Theoretical Computer Science. Elsevier, March 2007.

[10] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. A generic framework for the cost anal-
ysis of Java bytecode. In Spanish Conference on Programming and Computer Languages, September
2007.

[11] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-carrying code: A model for mobile code
safety. New Generation Computing, 2007.

[12] J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from mechanism. In
M. Odersky, editor, ECOOP, number 3086 in Lecture Notes in Computer Science, pages 1–25. Springer-
Verlag, 2004.

[13] P. S. Almeida. Balloon types: Controlling sharing of state in data types. In European Conference on
Object-Oriented Programming, 1997.

[14] A. Almeida Matos. Typing secure information flow: declassification and mobility. PhD thesis, Ecole
Nationale Supérieure des Mines de Paris, 2006.

155

MOBIUS Deliverable D2.3. Report on Type Systems

[15] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in object-oriented programs.
In G. Morrisett and S. Peyton Jones, editors, Principles of Programming Languages, pages 91–102.
ACM, 2006.

[16] Chris Andreae, Yvonne Coady, Celina Gibbs, James Noble, Jan Vitek, and Tian Zhao. Scoped types
and aspects for real-time Java. In European Conference on Object-Oriented Programming, pages 124–
147, 2006.

[17] A. W. Appel. Modern Compiler Implementation in ML. Cambridge University Press, 1998.

[18] Andrew W. Appel. SSA is functional programming. ACM SIGPLAN Notices, 33(4), 1998.

[19] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic for resource
verification. In Theorem Proving in Higher-Order Logics, volume 3223 of Lecture Notes in Computer
Science, pages 34–49, Berlin, September 2004. Springer-Verlag.

[20] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile resource guarantees for smart
devices. In Barthe et al. [26], pages 1–26.

[21] David Aspinall, Patrick Maier, and Ian Stark. Monitoring external resources in Java MIDP. Electronic
Notes in Theoretical Computer Science, 197(1):17–30, 2008.

[22] A. Banerjee and D. Naumann. Stack-based access control for secure information flow. Journal of
Functional Programming, 15:131–177, March 2005. Special Issue on Language-Based Security.

[23] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular reusable
verifier for object-oriented programs. In Formal Methods for Components and Objects, volume 4111
of Lecture Notes in Computer Science. Springer-Verlag, 2005.

[24] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview. In
Barthe et al. [26], pages 151–171.

[25] G. Barthe, A. Basu, and T. Rezk. Security types preserving compilation. In B. Steffen and G. Levi,
editors, Verification, Model Checking and Abstract Interpretation, number 2934 in Lecture Notes in
Computer Science, pages 2–15. Springer-Verlag, 2004.

[26] G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors. Proceedings, Construction
and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS’04) Workshop, volume 3362 of
Lecture Notes in Computer Science. Springer-Verlag, 2005.

[27] G. Barthe, D. Naumann, and T. Rezk. Deriving an information flow checker and certifying compiler
for Java. In Symposium on Security and Privacy. IEEE Press, 2006.

[28] G. Barthe, D. Pichardie, and T. Rezk. Non-interference for low level languages. Technical report,
INRIA, 2006.

[29] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-interference Java bytecode verifier.
In ESOP 2007 [76], pages 125–140.

[30] G. Barthe and T. Rezk. Non-interference for a JVM-like language. In M. Fähndrich, editor, Types in
Language Design and Implementation, pages 103–112. ACM Press, 2005.

[31] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of multithreaded programs by compilation.
In European Symposium On Research In Computer Security, Lecture Notes in Computer Science.
Springer-Verlag, September 2007.

156

MOBIUS Deliverable D2.3. Report on Type Systems

[32] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of multithreaded pro-
grams by compilation. Technical report, Chalmers University of Technology, 2007.
http://www.cse.chalmers.se/∼russo/tissecfull.pdf.

[33] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Static analysis for stack inspection.
Electronic Notes in Theoretical Computer Science, 54, 2001.

[34] G. Baxter, M. R. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H. Melton, and E. D. Tempero.
Understanding the shape of Java software. In Peri L. Tarr and William R. Cook, editors, ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications, pages 397–412.
ACM, 2006.

[35] R. Benzinger. Automated higher-order complexity analysis. Theoretical Computer Science, 318(1-2),
2004.

[36] M. Berger. Towards Abstractions for Distributed Systems. PhD thesis, Imperial College, Dept. of
Computing, 2002.

[37] M. Berger and K. Honda. The two-phase commit protocol in an extended π-calculus. Electronic Notes
in Theoretical Computer Science, 39, 2000.

[38] M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing for higher-order imperative
functions. J. Funct. Program., 17(4-5):473–546, 2007.

[39] M. Berger and N. Yoshida. Timed, distributed, probabilistic, typed processes. In APLAS, Lecture
Notes in Computer Science, pages 158–174. Springer-Verlag, 2007.

[40] L. Beringer and Martin Hofmann. A bytecode logic for JML and types. In N. Kobayashi, editor,
Programming Languages and Systems: Proceedings of the 4th Asian Symposium, APLAS 2006, volume
4279 of Lecture Notes in Computer Science, pages 389–405. Springer-Verlag, 2006.

[41] L. Beringer, Martin Hofmann, Alberto Momigliano, and Olha Shkaravska. Automatic certification
of heap consumption. In Logic for Programming Artificial Intelligence and Reasoning, volume 3452,
pages 347–362. Springer-Verlag, 2005.

[42] C. Bernardeschi and N. De Francesco. Combining Abstract Interpretation and Model Checking for
analysing Security Properties of Java Bytecode. In A. Cortesi, editor, Verification, Model Checking
and Abstract Interpretation, volume 2294 of Lecture Notes in Computer Science, pages 1–15. Springer-
Verlag, 2002.

[43] F. Besson, T. Jensen, D. Le Métayer, and T. Thorn. Model checking security properties of control
flow graphs. Journal of Computer Security, 9:217–250, 2001.

[44] Fréderic Besson, Guillaume Dufay, and Thomas Jensen. A formal model of access control for mobile
interactive devices. In ESORICS 2006 [77].

[45] P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J.-L. Lanet. Checking Secure Interactions of
Smart Card Applets: Extended version. Journal of Computer Security, 10:369–398, 2002.

[46] W. Binder, J. Hulaas, and A. Villazón. Portable resource control in Java: The J-SEAL2 approach.
In ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, pages
139–155, 2001.

[47] E. Bonelli, A. B. Compagnoni, and R. Medel. Information flow analysis for a typed assembly language
with polymorphic stacks. In G. Barthe, B. Grégoire, M. Huisman, and J.-L. Lanet, editors, Construc-
tion and Analysis of Safe, Secure, and Interoperable Smart Devices, volume 3956 of Lecture Notes in
Computer Science, pages 37–56. Springer-Verlag, 2005.

157

MOBIUS Deliverable D2.3. Report on Type Systems

[48] G. Boudol and I. Castellani. Noninterference for concurrent programs and thread systems. In Theo-
retical Computer Science, volume 281, pages 109–130, 2002.

[49] C. Boyapati. SafeJava: A Unified Type System for Safe Programming. PhD thesis, MIT, 2004.

[50] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Preventing data races
and deadlocks. In ACM Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications, pages 211–230. ACM Press, November 2002.

[51] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In Principles of
Programming Languages, pages 213–223, New York, NY, USA, 2003. ACM Press.

[52] M. Bugliesi and M. Giunti. Secure implementations of typed channel abstractions. In Principles of
Programming Languages, pages 251–262, 2007.

[53] D. Cachera, Thomas P. Jensen, D. Pichardie, and G. Schneider. Certified memory usage analysis. In
Formal Methods Europe, pages 91–106, 2005.

[54] D. Cameron, S. Drossopoulou, J. Noble, and M. Smith. Multiple ownership. In ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications. ACM Press, 2007.

[55] A. Chander, D. Espinosa, N. Islam, P. Lee, and G. C. Necula. Enforcing resource bounds via static
verification of dynamic checks. In European Symposium on Programming, Lecture Notes in Computer
Science, pages 311–325. Springer-Verlag, 2005.

[56] D. Clarke. Object Ownership and Containment. PhD thesis, University of New South Wales, 2001.

[57] D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and effect.
In ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, pages
292–310. ACM Press, 2002.

[58] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications, volume 33:10 of
ACM SIGPLAN Notices, pages 48–64, New York, October 1998. ACM Press.

[59] K. Crary and S. Weirich. Resource bound certification. In Principles of Programming Languages,
pages 184–198. ACM Press, 2000.

[60] D. Cunningham, S. Drossopoulou, and S. Eisenbach. CUJ: Universe types for race safety. In 1st
Workshop on Verification and Analysis of Multi-threaded Java-like Programs (VAMP’2007), 2007.

[61] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4), 1991.

[62] G. Czajkowski and T. von Eicken. JRes: A resource accounting interface for Java. In ACM Conference
on Object-Oriented Programming Systems, Languages, and Applications, pages 21–35, 1998.

[63] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of secure information
flow. In D. Hutter and M. Ullmann, editors, Security in Pervasive Computing, volume 3450 of Lecture
Notes in Computer Science, pages 193–209. Springer-Verlag, 2005.

[64] S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lower bound cost estimation for logic
programs. In Logic Programming Symposium, pages 291–305. MIT Press, Cambridge, MA, October
1997.

158

MOBIUS Deliverable D2.3. Report on Type Systems

[65] D. E. Denning and P. J. Denning. Certification of programs for secure information flow. Communica-
tions of the ACM, 20(7):504–513, July 1977.

[66] M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopoulou. A distributed object oriented
language with session types. In Trustworthy Global Computing, volume 3705 of Lecture Notes in
Computer Science, pages 299–318, 2005.

[67] W. Dietl, S. Drossopoulou, and P. Müller. Formalization of generic universe types. Technical Report
532, ETH Zurich, 2006.

[68] W. Dietl, S. Drossopoulou, and P. Müller. Generic universe types. In E. Ernst, editor, European
Conference on Object-Oriented Programming, Lecture Notes in Computer Science, pages 28 – 53.
Springer-Verlag, 2007.

[69] W. Dietl, S. Drossopoulou, and P. Müller. Generic universe types. In ACM Workshop on Foundations
of Object-Oriented Languages, January 2007.

[70] W. Dietl and P. Müller. Exceptions in ownership type systems. In E. Poll, editor, Workshop on Formal
Techniques for Java Programs, pages 49–54, 2004.

[71] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technology,
4(8):5–32, October 2005.

[72] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Programming Languages,
pages 43–112. Academic Press, 1968.

[73] S. Drossopoulou, A. Francalanza, and P. Müller. A unified framework for verification techniques
for object invariants (full paper). http://research.microsoft.com/~mueller/publications.html,
2007.

[74] G. Dufay, A. P. Felty, and S. Matwin. Privacy-sensitive information flow with JML. In R. Nieuwenhuis,
editor, Conference on Automated Deduction, volume 3632 of Lecture Notes in Computer Science, pages
116–130. Springer-Verlag, 2005.

[75] B. Emir, A. J. Kennedy, C. Russo, and D. Yu. Variance and generalized constraints for C# generics. In
Dave Thomas, editor, European Conference on Object-Oriented Programming, volume 4067 of Lecture
Notes in Computer Science, pages 279–303. Springer-Verlag, 2006.

[76] Programming Languages and Systems: Proceedings of the 16th European Symposium on Programming,
ESOP 2007, Held as Part of the Joint European Conferences on Theory and Practics of Software,
ETAPS 2007, Braga, Portugal, March 24—April 1, 2007, number 4421 in Lecture Notes in Computer
Science. Springer-Verlag, 2007.

[77] Computer Security — ESORICS 2006, Proceedings of the 11th European Symposium on Research in
Computer Security, Hamburg, Germany, September 18–20, 2006, number 4189 in Lecture Notes in
Computer Science. Springer-Verlag, 2006.

[78] C. Flanagan and S. N. Freund. Type-based race detection for Java. In Programming Languages Design
and Implementation, pages 219–232, New York, NY, USA, 2000. ACM Press.

[79] C. Flanagan and S. Qadeer. Types for atomicity. In Types in Language Design and Implementation.
ACM Press, 2003.

[80] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continuations.
In Programming Languages Design and Implementation, pages 237–247, 1993.

159

http://research.microsoft.com/~mueller/publications.html

MOBIUS Deliverable D2.3. Report on Type Systems

[81] S. Genaim and F. Spoto. Information flow analysis for Java bytecode. In R. Cousot, editor, Verification,
Model Checking and Abstract Interpretation, volume 3385 of Lecture Notes in Computer Science, pages
346–362. Springer-Verlag, January 2005.

[82] G. Gomez and Y. A. Liu. Automatic time-bound analysis for a higher-order language. In ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manipulation. ACM Press,
2002.

[83] A. Greenhouse and J. Boyland. An object-oriented effects system. In R. Guerraoui, editor, European
Conference on Object-Oriented Programming, volume 1628 of Lecture Notes in Computer Science,
pages 205–229. Springer-Verlag, 1999.

[84] C. Hammer, J. Krinke, and G. Snelting. Information flow control for java based on path conditions
in dependence graphs. In Symposium on Secure Software Engineering. IEEE Press, 2006.

[85] C. Hankin, F. Nielson, and H. R. Nielson. Principles of Program Analysis. Springer-Verlag, 2005.
Second Ed.

[86] D. Hedin and D. Sands. Timing aware information flow security for a Java Card-like bytecode.
In Bytecode Semantics, Verification, Analysis and Transformation, Electronic Notes in Theoretical
Computer Science, 2005.

[87] N. Heintze and J. Riecke. The SLam calculus: programming with secrecy and integrity. In Principles
of Programming Languages, pages 365–377. ACM Press, 1998.

[88] M. Hermenegildo, E. Albert, P. López-Garćıa, and G. Puebla. Abstraction carrying code and resource-
awareness. In Principle and Practice of Declarative Programming. ACM Press, July 2005.

[89] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program development using abstract
interpretation (and the ciao system preprocessor). In R. Cousot, editor, Static Analysis Symposium,
volume 2694 of Lecture Notes in Computer Science, pages 127–152. Springer-Verlag, 2003.

[90] J. Hogg. Islands: Aliasing protection in object-oriented languages. In ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications, 1991.

[91] K. Honda and N. Yoshida. A uniform type structure for secure information flow. In Principles of
Programming Languages, pages 81–92. ACM Press, 2002.

[92] K. Honda and N. Yoshida. A uniform type structure for secure information flow. ACM Transactions
on Programming Languages and Systems, 29(6):101 pages, 2007.

[93] K. Honda, N. Yoshida, and M. Berger. Control in the π-calculus. In ACM SIGPLAN Continuation
Workshop. ACM Press, 2004.

[94] K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic for imperative
higher-order functions. In Logic in Computer Science, pages 270–279, 2005.

[95] M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterisation of observational determin-
ism. In Computer Security Foundations Workshop, 2006.

[96] J. Hulaas and W. Binder. Program transformations for portable CPU accounting and control in Java.
In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manipulation,
pages 169–177, 2004.

[97] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ.
In ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, volume
34(10), pages 132–146, 1999.

160

MOBIUS Deliverable D2.3. Report on Type Systems

[98] Thomas Jensen, Daniel Le Métayer, and Tommy Thorn. Verification of control flow based security
properties. In Proceedings of the 20th IEEE Symp. on Security and Privacy, pages 89–103. New York:
IEEE Computer Society, 1999.

[99] JSR 205 Expert Group. Wireless messaging API (version 2.0). Java specification request, Java
Community Process, June 2003.

[100] A. Kennedy and D. Syme. Design and implementation of generics for the .NET common language
runtime. In Programming Languages Design and Implementation, pages 1–12, 2001.

[101] J. Knudsen. Networking, user experience, and threads. Sun Technical Articles and Tips
http://developers.sun.com/techtopics/mobility/midp/articles/threading/, 2002.

[102] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems.
In Neal Koblitz, editor, Advances in Cryptology, volume 1109 of Lecture Notes in Computer Science,
pages 104–113. Springer-Verlag, 1996.

[103] B. Köpf and H. Mantel. Eliminating Implicit Information Leaks by Transformational Typing and
Unification. In T. Dimitrakos, F. M. elli, P. Y. A. Ryan, and S. Schneider, editors, Workshop on
Formal Aspects in Security and Trust, Lecture Notes in Computer Science, pages 47–62, Newcastle,
UK, July 2006. Springer-Verlag.

[104] B. Köpf and H. Mantel. Transformational typing and unification for automatically correcting insecure
programs. International Journal of Information Security, 2007.

[105] T. Kraußer, H. Mantel, and H. Sudbrock. A probabilistic justification of the combining calculus under
the uniform scheduler assumption. Technical Report 2007-09, RWTH Aachen, May 2007.

[106] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Odersky, editor, European
Conference on Object-Oriented Programming, volume 3086 of Lecture Notes in Computer Science,
pages 491–516. Springer-Verlag, 2004. Available from www.sct.inf.ethz.ch/publications/index.

html.

[107] K. Rustan M. Leino. Data groups: Specifying the modification of extended state. In ACM Conference
on Object-Oriented Programming Systems, Languages, and Applications, pages 144–153, 1998.

[108] Yi Lu and J. Potter. Protecting representation with effect encapsulation. In Principles of Programming
Languages, pages 359–371, 2006.

[109] Q. H. Mahmoud. Preventing screen lockups of blocking operations. Sun Technical Articles and Tips
http://developers.sun.com/techtopics/mobility/midp/ttips/screenlock/, 2004.

[110] P. Maier, D. Aspinall, and I. Stark. Explicit accounting of resources using resource managers. Technical
Report EDI-INF-RR-0859, The University of Edinburgh, October 2006.

[111] H. Mantel and A. Reinhard. Controlling the what and where of declassification in language-based
security. In ESOP 2007 [76], pages 141–156.

[112] H. Mantel and A. Sabelfeld. A Generic Approach to the Security of Multi-threaded Programs. In
Proceedings of the 14th IEEE Computer Security Foundations Workshop, pages 126–142, Cape Breton,
Nova Scotia, Canada, 2001. IEEE Press.

[113] H. Mantel and A. Sabelfeld. A Unifying Approach to the Security of Distributed and Multi-threaded
Programs. Journal of Computer Security, 11(4):615–676, 2003.

161

www.sct.inf.ethz.ch/publications/index.html
www.sct.inf.ethz.ch/publications/index.html

MOBIUS Deliverable D2.3. Report on Type Systems

[114] H. Mantel and D. Sands. Controlled Declassification based on Intransitive Noninterference. In Asian
Programming Languages and Systems Symposium, LNCS 3303, pages 129–145, Taipei, Taiwan, Novem-
ber 2004. Springer-Verlag.

[115] H. Mantel, H. Sudbrock, and T. Kraußer. Combining Different Proof Techniques for Verifying In-
formation Flow Security. In G. Puebla, editor, Logic-based Program Synthesis and Transformation,
number 4407 in Lecture Notes in Computer Science. Springer-Verlag, 2007.

[116] C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certification of Java/JavaCard
programs annotated with JML annotations. Journal of Logic and Algebraic Programming, 58:89–106,
2004.

[117] R. Medel, A. B. Compagnoni, and E. Bonelli. A typed assembly language for non-interference. In Ital-
ian Conference on Theoretical Computer Science, volume 3701 of Lecture Notes in Computer Science,
pages 360–374. Springer-Verlag, 2005.

[118] E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo. Towards execution time
estimation for logic programs via static analysis and profiling. In Workshop on Logic Programming
Environments, page 16, August 2006.

[119] E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo. Using combined static analysis
and profiling for logic program execution time estimation. In International Conference on Logic
Programming, number 4079 in Lecture Notes in Computer Science. Springer-Verlag, August 2006.

[120] E. Mera, P. López-Garćıa, G. Puebla, M. Carro, and M. Hermenegildo. Combining static analysis
and profiling for estimating execution times. In M. Hanus, editor, Symposium on Practical Aspects of
Declarative Languages, volume 4354 of Lecture Notes in Computer Science, pages 140–154. Springer-
Verlag, January 2007.

[121] J. K. Millen. A resource allocation model for denial of service. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 137–147. IEEE Computer Society Press, 1992.

[122] N. Mitchell. The runtime structure of object ownership. In European Conference on Object-Oriented
Programming, pages 74–98, 2006.

[123] MOBIUS Consortium. Deliverable 1.1: Resource and information flow security requirements, 2006.
Available online from http://mobius.inria.fr.

[124] MOBIUS Consortium. Deliverable 3.1: Bytecode specification language and program logic, 2006.
Available online from http://mobius.inria.fr.

[125] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly language. ACM
Transactions on Programming Languages and Systems, 21(3):527–568, November 1999.

[126] S. Mullender, editor. Distributed Systems. Addison-Wesley, 1993.

[127] P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume 2262 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[128] P. Müller. Reasoning about object structures using ownership. In Verified Software: Theories, Tools,
Experiements, Lecture Notes in Computer Science. Springer-Verlag, 2007.

[129] P. Müller and A. Poetzsch-Heffter. Universes: A type system for controlling representation expo-
sure. In A. Poetzsch-Heffter and J. Meyer, editors, Programming Languages and Fundamentals of
Programming, pages 131–140. Fernuniversität Hagen, 1999. Technical Report 263, Available from
sct.inf.ethz.ch/publications.

162

http://mobius.inria.fr
http://mobius.inria.fr
sct.inf.ethz.ch/publications

MOBIUS Deliverable D2.3. Report on Type Systems

[130] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered object structures.
Science of Computer Programming, 62:253–286, 2006.

[131] P. Müller and A. Rudich. Formalization of ownership transfer in universe types. Technical Report
556, ETH Zurich, 2007.

[132] P. Müller and A. Rudich. Ownership transfer in universe types. In ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, 2007. To appear.

[133] A. C. Myers. JFlow: Practical mostly-static information flow control. In Principles of Programming
Languages, pages 228–241. ACM Press, 1999. Ongoing development at http://www.cs.cornell.edu/
jif/.

[134] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in Hoare type theory. In
International Conference on Functional Programming, pages 62–73. ACM Press, 2006.

[135] D. Naumann. Verifying a secure information flow analyzer. In J. Hurd and T. Melham, editors,
Theorem Proving in Higher-Order Logics, volume 3603 of Lecture Notes in Computer Science, pages
211–226. Springer-Verlag, 2005. Preliminary version appears as Report CS-2004-10, Stevens Institute
of Technology, 2003.

[136] David A. Naumann. From coupling relations to mated invariants for checking information flow. In
ESORICS 2006 [77], pages 279–296.

[137] J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-definable resource bounds analysis
for logic programs. In International Conference on Logic Programming, Lecture Notes in Computer
Science. Springer-Verlag, September 2007.

[138] G. C. Necula. Proof-carrying code. In Principles of Programming Languages, pages 106–119, New
York, NY, USA, 1997. ACM Press.

[139] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In Eric Jul, editor, European Conference
on Object-Oriented Programming, number 1445 in Lecture Notes in Computer Science, pages 158–185.
Springer-Verlag, 1998.

[140] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: the case of AES. In
RSA Conference, pages 1–20, 2006.

[141] D. Pichardie. Bicolano – Byte Code Language in Coq. http://mobius.inria.fr/bicolano. Summary
appears in [124], 2006.

[142] A. Potanin, J. Noble, D. Clarke, and Robert Biddle. Generic ownership for generic java. In ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications, New York, NY,
USA, 2006. ACM Press.

[143] A. Potanin, J. Noble, M. Frean, and R. Biddle. Scale-free geometry in object-oriented programs.
Communications of the ACM, May 2005.

[144] F. A. Rabhi and G. A. Manson. Using complexity functions to control parallelism in functional
programs. TR. CS-90-1, Department of Computer Science, University of Sheffield, UK, 1990.

[145] V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and J. Hatcliff. A new foundation for control-
dependence and slicing for modern program structures. In Mooly Sagiv, editor, European Symposium
on Programming, pages 77–93, 2005.

[146] A. Reinhard. Analyse nebenläufiger programme unter intransitiven sicherheitspolitiken. Master’s
thesis, RWTH Aachen, May 2006.

163

http://www.cs.cornell.edu/jif/
http://www.cs.cornell.edu/jif/
http://mobius.inria.fr/bicolano

MOBIUS Deliverable D2.3. Report on Type Systems

[147] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in Computer
Science, pages 55–74. IEEE Computer Society, 2002.

[148] M. Rosendahl. Automatic complexity analysis. In Conference on Functional Programming Languages
and Computer Architecture, pages 144–156. Association of Computing Machinery, 1989.

[149] A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld. Closing internal timing channels by transforma-
tion. In Asian Computing Science Conference, Lecture Notes in Computer Science. Springer-Verlag,
2007.

[150] A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler. In Computer
Security Foundations Workshop, pages 177–189. IEEE Press, 2006.

[151] A. Russo and A. Sabelfeld. Security for multithreaded programs under cooperative scheduling. In
Andrei Ershov International Conference on Perspectives of System Informatics, volume 4378 of Lecture
Notes in Computer Science. Springer-Verlag, June 2006.

[152] A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler in the presence of
synchronization. Journal of Logic and Algebraic Programming, 2007. Special Issue dedicated to the
Nordic Workshop on Programming Theory.

[153] A. Sabelfeld. The impact of synchronisation on secure information flow in concurrent programs. In
Andrei Ershov International Conference on Perspectives of System Informatics, volume 2244 of Lecture
Notes in Computer Science, pages 225–239. Springer-Verlag, 2001.

[154] A. Sabelfeld. Confidentiality for multithreaded programs via bisimulation. In Andrei Ershov Interna-
tional Conference on Perspectives of System Informatics, volume 2890 of Lecture Notes in Computer
Science, pages 260–273. Springer-Verlag, 2003.

[155] A. Sabelfeld and H. Mantel. Static confidentiality enforcement for distributed programs. In Static
Analysis Symposium, volume 2477 of Lecture Notes in Computer Science, pages 376–394. Springer-
Verlag, 2002.

[156] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on Selected Areas
in Communication, 21:5–19, 2003.

[157] A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential programs. In
D. Swiestra, editor, European Symposium on Programming, volume 1576 of Lecture Notes in Computer
Science, pages 40–58, 1999.

[158] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In Computer
Security Foundations Workshop, pages 200–215. IEEE Press, 2000.

[159] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Computer Security
Foundations Workshop, pages 255–269. IEEE Press, 2005.

[160] A. Salcianu and M. C. Rinard. Purity and side effect analysis for Java programs. In Verification,
Model Checking and Abstract Interpretation, pages 199–215, 2005.

[161] D. Sands. A näıve time analysis and its theory of cost equivalence. J. Log. Comput., 5(4), 1995.

[162] G. Smith. A new type system for secure information flow. In Computer Security Foundations Work-
shop, pages 115–125, June 2001.

[163] G. Smith. Probabilistic noninterference through weak probabilistic bisimulation. In Computer Security
Foundations Workshop, pages 3–13, 2003.

164

MOBIUS Deliverable D2.3. Report on Type Systems

[164] G. Smith and D. Volpano. Secure Information Flow in a Multi-threaded Imperative Language. In
Principles of Programming Languages, pages 355–364, 1998.

[165] M. Smith. A Model of Effects with an application to Ownership Types. PhD thesis, Imperial College,
2007.

[166] F. Spoto. Julia: A generic static analyser for the Java bytecode. In Workshop on Formal Techniques
for Java Programs, 2005.

[167] F. Spoto, P. M. Hill, and E. Payet. Path-length analysis for object-oriented programs. In Emerging
Applications of Abstract Interpretation, 2006.

[168] Q. Sun, A. Banerjee, and D. A. Naumann. Modular and constraint-based information flow inference
for an object-oriented language. In R. Giacobazzi, editor, Static Analysis Symposium, volume 3148 of
Lecture Notes in Computer Science, pages 84–99. Springer-Verlag, 2004.

[169] Sun Microsystems, Inc., Palo Alto/CA, USA. Mobile Information Device Profile (MIDP) Specification
for Java 2 Micro Edition, Version 2.0, 2002.

[170] F. Tip. A survey of program slicing techniques. Journal of Programming Languages, 3:121–189, 1995.

[171] T. C. Tsai, A. Russo, and J. Hughes. A library for secure multi-threaded informa-
tion flow in Haskell. In IEEE Computer Security Foundations Symposium, July 2007.
http://www.cse.chalmers.se/∼russo/.

[172] J. Vitek and B. Bokowski. Confined types in Java. Software Practice and Experience, 31(6):507–532,
2001.

[173] D. Volpano and G. Smith. A type-based approach to program security. In M. Bidoit and M. Dauchet,
editors, Theory and Practice of Software Development, volume 1214 of Lecture Notes in Computer
Science, pages 607–621. Springer-Verlag, 1997.

[174] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. In Computer
Security Foundations Workshop, pages 34–43, Rockport, Massachusetts, June 1998. IEEE Press.

[175] H. S. Wilf. Algorithmics and Complexity. A. K. Peters Ltd, 2002.

[176] R. Wilhelm. Timing analysis and timing predictability. In F. S. de Boer, M. M. Bonsangue, S. Graf,
and W. P. de Roever, editors, Formal Methods for Components and Objects, volume 3657 of Lecture
Notes in Computer Science, pages 317–323. Springer-Verlag, 2004.

[177] T. Wrigstad and D. Clarke. Existential owners for ownership types. Journal of Object Technology,
6(4):141–159, 2007.

[178] N. Yoshida, K. Honda, and M. Berger. Linearity and bisimulation. Journal of Logic and Algebraic
Programming, 72:207–238, 2007.

[179] Nobuko Yoshida. Type-based security for mobile computing integrity, secrecy and liveness. ENTCS,
162:333–340, 2006.

[180] Dachuan Yu and Nayeem Islam. A typed assembly language for confidentiality. In Programming
Languages and Systems: Proceedings of the 15th European Symposium on Programming, ESOP 2006,
volume 3924 of Lecture Notes in Computer Science, pages 162–179. Springer-Verlag, 2006.

[181] S. Zdancewic and A. C. Myers. Secure information flow via linear continuations. Higher-Order and
Symbolic Computation, 15(2–3):209–234, September 2002.

165

MOBIUS Deliverable D2.3. Report on Type Systems

[182] S. Zdancewic and A. C. Myers. Observational determinism for concurrent program security. In
Computer Security Foundations Workshop, pages 29–43, Pacific Grove, California, USA, June 2003.
IEEE Press.

166

	1 Introduction
	2 Types for Information Flow Security
	2.1 Security Types for Sequential Bytecode
	2.1.1 Security policy
	2.1.2 Dealing with unstructured programs
	2.1.3 Type system
	2.1.4 Non interference theorem
	2.1.5 Related work

	2.2 Security Types for Multithreaded Bytecode
	2.2.1 Introduction
	2.2.2 Syntax and semantics of multithreaded programs
	2.2.3 Security policy
	2.2.4 Type system
	2.2.5 Soundness
	2.2.6 Instantiation
	2.2.7 Related work
	2.2.8 Conclusions on security types for multithreaded bytecode

	2.3 Extensions of the Type System
	2.3.1 Extensions of Type Systems for Multithreaded Bytecode
	2.3.2 Types for Distributed Bytecode

	3 Types for Basic Resource Policies
	3.1 Heap consumption
	3.2 Permission analysis
	3.2.1 The Java MIDP security model
	3.2.2 The structure of permissions
	3.2.3 Program model
	3.2.4 Operational semantics
	3.2.5 Static analysis of permission usage
	3.2.6 Constraint solving
	3.2.7 Towards relational permission analysis

	3.3 Explicit Accounting of External Resources
	3.3.1 Monitoring External Resources in MIDP
	3.3.2 A Type System for Resource Safety
	3.3.3 Related Work
	3.3.4 Future Work

	3.4 Cost Analysis of Java Bytecode
	3.4.1 The Java Bytecode Language
	3.4.2 From Bytecode to Control Flow Graphs
	3.4.3 Recursive Representation with Flattened Stack
	3.4.4 Size Relations for Cost Analysis
	3.4.5 Cost Relations for Java Bytecode
	3.4.6 Experiments in Cost Analysis of Java Bytecode
	3.4.7 Conclusions and Future Work

	4 Alias Control Types
	4.1 UJ: Type Soundness for Universe Types
	4.1.1 UJ Source Language
	4.1.2 Universes and Owners
	4.1.3 Operational Semantics
	4.1.4 Topological Types
	4.1.5 Encapsulation
	4.1.6 Conclusion

	4.2 Universe Types for Race-free programs
	4.3 Generic Universe Types
	4.3.1 Main Concepts
	4.3.2 Static Checking
	4.3.3 Runtime Model
	4.3.4 Properties
	4.3.5 Conclusions

	4.4 Multiple Ownership
	4.4.1 The Benefits of Putting Objects into Boxes
	4.4.2 MOJO
	4.4.3 Effects
	4.4.4 Conclusion

	5 Conclusions

